Check for
Updates

An Evaluation of Self-Adaptive Mechanisms for Misconfigurations in
Small Uncrewed Aerial Systems

SALIL PURANDARE, Iowa State University, USA

MD NAFEE AL ISLAM, University of San Diego, USA
URJOSHI SINHA, Lawrence Berkeley National Laboratory, USA
JAN E CLELAND-HUANG, University of Notre Dame, USA
MYRA B. COHEN, Iowa State University, USA

Small uncrewed aerial systems, sUAS, provide an invaluable resource for performing a variety of surveillance, search, and
delivery tasks in remote or hostile terrains which may not be accessible by other means. Due to the critical role SUAS play in
these situations, it is vital that they are well configured in order to ensure a safe and stable flight. However, it is not uncommon
for mistakes to occur in configuration and calibration, leading to failures or incomplete missions. To address this problem,
we propose a set of self-adaptive mechanisms and implement them into a self-adaptive framework, CICADA, for Controller
Instability-preventing Configuration Aware Drone Adaptation. CICADA dynamically detects unstable drone behavior during
flight and adapts to mitigate this threat. We have built a prototype of CICADA using a popular open source sUAS flight
control software and experimented with a large number of different configurations in simulation. We then performed a case
study with physical drones to determine if our framework will work in practice. Experimental results show that CICADA’s
adaptations reduce controller instability and enable the sUAS to recover from up to 33.8% of poor configurations. In cases
where we cannot complete the intended mission, invoking alternative adaptations may still help by allowing the vehicle to
loiter or land safely in place, avoiding potentially catastrophic crashes. These safety-focused adaptations can mitigate unsafe
behavior in 52.9% to 64.7% of dangerous configurations. We further show that rule-based approaches can be leveraged to
automatically select an appropriate adaptation strategy based on the severity of instability encountered, with up to a 14.2%
improvement over direct adaptation. Finally, we introduce a variation of our primary adaptation strategy designed to allow
more cautious adaptation with limited configuration information, which gets within 6.7% of our primary adaptation strategy
despite not requiring an optimal knowledge base.

CCS Concepts: « Computer systems organization — Embedded and cyber-physical systems; « Software and its
engineering — Error handling and recovery.

Additional Key Words and Phrases: self-adaptive software, configurability, uncrewed aerial vehicles

1 INTRODUCTION

Small Uncrewed Aerial Systems (SUAS) are increasingly being deployed into unknown environments to support
diverse missions — often in response to natural or man-made disasters such as floods, earthquakes, or fires [6, 55].
In such scenarios, the operators need to dispatch the sUAS as expeditiously and safely as possible to detect
survivors, deliver food and water or medical items, or to provide critical intelligence to human rescuers. In order to

Authors’ addresses: Salil Purandare, Iowa State University, Ames, Iowa, USA, 50011, salil@iastate.edu; Md Nafee Al Islam, University of San
Diego, San Diego, California, USA, 92110, mislam@sandiego.edu; Urjoshi Sinha, Lawrence Berkeley National Laboratory, Berkeley, California,
USA, 94720, usinha@Ibl.gov; Jane Cleland-Huang, University of Notre Dame, Notre Dame, Indiana, USA, 46556, janehuang@nd.edu; Myra B.
Cohen, Iowa State University, Ames, Iowa, USA, 50011, mcohen@iastate.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2024 Copyright held by the owner/author(s).

ACM 1556-4703/2024/12-ART

https://doi.org/10.1145/3707643

ACM Trans. Autonom. Adapt. Syst.

https://orcid.org/0000-0002-5147-3233
https://orcid.org/0000-0003-2828-4685
https://orcid.org/0000-0001-6886-4268
https://orcid.org/0000-0001-9436-5606
https://orcid.org/0000-0003-2443-2425
https://orcid.org/0000-0002-5147-3233
https://orcid.org/0000-0003-2828-4685
https://orcid.org/0000-0001-6886-4268
https://orcid.org/0000-0001-9436-5606
https://orcid.org/0000-0003-2443-2425
https://orcid.org/0000-0003-2443-2425
https://doi.org/10.1145/3707643
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3707643&domain=pdf&date_stamp=2024-12-11

2 .« Purandare, Islam, Sinha, Cleland-Huang, Cohen

be deployed safely and reliably, SUAS must be configured properly for their intended purpose. Misconfigurations
can be caused unintentionally by inexperienced users or even maliciously by external bad-actors [53], either
of which can impact the stability, safety, and success of the flight. To be effective in such environments, sUAS
need the ability to detect the effects of unfavorable configurations as they emerge, evaluate the impact of those
configurations on the stability of their operations, and ultimately adapt their behavior to mitigate the problem.

Almost all commercial sUAS flight controllers include basic failsafe mechanisms for detecting and responding
to system failures such as low-battery, loss-of-signal, or geofence breaches. However, these failsafes are limited
in their scope. Current sUAS are not inherently well-equipped to detect and mitigate the effects of configuration
errors, which is especially problematic when they are to be deployed in emergency response scenarios.

A key to system dependability of an sUAS is the ability of its controller to prevent the vehicle from moving in
unexpected ways. This can be partially achieved by tuning sets of parameters which work together to constrain
the physics of the vehicle. Therefore, most sUAS controllers provide a wide range of configuration parameters
that can be tuned and customized for different vehicles, flying conditions, or even individual missions (e.g. when
speed is of the utmost importance vs. battery preservation). Initial configurations are typically set by sUAS
manufacturers, but can be reconfigured by Remote Pilots in Command (RPICs) or sUAS technicians prior to
flight, often as part of recalibrating the flight controller when prearming checks fail. It is also possible to modify
configurations at runtime. The runtime exposure of parameters is meant to provide flexibility, but incorrectly
modifying them can lead to errors that have been labeled as input or range specification bugs [30, 44]. These are
parameter settings that may cause the vehicles to become unstable, leading to crashes, deviations from the flight
path, or unresponsiveness.

Kim et al. have shown that slight changes to parameter settings at runtime can lead to critical flight failures
[44]. They suggest restricting certain parameter settings to guard an RPIC from incorrectly changing parameters
during flight. However, this would need to be vehicle and environment specific and is unlikely to have a general
solution. A quick search of user forums shows that users are changing parameters, and that use of incorrect
parameter settings is a common problem (e.g., [56]): Furthermore, there is little preventing a malicious actor from
accessing and modifying control parameters and recent work [43, 72] has reported faults in controllers which
lack checks on incorrect parameters.

While some research has explored the ability to detect or predict combinations of parameters, or to find root
causes of faults [30, 32], they lack a proposed solution for overall sUAS dependability. One of the most popular
software controllers, PX4 [51] has over 1,200 parameters, many with a wide range of potential values, all of which
can be manipulated. The possible search space (much larger than 212%°) for finding failing scenarios is simply
infeasible to cover exhaustively, especially given that failure cases are vehicle and situation (e.g. mission or use
case) dependent.

In this work we take a different approach to sUAS dependability. We investigate whether it is possible to
automatically detect and adapt to and recover from failures, allowing critical missions to complete in the event of
misconfiguration-related flight instability. We propose extending a common self-adaptive, MAPE-K (Monitor,
Analysis, Planning, Execution and Knowledge) framework to improve overall system dependability [7, 37, 49, 52].
Many self-adaptive systems monitor and adapt based on quality attributes such as time and bandwidth, rather
than discrete events (e.g. failures). However, prior research has also proposed self-adaptation for failure avoidance
[24, 66]. This is the approach taken here.

Recently, Braberman et al. [7] presented a MAPE-K reference architecture for uncrewed aerial vehicles which
considers different types of adaptations; those which change system configurations to adapt the vehicle’s
capabilities and those which adapt the behavior of the vehicle through flight commands. We propose adaptations
of both types, achieving adaptation through modification of configuration parameters, and by sending flight
commands. We further introduce a lightweight method of monitoring flight stability outside of standard controller
error reporting with the aim to automatically detect emergent instabilities and to trigger adaptations.

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 3

We have built a framework called CICADA, which stands for Controller Instability-preventing Configuration
Aware Drone Adaptation, with a prototype for experimentally validating our approach. CICADA subscribes to
and monitors time-series data representing the vehicle’s physical state (e.g. its roll, pitch, and yaw) and detects
significant deviations from the expected norm. When deviations are detected, CICADA triggers an immediate
adaptation.

We built a prototype of CICADA and conducted an initial evaluation of this work (presented in [58]). We
began with a series of experiments on the widely used Gazebo flight simulator to explore part of the PX4 control
parameter space in order to understand how parameter changes impact the sUAS during flight. We found a wide
range of behaviors, including many failure-causing configurations. Utilizing this analysis, we then evaluated
CICADA’s adaptation mechanisms. Our first adaptation approach returns to a predefined baseline configuration
and attempts to continue the mission. When this fails we invoke adaptations that abandon the mission while
attempting to increase stability. These include (a) loitering in place, and (b) landing in place. Qur initial results
are promising, showing that we can adapt to successfully complete up to 34.5% of otherwise failing missions, and
stabilize to prevent dangerous behavior in 72.7% of cases that otherwise tend to result in severe behavior such as
crashes or fly-aways.

This paper presents an extension of that original work [58] and introduces two new adaptations. First, we
present a strategy in which we apply a rule-based metric to automatically select a suitable adaptation mechanism.
Based on what we learned from our initial experiments, it uses heuristics to either (1) revert configurations
towards known default values in an attempt to recover and resume the mission in cases of non-extreme instability,
or (2) in more severe cases to sacrifice the mission and simply try to stabilize the drone. We further introduce
an approach to configuration adaptation that does not require prior’ knowledge about configurations for any
given drone model. It uses incremental nudging, iteratively pushing the configuration values in one direction or
the other, using instability feedback to choose its next nudge. This is an important improvement over our initial
work because ideal configuration information is rarely available for most real-world drone systems.

One limitation of the original work was that many of the tests were run only a single time in order to cover a
broad swathe of configurations, and as such; the results were susceptible to flakiness in mission outcomes. In this
work, we address this threat to validity by running multiple trials of all of our initial experiments. This is important
to minimize the impact of potential non-determinism which can appear during flight due to timing issues. We
capture the flaky behavior in our results to ensure that no data is lost, while still preventing the flakiness from
producing misleading results. We further perform a study in which we re-run each flaky configuration in our
dataset thirty times to compare the outcomes to the initial runs and discuss the causes of the flaky behavior in
greater depth.

Finally, in this extension we present a case study with CICADA in the field using real drones. In this study
we demonstrate a successful application of CICADA using its revert-to-baseline strategy. During takeoff the
misconfigured sUAS begins to visibly wobble and is heading towards failure, yet CICADA automatically detects
this and reconfigures, after which the vehicle visually stabilizes and proceeds to complete the intended mission.

The contributions of this work are as follows:

(1) We systematically explore a large parameter space of PX4, a popular flight control software to determine
the impact of configurations on flight behavior.

(2) We present a configuration-aware self-adaptive framework, CICADA, for sUAS which is triggered by
monitoring the vehicle’s physical state during flight.

(3) We perform a series of experiments evaluating CICADA’s ability to avoid flight failures caused by config-
uration problems, and for mitigating the risk posed by dangerous configurations.

(4) We extend the initial adaptation protocols to introduce two smart adaptation strategies for CICADA and
evaluate them with our prototype implementation.

ACM Trans. Autonom. Adapt. Syst.

4 « Purandare, Islam, Sinha, Cleland-Huang, Cohen

(5) We conduct a case study on physical drone systems in which we demonstrate CICADA’s ability to detect
configuration-related instability and successfully adapt to maintain stable flight behavior in the real world.

The rest of this paper is organized as follows. In the next section we present some motivation for CICADA. In
Section 3 we present an overview of CICADA and then Sections 4 and 5 describe the experiments we conducted
and report results. We then present our case study on a real drone (Section 6). We then discuss our findings in
more detail (Section 7) and point to some interesting follow on investigations. We close by discussing related
work (Section 8) and finally presenting our conclusions and future work in Section 9.

2 MOTIVATING EXAMPLES

Misconfigurations can be introduced in many different ways. First, hobbyists and technicians build and configure
sUAS; however, this does not always work out as intended, and the resulting configurations can reduce flight
stability and result in crashes [56]. Second, software bugs in sUAS applications can inadvertently cause inappro-
priate configurations. Third, the sUAS may be configured to fly in certain environmental conditions or with a
specific payload; but may be launched under different conditions without appropriate reconfiguration. Finally,
despite attempts to secure the communications infrastructure, a hacker might change the sUAS’ configuration
during flight [28].

We present three real-world examples of configurations errors here. First, we recently took delivery of new
sUAS from a highly qualified manufacturer. During initial tests the SUAS experienced intermittent takeoff failures
resulting in several crashes. This was not easy to debug, but eventually the root cause was attributed to a
configuration error in one of the flight controller parameters. What we found interesting about this scenario is
that the manufacturer was proficient in sUAS tuning, yet still delivered an SUAS with a problematic configuration.
The fact that the problem was intermittent led us to look for other causes at first, and it was not until we had
spent considerable time that we realized we had a subtle misconfiguration in our system.

In our second example, during preflight setup the operator accidentally swiped a screen in the RC transmitter,
which modified the value for ‘MOT_SPIN. ARM’, causing the drone to have insufficient lift to maintain flight.
Fortunately, we noticed the error and were able to reset it to the value established during pid tuning, thereby
avoiding a potential flight-time problem. However, this incident shows how easy it is for operators to make
accidental changes to parameters.

Fig. 1. Configuration-related multicopter crash reported by a PX4 user. This behavior was caused by the MC_ROLLRATE_P
and MC_ROLL_P parameters.

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 5

For our third example we look to the PX4 user forum [56]. Users report many problems related to misconfigura-
tions on this site, but we present one. In this instance they reported a crash of a Harrier D7 multicopter. The SUAS
operator was attempting to modify the MC_ROLLRATE_P (controls output for angular speed error) and MC_ROLL_P
(the desired angular speed) parameters of the controller. These parameters are ones that we manipulate in our
experiments and case study. Figure 1 shows the uploaded flight path from this report. As can be seen, the flight
took off and then flew in spiral like formation before crashing (shown left to right). In our tests with the same
parameters, we found that there were values that caused similar unstable flight behavior for other drone models as
well and often prevented take off. However, we also observed during some initial trials, that timely reconfiguration
to known good parameter values allows the sUAS to regain stability and continue flying safely.

Another common scenario in which flight parameters can play an important role is during loss-of signal. This is
a relatively common problem that is typically caused by building obstructions, electromagnetic interference from
high-power lines, interference from other devices, including those hosted on the sUAS itself, hot and/or humid
weather conditions, or malicious attacks [33, 53, 70]. For example, a UK survey drone and a subsequent ‘recovery’
drone both experienced compass interference that were likely caused by deliberate signal jamming [28]. Once
loss-of-signal is detected, the default response is to activate a RTH (Return to Home) failsafe mechanism. For
example, in the PX4 firmware settings, the COM_RCL_ACT_T parameter defines the delay in seconds between loss
of signal and failsafe activation. The optimal setting for this delay might differ when flying in remote rural areas
versus urban ones. Similarly, fog or rain can reduce signal, potentially necessitating an increased tolerance for
loss of signal duration. The parameter should therefore be configured according to geolocation and weather
conditions and changing this parameter can have a large impact onmission success. SUAS are typically designed
to detect loss-of-signal with radio-controllers; however, signal interference problems can also be detected directly
by use of a Radio Spectrum sensor such as RadioHound [46]. Once detected, the sUAS can adapt accordingly -
typically by flying higher to avoid interference and/or by switching radio frequencies or channels.

Last, hacking a drone is unfortunately all too simple‘as many sUAS use unencrypted communication channels.
Whilst sUAS engineers can reduce the chance of hacking by deploying sUAS over VPNs, securing encryption
channels, and limiting access to the sUAS to a single radio controller; it is still possible for a determined and
skilled hacker to interfere with the correct operation of the sUAS by transmitting new waypoints or by changing
the sUAS’ configuration during flight. Monitoring both the underlying configuration of the sUAS and its mission
plan to ensure that it remains within acceptable ranges provides the opportunity to detect problems, reconfigure
parameters to safe ranges, and even to intercept and deny certain reconfiguration commands.

These examples of the ease of misconfigurations, and our initial tests to see if we could stabilize a vehicle when
this happens, motivated us to develop a framework for instability-preventing configuration-aware adaptation.
Understanding the configuration space, monitoring the sUAS’ behavior during flight, and re-configuring when
needed can potentially increase sUAS dependability. We present our vision for achieving this goal next.

3 THE CICADA FRAMEWORK

We now present an introduction to the CICADA framework. We begin with an overview and then present more
detail on the adaptations.

3.1 CICADA Overview

CICADA is based on MAPE-K [39], and builds upon two existing frameworks. The Rainbow framework [11] is an
architecture that provides runtime, self-adaptive capabilities for monitoring, detecting, decision-making, and
enactment. Rainbow’s control loop continuously monitors the properties of a system to identify problems. When
a problem is detected, it performs an adaptation to bring the system back to a stable state. MORPH [7] is an
adaptation architecture geared towards robotic systems like sUAS which differentiates between configuration

ACM Trans. Autonom. Adapt. Syst.

6 « Purandare, Islam, Sinha, Cleland-Huang, Cohen

and behavioral adaptations. We follow the Rainbow architecture by partitioning the system into different layers
and separating out the monitoring, analysis, and action components, and we leverage MORPH by incorporating
its differentiation of configuration-based and behavioral adaptations.

(Ad : N : : 2\
aptation Layer | &,
D¢)Q_\O/_ ;%é (ﬁ) Environment
Adaptation Knowledge 006 -
Strategies Base
o o
i Commands :
Reconfiguration| | _| [Parameters Flight
- Controller
: Sensor Data
. E tal
Flight Plans rll::;(\)nnlr;;;ea Parameter Interface
K
A Target System
Detected
N\ J
conditions N J
e 3\
A
Gauges _ Probes
roemmeenennaees, R Rt (Controller & Attributes)
Thg:t;t;ld- i Machine Weather
heuristics | | Learning Detection > Effectors
Adaptation actions Translation Layer)
_

Fig. 2. CICADA Architecture: The flight controller in the target system communicates with the sUAS to send mission
commands and modify configuration parameters. The sUAS is subject to environmental conditions. The translation layer
contains probes, gauges and effectors which interact with the target system and the adaptation layer. Grey boxes indicate
future work. The adaptation layer uses its internal knowledge base to select and plan reconfiguration strategies.

CICADA consists of three layers illustrated in Figure 2. These include the target system, which contains the
physical sUAS and sensors, as well as their simulated variants. The translation layer monitors the target system
and decides when to adapt, and then executes any necessary adaptations. It interfaces with both the target
system (via probes, gauges and effectors) and the adaptation layer. Probes in the translation layer monitor raw
data from the target system, gauges aggregate the data and trigger an adaptation, and effectors perform the
reconfiguration. The adaptation layer analyzes and selects the reconfiguration strategy. In a MAPE-K system
the K stands for knowledge about the system; for example, information about flight control parameters used to
support the analyses and reconfiguration strategy. The adaptation layer then sends the reconfiguration strategy
to the effectors (in the translation layer) which implement the adaptation.

At a more detailed level, CICADA’s target system (upper right) contains the flight controller (e.g., Ardupilot 5],
PX4 [51] or Paparazzi [25]) and the sensors integrated into the flight controller or attached externally to the sUAS.
The flight controller interfaces directly with the sUAS’ sensors, and CICADA supports these integrated sensors as
well as external ones. For example, CICADA can monitor data generated by the flight controller to detect unstable
conditions or may deploy specialized environmental sensors or a camera to detect weather conditions [1]. Finally,
the target system interacts with the environment, which may include externally applied changes to the controller
parameters.

The translation layer consists of probes, gauges and effectors. Probes collect the realtime data from the controller,
aggregate it, perform analysis, and detect emergent problems in the environment and/or onboard the sUAS.
Gauges my be of different types. We envision ones based on computer vision, data analytics, and configuration

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 7

checks. Initially, we focus on the heuristics implemented in this paper, which monitor controller instability
thresholds; however, more sophisticated approaches based on deep-learning are also feasible and will be included
in future work [34]. Together, these elements make up the monitor and analyze components of the MAPE-K
feedback loop. The last part of the translation layer are the effectors, part of the execute component, which interact
with the adaptation layer and perform the adaptation in the target system.

Finally, our adaptation layer is where we reason about the adaptations, leveraging knowledge of the way
different parameters impact stability. This is the plan component of our feedback loop. The knowledge base can
be grown experimentally using the simulator to discover preferred adaptations as well as parameter changes to
be avoided (guards), such as those described in the work of Swanson et al. [66].

In order for the sUAS to adapt to changes in flight behavior, it needs the ability to assess current conditions at
runtime. CICADA accomplishes this with its gauges, using an onboard analytics component to analyze real-time
sensor data from the probes to check for potential instabilities. In our first prototype of CICADA we use threshold
violations which are relatively lightweight and fast to compute. The sensor data consists of information about the
expected and actual roll, pitch, and yaw of the sUAS. Figure 2 has two additional gauges (greyed out) which we
plan to build for future work. The first uses machine learning predictions to detect potential flight instabilities
and the second uses weather detection as a trigger for adaptation.

CICADA also monitors configuration parameters to check that they are within acceptable bounds. This is
particularly important if the sUAS is flying in a populated area in which malicious attacks are more likely to
occur. As shown by Kim et al. [44], the use of parameter values outside safe ranges is often not constrained and is
therefore open for attack. CICADA therefore first checks that all parameters are within-range prior to flight and
reruns these checks during flight if instabilities are detected.

3.2 Adaptations

We initially designed three basic adaptations for CICADA. In this paper, we additionally present two new smart
adaptations which build on the earlier strategies. Our adaptations can be sorted into two categories as defined by
Braberman et al. [7]: configuration-based and behavioral: A configuration-based adaptation targets only the flight
control parameters in the system, while a behavioral adaptation can make use of other mission commands, e.g.
initiating landing. Our adaptations are defined below.

3.2.1 Configuration-based Adaptations.

Revert-to-baseline: This adaptation attempts to stabilize the sUAS so that it can complete its flight (albeit with
some noise and potential drift). This adaptation requires knowledge of a baseline (or default) set of configuration
parameters. This type of adaptation can be used when we have a stable start-up configuration (or known
stable default set of parameters), and involves changing parameters during flight. We save the initial (stable)
configuration and then re-set'all changed parameters back to the known baseline values as established during
earlier PID tuning. It is therefore particularly useful when parameters are accidentally changed by the operator
via a user interface such as QGroundControl, or maliciously modified as a result of a security attack or breach.
We call this revert-to-baseline.

Nudging: In this paper, we introduce a gradual approach which leverages the existing knowledge base to
perform an incremental variation of the revert-to-baseline adaptation. We apply this approach when the ideal
baseline is unknown, by gradually nudging the values in either direction. In our study, we focus on nudging
towards default values. The advantage of this adaptation is that it requires little prior knowledge about the
configurations of the sUAS being used, making it useful for a far greater variety of drone models.

3.2.2 Behavioral Adaptations.
Our next two adaptations are behavioral. For particularly problematic types of failures where harm to the drone,
nearby property, or people in the vicinity is likely, attempting to continue the mission is not useful. These

ACM Trans. Autonom. Adapt. Syst.

8 « Purandare, Islam, Sinha, Cleland-Huang, Cohen

behavioral adaptations allow the mission to abort, but attempt to modify the flight path to avoid a catastrophic
consequence.

Loiter: The first of these strategies is to send the sUAS into loiter mode, which in the case of a rotor-copter,
forces it to hover in place. The aim of this adaptation is two-fold - first, to give the drone operator time to regain
manual control, and secondly to potentially reduce problems such as vibration or attitude fluctuations that may
occur in more rigorous flight patterns.

Land-in-place: This strategy forces the sUAS to land at its current location. The goal when this adaptation
is used is to quickly return a potentially out-of-control drone to the ground without causing serious damage.
However, this strategy comes with additional challenges of preventing unnecessary landings on water or in a
corn field.

3.2.3 Hybrid Adaptation.

Rule-based adaptation: We combine the earlier adaptations and our knowledge base with a rule-based
strategy which uses data from the probes to determine the severity of instability and then automatically applies
an appropriate adaptation in response. The goal for this adaptation is to ensure safety for a wider range of
configurations, from recoverable minor misconfigurations to more severe, and potentially unsafe situations.

3.3 CICADA Instantiation

We built CICADA to work both in a simulation environment and on our physical drones. The simulation allows us
to safely experiment with environmental and configuration factors; however, since CICADA is fully compatible
with our sUAS hardware platform it can be used for deployment on physical sUAS. The PX4-Autopilot controller
supports hardware deployments as well as software-in-the-loop. We demonstrate the use of CICADA on our
physical drones in the case study (Section 6). Once we have gained a deeper understanding of dependable and
safe reconfigurations we plan to build a more robust version of CICADA and perform additional experimentation,
however, the cost and potential damage from failure in the physical environment has led us to focus mostly on
simulation in this work. We now describe each part of CICADA.

3.3.1 Controller. The PX4-Autopilot software [51] is an open source flight control software compatible with
many different flight control boards including Pixhawk 4, VOXL Flight, and ControlZero. It uses the MAVLink
messaging protocol to send mission plans and control commands to the sUAS’ hardware flight controller, and
is also used by the sUAS to send status updates to the Ground Control System (GCS). Control software can be
hosted onboard the sUAS (e.g., on an onboard Jetson) or offboard on a GCS.

3.3.2 Configuration Parameters. The PX4-Autopilot flight controller has over 70 categories of parameters, and
around 1,200 configurable properties [21]. Furthermore, many parameters often have a large range of possible
values, all of which can be individually configured. While a subset of the parameters are specific to different
types of vehicles (e.g., fixed wing vs. copters), applicable to specific hardware devices (e.g., gimbal), relevant only
in simulation environments, or can only be configured prior to activation of the sUAS, there are a large number
that are common across all vehicles, relevant to both simulation versus hardware environments, and which can
be manipulated statically (requiring a restart) as well as dynamically (taking effect immediately). In this work, we
focus primarily on the dynamic configuration parameters which can be leveraged for runtime adaptation.

3.3.3 Probes. CICADA’s initial monitoring component is plugged into the PX4 flight controller. PX4 uses an
uORB messaging protocol which is an asynchronous publish-subscribe API, to publish various uORB topics
associated with different sensor data. For instance, the uORB topic ‘sensor_accel’ contains accelerometer data
which gives the acceleration across x,y and z axes. While it is possible to monitor data from a wide range of
sensors, we start with only a few that are relevant for evaluating aspects of flight stability. CICADA subscribes to
vehicle_attitude and vehicle_attitude_setpoint and monitors and aggregates the actual and estimated roll, pitch

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 9

and yaw data in real time. CICADA can also monitor the configuration data using the controller’s parameter
settings functions.

3.3.4 Gauges. Gauges aggregate the data from probes and from the PX4 parameter interface. For this instantiation
we use two types of gauges (see Section 3.1). The first aggregates acceleration and attitude data, including roll,
pitch, and yaw values, and detects a variance from the expected and actual values. This is a simple mechanism to
detect instabilities and will trigger an adaptation. The second collects current parameter settings. Adaptation is
only triggered by the first gauge when it detects a deviation from the expected values. Instability information is
shared with the adaptation layer.

3.3.5 Effectors. CICADA’s effectors apply decisions made in the adaptation layer by sending updated parameter
commands to the flight controller in the target system. They also communicate with the adaptation layer to
determine what changes to make. In CICADA we support the five adaptations mentioned, (1) revert-to-baseline,
(2) loiter, (3) land-in-place, (4) rule-based, and (5) nudging.

4 EXPERIMENTAL EVALUATION

We have built a prototype of CICADA and perform an evaluation of this in simulation. Our study seeks to answer
the following research questions:!

RQ1: What is the impact of configurations on flight success?

RQ2: How well does the revert-to-baseline adaptation recover from instability-causing configurations?
RQ3: How effective are the loiter and land strategies at stabilizing problematic configurations?

RQ4: Can our rule-based strategy improve the adaptation success rate?

RQ5: How well does nudging work in the absence of an ideal knowledge base?

4.1 Configuration Space Model

We first selected a set of parameters based on the work of Kim et al. [44] since the focus of their work was also
on flight instability. We then retrieved additional information from three sources; the PX4 discussion forums
[61], formal PX4 documentation [21], and the PX4 bug repository [60]. In the online discussion forums, experts
suggested ways to tune and optimize specific parameters to avoid poor calibrations that caused high vibration,
insufficient thrust, and othermegative outcomes on flight quality. We identified a set of 13 core parameters that
appeared most frequently in discussions and in the relevant literature, which we refer to as our core parameters
since they were specially selected for their relevance to controller stability. We then added 26 more parameters
(labeled the extended set), for a total of 39 parameters providing a larger exploration space.

The top portion of Table 1 shows the set of 13 core parameters, while the bottom portion shows the extended
set. We partitioned each parameter into five choices within its valid range. We selected the minimum (MIN),
maximum (MAX), and default value (bold) for each parameter as specified in the official PX4 documentation. We
then added (OP1), a value approximately midway between min and default (OP2), and a value approximately
midway between max and default (OP3). For MPC_THR_MAX the default value is also its MAX so we modified the
partition scheme to use values dispersed between MIN and MAX. During this process, we uncovered missing
online documentation. The maximum values for three of the parameters, MC_PITCHRATE_D, MC_PITCHRATE_I and
MC_ROLLRATE_I were not specified. Hence, we used the largest maximum value from the documented parameters
and tried to include the maximum value of other similar parameters as well. For those parameters, we also
experimented with significantly higher values, up to and beyond 1800, the highest value of any parameter in the
set, and found the behavior was not noticeably different than with the maximum value.

ISupplemental data is at https:/sites.google.com/iastate.edu/cicada/taas

ACM Trans. Autonom. Adapt. Syst.

https://sites.google.com/iastate.edu/cicada/taas

10 « Purandare, Islam, Sinha, Cleland-Huang, Cohen

Table 1. PX4 parameters depicting the minimum and maximum values and three additional parameters(OP) for each. Boldface
denotes default values. The first 13 parameters represent the core parameters. The rest are the extended set. Values denoted
by * have been excluded from 2-way data.

Parameter MIN OP1 (0)] OoPr3 MAX
MC_PITCHRATE_P 0.01* | 0.08 0.15 0.38 0.6
MC_PITCH_P 0.0 33 6.5 9.3 12.0
MC_ROLLRATE_P 0.01* | 0.08 0.15 0.33 0.5
MC_ROLL_P 0.0 33 6.5 9.3 12.0
MC_PITCHRATE_D 0.0 | 0.0015 | 0.003 0.01 12.0°
= MC_PITCHRATE_I 0.0 0.1 0.2 0.6 12.0
© | MC_PITCHRATE_K 0.01* | 0.505 1.0 3.0 5.0
© "MC ROLLRATE D 0.0 | 0.0015 | 0.003 0.0065 0.01
MC_ROLLRATE_I 0.0 0.1 0.2 0.6 12.0
MC_ROLLRATE_K 0.01* | 0.505 1.0 3.0 5.0
MPC_THR_MAX 0.0 | 0.25" 0.5* 0.75% 1.0
MC_PITCHRATE_MAX | 0.0 | 110.0 220.0 1010.0 | 1800.0
MPC_THR_MIN 0.05* | 0.085 0.12 0.56 1.0
Parameter MIN OP1 oP2 OP3 MAX
MC_YAWRATE_P 0 0.1 0.2 0.4 0.6
MC_YAWRATE _I 0 0.1 0.2 0.4 0.6
MC_YAWRATE_D 0 0.1 0.2 0.4 0.6
MC_YAWRATE_K 0 0.5 1 3 5
COM_ARM_IMU_ACC 0.1 0.4 0.7 0.85
COM_ARM_IMU_GYR 0.02 | 0.135 0.25 0.275 0.3
MC_PITCHRATE_FF 0 0.0015 | 0.003 0.01 12¥
MC_ROLLRATE_FF 0 0.0015 | 0.003 0.0065 0.01
MC_ROLLRATE_MAX 0* 110 220 1010 1800
MC_YAWRATE_FF 0 0.1 0.2 0.4 0.6
2 [MC_YAaw_p 0 1.4 2.8 3.9 5
% MIS_YAW_ERR 0 6 12 39 90
= MPC_TILTMAX_AIR 20 325 45 67 89
5 MPC_XY_P 0 0.475 0.95 1.475 2
MPC_Z P 0* 0.5 1 1.25 1.5
COM_POS_FS_EPH 0* 3 5 7 10
EKF2_ABL_LIM 0* 0.2 0.4 0.6 0.8
MOT_SLEW_MAX 0 1 2 3* 4*
SENS_BOARD_ROT 0 10* 20* 30* 40*
COM_VEL_FS_EVH 1 2 3 4 5
MC PR_INT LIM 0 0.15 0.3 0.45 0.6
MPC_ACC_HOR 2 2.5 3 9 15
MPC_ACC_HOR_MAX 2 35 5 10 15
MPC_XY_VEL_I_ACC 0 0.2 0.4 30.2 60
SENS_BARO_QNH 500 | 756.65 | 1013.25 | 1256.65 | 1500
MPC_Z_VEL_D_ACC 0 0.5 1 15 2

4.2 Sampling

The configuration set has 39 parameters, each with 5 values. This leads to 5°° possible configurations, which is too
large to exhaustively explore. Therefore, we performed experiments with two different strategies for systematic
exploration. The first approach was creating a one-hop sample. For each configuration, the algorithm uses default
values for all but one parameter, and then systematically evaluates each of the four non-default values for that

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 11

parameter. This is repeated for all configuration parameters. This sample has 13 X 4 or 52 configurations for the
core set and 26 X 4 or 104 configurations for the extended set (and 156 for the complete set).

While one-hop testing covers the entire range of values for every individual parameter, we also wanted explore
interactions between parameters, using tests with two different parameters at a time set to non-default values.
However, a two-hop algorithm created a sample that was too large. Therefore, we leveraged pairwise (or 2-way)
combinatorial testing [15, 54]. This is one approach to explore a large configuration space systematically. 2-way
combinatorial testing ensures that all pairs of parameter values are contained at least once in the sample used for
testing, and attempts to minimize the number of configurations needed to satisfy this goal. We used a simulated
annealing tool to create these samples [16].

We ran all pairwise samples and found that a large number of configurations failed. This ismot unexpected
because a pairwise sample ensures all single parameter values are combined with all other parameters, hence the
failing parameters values will be heavily represented in the sample. We thus removed all parameter values that
failed during one-hop testing from our pairwise sampling (these are starred in Table 1).

4.3 Metrics

We measure the maximum tilt observed during the flight as one metric of flight stability: We also retain the
complete PX4 log files for each run, which allows us to analyze the flight in detail and view the exact flight path,
and collect the number of instabilities and the outcome of the mission (success or failure).

Mission Success and Failure In order to establish a benchmark for flight success and failure, we built a test
mission that would guide the sUAS through a realistic flight scenario. During the test mission, the sUAS is first
commanded to arm, take off, and rise to an altitude of 10 meters. It then flies to a central waypoint 25 meters
from the point of origin, and then moves to four other waypoints located five meters from the central waypoint
in each of the cardinal directions. The sUAS must complete a path between these points to form a square shape
before returning to the central waypoint and finally heading back to the point of origin to land. An example of a
successful flight can be seen in Figure 3(a). The sUAS hovers briefly at each waypoint to approximate a more
realistic real-world mission. For a run to be considered a success, the sUAS must reach all of these waypoints and
return to the origin. If for any reason the sUAS fails to reach an expected waypoint within a predefined amount
of time (which is set as the standard ROS timeout length of 15 seconds), the mission is classified as a failure.

4.4 Implementation Details

We implemented CICADA in Python on Ubuntu 20.04. The main CICADA program monitors the sensor and
mission information over the course of the flight, determines when to adapt, and implements the required
adaptation strategy. The probes were implemented as uORB plugins to the controller. To control the sUAS we use
ROS-Noetic [65]. The Robot Operating System (ROS), is a widely used open-source suite for robotics applications.
We used the PX4-Autopilot controller (version 1.12), and the Gazebo simulator [47]. We used the Iris multicopter
airframe for all tests. The mission was defined in Python; flight commands and waypoints were transmitted to
the sUAS via a MavROS interface. CICADA runs within a docker container. We used Docker Desktop version
4.4.2, on macOS BigSur 11.5.2. The container was allocated 2 CPUs and 2 GB of memory.

It took approximately 130 seconds to complete a mission, with an estimated 100 seconds of actual flight time.
Around 30 additional seconds were required to launch the various components before the start of the mission.

4.5 Instabilities and Adaptation

To measure an adaptation-triggering instability, we used the previously described lightweight approach comparing
the actual roll, pitch, and yaw of the vehicle against the expected roll, pitch, and yaw values as calculated by
the flight control software. An instability message was triggered at any point that the difference between the

ACM Trans. Autonom. Adapt. Syst.

12« Purandare, Islam, Sinha, Cleland-Huang, Cohen

observed and expected values for any of these attributes exceeded a predefined threshold. The threshold was set
to 10 degrees based on the authors’ experience from observations of instabilities in real-world physical sUAS
systems [14]. As soon as an instability was detected, the adaptation protocol was activated.

When the sUAS received the flight mission, it started with a set of configurations known to be safe for the
Iris quadcopter, which we refer to as the set of baseline parameter values. This baseline set can be modified to
accommodate other SUAS models to ensure that they are safe for any specific system being used. Immediately
prior to flight, parameters were changed to the values decided for the current experiment. If an instability was
detected, CICADA identified the parameter values that were currently set to non-baseline values in the flight
control software. Action was then automatically taken based on the adaptation protocol was selected. In the case
of the revert-to-baseline strategy, all parameters which were found to have been changed to potentially unsafe
values were reset to their baseline values. For other adaptation strategies, the relevant protocol was put into
effect immediately and the parameters were reset afterwards to ensure that the flight control software was in a
safe state for the next run.

4.6 Threats to Validity

In order to maintain consistency across all our simulated experiments, we ran simulations using a single mission
plan (the box), which means that we cannot guarantee generality. However, this test is complex and long enough
that it will fail to complete when misconfigured. The experiments on all of the adaptations except for revert-to-
baseline were also run only in a simulator, rather than on physical systems. However, based on hundreds of hours
of simulation and physical flights in our prior sUAS work, we have observed that the simulator we used has
high fidelity with respect to real-world flights, and furthermore, that the kinds of flight anomalies we observed
matched real-world problems [3]. To reduce this threat we present a case study (see Section 6) on a real drone for
the revert-to-baseline adaptation. We see that the same parameters which cause a misconfiguration in simulation,
lead to instabilities in the real sSUAS and we are able to adapt and restabilize the vehicle.

Only one sUAS model (the Iris quadcopter) was used in our simulations as this is the default model supported
by the Gazebo simulator. It is likely that different models will require different parameter tuning, and as such, our
results may not apply equally to other models. We note that our test harness allows the user to specify baseline
parameter values for any sUAS, and is therefore compatible with other models as well. We have also introduced
one new adaptation approach to help counter this limitation for different sUAS models, which is discussed in
Section 5.5.

We explored only a limited set of parameter changes, so our experiments are not exhaustive in the parameter
space. In order to obtain results that would be relevant for real-world users, we focused on parameters that
literature and user reports on forums suggested would have a strong effect on flight stability. Finally, we note
that misconfigurations are only one cause of instability in SUAS, and that not all flight problems can be attributed
to or solved by configuration changes. We consider other causes of flight instability to be outside of the scope of
this paper.

5 RESULTS

We now present the results of each research question in turn.

5.1 RQ1: Studying the Impact of Configurations

Kim et al. [44] used fuzzing to look for failing configurations; however, they did not focus on flight instability, did
not systematically sample the valid configuration space, and were not able to identify combinations of parameters
that are most likely to fail. This study provides a baseline for understanding interactions in the parameter space.

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 13

Furthermore, this is a first step in developing our knowledge base for adaptation. It can be leveraged later and
integrated with learning.

Table 2. Comparison of results for 1-hop and 2-way sample sets for non-adaptive and revert-to-baseline adaptive tests. No.
Trials is number of runs per sample.

Sample (set) No. | Failure | Adaptive | Reduction in
Trials | Rate | Failure Rate | Failure Rate
1-hop (core) 5 23.1% 8.1% 15.0%
1-hop (extended) 5 11.3% 7.7% 3.6%
1-hop (total) 5 15.6% 9.5% 6.1%
2-way (core) 5 69.0% 35.2% 33.8%
2-way (complete) 5 93.2% 85.6% 7.6%
— Estimated ‘ — Estimated ‘
o — Groundtruth ‘ . y : ;OT\‘;‘"\M ‘
cted) — GPS (projected)
- I
< = (a) Default Configuration ERE) = (b) Completes flight, but noisy * “
... : —
—— GPS (projected) — GPS (projected)
L 4 Failing Configurations
- - (c) Fails to complete takeoff T T 2 (d) Fails to reach all waypoints =

Fig. 3. Example flight paths under different configurations

Table 2 shows the samples and number of times we ran them (No. Trials). The third column displays the failure
rates of each sample. This ranges from 11.3% in the 1-hop extended set to 93.2% in the 2-way covering array
for the complete set. We will discuss columns 4 and 5 in the next research question. We observed that failing
parameter values frequently lay at the extremes of the valid ranges. In many cases, the minimum value led to
mission failure, which generally aligns with the findings of Kim et al. [44]. There were also several cases in

ACM Trans. Autonom. Adapt. Syst.

14« Purandare, Islam, Sinha, Cleland-Huang, Cohen

which the maximum value was the only one that failed. Figure 3 shows example flight paths for the (a) default
configuration, a (b) noisy passing configuration, a (c) failing configuration that never takes off and (d) one that
takes off but fails to reach all waypoints. We present a comparison of our findings with the findings of Kim et al.
for the same set of parameters in Figure 4. They used a flight path deviation-based threshold using the integral

& o

. Failed

]
’

100%

80%
60%
40%
20%

0%

Valid Range

> =~
@/ & D a3
/\‘v/ ?‘ & ,\ /\Q,/ » / + (P
o @ @ < v A\ N Q~/ ol (,
g . C > s ’ =) / R\ AN R 7
& & 8 K £ & 5 \y\@ & 5 S o Sl X R & &
& F N O = O < N S &/ N <’ </
¢ <L M < o (,3\ W o K) Q Q
&3 N Q < N &
<~
Parameter

RVFuzzer 1-DMutation . 1-Hop Testing

Fig. 4. Comparison of valid and invalid values with RVFuzzer 1-dimensional mutation. Failure-causing parameter values are
marked in red.

absolute error formula for determining flight failure and success. We believe that this approach may be overly
pessimistic, as we observed that in many cases, missions were able to complete successfully despite noisy flight
paths. In addition, some of their parameters failed on all values, including defaults, e.g. MC_PITCHRATE_FF and
MC_YAWRATE_FF, the feedforward pitch and yaw rates, which we did not observe. Wind and other environmental
factors could also impact the accuracy of this metric.

We show boxplots of the maximum tilt angle for the one-hop and two-way core sets in Figure 5. We see in the
one-hop set that failing cases had higher maximum tilt angles on average, as well as a much wider spread, despite
the median actually being slightly lower than the passing cases. Our observations suggest that this high variance
may be due to some failure-causing configurations inducing high tilt angle fluctuations if they actually fly, while
others preventthe sUAS from taking off at all, resulting in very low tilt angles. In order to test for statistical
significance, we first applied the D’Agostino-Pearson normality test [17] and determined that the tilt angle data
did not follow a normal distribution. Based on this, we selected the nonparametric Mann-Whitney U test [50] to
determine significance.

In the two-way sample, the maximum tilt angles were significantly lower in failing cases. The reason for this
behavior is the same; with fewer successful takeoffs, there are less likely to be high tilt angles like there would be
in flight. However, this trend is far more pronounced for the two-way set, likely because the interactions between
multiple parameters in each flight lead to more immediate takeoff failures than in the one-hop set.

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 15

Passed Failed
1754 <} i o
Passed Failed o
= 150 4 i
7 175 1 — g 150
g o
S 150 1 1 5 1251 1
5 3
° <
P 125 E’ 100 A 1
o
2100 E S
< £ 75 ° E 3
F7 A E ool] 8
€ 50 R £]
3 x A
£ 2 25 i
x 25 a = g
= 0 A 4 — 0 4
1 1 1 1
Avg: 16.61, Std: 1.02 Avg: 70.2, Std: 83.55 Avg: 34.45, Std: 39.84 Avg: 8.75, Std: 21.87
(a) One-hop core (b) Two-way core

Fig. 5. Maximum tilt angle for passing vs failing one-hop and two-way configurations.

We note that the failure rate is also higher for the pairwise sets. This is likely due to the greater number
of configuration changes from the default. While 2-way combinatorial testing ensures that any given pair of
parameter values is covered in at least one configuration in the sample, it does not mean that only that pair is
being modified in that configuration. Rather, in most of the configurations, almost every parameter is changed
from the default, in order to cover the sample space using a small number of configurations.

Summary of RQ1. We conclude that configuration parameters have a large impact on flight stability
and highlight some configurations that induce failing behavior. When changing the values of frequently
modified relevant parameters, we saw variation in the success of the mission, in flight paths, and in the
maximum tilt angle during the flight.

5.2 RQ2: Adaptation using Revert-to-Baseline

Since an instability can occur-at any time during a mission, once it is detected, it indicates that a problem has
already occurred and the flight has been affected as a result. When a user attempts to take manual action upon
receiving this information, it'is often too slow to counteract the effect. An automatic adaptation mechanism that
monitors and immediately responds to instabilities is preferable both because it can react more quickly to correct
unstable flight behavior and also because it does not require the user’s attention to be focused on the instability
detector at all times.

Our first adaptation strategy, revert-to-baseline, relies on a knowledge base of parameter values considered to
be safe based either on PX4 documentation or initial pid tuned configuration of that specific sUAS. We refer to this
set of safe values as baseline values. Any parameters not currently set to their baseline value are updated to match
the baseline value. The aim of this strategy is to restore stability to the flight and allow the sUAS to complete the
current mission. We note that the baseline will be specific to a particular airframe, and environmental conditions.
We show, for instance, the parameters which differ in the baseline for the simulated Iris compared with one of
our physical hexcopters (HX18) during a real flight in Table 3. This baseline can be captured in our knowledge
base or at arming.

ACM Trans. Autonom. Adapt. Syst.

16 « Purandare, Islam, Sinha, Cleland-Huang, Cohen

Table 3. Comparison of non-matching baseline parameter values for the Iris quadcopter vs HX18 hexcopter along with their
documented range. ? indicates an unspecified limit.

Parameter Iris HX18 Range
MC_PITCHRATE_D 0.003 | 0.0055 [0.0, 7]
MC_PITCHRATE _I 0.2 0.24 [0.0,?]

MC_PITCHRATE_MAX 220 60 [0.0, 1800.0]
MC_PITCHRATE_P 0.15 0.2 [0.01, 0.6]
MC_PITCH_P 6.5 4.4 [0.0, 12]
MC_ROLLRATE_D 0.003 | 0.005 [0.0,0.01]
MC_ROLLRATE I 0.2 0.24 [0.0, 7]
MC_ROLLRATE_MAX 220 60 [0.0, 1800.0]
MC_ROLL_P 6.5 5.2 [0.0, 12]
MC_YAWRATE_MAX 200 45 [0.0, 1800.0]
MPC_ACC_HOR_MAX 10 5 [2.0, 15.0]
MPC_TILTMAX_AIR 45 20 [20.0, 89.0]

In order to determine the effectiveness of the revert-to-baseline adaptation strategy, we studied the flight
behavior of missions with this adaptation mechanism enabled and disabled and compared the results for each of
the sample sets. The results are summarized in the rightmost columns (4 and 5) of Table 2. The adaptive failure
rate is the rate of failure when we use CICADA to detect and adapt using revert-to-baseline. The last column
provides the reduction in failure rate from the non-adaptive variant of our experiments.

The revert-to-baseline adaptation strategy reduced the failure rate for all parameter sets we studied, improving
by between 3.6% and 33.8% over the non-adaptive version (see Table 2). The greatest improvement in the one-hop
tests was for the core parameters. The parameters in this set were selected because they were known to be some
of the most impactful on flight stability. The extended set started with a lower failure rate and saw a smaller
decrease in failure rate, which indicates that that set of parameters likely had a less meaningful effect on flight
stability. The 2-way samples started with a much higher rate of failure. However, the improvement for these sets
was also larger. The pairwise sample for the core set failed for 69% of configurations, but was able to more than
double its success rate, reducing the failure rate of 33.8% with adaptation.

We also compared the maximum tilt angle from these trials with the revert-to-baseline adaptation to the
nonadaptive case. We established in Section 5.1 that failing configurations have a higher maximum tilt angle on
average, and that many more configurations failed without the revert-to-baseline adaptation protocol than when
it was enabled. Therefore, in order to compare the maximum tilt angles for the adaptive and non-adaptive trials
fairly, we only considered passing cases from both sets.

In our comparison, we found that there was very little difference in maximum tilt between the adaptive and
nonadaptive flightsfor the one-hop set, as many of the passing one-hop configurations did not exhibit any
behavior visibly different from the baseline. However, in our two-hop tests, we observed significantly higher
maximum tilt in the nonadaptive trials. The average, median, and variance were all far greater than in the adaptive
experiments, as visualized in Figure 6. This is likely due to the existence of configurations that didn’t entirely
prevent mission success, but still introduced a lot of instability during the flight, such as the configuration in
path (b) of Figure 3. The revert-to-baseline strategy would have reacted to such configurations and modified
them, thus reducing the number of high-tilt outliers. The difference between the one-hop and two-way behavior
highlights the impact of interactions between multiple parameters. The 2-way sample for the complete set was
not included in this analysis because it had too few passing configurations without adaptation to demonstrate
spread. Our statistical tests of the core parameter sets are summarized in Table 4.

The pairwise sample had an initial failure rate of 93.2%, failing for nearly every configuration. However, the
revert-to-baseline strategy still had a noticeable effect improving the success rate by over double compared to the
non-adaptive case. Our observations suggest that one reason for the lower success rate compared to the one-hop

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 17

Adaptive Non-adaptive

—_ o
)
g 22 - 4
) ©
3
o © °
5 20) .
c
<
=
=
c 18 1 b
=]
£
s
2 16 b

1 1

Avg: 16.58, Std: 1.04 Avg: 16.61, Std: 1.02

(a) One-hop core

Adaptive Non-adaptive

180 °
o
160
‘o
@
@ 140
o
L7
2120
Q
2
£ 100
£
F 804
€ o
5
£ 601
<
]
= 404 1 ?
20+ 1 =
T T
1 1
Avg: 18.38, Std: 4.66 Avg: 34.45, Std: 39.84

(b) Two-way core

Fig. 6. Maximum tilt angle for adaptive vs nonadaptive one-hop and two-way configurations (passing only). Note that the
Y-axis scale is not consistent across the one-hop and two-way plots.

Table 4. Overview of statistical tests of box plots in Figures 5 and 6. The p-value was calculated using the Mann-Whitney U
test [50]. We consider results where p < 0.05 (in bold text) to be statistically significant.

n | Average | Median | Std. Dev | p-value
1-hop (pass) 197 16.61 16.2 1.02
- 0.24
1-hop (fail) 60 | 702 9.6 83.55
2-way (pass) 45 34.45 19.1 39.84 “16
2-way (fail) 99 | 875 3.2 2187 | 9% 10
1-hop (adaptive) 238 16.58 16.1 1.04
. 0.68
1-hop (nonadaptive) | 197 16.61 16.2 1.02
2-way (adaptive) 93 18.38 16.7 4.66 -6
: 5.03x10
2-way (nonadaptive) | 45 34.45 19.1 39.84

ACM Trans. Autonom. Adapt. Syst.

18 « Purandare, Islam, Sinha, Cleland-Huang, Cohen

tests for adaptation is the existence of hidden parameter interactions. In some cases, PX4 flight parameter values
depend on the values of other parameters, making them more difficult to revert. For example, MPC_THR_MIN, which
controls minimum thrust, has a hidden interaction with MPC_THR_HOVER, another thrust parameter, which is not
in either of our test sets. If MPC_THR_MIN, which has a default value of 0.12, is set to 1.0, then MPC_THR_HOVER,
which has a default value of 0.5, also automatically gets set to 1.0. However, if the adaptation protocol attempts
to automatically set MPC_THR_HOVER back to 0.5, the controller throws a warning and the attempt to revert the
parameter value fails, causing the parameters to stay the same, and eventually leading to mission failure. Some of
this may be mitigated as we build up our knowledge base.

5.2.1 Flakiness in Mission Outcomes.

During our testing, we observed that for certain configurations, the outcome of the mission was not consistent
across all five trials. This is a byproduct of nondeterminism in the Gazebo simulator, which we used for all
experiments. Notably, this problem is not unique to the simulation environment. For example, we previously
experienced flakiness on physical drones, resulting in intermittent take-off failures. We invested significant time
and effort to track down and remove the root-cause of the flakiness, which turned out to be a race condition
associated with interactions between the flight-controller and our own onboard software [12]. Although Gazebo
is a reliable, widely used simulator for sUAS, just like the flight control software running on physical drones,
its implementation has subtle timing-based dependencies. More specifically, the physics, sensor generation,
and navigation code are all run in separate threads or processes, and are therefore not synchronized [22, 23].
This means that no two flights are completely identical, even when there are no apparent differences without
close analysis of the flight logs. These variations are too minor te have an effect in most cases. However, for
certain problematic configurations, the parameter values can push the drone into a state that is very close to the
boundary of passing and failing. These cases often exhibit high levels of instability. In such scenarios, Gazebo’s
nondeterminism has enough of an effect to swing the outcome one way or the other.

We performed five runs for each experiment and captured this flakiness in our results wherever it occurred.
However, in order to understand if the flakiness demonstrated in our initial experiments was representative
of the typical level of flakiness, we performed 30 additional re-runs for each flaky configuration. We present a
comparison of these re-runs with the initial flaky experiments in Table 5. The first column describes the sample
which the configuration was a member of, the second column is the configuration description (for the samples
which have more than one change we use the number of the configuration in that sample. The third column
provides the number (and ratio) of failing runs and the last column provides the number and ratio of failing runs
for the re-run of 30 configurations. We also marked those configurations that exhibited a high instability rate
with a star to see if this impacts our findings. In general we see similar rates of failures (with some variance) as
the original 5 runs and the higher instability configurations do not seem to make a large difference. However,
there are two configurations that were not flaky in this set of runs. One failed every time (configuration 30), and
one did not fail at all (MC_LYAWRATE_P = 0.0). The first case is less of a concern for validity since we always see a
failure and in the five runs 4 out of 5 runs failed. For the one that did not fail in the reruns, we note it only failed
once in the initial 5 runs, hence there could be some rare timing issue that led to a failure. This was one of the
cases that exhibited very high instability even in passing cases, which makes this possibility more likely.

Summary of RQ2. We conclude that CICADA’s revert-to-baseline adaptation strategy is successful at
recovering from many failures caused by misconfigurations using the flight instability trigger to adapt.

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 19

Table 5. Comparison of re-runs with initial experiments for each flaky configuration. The number in parenthesis indicates
the ratio of failures. * indicates configurations that exhibited an abnormally high number of instabilities even in passing
cases.

Sample Config Initial Failures | Rerun Failures
thop core; |\ bITCHRATE D = 12,0 1/5 (.20) 9/30 (.30)
adaptive
1-hop extended; MOT_SLEW_MAX =3 3/5 (.60) 6/30 (.20)
nonadaptive MC_YAWRATE_P = 0.0 1/5 (.20) 0/30* (0.00)
config2 1/5 (.20) 1/30 (.03)
2-way core; config3 2/5 (40) 6/30 (.20)
adaptive ’ config18 4/5 (.80) 26/30 (.87)
config20 1/5 (:20) 1/30 (.03)
config21 3/5 (.60) 28/30(.93)
2-way complete; configl 1/5 (.20) 8/30%(.27)
nonadaptive config40 3/5 (.60) 19/30* (.63)
config8 4/5 (.80) 18/30 (.60)
. config25 4/5 (.80) 29/30 (0.97)
2’“’33:1 complete; config27 4/5 (:80) 14/30 (.47)
adaptive config30 4/5 (.80) 30/30 (1.0)
config35 3/5 (.60) 15/30 (:50)

5.3 RQ3: Effectiveness of Different Adaptation Strategies

The revert-to-baseline adaptation strategy is effective in many cases in enabling an sUAS to continue and
complete missions that would otherwise have been interrupted by configuration issues. However, there are also
scenarios in which it isn’t successful in counteracting these issues. Alternative adaptation strategies are required
to prevent dangerous flight behavior. During our testing, we discovered a significant number of pairwise sample
configurations that caused the sUAS to rapidly ascend to dangerous altitudes instead of following the mission
path, which the revert-to-baseline strategy was unable to prevent. An example of this type of uncontrolled
ascension is contrasted with a normal mission flight path in Figure 7.

Table 6. Takeoff and mission outcomes for each sample set. Values in parentheses refer to flaky configurations that caused
failures in at least one of five trials, but not for all five. For example, 13 (2) indicates 13 failing configurations, with two of
those 13 failures being flaky cases'in which at least one of five trials failed.

Sample Total Failing | Failing
configs | Missions | Takeoffs
1-hop non-adaptive (core) 52 12 8
1-hop adaptive (core) 52 5(1) 5(1)
1-hop non-adaptive (extended) 104 13 (2) 8(2)
1-hop adaptive (extended) 104 8 6 (1)
2-way non-adaptive (core) 29 20 20
2-way adaptive (core) 29 13 (5) 13 (5)
2-way non-adaptive (complete) 50 48 (2) 44
2-way adaptive (complete) 50 44 (5) 38 (12)

ACM Trans. Autonom. Adapt. Syst.

20 .« Purandare, Islam, Sinha, Cleland-Huang, Cohen

Fig. 7. Comparison of expected mission flight path (left) with rapidly ascending flight-behavior (right) caused by pairwise
misconfigurations.

We study two adaptation strategies to address the limitations_ of the revert-to-baseline approach for such
problematic configurations. The first of these is the loiter strategy, in which the sUAS reacts to an instability by
hovering in place instead of continuing its previous flight path. The other is the land-in-place strategy, which
commands the sUAS to land immediately at its current location. Importantly, unlike revert-to-baseline, neither
of these strategies allow the sUAS to complete the current mission. Rather, the focus for this adaptation is on
safety, as it’s vital that the sUAS does not harm or damage people or objects in the vicinity if a configuration
issue causes a flight to go astray.

To test these strategies, we began by identifying configurations that failed without adaptation which the
revert-to-baseline approach was unable to recover from. We noted that many of the failures were cases where
the sUAS was not able to take off successfully. This aligns with our real-world observations, where sUAS with
extremely low thrust will just'spin propellers, while SUAS with almost, but not quite, sufficient thrust to take off,
tend to tip over and break propellers after approximately one minute. Therefore, if an sUAS fails to take off after
30 seconds of thrust, we can'automatically kill the motors and disarm. This method can be applied to all cases for
which takeoff fails entirely.

In order to test the loiter and land-in-place strategies on cases which weren’t already covered by this protocol,
we isolated configurations for which the takeoff succeeded and the sUAS reached the altitude of 10 meters
specified by the mission. This also allowed us to evaluate the performance of each adaptation strategy on equal
grounds (if the SUAS wasn’'t in the air at the time of adaptation, then the loiter strategy couldn’t be fairly compared
to the land-in-place strategy). We discarded any configurations for which the takeoff failed. Table 6 displays all
takeoff outcomes for our dataset. We note that we obtain our shortlisted set of configurations for this RQ using
nonadaptive/revert outcomes for each individual parameter as well as takeoff information, so the final number of
configurations isn’t the same as the total difference between the failing missions and failing takeoffs columns in
Table 6.

We ultimately identified 17 configurations that fit our criteria. Of these, 14 were from the pairwise sample of
the complete parameter set, and 3 were from one-hop testing with the MPC_XY_P, MPC_Z_P, and EKF2_ABL_LIM
parameters, which represent rows J, K, and L respectively in Table 7, where the results are summarized. The
configurations for which the uncontrolled ascent occurred are marked as UnASC in the table.

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 21

We found that both strategies were successful in preventing the uncontrolled vertical ascent in all cases where
it previously occurred. However, not all of them were successes because there were instances where the flight
behavior exhibited by the sUAS was different than expected. Namely, in several of the failures for the loiter
strategy, the instability was detected before the sSUAS took off, and the mitigation caused the sUAS to flip over on
the ground instead of rising to takeoff altitude. We classified this as a failure because such situations often cause
damage to the sUAS.

There were also some cases in which the hovering was not completely stationary and led to slight drift in the
horizontal or vertical directions, but without leading to a crash or other risky behavior, or the sUAS failed to
takeoff entirely. We do not consider these successes, but since the primary objective of the loiter adaptation is to
prevent unsafe behavior, and that was achieved, they are simply listed with the descriptive labels “drift” or “no
takeoft” in the table.

Table 7. Comparison of results for selected set of loiter and instant-land adaptive tests. UnASC are configurations with an
uncontrolled ascent.

Config. | UnASC | Adaptation Loiter Land
A X triggered success | success
B triggered success | failure
C X triggered drift success
D X triggered drift success
E triggered success | success
F X triggered failure , | success
G X triggered | no takeoff | success
H X triggered failure | success
I X triggered failure | success
] not triggered | failure failure
K not triggered | failure failure
L triggered success | success
M X triggered failure failure
N X triggered | no takeoff | success
0 X triggered failure failure
P X triggered failure failure
Q X triggered | no takeoff | success

Fail Rate 47.1% 35.3%

The land-in-place strategy was effective in most cases, often detecting the configuration-related instabilities
immediately when takeoff was attempted and taking action instantly to command a safe landing. We identified
one failure of this approach in which the sUAS landed after an instability was detected, only to take off again and
hover at a low altitude. We were unable to explain the cause of this behavior, but the authors have previously
observed this behavior in physical SUAS as well. Configurations J and K failed for both strategies; however, these
configurations were unique in that in both cases, no instability was ever reported, which meant the adaptation
protocols were never put into place. We note that these cases were both from the one-hop experimental set,
using the minimum values for the parameters MPC_XY_P and MPC_Z_P. We believe that these parameter values
severely limited the attitude fluctuations of the sUAS, which both caused the mission to fail and prevented our
gauges from detecting the error and triggering adaptation. However, ultimately, both strategies were broadly
successful in countering the ascension issue and preventing the occurrence of risky flight behavior for this set of
configurations.

ACM Trans. Autonom. Adapt. Syst.

22 .« Purandare, Islam, Sinha, Cleland-Huang, Cohen

Summary of RQ3. As we explored highly problematic configurations that the revert-to-baseline strategy
was unable to address, we found that they could cause dangerous flight behavior. CICADA was able to
prevent unsafe behavior in the majority of cases using the loiter and land-in-place strategies.

5.4 RQ4: Rule-based Adaptation

When an sUAS is deployed with one of the revert-to-baseline, loiter, or land-in-place strategies, our original
adaptation module was limited to applying only the adaptation mechanism selected prior to the start of the
mission. This can be a limitation if the user does not have enough knowledge about the mission or system
parameters to predict the types of failures that are likely to occur. In order to address this problem, we propose
a rule-based approach which attempts to automatically select an appropriate adaptation strategy based on the
attitude information reported by the probes and gauges.

In situations where any adaptation strategy is likely to be successful, the revert-to-baseline strategy is generally
preferred because it allows the mission to complete successfully instead of interrupting it to ensure safety like the
loiter and land-in-place strategies. However, as discussed in Section 5.3, there are more severe cases which require
the other adaptations. In our investigation into the different types of configuration-related failures, we observed a
trend among configurations which caused more severe failures and required. the use of the loiter or land-in-place
strategies. Our instability detector collects data from multiple dimensions-and uses an overall threshold to trigger
an adaptation. We noticed that more problematic configurations were more likely to violate the attitude instability
threshold along multiple dimensions of movement. For example;if an instability was detected and the gauges
reported that both the pitch and yaw deviation thresholds were violated, the revert-to-baseline adaptation was
more likely to be insufficient than if only the yaw deviation threshold was violated.

Based on these observations, we applied a simple rule-based adaptation strategy, which used the number of
violated dimensions of movement to select an appropriate adaptation mechanism. We selected one optimistic adap-
tation, revert-to-baseline, and one safer strategy, land-in-place, to incorporate into our rule-based approach. We
chose land-in-place over loiter due to its lower failure rate in the previously examined problematic configurations
in Section 5.3.

Our adaptation rules are defined in Algorithm 1, where D is the set of dimensions of movement violated:

Algorithm 1 Rule-Based Adaptation

1: if |D| > 1 then

2 revert and land-in-place
3: else
4
5

revert-to-baseline

. end if

When the rule-based protocol is in place, as soon as CICADA detects the occurrence of an instability, it
checks how many dimensions of movement are violated. If only one dimension is violated, the revert-to-baseline
adaptation is used, and if multiple dimensions are violated, a revert is performed, and the land-in-place strategy
is applied immediately after.

To explore the effectiveness of the rule-based approach, we first selected all of the configurations from
our sample sets that caused mission failures in RQ1 without adaptation. This gave us a total of 163 failing
configurations, with 15 of these being flaky failures. We then tested the rule-based protocol on this “failure
set”. We performed one rule-based trial for each configuration. The rule-based approach yielded largely positive
results, except for the 1-hop extended set, as summarized in Table 8. The rule-based approach provided the

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 23

greatest improvement over the revert strategy in the 2-way complete set. This may be due to the effectiveness of
the land strategy in immediately stabilizing and returning the sUAS to the ground for more extreme, multiple
movement dimension-violating configurations that are more likely to occur in this set and which the revert
strategy is less likely to recover from. Rule-based adaptation was worse than the revert strategy for the 1-hop
extended set. We believe this is due to multiple factors. First, the 1-hop extended set contains the fewest failing
configurations of any set, so any failures will represent a larger percentage of the failure set. In this case, many
of the configurations in the failure set for the extended parameter set were parameters like SENS_BOARD_ROT,
which causes uncontrollable turning and flipping on the spot, which even landing in place cannot solve. The
overhead for determining the rule may be enough lag in adaptation to lead to extra failures. Due to the simplicity
of the revert adaptation, it can be deployed slightly more quickly and thus influence the drone earlier than the
rule-based strategy, and with the complexity of the sUAS and the environment, even milliseconds can make a
difference in adaptation success. Finally, we believe better heuristics are needed to determine when to land or
revert, as the land in place strategy was not triggered very often in one-hop testing, even in cases when it would
have likely have been the best option. We plan to continue exploring this direction of work.

Table 8. Comparison of failure rates for the revert-to-baseline, land-in-place, and rule-based adaptation strategies. These
sample sets consist only of configurations that are known to fail without adaptation. Flaky configurations that failed at in
least one trial out of five are included.

Sample (set) Failure Revert Rule-based Rule-based
Rate | Failure Rate | Failure Rate | Improvement
1-hop (core) 100% 41.7% 33.3% 8.4%
1-hop (extended) 100% 61.5% 69.2% -7.7%
1-hop (total) 100% 52.0% 52.0% 0%
2-way (core) 100% 51.0% 50.0% 1%
2-way (complete) | 97.1% 87.1% 72.9% 14.2%

Summary of RQ4. We conclude that a rule-based approach combining the revert-to-baseline and land-
in-place strategies can be effective in improving the reliability of adaptation for sets of configurations
that have a high starting failure rate while still enabling successful mission completions when possible
for many configurations.

5.5 RQ5: Adaptation with'Limited Knowledge Base

The standard revert-to-baseline approach assumes that a knowledge base is available which contains precise
information about safe parameter values, based on either documentation or manufacturer tuning. However, in
real-world applications, there may be situations in which this information is not available for the exact drone
model being used. The PX4 documentation [21] contains parameter information for the Iris quadcopter airframe
which we have used in all our simulated experiments up to this point. Although PX4 does support other airframes
which come with some slightly modified configurations, the list of available airframes is quite limited and likely
will not include the exact model required by the user.

We have already seen in Table 3 that optimal parameter values for different SUAS may vary slightly. In such
cases, when parameter information isn’t available for the model of drone being used, it may not be desirable for
the user to fully trust the values provided by PX4 for a different model. For example, if the revert-to-baseline
adaptation is triggered for an HX18 hexcopter and a parameter value is immediately set based on the Iris-centered

ACM Trans. Autonom. Adapt. Syst.

24 .« Purandare, Islam, Sinha, Cleland-Huang, Cohen

knowledge base, the new value may be suboptimal or even failure-inducing for the HX18. However, the occurrence
of instability still signals that the current value is problematic and some form of adaptation is necessary.

To address this concern, we introduce a more cautious approach to the revert strategy, which leverages the
existing knowledge base to gradually shift parameters towards safer values. This strategy makes use of the
monotonic property of control instability described in [44], which states that parameter value changes in either
direction will generally have a monotonic effect on the level of instability experienced by the sUAS during a flight.
Starting from any current instability-causing parameter value, we aim to iteratively nudge the parameter towards
a likely more stable value, based on the safe values in the knowledge base. When we don’t have good data in
the knowledge base we can provide the maximum and minimum parameter values from the documentation and
experiment with partitioning and nudging in that way. With this approach, the sUAS is pushed more gradually
towards a more stable configuration, with the parameter value being modified only to the extent necessary to
mitigate the instability.

In our implementation, we selected five intermediate values distributed evenly between the current parameter
value and the value stored in the knowledge base. Upon the first occurrence of instability, the parameter is
changed from the current value to the first of the intermediate values. Once we have changed a parameter, due to
the high reporting rate of the attitude data, it is not ideal to immediately nudge again when the next instability
is reported, as the previous value will likely not have affected the stability of the sUAS by that point. Instead,
we ignore several of the following instability reports and only adapt again when five more instabilities have
been reported since the last parameter change. This gradual nudging prevents the parameter from immediately
reaching the baseline value, which here is only being used as a general guide for the direction in which to adapt
and not as an established safe value. It allows CICADA to cautiously shift the parameter value only as far as
needed to restore stability.

We tested this approach on the failure set defined in Section 5.4. We found that the gradual reversion strategy
was largely successful for many of the parameters.in our dataset. The outcomes are summarized in Table 9.
The delay in adaptation in comparison to the revert-to-baseline strategy prevented some configurations from
being able to recover, however, we observed that many were still able to stabilize despite the delay, with the
overall failure rate of 41.7% being within 7% of the revert-to-baseline failure rate (35.0%) for the core parameter
set. For the extended set the revert-to-baseline failure rate was 61.5% and this increases to 76.9% (about 15%
increase), however, it is still more than 10% lower than the failure rate without adaptation. In general, the nudging
approach was successful for parameters with smaller failing value ranges, especially since the initial nudge was
already enough to move the parameter out of the instability-causing range. It was less successful in cases in
which a parameter had a relatively small stable range and the adaptation required a longer time to change from a
failure-causing value at one extreme of the valid input range to a safe value at the other extreme of the range. For
example, the MC_PITCHRATE_FF parameter has a baseline value equal to its minimum value in our parameter set.
When nudging from a much higher failing value, the intermediate values reached during the gradual adaptation
process-were still much higher than the likely safe minimum value, so by the time the minimum was reached, it
was too late for the drone to recover. This also supports our observations that timing plays an important role
in successful adaptation. Since many more of the parameters in our parameter set had a large range of passing
values, the nudging strategy was highly effective in stabilizing flights in our one-hop testing despite not requiring
an exact knowledge base.

Summary of RQ5. We conclude that the gradual reversion approach, in which we gradually shift
parameter values into a safer range, is successful, albiet less than the direct revert-to-baseline, in allowing
sUAS to recover from misconfigurations in the absence of an ideal knowledge base.

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS

25

Table 9. Comparison of outcomes for the standard revert-to-baseline strategy with a safer gradual reversion strategy using
nudging in the absence of an ideal knowledge base. Only configurations that are known to fail without adaptation are

included.
Parameter Value | No Adaptation | Revert-to-Baseline | Nudging
MC_PITCH_P 0 failed succeeded succeeded
MPC_THR_MIN 1 failed failed failed
MPC_THR_MAX 0.25 failed failed failed
MPC_THR_MAX 0.5 failed failed failed
MPC_THR_MAX 0 failed failed failed
MC_PITCHRATE D 12 failed 1/5 failed failed
MC_PITCHRATE_P 0.01 failed succeeded succeeded
MC_PITCHRATE K 0.01 failed succeeded succeeded
MC_PITCHRATE_MAX 0 failed succeeded succeeded
MC_ROLL P 0 failed succeeded succeeded
MC_ROLLRATE P 0.01 failed succeeded succeeded
MC_ROLLRATE K 0.01 failed succeeded succeeded
Core failure rate 100% 35.0% 41.7%
MOT_SLEW_MAX 4 failed succeeded failed
MOT_SLEW_MAX 3 3/5 failed succeeded failed
MPC_XY P 0 failed failed failed
SENS_BOARD_ROT 20 failed failed failed
SENS_BOARD ROT 10 failed failed failed
SENS_BOARD_ROT 30 failed failed failed
SENS_BOARD_ROT 40 failed failed failed
EKF2_ABL_LIM 0 failed failed failed
COM_POS_FS_EPH 0 failed failed failed
MC_PITCHRATE_FF 12 failed succeeded succeeded
MPC Z P 0 failed failed failed
MC_ROLLRATE_MAX 0 failed succeeded succeeded
MC_YAWRATE P 0 1/5 failed succeeded succeeded
Extended failure rate 90.8% 61.5% 76.9%

6 CASE STUDY: REAL WORLD APPLICATION OF REVERT-TO-BASELINE ADAPTATION STRATEGY

In Section 5.2, we demonstrated that CICADA’s revert-to-baseline strategy was capable of recovering from
many failures caused by misconfigurations. Although a high-fidelity simulator was used for all experiments
in that section, we acknowledge that there is still a gap between simulation and real-world usage. We also
argued in Section 3.3 that CICADA is generalizable since PX4 supports both simulation and hardware in the
loop environments. In an effort to bridge that gap, we present a case study on a real-world application of the
revert-to-baseline strategy on physical sUAS hardware.

This study was performed using a hexcopter equipped with an mRo Control Zero H7 flight controller, using
PX4-Autopilot version 1.13, and with probes implemented as MAVROS plugins. The rest of the architecture was
similar to the simulated runs, but using a more recent version of the previously adopted DroneResponse platform

ACM Trans. Autonom. Adapt. Syst.

26 « Purandare, Islam, Sinha, Cleland-Huang, Cohen

Fig. 8. Simulation results comparing the intended flight path for this mission with correct parameter tuning (left) versus
the flight path observed in simulation without the benefit of adaptation when a faulty parameter value of MC_ROLL_P = 0.0
(right) was injected.

and architecture [35]. Flight parameters were tuned according to the manufacturer specifications for the drone,
and CICADA’s knowledge base was updated accordingly.

The test mission used for these experiments consisted of a takeoff to an altitude of 20 meters, followed by brief
hover leading into a slightly ascending straight line path for approximately 100 meters. At the end of the straight
line path, which was the highest point of the mission, with an altitude of 33 meters, the drone reversed course
and returned to a point close to the takeoff, mirroring the ascent with an equal descent, followed by a landing
close to the takeoff location. This mission was designed to test the drone’s ability to perform standard maneuvers,
such as ascending, descending, hovering, and turning and changing direction.

For this study, we selected three failure-causing configurations from our parameter set to inject into the
sUAS. Two of the parameters chosen, MC_ROLL_P and MC_PITCH_P, were from our core set, and the third,
MC_ROLLRATE_MAX, was from the extended set. These parameters were specifically selected because our simu-
lated experiments suggested that they would seriously impair flight ability and cause consistent failures, while
still allowing the drone to take off, rather than causing low-to-the-ground flips or crashes, which many other
parameters do. This was important because with no prior data available on injecting failing configurations into
drones to test adaptation mechanisms, we needed to minimize the chances of an immediate drone-damaging
crash near the ground. The chosen configurations made it possible to observe the impact of the parameters and
adaptation in flight.

Prior to the field test, we performed a high fidelity simulation of our test mission with the selected configurations.
To match the field test as closely as possible, we used the same DroneResponse architecture as deployed on the
physical SUAS and used a more real-world accurate hexcopter airframe instead of the quadcopter airframe used in
our empirical study. In these simulations, we observed that the faulty parameter values caused wildly diverging
flight behavior, including off-line detours and extreme spiral paths instead of the expected straight flight lines.
We show the results of the simulation when we set MC_ROLL_P to its default value (left) and a value of 0.0 (a
known failing value from our experiments) in Figure 8. We verified the functionality of the revert-to-baseline
adaptation in the high fidelity simulation environment before the field test.

In the field test, we first performed a baseline run with no parameters modified in order to verify the mission
in the field and to have a point of comparison for the other runs. In the adaptation tests, we set a failure-inducing
parameter value before takeoff and sent the sUAS on its mission. For all three faulty configurations, we observed
a dangerous lateral swinging motion during the takeoff ascent which indicated that an imminent crash was likely.
However, this deviation was detected by the probes and the revert-to-baseline mechanism was immediately
engaged. As soon as the adaptation was triggered, the drone was able to recover from the unstable flight behavior

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 27

Fig. 9. A comparison of a run with with baseline parameters and a run with the MC_ROLL_P parameter set to a faulty value
of 0.0 on real drone hardware. The instability caused by the configuration is apparent immediately during takeoff, but is
detected by CICADA’s probes and the revert adaptation is triggered to restore stability. The moment of instability during
takeoff in the second case is highlighted in the image on the bottom right.

and safely resume its mission. Figure 9 highlights the deviation and recovery of the failure-causing configuration
in comparison to a baseline run. To strengthen our claim of adaptation, we repeated the same experiment for
the misconfiguration of parameter MC_ROLL_P = 0.0, on three separate runs, on different days which meant the
weather/environment was slightly different each time. We observed the same behavior for each run.

We show the baseline (good) flight on top and the misconfigured flight on the bottom. The figures on the left
are the paths from the collected logs. The photos on the right are pictures of the actual sUAS in flight. A green
line indicates the vertical takeoff expected for the flight. Both the log path and the photo shows the instability of
the sUAS as it ascends. In the photo of the misconfigured sUAS we can see a large tilt angle and deviation from
the green line. All flight logs from the field test, as well as video demonstrating the effect of the revert-to-baseline
adaptation during the field test, have been made available on the supplemental site.

ACM Trans. Autonom. Adapt. Syst.

28 « Purandare, Islam, Sinha, Cleland-Huang, Cohen

7 DISCUSSION

We now discuss some of the findings of this work and its implications. As observed in our experiments, sensing
realtime data from the sUAS controller allows us to quickly detect and adapt to changing environmental conditions.
We describe some of our takeaways here.

e Additional gauges may improve adaptation. Our implementation currently only takes attitude data from
the sensors as input. However, not all misconfiguration-related issues will be directly reflected in the roll, pitch,
and yaw information. By implementing more gauges into our framework, we may be able to detect other
flight-threatening issues that the attitude sensors alone may not catch. These gauges may process different
data streams, interface with other sensors, or make use of other components on board the vehicle, such as
cameras. They may also leverage machine learning models for earlier or more accurate instability detection.

e Scalability of rule-based adaptation As we build on the rule-based adaptation approach; either by incor-
porating new gauges or more adaptation mechanisms, we will need to update our algorithm for choosing
adaptations to deal with the increased complexity. Some research in this area have discussed applications of
utility theory for selecting adaptations effectively [27, 71]. However, utility functions usually require continuous
data, while our current gauges deal with discrete events (threshold violations). Therefore we follow a similar
approach to Garvin et al. [24] and use a simplified rule-based strategy which only deals with discrete elements.
In future work, we plan to incorporate more advanced learning-based gauges which may enable us to use a
utility function with continuous data for effective decision making.

o Fast detection is critical. Our experiments with the the rule-based and nudging strategies, in which the
delay in adaptation prevented successful stabilization for certain parameters, showed us that timing is a crucial
component of effective adaptation, and faster instability detection may improve the adaptation success rate.
One way to achieve this could be through lightweight detectors that require minimal sensor data to trigger
adaptation.

o Further parameter exploration is needed. In this work we chose sets of parameters that we expected would
make a difference in the vehicle stability during flight. However, we did not perform a systematic sampling
of the entire PX4 parameter space. Exploring a larger set of parameters, as well as analyzing more complex
interactions between parameters, would increase our understanding of the configuration space and allow users
to be better informed about potential misconfigurations in their sUAS.

e Implications. The key takeaways from this study are that configurations play a large role in flight stability
and success in sUAS, and that we can leverage flight control parameters to dynamically adapt to and recover
from unstable flight behavior. Knowledge of the parameter space and immediate activation of the necessary
adaptation protocols upon detection of flight instability is crucial for successful adaptation. Our case study
demonstrates the potential of configuration-aware adaptation to help improve sUAS safety and reliability in
the real world.

8 RELATED WORK

There is a large body of research on adaptive systems such as best practices, validation and challenges [10, 62, 63,
69] as well as research on using the MAPE-K loop [4, 11, 18, 45, 62, 66]. Several recent studies propose the use of
MAPE-K in uncrewed aerial vehicles [7, 13, 42] and robot planning [36, 37, 59]. We discuss some closely related
work to ours here.

Braberman et al. [7] proposed MORPH, a reference architecture for uncrewed aerial vehicles (UAVs). Like
CICADA they use the Rainbow architecture and a MAPE-K loop, and split the architecture into (1) reconfigurations
which change parameters to adapt the controller and (2) those that change the behavior via modification to the
the mission plan or goal. However, while MORPH relies on the flight controller to report an error in order to
trigger adaptation, CICADA directly monitors flight stability to independently detect issues during the flight,

ACM Trans. Autonom. Adapt. Syst.

CICADA: Self-Adaptation in sUAS « 29

since failures caused by misconfigurations are typically not automatically diagnosed and reported by the flight
controller. Furthermore, their work describes an architecture, but they do not provide experimental results, while
we have instantiated a prototype and evaluated CICADA for multiple use cases to determine feasibility.

While implementing the MAPE-K loop in self adaptive systems, Shmelkin [63] refers to interloop & intraloop
communication as being the potential bottleneck for decentralized SASs. They argue the way to overcome this is
to consider preprocessing for knowledge gain on the instance level to minimize the communication footprint.
Jamshidi et al. [37] use machine learning to reduce a large configuration space, Elkhodary et al. [20] use feature
modeling to reason about potential reconfigurations, and Swanson et al. [66] use both a feature model and
aggregated data over time to learn about which re-configurations to choose and avoid. CICADA proposes to use
knowledge from learning to create different types of gauges. In our initial implementation we only use limited
knowledge of the configuration space, but we plan to implement more knowledge in future work similar to that
of Swanson et al. Some adaptations proposed for uncrewed aerial vehicles involve changing the mission plan (e.g
[7, 42]); however, our primary goal is to complete the mission via vehicle stabilization, and we only attempt other
strategies when mission completion is known to be impossible with our primary adaptation approach. Several
recent papers also propose learning to improve self-adaptation [2, 19, 37]. Our use of learning is for improving
gauges.

In recent work Islam et al. [36] proposed a self-adaptive mechanism for anomaly detection on sUAS called
ADAM (Adaptive Drone Anomaly Monitor). While runtime monitoring is important to detect the types of
anomalies that trigger our adaptations in this work, it is resource intensive. Hence, ADAM adapts and selects a
subset of detectors dynamically, based on its current environment. This work is orthogonal to ours. While we use a
similar approach to ADAM for monitoring (detecting our anomalies), we use a single detector. Future work could
incorporate an ADAM-like adaptive mechanism for monitoring as well as for adapting to fix misconfigurations.

The general problem of finding faults or identifying poor performance due to misconfigurations is well studied
in traditional software. We point the reader to a representative sample of references on this topic [8, 26, 64, 73, 74];
however, none of these focus on the sUAS environment or self-adaptation. There has been some research on
exploring misconfigurations on sUAS and other robotic systems (e.g. [32, 38, 43, 48, 67, 72]), or studying instability
due to malicious threats [44]. We discuss a few of these robotic threads of work in more detail.

Kim et al. presented RVFuzzer [44] which looks for range implementation and specification bugs in sUAS.
Their assumption is that the range of misconfiguration behavior is monotonically changing and the full range
of passing behavior can be determined. RVFuzzer uses a binary search to refine valid parameter value ranges
beyond those defined in documentation. However, it only focuses on finding parameter values attackers might
use and does not perform adaptation. We have compared our exploration and have expanded on the configuration
space over RVFuzzer. We have also observed in some recent work [57] that the monotonic property may not
always hold.

Han et al. introduced LGDFuzzer [31] and ICSEARCHER [29], which use genetic algorithms to search for
problematic configurations in sUAS. In that work they use machine learning to predict instabilities via multi-
objective optimization. They do not, however, systematically explore the parameter space, and they do not
consider adaptation to fix the instabilities observed. Chang et al. [9] also use a genetic algorithm-based approach
called APFuzzer to search for configurations that cause incorrect states.

Taylor et al. examined faults due to faulty configurations in sUAS for human-robotic collaborative systems
[67] and Jung et al. [38] presented SwarmBug which detects bugs in swarms of SUAS due to the configurations of
the swarm algorithms. Neither of these focus on the controller parameters or threads perform adaptation.

Other research has looked more broadly at misconfigurations and testing of robotics systems (e.g. see [40, 41, 68]
as examples). For instance, Khatiri et al. presented SURREALIST [40] and AERIALIST [41], a simulation-based
test case generation tools for sUAS. These toos are able to replicate a given fight log in simulator and generate
test cases (mutations of the environment). They do not focus on configurations of the fight controller. Last,

ACM Trans. Autonom. Adapt. Syst.

30 « Purandare, Islam, Sinha, Cleland-Huang, Cohen

Timperley et al. [68] proposed a static analysis for finding architectural misconfigurations in general robotic
systems, however, these are not controller parameters and they do not provide adaptation.

9 CONCLUSIONS AND FUTURE WORK

In this paper we presented CICADA, a framework for self-adaptation in small uncrewed aerial vehicles which
aims to prevent flight instability caused by misconfigurations. We explored the configuration space of a widely
used flight control software and found that controller parameters had a large impact on flight stability. We
introduced a primary adaptation strategy to overcome misconfigurations mid-flight to complete the mission,
and demonstrated the effectiveness of this strategy in recovering from configuration problems caused by both
individually problematic parameter values and interactions between pairs of parameters. We further proposed two
other safety-focused adaptation mechanisms to prevent exceptionally dangerous flight behavior from occurring in
situations where the primary strategy was not viable. Our experiments showed that these strategies were effective
in preventing dangerous flight behavior for many of these especially unsafe misconfigurations. Depending on
the parameter sample sets, we observed between 3.6% and 33.8% improvement in failure rates with our primary
strategy, while the safety-focused mechanisms allowed us to mitigate unsafe behavior for 52.9% to 64.7% of
dangerous configurations. We then combined the other strategies to create a rule-based adaptation approach using
data from the probes and gauges to automatically select an appropriate adaptation for the severity of instability
detected, which resulted in up to a 14.2% improvement over the revert strategy. In addition, we introduced an
iterative nudging configuration approach which can be used even with limited knowledge about the optimal
configurations for a drone system. Overall nudging improved the failure rate over the non-adaptive approach,
but lost some effectiveness seen in the revert-to-baseline adaptation; which was optimized for the airframe we
were testing on. We saw as little as a 6.7% decrease in effectiveness for some parameters, but as high as a 15.4%
decrease for the extended configuration set. While the reduction was noticeable, we did still improve greatly over
the non-adaptive approach despite the lack of optimal knowledge base. Finally, we performed a case study on
physical SUAS hardware to demonstrate the effectiveness of our primary adaptation strategy in the real world.

As future work we plan to devise more intelligent adaptation selection strategies to automatically select
from different adaptation mechanisms that may be needed over the course of a flight. We will also expand our
experiments to incorporate improved (ML based) gauges, perhaps incorporating some of the ADAM detectors
into CICADA. We plan to experiment with larger and different parameter spaces, and run experiments under
more diverse flight missions and environmental conditions (e.g. wind). We also plan to explore ways to handle
flakiness both in simulation and real-world environments.

ACKNOWLEDGMENTS

The work in this paper was primarily funded under the USA National Aeronautics and Space Administration
(NASA) Grant Number: 80NSSC21M0185 and the National Science Foundation (NSF) CNS-1931962 and CCF-
1909688.

REFERENCES

[1] Sophia J. Abraham, Zachariah Carmichael, Sreya Banerjee, Rosaura G. VidalMata, Ankit Agrawal, Md Nafee Al Islam, Walter J.
Scheirer, and Jane Cleland-Huang. 2021. Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics Systems. In 1st [EEE/ACM
Workshop on Al Engineering - Software Engineering for Al, WAIN@ICSE 2021, Madrid, Spain, May 30-31, 2021. IEEE, 113-120. https:
//doi.org/10.1109/WAIN52551.2021.00025

[2] Frank José Affonso, Gustavo Leite, Rafael AP Oliveira, and Elisa Yumi Nakagawa. 2015. A Framework Based on Learning Techniques
for Decision-making in Self-adaptive Software. In International Conference on Software Engineering and Knowledge Engineering, Vol. 15.
1-6. https://doi.org/10.18293/SEKE2015

[3] Md Nafee Al Islam, Muhammed Tawfiq Chowdhury, Pedro Alarcon Granadeno, Jane Cleland-Huang , and Lilly Spirkovska. 2023.
Towards an Annotated All-Weather Dataset of Flight Logs for Small Uncrewed Aerial Systems. In AIAA AVIATION 2023 Forum.

ACM Trans. Autonom. Adapt. Syst.

https://doi.org/10.1109/WAIN52551.2021.00025
https://doi.org/10.1109/WAIN52551.2021.00025
https://doi.org/10.18293/SEKE2015

(9]

(10]

(11]

(12]
(13]

(14]

(15]
(16]
(17]

(18]

CICADA: Self-Adaptation in sUAS « 31

https://doi.org/10.2514/6.2023-3856

Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. 2015. Modeling and Analyzing MAPE-K Feedback Loops for Self-Adaptation.
In 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. 13-23. https:
//doi.org/10.1109/SEAMS.2015.10

Ardupilot. Last Accessed 01/29/22. ArduPilot Open Source Autopilot. https://ardupilot.org/

Bilel Benjdira, Taha Khursheed, Anis Koubaa, Adel Ammar, and Kais Ouni. 2019. Car Detection using Unmanned Aerial Vehicles:
Comparison between Faster R-CNN and YOLOv3. In 2019 Ist International Conference on Unmanned Vehicle Systems-Oman (UVS). 1-6.
https://doi.org/10.1109/UVS.2019.8658300

Victor Braberman, Nicolas D’Ippolito, Jeff Kramer, Daniel Sykes, and Sebastian Uchitel. 2015. MORPH: A reference architecture for
configuration and behaviour self-adaptation. In Proceedings of the 1st International Workshop on Control Theory for Software Engineering.
9-16. https://doi.org/10.1145/2804337.2804339

Mikaela Cashman, Myra B. Cohen, Priya Ranjan, and Robert W. Cottingham. 2018. Navigating the Maze: The Impact of Configurability in
Bioinformatics Software. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (Montpellier,
France) (ASE ’18). Association for Computing Machinery, New York, NY, USA, 757-767. https://doi.org/10.1145/3238147.3240466
Zhiwei Chang, Hanfeng Zhang, Yue Yang, Yan Jia, Sihan Xu, Tong Li, and Zheli Liu. 2024. Fuzzing Drone Control System Configurations
Based on Quality-Diversity Enhanced Genetic Algorithm. In Artificial Intelligence Security and Privacy, Jaideep Vaidya, Moncef Gabbouj,
and Jin Li (Eds.). Springer Nature Singapore, Singapore, 499-512. https://doi.org/10.1007/978-981-99-9785-5_35

Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy
Brun, Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek; Kurt Geihs, Vincenzo
Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Miller, Sooyong Park, Mary
Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. 2009. Software Engineering for Self-Adaptive Systems: A Research
Roadmap. Springer Berlin Heidelberg, Berlin, Heidelberg, 1-26. https://doi.org/10.1007/978-3-642-02161-9_1

Shang-Wen Cheng, David Garlan, and Bradley Schmerl. 2009. Evaluating the effectiveness of the Rainbow self-adaptive system.
Proceedings of the 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2009, 132-141. https:
//doi.org/10.1109/SEAMS.2009.5069082

Jane Cleland-Huang. 2023. Truth or Dare: Real-World Fuzz Testing of UAVs in Flight. In Keynote at the 16th International Workshop on
Search-Based and Fuzz Testing (SBFT). Melbourne, Australia. Keynote Address.

Jane Cleland-Huang, Ankit Agrawal, Michael Vierhauser, Michael Murphy; and Mike Prieto. 2022. Extending MAPE-K to support
Human-Machine Teaming. CoRR abs/2203.13036 (2022). https://doi.org/10.1145/3524844.3528054

Jane Cleland-Huang, Nitesh Chawla, Myra Cohen, Md Nafee Al Islam, Urjoshi Sinha, Lilly Spirkovska, Yihong Ma, Salil Purandare, and
Muhammed Tawfiq Chowdhury. 2022. Towards real-time safety analysis of small unmanned aerial systems in the national airspace. In
AIAA AVIATION 2022 Forum. 3540. https://doi.org/10:2514/6.2022-3540

David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton. 1997. The AETG system: An approach to testing
based on combinatorial design. IEEE Transactions on Software Engineering 23, 7 (1997), 437-444. https://doi.org/10.1109/32.605761

M. B. Cohen, C.]. Colbourn, P. B. Gibbons, and W. B. Mugridge. 2003. Constructing test suites for interaction testing. In Proc. of the Intl.
Conf. on Soft. Eng. 38—48. https://doi.org/10.1109/ICSE.2003.1201186

Ralph D’Agostino and E. S. Pearson. 1973. Tests for Departure from Normality. Empirical Results for the Distributions of b2 and square
root bl. Biometrika 60, 3 (1973), 613-622. https://doi.org/10.2307/2335012

Rogério de Lemos, Holger Giese, Hausi A. Miiller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura,
Norha M. Villegas, Thomas Vogel, Danny Weyns, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron Desmarais,
Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. G6schka, Alessandra Gorla, Vincenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff
Kramer, Anténia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro
Pezzé, Christian Prehofer, Wilhelm Schifer, Rick Schlichting, Dennis B. Smith, Joao Pedro Sousa, Ladan Tahvildari, Kenny Wong, and
Jochen Wuttke. 2013. Software Engineering for Self-Adaptive Systems: A Second Research Roadmap. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1-32. https://doi.org/10.1007/978-3-642-35813-5_1

Ivana Dusparic and Nicolas Cardozo. 2021. Adaptation to Unknown Situations as the Holy Grail of Learning-Based Self-Adaptive
Systems: Research Directions. CoRR abs/2103.06908 (2021). arXiv:2103.06908 https://arxiv.org/abs/2103.06908

Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. 2010. FUSION: A Framework for Engineering Self-Tuning Self-Adaptive Software
Systems. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering (Santa Fe, New
Mexico, USA) (FSE ’10). Association for Computing Machinery, New York, NY, USA, 7-16. https://doi.org/10.1145/1882291.1882296
PX4 Development forum. Last Accessed 01/29/23. PX4 Documentation. https://docs.px4.io/master/en/

ROS Answers forum poster. Last accessed 7/21/24; Posted July 2012. Gazebo simulations not repeatable. https://answers.ros.org/
question/40208/gazebo-simulations-not-repeatable/

Open Source Robotics Foundation. Last accessed 7/28/24. Gazebo - A dynamic multi-robot simulator. https://github.com/gazebosim/
gazebo-classic

ACM Trans. Autonom. Adapt. Syst.

https://doi.org/10.2514/6.2023-3856
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1109/SEAMS.2015.10
https://ardupilot.org/
https://doi.org/10.1109/UVS.2019.8658300
https://doi.org/10.1145/2804337.2804339
https://doi.org/10.1145/3238147.3240466
https://doi.org/10.1007/978-981-99-9785-5_35
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1109/SEAMS.2009.5069082
https://doi.org/10.1109/SEAMS.2009.5069082
https://doi.org/10.1145/3524844.3528054
https://doi.org/10.2514/6.2022-3540
https://doi.org/10.1109/32.605761
https://doi.org/10.1109/ICSE.2003.1201186
https://doi.org/10.2307/2335012
https://doi.org/10.1007/978-3-642-35813-5_1
https://arxiv.org/abs/2103.06908
https://arxiv.org/abs/2103.06908
https://doi.org/10.1145/1882291.1882296
https://docs.px4.io/master/en/
https://answers.ros.org/question/40208/gazebo-simulations-not-repeatable/
https://answers.ros.org/question/40208/gazebo-simulations-not-repeatable/
https://github.com/gazebosim/gazebo-classic
https://github.com/gazebosim/gazebo-classic

32

[24]
[25]

[26]

[27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

« Purandare, Islam, Sinha, Cleland-Huang, Cohen

Brady J Garvin, Myra B Cohen, and Matthew B Dwyer. 2013. Failure avoidance in configurable systems through feature locality. In
Assurances for Self-Adaptive Systems. Springer, 266—-296. https://doi.org/10.1007/978-3-642-36249-1_10

Balazs Gati. 2013. Open source autopilot for academic research-the paparazzi system. In 2013 American Control Conference. IEEE,
1478-1481. https://doi.org/doi:10.1109/ACC.2013.6580045

Paul Gazzillo. 2020. Inferring and Securing Software Configurations Using Automated Reasoning. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Virtual Event, USA)
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA, 1517-1520. https://doi.org/10.1145/3368089.3417041
Thomas J. Glazier, Bradley R. Schmerl, Javier Camara, and David Garlan. 2017. Utility Theory for Self-Adaptive Systems. In Technical
Report CMU-ISR-17-119. http://reports-archive.adm.cs.cmu.edu/anon/isr2017/CMU-ISR-17-119.pdf

David Hambling. 2020. Drone Crash Due To GPS Interference In U.K. Raises Safety Questions. (Aug. 2020). https://www.forbes.com/
sites/davidhambling/2020/08/10/investigation-finds-gps-interference-caused-uk-survey-drone-crash/?sh=350a3e1d534a

Ruidong Han, Siqi Ma, Juanru Li, Surya Nepal, David Lo, Zhuo Ma, and Jianfeng Ma. 2024. Range Specification Bug Detection in Flight
Control System Through Fuzzing. IEEE Transactions on Software Engineering 50 (March 2024), 1-13. https://doi.org/10.1109/TSE.2024.
3354739

Ruidong Han, Chao Yang, Siqi Ma, JiangFeng Ma, Cong Sun, Juanru Li, and Elisa Bertino. 2022. Control Parameters Considered Harmful:
Detecting Range Specification Bugs in Drone Configuration Modules via Learning-Guided Search. In Proceedings of the International
Conference on Software Engineering. ACM. https://doi.org/10.1145/3510003.3510084

Ruidong Han, Chao Yang, Sigi Ma, JiangFeng Ma, Cong Sun, Juanru Li, and Elisa Bertino. 2022. Control parameters considered harmful:
detecting range specification bugs in drone configuration modules via learning-guided search. In Proceedings.of the 44th International
Conference on Software Engineering. 462-473. https://doi.org/10.1145/3510003.3510084

Md Abir Hossen, Sonam Kharade, Bradley Schmerl, Javier Camara, Jason M. O’Kane, Ellen C. Czaplinski, Katherine A. Dzurilla,
David Garlan, and Pooyan Jamshidi. 2023. CaRE: Finding Root Causes of Configuration Issues in Highly-Configurable Robots.
https://doi.org/10.48550/ARXIV.2301.07690

Pilot Institute. Last Accessed: 01/29/2022. What Causes Signal Dropouts When Flying Drones? https://pilotinstitute.com/signal-
dropout-causes/

M. Al Islam, Y. Ma, P. Alarcon, N. Chawla, and J. Cleland-Huang. 2022. RESAM: Requirements Elicitation and Specification for
Deep-Learning Anomaly Models with Applications to UAV Flight Controllers. In 2022 IEEE 30th International Requirements Engineering
Conference (RE). 153-165. https://doi.org/10.1109/RE54965.2022.00020

Md Nafee Al Islam, Muhammed Tawfiq Chowdhury, Ankit Agrawal, Michael Murphy, Raj Mehta, Daria Kudriavtseva, Jane Cleland-
Huang, Michael Vierhauser, and Marsha Chechik. 2023. Configuring mission-specific behavior in a product line of collaborating Small
Unmanned Aerial Systems. 7. Syst. Softw. 197 (2023), 111543. https://doi.org/10.1016/].JSS.2022.111543

Md Nafee Al Islam, Jane Cleland-Huang, and Michael Vierhauser. 2024. ADAM: Adaptive Monitoring of Runtime Anomalies in
Small Uncrewed Aerial Systems. In Proceedings of the 19th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (Lisbon, AA, Portugal) (SEAMS °24). Association for Computing Machinery, New York, NY, USA, 44-55. https:
//doi.org/10.1145/3643915.3644092

Pooyan Jamshidi, Javier Camara, Bradley Schmerl, Christian Kéestner, and David Garlan. 2019. Machine learning meets quantitative
planning: Enabling self-adaptation in autonomous robots. In 2019 IEEE/ACM 14th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). IEEE, 39-50. https://doi.org/10.1109/SEAMS.2019.00015

Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon. 2021. Swarmbug: Debugging Configuration Bugs in
Swarm Robotics. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,
868-880. https://doi.org/10.1145/3468264.3468601

J.O.Kephart and D.M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41-50. https://doi.org/10.1109/MC.2003.
1160055

Sajad Khatiri, Sebastiano Panichella, and Paolo Tonella. 2023. Simulation-based Test Case Generation for Unmanned Aerial Vehicles
in the Neighborhood of Real Flights. In 2023 IEEE Conference on Software Testing, Verification and Validation (ICST). 281-292. https:
//doi.org/10.1109/ICST57152.2023.00034

Sajad Khatiri, Sebastiano Panichella, and Paolo Tonella. 2024. Simulation-based testing of unmanned aerial vehicles with Aerialist. In
Proceedings of the International Conference on Software Engineering: Companion Proceedings. 134-138. https://doi.org/10.21256/zhaw-29678
Jinyong Kim, Jinho Lee, Jachoon Jeong, Hyoungshick Kim, Jung-Soo Park, and Taeho Kim. 2016. SAN: Self-Adaptive Navigation for
Drone Battery Charging in Wireless Drone Networks. In 2016 30th International Conference on Advanced Information Networking and
Applications Workshops (WAINA). 248-251. https://doi.org/10.1109/WAINA.2016.103

Seulbae Kim and Taesoo Kim. 2022. RoboFuzz: Fuzzing Robotic Systems over Robot Operating System (ROS) for Finding Correctness
Bugs. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA, 447-458. https:

ACM Trans. Autonom. Adapt. Syst.

https://doi.org/10.1007/978-3-642-36249-1_10
https://doi.org/doi:%2010.1109/ACC.2013.6580045
https://doi.org/10.1145/3368089.3417041
http://reports-archive.adm.cs.cmu.edu/anon/isr2017/CMU-ISR-17-119.pdf
https://www.forbes.com/sites/davidhambling/2020/08/10/investigation-finds-gps-interference-caused-uk-survey-drone-crash/?sh=350a3e1d534a
https://www.forbes.com/sites/davidhambling/2020/08/10/investigation-finds-gps-interference-caused-uk-survey-drone-crash/?sh=350a3e1d534a
https://doi.org/10.1109/TSE.2024.3354739
https://doi.org/10.1109/TSE.2024.3354739
https://doi.org/10.1145/3510003.3510084
https://doi.org/10.1145/3510003.3510084
https://doi.org/10.48550/ARXIV.2301.07690
https://pilotinstitute.com/signal-dropout-causes/
https://pilotinstitute.com/signal-dropout-causes/
https://doi.org/10.1109/RE54965.2022.00020
https://doi.org/10.1016/J.JSS.2022.111543
https://doi.org/10.1145/3643915.3644092
https://doi.org/10.1145/3643915.3644092
https://doi.org/10.1109/SEAMS.2019.00015
https://doi.org/10.1145/3468264.3468601
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/ICST57152.2023.00034
https://doi.org/10.1109/ICST57152.2023.00034
https://doi.org/10.21256/zhaw-29678
https://doi.org/10.1109/WAINA.2016.103
https://doi.org/10.1145/3540250.3549164
https://doi.org/10.1145/3540250.3549164

[44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

— r— =
[==
N = O
[]

(63]

(64]

CICADA: Self-Adaptation in sUAS « 33

//doi.org/10.1145/3540250.3549164

Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu, Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan
Xu. 2019. RVFuzzer: Finding Input Validation Bugs in Robotic Vehicles through Control-Guided Testing. In 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 425-442. https://www.usenix.org/conference/usenixsecurity19/
presentation/kim

Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues. 2018. Managing uncertainty in self-adaptive systems
with plan reuse and stochastic search. In Proceedings of the 13th International Conference on Software Engineering for Adaptive and
Self-Managing Systems. 40-50. https://doi.org/10.1145/3194133.3194145

Nikolaus Kleber, Jonathan D. Chisum, Aaron Striegel, Bertrand M. Hochwald, Abbas Termos, J. Nicholas Laneman, Zuohui Fu, and John
Merritt. 2016. RadioHound: A Pervasive Sensing Network for Sub-6 GHz Dynamic Spectrum Monitoring. CoRR abs/1610.06212 (2016).
arXiv:1610.06212 http://arxiv.org/abs/1610.06212

N. Koenig and A. Howard. 2004. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In 2004 IEEE/RS}
International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Vol. 3. 2149-2154 vol.3. https://doi.org/10.
1109/IROS.2004.1389727

Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Kumar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar
Iyer. 2020. AV-FUZZER: Finding Safety Violations in Autonomous Driving Systems. In 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE). 25-36. https://doi.org/10.1109/ISSRE5003.2020.00012

Paulo Henrique Maia, Lucas Vieira, Matheus Chagas, Yijun Yu, Andrea Zisman, and Bashar Nuseibeh. 2019. Dragonfly: a tool for
simulating self-adaptive drone behaviours. In 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). IEEE, 107-113. https://doi.org/10.1109/SEAMS.2019.00022

Henry B Mann and Donald R Whitney. 1947. On a test of whether one of two random variables is stochastically larger than the other.
The annals of mathematical statistics (1947), 50-60.

Lorenz Meier, Dominik Honegger, and Marc Pollefeys. 2015. PX4: A node-based multithreaded open source robotics framework for
deeply embedded platforms. In 2015 IEEE International Conference on Robotics and Automation (ICRA). 6235-6240. https://doi.org/10.
1109/ICRA.2015.7140074

Gabriel Moreno, Cody Kinneer, Ashutosh Pandey, and David Garlan. 2019. DARTSim: An exemplar for evaluation and comparison of
self-adaptation approaches for smart cyber-physical systems. In 2019 IEEE/ACM 14th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). IEEE, 181-187. https://doi.org/10.1109/SEAMS.2019.00031

Thomas Multerer, Alexander Ganis, Ulrich Prechtel, Enric Miralles, Askold Meusling, Jan Mietzner, Martin Vossiek, Mirko Loghi, and
Volker Ziegler. 2017. Low-cost jamming system against small drones using a 3D MIMO radar based tracking. In European Microwave
Week 2017: "A Prime Year for a Prime Event”, EuMW 2017 - Conference Proceedings; 14th European Microwave Conference, EURAD 2017,
Vol. 2018-Janua. Institute of Electrical and Electronics Engineers Inc., 299-302. https://doi.org/10.23919/EURAD.2017.8249206
Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing. ACM Comput. Surv. 43, 2, Article 11 (Feb 2011), 29 pages.
https://doi.org/10.1145/1883612.1883618

Gonzalo Pajares. 2015. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs).
Photogrammetric Engineering & Remote Sensing 81 (04 2015), 281-330. https://doi.org/10.14358/PERS.81.4.281

PX4 Forum poster. Last accessed 5/21/22; Posted Oct 2019. Strange Harrier D7 crash. https://discuss.px4.io/t/strange-harrier-d7-
crash/13480

Salil Purandare and Myra B. Cohen. 2024. Exploration of Failures in an sUAS Controller Software Product Line. In Proceedings of the
28th ACM International Systems and Software Product Line Conference - Volume B (Dommeldange, Luxembourg) (SPLC "24). Association
for Computing Machinery, New York, NY, USA, 125-135. https://doi.org/10.1145/3646548.3672597

Salil Purandare, Urjoshi Sinha, Md Nafee Al Islam, Jane Cleland-Huang, and Myra B. Cohen. 2023. Self-Adaptive Mechanisms for
Misconfigurations in Small Uncrewed Aerial Systems. In 2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). 169-180. https://doi.org/10.1109/SEAMS59076.2023.00030

Georg Piischel, Christian Piechnick, Sebastian G6tz, Christoph Seidl, Sebastian Richly, Thomas Schlegel, and Uwe Afimann. 2014.
A combined simulation and test case generation strategy for self-adaptive systems. Journal On Advances in Software 7, 3&4 (2014),
686-696.

PX4. Last Accessed 05/19/22. PX4 Bug Repository. https://github.com/PX4/PX4-Autopilot/issues

PX4-Autopilot. Last Accessed 01/29/22. PX4 Online Discussion forum. https://discuss.px4.io/

Mazeiar Salehie and Ladan Tahvildari. 2009. Self-Adaptive Software: Landscape and Research Challenges. ACM Trans. Auton. Adapt.
Syst. 4, 2, Article 14 (May 2009), 42 pages. https://doi.org/10.1145/1516533.1516538

Ilja Shmelkin. 2020. Monitoring for control in role-oriented self-adaptive systems. In Proceedings of the IEEE/ACM 15th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. 115-119. https://doi.org/10.1145/3387939.3391598
Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kastner. 2015. Performance-Influence Models for Highly Configurable
Systems. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association

ACM Trans. Autonom. Adapt. Syst.

https://doi.org/10.1145/3540250.3549164
https://doi.org/10.1145/3540250.3549164
https://doi.org/10.1145/3540250.3549164
https://www.usenix.org/conference/usenixsecurity19/presentation/kim
https://www.usenix.org/conference/usenixsecurity19/presentation/kim
https://doi.org/10.1145/3194133.3194145
https://arxiv.org/abs/1610.06212
http://arxiv.org/abs/1610.06212
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/ISSRE5003.2020.00012
https://doi.org/10.1109/SEAMS.2019.00022
https://doi.org/10.1109/ICRA.2015.7140074
https://doi.org/10.1109/ICRA.2015.7140074
https://doi.org/10.1109/SEAMS.2019.00031
https://doi.org/10.23919/EURAD.2017.8249206
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.14358/PERS.81.4.281
https://discuss.px4.io/t/strange-harrier-d7-crash/13480
https://discuss.px4.io/t/strange-harrier-d7-crash/13480
https://doi.org/10.1145/3646548.3672597
https://doi.org/10.1109/SEAMS59076.2023.00030
https://github.com/PX4/PX4-Autopilot/issues
https://discuss.px4.io/
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/3387939.3391598

34 .« Purandare, Islam, Sinha, Cleland-Huang, Cohen

for Computing Machinery, New York, NY, USA, 284-294. https://doi.org/10.1145/2786805.2786845

[65] Stanford Artificial Intelligence Laboratory et al. [n. d.]. Robotic Operating System. https://www.ros.org

[66] Jacob Swanson, Myra B. Cohen, Matthew B. Dwyer, Brady]. Garvin, and Justin Firestone. 2014. Beyond the Rainbow: Self-Adaptive
Failure Avoidance in Configurable Systems. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (Hong Kong, China) (FSE 2014). Association for Computing Machinery, New York, NY, USA, 377-388. https:
//doi.org/10.1145/2635868.2635915

[67] Adam Taylor, Sebastian Elbaum, and Carrick Detweiler. 2016. Co-diagnosing configuration failures in co-robotic systems. In 2016
IEEE/RSY International Conference on Intelligent Robots and Systems (IROS). 2934-2939. https://doi.org/10.1109/IROS.2016.7759454

[68] Christopher Steven Timperley, Tobias Diirschmid, Bradley R. Schmerl, David Garlan, and Claire Le Goues. 2022. ROSDiscover: Statically
Detecting Run-Time Architecture Misconfigurations in Robotics Systems. In 19th IEEE International Conference on Software Architecture,
ICSA 2022, Honolulu, HI, USA, March 12-15, 2022. IEEE, 112-123. https://doi.org/10.1109/ICSA53651.2022.00019

[69] Frank Trollmann, Johannes Fahndrich, and Sahin Albayrak. 2018. Hybrid adaptation policies: towards a framework for classification and
modelling of different combinations of adaptation policies. In Proceedings of the 13th International Conference on Software Engineering
for Adaptive and Self-Managing Systems. 76—86. https://doi.org/10.1145/3194133.3194137

[70] Michael Vierhauser, Md Nafee Al Islam, Ankit Agrawal, Jane Cleland-Huang, and James Mason. 2021. Hazard analysis for human-on-
the-loop interactions in sUAS systems. In ESEC/FSE °21: 29th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and
Massimiliano Di Penta (Eds.). ACM, 8-19. https://doi.org/10.1145/3468264.3468534

[71] WE. Walsh, G. Tesauro, J.O. Kephart, and R. Das. 2004. Utility functions in autonomic systems. In International Conference on Autonomic
Computing, 2004. Proceedings. 70-77. https://doi.org/10.1109/ICAC.2004.1301349

[72] Kai-Tao Xie, Jia-Ju Bai, Yong-Hao Zou, and Yu-Ping Wang. 2022. ROZZ: Property-based Fuzzing for Robotic Programs in ROS. In 2022
International Conference on Robotics and Automation (ICRA). 6786-6792. https://doi.org/10.1109/ICRA46639.2022.9811701

[73] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma Talwadker. 2015. Hey, You Have given Me Too
Many Knobs!: Understanding and Dealing with over-Designed Configuration in System Software. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,
USA, 307-319. https://doi.org/10.1145/2786805.2786852

[74] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Configuration Errors: A Survey. ACM Comput. Surv. 47, 4,
Article 70 (Jul 2015), 41 pages. https://doi.org/10.1145/2791577

Received 18 December 2023; revised 24 August 2024; accepted 16 October 2024

ACM Trans. Autonom. Adapt. Syst.

https://doi.org/10.1145/2786805.2786845
https://www.ros.org
https://doi.org/10.1145/2635868.2635915
https://doi.org/10.1145/2635868.2635915
https://doi.org/10.1109/IROS.2016.7759454
https://doi.org/10.1109/ICSA53651.2022.00019
https://doi.org/10.1145/3194133.3194137
https://doi.org/10.1145/3468264.3468534
https://doi.org/10.1109/ICAC.2004.1301349
https://doi.org/10.1109/ICRA46639.2022.9811701
https://doi.org/10.1145/2786805.2786852
https://doi.org/10.1145/2791577

	Abstract
	1 Introduction
	2 Motivating Examples
	3 The CICADA Framework
	3.1 CICADA Overview
	3.2 Adaptations
	3.3 CICADA Instantiation

	4 Experimental Evaluation
	4.1 Configuration Space Model
	4.2 Sampling
	4.3 Metrics
	4.4 Implementation Details
	4.5 Instabilities and Adaptation
	4.6 Threats to Validity

	5 Results
	5.1 RQ1: Studying the Impact of Configurations
	5.2 RQ2: Adaptation using Revert-to-Baseline
	5.3 RQ3: Effectiveness of Different Adaptation Strategies
	5.4 RQ4: Rule-based Adaptation
	5.5 RQ5: Adaptation with Limited Knowledge Base

	6 Case Study: Real world Application of Revert-to-Baseline Adaptation Strategy
	7 Discussion
	8 Related Work
	9 Conclusions and Future Work
	Acknowledgments
	References

