
Mining for Mutation Operators for Reduction of
Information Flow Control Violations

Ilya Kosorukov
University College London

London, UK

Daniel Blackwell
University College London

London, UK
daniel.blackwell.14@ucl.ac.uk

David Clark
University College London

London, UK
david.clark@ucl.ac.uk

Myra B. Cohen
Iowa State University

Ames, IA , USA
mcohen@iastate.edu

Justyna Petke
University College London

London, UK
j.petke@ucl.ac.uk

Abstract
The unintentional !ow of con"dential data to unauthorised users
is a serious software security vulnerability. Detection and repair of
such errors is a non-trivial task that has been worked on by the secu-
rity community formany years. More recently, dynamic approaches,
such as HyperGI, have been introduced that use hypertesting and
genetic improvement to not only detect, but also provide a patch
that reduces such information !ow control violations. However,
empirical studies performed so far have used mostly generic muta-
tion operators, potentially limiting the strength of this approach. In
this new ideas paper we mine the National Vulnerabilities Database
to "nd repairs of information leaks. Of 636 issues initially identi"ed,
we found 73 "xes that relate to information leaks and come with
open source patches to the code. From these, we identi"ed 10 types
of mutation operators with potential to "x such issues. Six of these
have so far never been used to "x information leaks via automated
mutation to the code. We propose that these could help improve
e#ectiveness of tools using the HyperGI approach.

CCS Concepts
• Security and privacy → Software security engineering; •
Software and its engineering → Search-based software engi-
neering.

Keywords
Information Leak Reduction, Information Leak Repair, Genetic Im-
provement, HyperGI

ACM Reference Format:
Ilya Kosorukov, Daniel Blackwell, David Clark, Myra B. Cohen, and Justyna
Petke. 2024. Mining for Mutation Operators for Reduction of Information
Flow Control Violations. In 39th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’24), October 27-November 1, 2024,
Sacramento, CA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3691620.3695308

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695308

1 Introduction
Since the introduction of ChatGPT [22] and other large language
models (LLM), researchers have conducted a plethora of empirical
studies investigating how well LLMs perform in solving typical
software engineering tasks. Sobania et al. [28] conducted one of
the earliest studies on the use of ChatGPT for automated program
repair (APR), showing that the LLM-prompting approach outper-
formed several existing APR tools at "xing various functional bugs.
However, Steenhoek et al. [29] have shown LLMs perform poorly
at repair of software security vulnerabilities. Indeed, we tried Chat-
GPT as well as a powerful open source model, Llama-3-70B [20], to
"nd and repair an insecure !ow of con"dential information from
uninitialised variables to program output in atalk [1]. Neither LLM
could identify the bug, let alone "x it1.

Among software vulnerabilities the problem of leaking con"den-
tial information is especially important. It can lead to serious secu-
rity failures, such as the famous Heartbleed Bug [2]. The veri"cation
research community has extensively studied ensuring information
!ow control (IFC) as part of the programming process [31, 32]. IFC
is the problem of ensuring that a software system and a security
policy satisfy a security property. As security properties are safety
properties, most research into IFC has been via veri"cation tools
and static or symbolic analyses [9, 15, 25]. A security policy de"nes
which information can !ow between di#erent user groups, and in
which direction; typically any !ow of information which violates
the policy is referred to as an information leak. Note that as the word
leak in the software "eld is typically associated with resource leaks
such as memory leaks, we have chosen to refer to any violations as
insecure !ows to avoid confusion.

Only recentlyMesecan et al. [19] proposedHyperGI, an approach
that not only detects IFC violations, but also automatically gener-
ates patches for such issues using genetic improvement (GI) [24].
Mesecan et al. [18] instantiated the HyperGI approach in a tool
called LeakReducer and conducted an empirical study showing that
LeakReducer can detect and reduce insecure !ows in real-world
software. The GI approach within LeakReducer mutates statements
in a faulty method, trying to "nd a patch that passes given sets of
tests (which serve as proxies for program behaviour and amount of
con"dential information leaked2). Although LeakReducer was able
to automatically detect and "x several insecure !ows, its mutation

1Responses can be found in Appendix B in our repository [17].
2See [18] for details, which we omit here in the interest of space.

2324

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0009-0000-9832-7295
https://orcid.org/0000-0001-7320-9057
https://orcid.org/0000-0002-7004-934X
https://orcid.org/0000-0003-2443-2425
https://orcid.org/0000-0002-7833-6044
https://doi.org/10.1145/3691620.3695308
https://doi.org/10.1145/3691620.3695308
https://doi.org/10.1145/3691620.3695308
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695308&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Kosorukov et al.

set mostly contains generic operators used for regular program
repair, that move, copy, or delete code statements. To improve the
e$ciency and e#ectiveness for repair of information leaks, we pro-
pose to mine existing repairs to form a set of repair patterns.

In this work, we mine the National Vulnerabilities Database
(NVD) [21] for repairs of insecure !ows. Next, we analyse each
repair to see what type of mutation has been used to "x a given
vulnerability. Finally, we provide a list of mutation operators which
could be integrated into an automated tool, such as LeakReducer,
to automatically "x detected IFC violations.

Our search returned 636 bugs, 73 of which were insecure !ows
with access to open source code repairs. We show that each of the
73 bugs could be "xed by a combination of 10 mutation types, 6 of
which have not yet been tried for "xing information leaks using GI.
We provide our analysis of all the 73 repairs in our repository [17]
to allow for replication and extension of our study. In future work
we plan to empirically evaluate whether the derived mutations
can indeed improve the current state-of-the-art at information leak
reduction using HyperGI.

2 Background & Related Work
Information !ow control is the study of ensuring that information
!ows between users only where allowed by a given security pol-
icy [14]. For example, when building an email server a reasonable
security policy would state that a user Alice should not be able
to learn any information about emails received by another user
Bob (unless Alice sent an email to Bob of course) and vice versa. A
common non-trivial security policy is that within operating sys-
tems; whereby certain information from kernel-space must not be
revealed to user-space, such as memory addresses, which can be
used in exploits in order to bypass KASLR (kernel address space
layout randomisation) [11]. Here, the OS kernel is not a human
user, but is nonetheless still a user of the system.

There are a number of ways that information can be revealed to
a user; the most obvious being through program output such as a
GUI or HTTP response, but also through side-channels such as the
execution time [13], memory usage or power consumption [27] for
a given operation.

The non-interference property was introduced in 1982 by Goguen
and Meseguer [12], and states the following: One group of users,
using a certain set of commands, is non-interfering with another
group of users if what the "rst group does with those commands has
no e#ect on what the second group of users can see. While this is
de"ned for ‘a set of commands’, it can be applied at the level of
individual programs or functions within programs too. It is the
security policy that de"nes which sets of users and commands
should satisfy the non-interference property.

Attempts at using the dynamic approach of hypertesting [16]
(i.e., sets of tests) have been proposed [10, 16, 23] to detect IFC
violations. More recently, LeakReducer [18] has been proposed to
(semi-) automatically "x violations of the non-interference property.
The tool was shown successful in reducing such violations in real-
world software, "rst detecting such leaks using hypertests, and then
proposing a patch using the genetic improvement approach.

Genetic improvement (GI) [24] uses automated search to improve
existing software. It has been used to improve various functional

(e.g., bug "xing) and non-functional (e.g., execution time) software
properties. GI searches a space of software patches to "nd improved
software variants. The space is de"ned by a set of mutation opera-
tors. The current implementation of LeakReducer either removes,
copies, or inserts an existing code statement. It can also synthesize
an if or for loop condition using variables in existing code. These
mutation operators have been inherited from previous work. Here
we investigate what types of mutations are in practice applied to
code to repair information leaks.

3 Information Leakage Mining
In order to "nd information leaks and their "xes we turned to the
CVE database [30]. The CVE database contains large amounts of
publicly disclosed cybersecurity vulnerabilities and is easily search-
able. Information leakage errors very commonly become cyber-
security vulnerabilities due to their nature of disclosing sensitive
data, therefore we expected to "nd a satisfactory amount of usable
samples in this database. For a code sample to be usable in our
project it must meet two criteria:
(1) The program must contain vulnerabilities that were speci"cally
information leakage errors;
(2) The original vulnerable code in the CVE entry is open source,
along with a patch that repairs the vulnerability.

While searching for other metadata we could use to determine
whether a CVE entry was open source along with a patch provided,
or not, we discovered that CVE entries were also present in another
database, the National Vulnerabilities Database (NVD) [21]. Unlike
the CVE database, the NVD included better maintained metadata
tags, including those that label reference URLs. Therefore, we used
the NVD API and keywords “leakage” and “information disclosure”
to gather relevant data. For each entry we looked for the “Patch” tag
that speci"ed whether a given entry contains source code or not.
Furthermore, we decided to limit our results to 2020-2022 since this
would give us more recent issues that people were experiencing
with information leakage, which would make sure that the mu-
tation operator we devise would be applicable to issues that are
current. At the same time, we observed later issues rarely contained
associated source code, thus we decided to limit our searches to the
aforementioned data range for a representative sample. As noted
earlier, the term leak often appears in the context of resource leaks
such as memory or "le descriptor leaks, which not always lead to
the disclosure of con"dential information.

4 Results
Our mining yielded 636 results. However, many of these results
included closed source projects that we could not analyse. After
manually "ltering out the closed sourced patches we reached 73
results, which allowed us to devise our proposals for new mutation
operators. Full results can be seen in our repository [17].

The aforementioned 73 results were analysed and labelled with:
the language that the sample is from; whether it is possible for the
current GI mutation operators to create the "x; and, if not, what
components are there to the patch that could be turned into new
mutation operators. Figure 1 shows a breakdown of the count of
leaks by programming language. They range from C/C++ to Go,
PHP, Python, Javascript, Ruby and a few others such as Rust.

2325

Mining for Information Flow Mutation Operators ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

26

11
9 8 7

4
2

6

0

5

10

15

20

25

30

C/C++ GO Java PHP Python Jscript Ruby Other

Figure 1: Language distribution of the CVEs studied.

31 30

26 26 25

17

11

7
4 4

0

5

10

15

20

25

30

35

New If Func Call New Funct Var Replace Var Assign New Import Stmt Delete New File Stmt Copy New For

Figure 2: The number of instances found of each mutation
type in the 73 mined !xes to information leaks.

Figure 2 shows how many instances of mutation types we found
throughout our 73 collected results. By mutation type we mean a
type of edit to the original code. An instance of a mutation type is
counted when it is present any number of times within the "x to
the vulnerability. 54 vulnerabilities required more than one type of
edit to produce a "x. We found 10 types of mutations, 4 of which
(New If, Statement Delete, Statement Copy and New For) were
already present in LeakReducer[18], leaving the 6 new mutation
types which are described in Section 4.1.

Table 1 shows a sample of our complete data that contains 2
entries. Figure 2 shows a summary of the types of "xes. New If was
the most common, appearing 31 times, while a Function Call was
the second with 30. We also saw Variable Assignments, Variable
Replacement, New Functions and New Import statements.

4.1 New Types of Mutations
We classi"ed and grouped patches by manual observation. With
the main criteria being the possibility of the mutation types within
those patches to be turned into a mutation operator.

4.1.1 Variable Replacement. This is a mutation where one variable
name gets replaced with another variable. Information !ow can
be easily a#ected by this type of mutation. In the example of a
simple assignment from one variable to another, con"dential infor-
mation can be accidentally transmitted to an unclassi"ed variable,
accessible by unauthorised users.

The example in Listing 1 is part of a series of patches "xing an
information leakage bug. The original issue was caused by a bu#er
over-read. To solve this issue as shown in Listing 1, the bu#er access
o#set was corrected.

Listing 1: Patch for bug CVE-2022-0891 [5]. Variable marked
in red is replaced with the code snippet in green.

b i t s e t = ∗ (s r c _ b u f f + o f f s e t 2) & (((unsigned char)1 < <k)) ? 1 : 0 ;
b i t s e t = ∗ (s r c _ b u f f + o f f s e t 1 + f u l l _ b y t e s)

& (((unsigned char)1 < <k)) ? 1 : 0 ;

Table 1: Sample of complete data that contains 2 entries
which show types of mutations in analysed patches. Full
data can be found in Appendix A in our repository [17].

• CVE ID: This "eld contains the CVE ID of the investigated
vulnerability.

• Patch: This "eld contains a URL that leads to the patch or
series of patches that "xed the vulnerability.

• Language: This "eld contains the language that the vulnera-
ble software was written in.

• Possible: This "eld contains whether it would be theoreti-
cally possible to solve this vulnerability with the mutation
operators currently present in LeakReducer at time of writ-
ing this paper.

• Mutation types: This is a series of "elds each titled by a type
of mutation that was observed throughout all the data. Each
"eld would specify whether the patch is present within the
"x that solved the vulnerability.

CVE ID CVE-2021-22929 CVE-2022-29567
Patch hackerone.co... github.com/...

Language C++ Java
Possible No No

Statement Copy 1
Statement Delete 1

New If 1
New For 1

Variable Replacement 1
Function Call 1 1

Variable Assignment 1
New Function 1 1

New File 1
New Import 1

4.1.2 Variable Assignment. This class of change covers errorswhich
were "xed by assigning a value to a pre-existing variable. As men-
tioned previously, con"dential information held in variables can
easily be leaked through assignments and this class of "x aims to
prevent that from happening by being able to adjust the variable.

In Listing 2 information is being leaked when the struct minfo6
is output – in this case copied from the kernel-space minfo6 to the
user-space bu#er iter. More speci"cally it is the flags "eld inside
the struct that contained sensitive information. To "x this issue
the !ags "eld was set to 0 (‘zeroed’) before the struct gets copied,
which is shown in Listing 3.

Listing 2: Code from CVE-2019-16714[3] before repair.
minfo6 . f p o r t = inc −> i _hd r . h_dpor t ; }

r d s _ i n f o _ copy (i t e r , &minfo6 , s i z eo f (minfo6)) ;

Listing 3: Code from CVE-2019-16714[3] after repair.
minfo6 . f p o r t = inc −> i _hd r . h_dpor t ; }

minfo6 . f l a g s = 0 ;
r d s _ i n f o _ copy (i t e r , &minfo6 , s i z eo f (minfo6)) ;

4.1.3 Function Call. This category of "x describes the cases where
a function call is inserted to alter variables or perform a bounds
check. Information can easily be leaked by incorrect management
of memory, especially in C and C++, therefore a large proportion
of errors were simply "xed by inserting function calls to memset.
Listing 4 presents one such example.

2326

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Kosorukov et al.

Listing 4: Code from CVE-2022-40768 [8] after repair. memset
function call added.
The pas s th rough s t r u c t u r e i s d e c l a r e d o f f o f the s t a ck , so i t needs
t o be ze roed out b e f o r e cop i ed back to u s e r s p a c e to p r even t any un−
i n t e n t i o n a l da t a l e ak age .
. . .

s t ruc t s t _ d r v v e r ver ;
s i z e _ t cp_ l en = s i z eo f (ve r) ;

memset (& ver , 0 x00 , s i z eo f (ve r)) ;
ve r . major = ST_VER_MAJOR ;

4.1.4 New Import. Many issues required the ability to insert a
new import statement. This could be due to the fact a new "le
was created to address the issue, or a new library is necessary. An
example is given in Listing 5.

Listing 5: Python code showing the !x to the vulnerability in
CVE-2021-28861[4] involving the import of the re (regular
expression) module and later the use of its’ sub (substitution)
function.
impor t sy s
impor t r e
impor t t ime
. . .

bpo −43223 : The purpose o f r e p l a c i n g ' / / ' with ' / ' i s t o
p r o t e c t a g a i n s t open r e d i r e c t a t t a c k s r e s i d e w i th in
h t t p . s e r v e r module which can be t r i g g e r e d i f the path
c on t a i n s ' / / ' a t the beg inn ing because web c l i e n t s t r e a t
/ / path as an a b s o l u t e u r l wi thout scheme (s i m i l a r to
h t t p : / / pa th) r a t h e r than a r e l a t i v e path
s e l f . pa th = re . sub (r ' ^ (/) + ' , ' / ' , s e l f . pa th)

4.1.5 New Function. When larger changes to the codebase were re-
quired, functions were generally created to facilitate these changes.
Although this is not necessary to solve the bug it creates a much
more elegant solution in the long run, and is therefore observed to
be implemented a large number of times.

The solution for CVE-2022-23318 [6] shows one such new func-
tion. Here, a function was created for the purpose of bounds check-
ing on a variable, this function was used in multiple locations in
the code to solve an information leakage issue.

4.1.6 New File. Similarly, instead of a new function, a whole new
"le might be created in cases where a larger number of changes are
required. This is prevalent in Java or Python code where each class
is commonly separated into its own "le.

The vulnerability in CVE-2022-39310 [7] stemmed from an issue
where universally unique identi"ers (UUIDs) would not be properly
veri"ed; allowing an authenticated user to act on behalf of another
agent which would give them access to classi"ed information. The
issue was solved by introducing a new custom class to handle the
authentication process, ensuring proper veri"cation of the user’s
UUID. This new class was placed into a new "le.

5 Discussion
We identi"ed 6 new types of mutations that have not yet been im-
plemented for automated "xing of information leaks. We observed
that certain types of mutations are more common for particular
programming languages, e.g., Function Call and New If for C/C++
vs New Import and Variable Replace for Java. However, our sample
is too small to draw general conclusions. Exploring how to best in-
tegrate these new mutation types into existing secure development

practices could bring new insights. Here we discuss the possibility
of incorporating these in a GI-based tool, i.e., LeakReducer [18].

Variable Replacement Variable Replacement is one of the most
commonly occurring mutation types. It is also easy to implement,
as the only requirements are to know what variables exist in the
source code within a given scope, and at which locations they can
be inserted. Both of these requirements can be easily implemented
into LeakReducer as the tool internally uses an XML representation
of code, with nodes tagged according to parse type, thus a node of
type “variable” can easily be identi"ed.

Variable Assignment An implementation of this mutation op-
erator would introduce some complexity in LeakReducer. This op-
erator is able to, in theory, assign any value to any existing variable.
Although the value being assigned can often be narrowed down
to the correct type, it cannot be narrowed down to the value that
should be assigned. Using random values until a suitable value is
found is likely to take an unreasonable amount of time. Neverthe-
less, for variables with small ranges of values such an operator
could potentially be added. One could also scrape constant values
(including const’s and MACROS for C/C++) from the code.

Function Call This type of mutation operator would be very
useful for information leakage errors that have to do with, for exam-
ple, zeroing memory. Not only could it change when or if memory
is zeroed but this mutation operator would also be able to change
how much memory is zeroed, due to its ability to mix and match
arguments. This operator could be added to LeakReducer, as well as
the aforementioned Variable Replacement operator. Implementing
a function call requires only analysis of available functions and
variables in the source code and a location for insertion.

New Function & New Import & New File LeakReducer cur-
rently makes changes within a single "le. To implement operators
involving signi"cant amounts of new code, one would have to spec-
ify, for instance, which libraries could be used to import, or be able
to synthesize new functions and classes. Due to the large search
space, it would be currently impractical to implement such oper-
ators. Although techniques such as genetic programming [26] or
LLMs could synthesize new code, de"ning the desired behaviour
and where it should be inserted poses a signi"cant challenge.

6 Conclusions
The problem of repairing information leaks is non-trivial and has
been researched by the security community for many years. Re-
cently a dynamic approach, HyperGI [19], has been introduced
to detect and repair information leak issues. Its instantiation in
LeakReducer [18] mostly uses generic mutation operators. In this
work we mined a popular software vulnerability database to see
how such issues are "xed in practice. We identi"ed 73 relevant bugs
with open source code. Each of them can be "xed by applying a
combination of 10 types of mutation operators, 6 of which are miss-
ing from LeakReaducer. We provide analysis of the 73 bug repairs
in our repository [17]. In the future we plan to extend LeakReducer
with the identi"ed mutation types to test if the new mutations
indeed increase the tool’s e#ectiveness at "xing information leaks.

Acknowledgments
Supported by grants: NSF #1909688, UK EPSRC #EP/S022503/1.

2327

Mining for Information Flow Mutation Operators ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

References
[1] 2009. CVE-2009-3002. Available from MITRE, CVE-ID CVE-2009-3002. https:

//www.cve.org/CVERecord?id=CVE-2009-3002
[2] 2014. CVE-2014-0160. Available from MITRE, CVE-ID CVE-2014-0160. https:

//www.cve.org/CVERecord?id=CVE-2014-0160
[3] 2019. CVE-2019-16714. Available from MITRE, CVE-ID CVE-2019-16714. https:

//www.cve.org/CVERecord?id=CVE-2019-16714
[4] 2021. CVE-2021-28861. Available from MITRE, CVE-ID CVE-2021-28861. https:

//www.cve.org/CVERecord?id=CVE-2021-28861
[5] 2022. CVE-2022-0891. Available from MITRE, CVE-ID CVE-2022-0891. https:

//www.cve.org/CVERecord?id=CVE-2022-0891
[6] 2022. CVE-2022-23318. Available from MITRE, CVE-ID CVE-2022-23318. https:

//www.cve.org/CVERecord?id=CVE-2022-23318
[7] 2022. CVE-2022-39310. Available from MITRE, CVE-ID CVE-2022-39310. https:

//www.cve.org/CVERecord?id=CVE-2022-39310
[8] 2022. CVE-2022-40768. Available CVE-ID CVE-2022-40768. https://www.cve.

org/CVERecord?id=CVE-2022-40768
[9] Fabrizio Biondi, Axel Legay, Louis-Marie Traonouez, and AndrzejWasowski. 2013.

QUAIL: A Quantitative Security Analyzer for Imperative Code. In Computer Aided
Veri"cation - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha
Sharygina and Helmut Veith (Eds.). Springer, 702–707. https://doi.org/10.1007/
978-3-642-39799-8_49

[10] Daniel Blackwell, Ingolf Becker, and David Clark. 2023. Hyperfuzzing: black-
box security hypertesting with a grey-box fuzzer. arXiv:2308.09081 [cs.SE]
https://arxiv.org/abs/2308.09081

[11] Haehyun Cho, Jinbum Park, Joonwon Kang, Ti#any Bao, Ruoyu Wang, Yan
Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. 2020. Exploiting uses of
uninitialized stack variables in linux kernels to leak kernel pointers. In 14th
USENIX Workshop on O#ensive Technologies (WOOT 20).

[12] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In
1982 IEEE Symposium on Security and Privacy. 11–11. https://doi.org/10.1109/SP.
1982.10014

[13] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu,
and Zhiqiang Zuo. 2020. SpecuSym: Speculative symbolic execution for cache tim-
ing leak detection. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. 1235–1247.

[14] Daniel Hedin and Andrei Sabelfeld. 2012. A perspective on information-!ow
control. In Software safety and security. IOS Press, 319–347.

[15] Jonathan Heusser and Pasquale Malacaria. 2010. Quantifying information leaks
in software. In Twenty-Sixth Annual Computer Security Applications Conference,
ACSAC 2010, Austin, Texas, USA, 6-10 December 2010, Carrie Gates, Michael Franz,
and John P. McDermott (Eds.). ACM, 261–269. https://doi.org/10.1145/1920261.
1920300

[16] Johannes Kinder. 2015. Hypertesting: The Case for Automated Testing of Hyper-
properties. In 3rd Workshop on Hot Issues in Security Principles and Trust (HotSpot
2015). 1–8. 3rd Workshop on Hot Issues in Security Principles and Trust (HotSpot
2015) ; Conference date: 18-04-2015.

[17] Ilya Kosorukov, Daniel Blackwell, David Clark, Myra B. Cohen, and Justyna
Petke. 2024. Our repository with analysis of 73 bug repairs and responses
from ChatGPT and LLama-3 when prompted to "x an example memory leak.
https://github.com/SOLAR-group/infoleakmining

[18] Ibrahim Mesecan, Daniel Blackwell, David Clark, Myra Cohen, and Justyna
Petke. 2023. Keeping Secrets: Multi-objective Genetic Improvement for Detect-
ing and Reducing Information Leakage. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 61, 12 pages.
https://doi.org/10.1145/3551349.3556947

[19] Ibrahim Mesecan, Daniel Blackwell, David Clark, Myra B. Cohen, and Justyna
Petke. 2021. HyperGI: Automated Detection and Repair of Information Flow
Leakage. In 36th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2021, Melbourne, Australia, November 15-19, 2021. IEEE, 1358–1362.
https://doi.org/10.1109/ASE51524.2021.9678758

[20] Meta. [n. d.]. Llama-3-70B. https://huggingface.co/meta-llama/Meta-Llama-3-
70B-Instruct Accessed: 14/06/2024.

[21] National Institute of Standards and Technology. [n. d.]. National Vulnerabilities
Database. https://nvd.nist.gov/ Last accessed: 14/06/2024.

[22] OpenAI. [n. d.]. ChatGPT. https://openai.com/index/chatgpt/ Accessed:
14/06/2024.

[23] Michele Pasqua, Mariano Ceccato, and Paolo Tonella. 2024. Hypertesting of
Programs: Theoretical Foundation and Automated Test Generation. In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineering, ICSE 2024,
Lisbon, Portugal, April 14-20, 2024. ACM, 115:1–115:12. https://doi.org/10.1145/
3597503.3640323

[24] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3
(2018), 415–432. https://doi.org/10.1109/TEVC.2017.2693219

[25] Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Pasareanu.
2012. Symbolic quantitative information !ow. ACM SIGSOFT Softw. Eng. Notes
37, 6 (2012), 1–5. https://doi.org/10.1145/2382756.2382791

[26] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. 2008. A "eld
guide to genetic programming. Published via http://lulu.com and freely available
at http://www.gp-"eld-guide.org.uk. http://www.gp-"eld-guide.org.uk (With
contributions by J. R. Koza).

[27] Mark Randolph and William Diehl. 2020. Power side-channel attack analysis: A
review of 20 years of study for the layman. Cryptography 4, 2 (2020), 15.

[28] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
Analysis of the Automatic Bug Fixing Performance of ChatGPT. In 2023 IEEE/ACM
International Workshop on Automated Program Repair (APR). IEEE Computer
Society, 23–30. https://doi.org/10.1109/APR59189.2023.00012

[29] Benjamin Steenhoek, MdMahbubur Rahman, Monoshi Kumar Roy, Mirza Sanjida
Alam, Earl T. Barr, and Wei Le. 2024. A Comprehensive Study of the Capabilities
of Large Language Models for Vulnerability Detection. CoRR abs/2403.17218
(2024). https://doi.org/10.48550/ARXIV.2403.17218 arXiv:2403.17218

[30] The MITRE Corporation. [n. d.]. The CVE Database. https://cve.mitre.org/ Last
accessed: 14/06/2024.

[31] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kici, Ranjit Jhala, Dean M. Tullsen, and Deian Stefan. 2021. Au-
tomatically eliminating speculative leaks from cryptographic code with blade.
Proc. ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434330

[32] Dennis M. Volpano, Cynthia E. Irvine, and Geo#rey Smith. 1996. A Sound
Type System for Secure Flow Analysis. J. Comput. Secur. 4, 2/3 (1996), 167–188.
https://doi.org/10.3233/JCS-1996-42-304

2328

https://www.cve.org/CVERecord?id=CVE-2009-3002
https://www.cve.org/CVERecord?id=CVE-2009-3002
https://www.cve.org/CVERecord?id=CVE-2014-0160
https://www.cve.org/CVERecord?id=CVE-2014-0160
https://www.cve.org/CVERecord?id=CVE-2019-16714
https://www.cve.org/CVERecord?id=CVE-2019-16714
https://www.cve.org/CVERecord?id=CVE-2021-28861
https://www.cve.org/CVERecord?id=CVE-2021-28861
https://www.cve.org/CVERecord?id=CVE-2022-0891
https://www.cve.org/CVERecord?id=CVE-2022-0891
https://www.cve.org/CVERecord?id=CVE-2022-23318
https://www.cve.org/CVERecord?id=CVE-2022-23318
https://www.cve.org/CVERecord?id=CVE-2022-39310
https://www.cve.org/CVERecord?id=CVE-2022-39310
https://www.cve.org/CVERecord?id=CVE-2022-40768
https://www.cve.org/CVERecord?id=CVE-2022-40768
https://doi.org/10.1007/978-3-642-39799-8_49
https://doi.org/10.1007/978-3-642-39799-8_49
https://arxiv.org/abs/2308.09081
https://arxiv.org/abs/2308.09081
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/1920261.1920300
https://doi.org/10.1145/1920261.1920300
https://github.com/SOLAR-group/infoleakmining
https://doi.org/10.1145/3551349.3556947
https://doi.org/10.1109/ASE51524.2021.9678758
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://nvd.nist.gov/
https://openai.com/index/chatgpt/
https://doi.org/10.1145/3597503.3640323
https://doi.org/10.1145/3597503.3640323
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1145/2382756.2382791
http://www.gp-field-guide.org.uk
https://doi.org/10.1109/APR59189.2023.00012
https://doi.org/10.48550/ARXIV.2403.17218
https://arxiv.org/abs/2403.17218
https://cve.mitre.org/
https://doi.org/10.1145/3434330
https://doi.org/10.3233/JCS-1996-42-304

