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ABSTRACT: Calculations of excited states in the Green’s function
formalism often invokes the diagonal approximation, in which the
quasiparticle states are taken from a mean-field calculation. In this paper,
we extend the stochastic approaches applied in the many-body
perturbation theory and overcome this limitation for large systems in
which we are interested in a small subset of states. We separate the
problem into a core subspace whose coupling to the remainder of the
system environment is stochastically sampled. This method is exemplified
on computing hole injection energies into CO2 on an extended gold
surface with nearly 3000 electrons. We find that in the extended system the
size of the problem can be compressed up to 95% using stochastic
sampling. This result provides a way forward for self-consistent stochastic
methods and determination of Dyson orbitals in large systems.

■ INTRODUCTION
Single particle states are frequently used in the study of
excitation phenomena such as photoionization, electron
injection, and generally optical transitions.1−9 The physical
interpretation of such single particle states often depends on
the specific type of observables.7,10 In particular, Dyson
orbitals, which correspond to the probability amplitude
distribution of a specific electron or hole excitation (i.e.,
quasiparticle state), are directly accessible via orbital
tomography and provide insights into the relation between
energies and real-space distribution of single particle
excitation.11,12 This has fundamental implications for chem-
istry−e.g., hybridization of quasiparticles on surfaces governs
the propensity for direct injection of an electron.9 These are
just a few compelling reasons to account for the physically
meaningful orbital distributions, especially for problems
concerning (chemical) interfaces.
In practice, however, single-particle states for interfacial

systems are typically taken from the Density Functional
Theory (DFT),13−15 as the cost of higher level theory is too
great. While DFT can handle extremely large systems,16 these
calculations can not, even in principle, yield quasiparticle (QP)
energies or the Dyson orbitals.7,17 A natural and widely applied
extension, especially in condensed matter problems, is
application of the Many Body Perturbation Theory (MBPT)
employing Green’s function formalism.7,18−20 In particular, the
GW approximation, which truncates the correlation expansion
to nonlocal charge density fluctuations, has emerged as
arguably the most popular approach.21,22 Its self-consistent
solution yields both QP energies and the Dyson orbitals.23−25

However, it is common to apply the GW approach as a one-

shot correction, G0W0, employing the Kohn−Sham Green’s
function G0 and the screened coulomb interaction W0 derived
from the underlying Kohn−Sham DFT solutions. Despite its
approximate nature, G0W0 often provides good estimates of
band gaps.25−30 The use of one-shot corrections has been
largely motivated by the computational cost,31,32 which scales
as N( )4 with the number of electrons in conventional
implementations.33,34 The computational cost has been
significantly decreased by stochastic sampling approaches in
GW (and post-GW) to be nearly linear; 1000s of states can
thus be studied.27,35−37 Such methods allow for the
construction of a self-energy operator that acts on a single
state and converges to the result of explicit treatment of the
entire system. However, even in the stochastic GW, “updating”
the single-particle basis (i.e., finding the Dyson orbitals) is
difficult38 and, in practice, usually avoided.39 Routine
calculations of QP orbitals in realistic systems with thousands
of electrons are still elusive. This is true even if one is, in
principle, interested in treating a small subset of states, as
exemplified in this work (see below). In cases where the Dyson
orbitals differ greatly from the KS DFT Orbitals (i.e., when
there are large off-diagonal terms), there may be large changes
in the QP energies. Therefore, for many systems, the G0W0
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approximation may be insufficient, and it becomes necessary to
go beyond the diagonal approximation.
Here, we tackle this problem and present a scheme without

diagonal approximation for realistic nanoscale systems. The
stochastic GW method27,37 enables selective access to
individual elements of the QP Hamiltonian without evaluating
all the terms; it is unclear a priori which states must be used to
describe key properties of the system. This stochastic
framework is exemplified for a CO2 molecule on a large Au
slab. For this problem, the surface contributions to the orbitals
are sampled, drastically reducing the cost of QP calculations.
This method divides the system into a set of states in a “core”
subspace, treated by standard stochastic MBPT, and a rest
space, for which additional sampling is introduced. Sampling of
the rest space allows for monotonic convergence toward the
full deterministic QP energies and for all rest space states to be
represented by a few random vectors. This step is combined
with a search over the fixed-point solutions of the frequency-
dependent QP Hamiltonian, which is basis representation
independent and thus enables the QP Hamiltonian to act on a
mixed-basis of both KS DFT and random vectors.
We apply these methods to a prototypical system of a small

molecule on a plasmonic surface (CO2 on Au illustrated in the
inset in Figure 1). In the practical demonstration for an

extended Au(111) surface with 270 atoms (2986 electrons),
we found convergence in the hybridized HOMO energy with a
95% rank compression compared to the evaluation on the full
canonical orbital basis. This success provides a way to use
costly high-level theories to study realistic chemical systems.

■ FORMALISM
The time-ordered Green’s function (GF) contains information
about the quasiparticle (QP) energy spectrum and lifetimes,
and it corresponds to the probability amplitude of a QP
propagation between two space-time points r, t and r′, t′. In
the Lehmann representation, the Green’s function for the hole
states is expressed as

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
G

i
r r

r r
( , , )

( ) ( )

n

n n

n
=

*

(1)

w h e r e t h e D y s o n o r b i t a l s a r e o b t a i n e d a s
r r( ) ( )n N

n
N1
0= | | from the N-particle ground state

and the nth excited state of the N − 1 particle system, where
ψ̂(r) is the field operator, and n runs over all hole states in the
system. The poles of the GF are located at the QP energies, εn,
here corresponding to the charge removal.7 Charge addition is
treated analogously. The GF poles are conveniently expressed
as solutions to a nonlinear eigenvalue problem for an effective
Hamiltonian obtained by downfolding interactions with the
system:7

H ( )QP | = | (2)

In practice, the QP Hamiltonian is divided into a static and
local term, H0, which typically contains all one-body
contributions, while a space-time nonlocal portion is
represented by the self-energy operator Σ̂.22 The latter is
approximated by the selected types of interaction diagrams
(and their resummation). vxc represents the mean-field
exchange-correlation potential, and xc represents the nonlocal
and dynamical (energy and state-dependent) term comprising
the many-body interactions of the given quasiparticle.
Therefore, the QP Hamiltonian is practically constructed by
replacing vxc with the self-energy as a perturbative correction
on top of a mean-field starting point

H H V( ) ( )QP xc0,KS= + (3)

where H0,KS is the KS DFT Hamiltonian.
Further, the “one-shot” correction corresponds to

i
d

G Wr r r r r r( , , )
2

( , , ) ( , , )0 0= +
(4)

where G0 has poles at the DFT Kohn−Sham eigenvalues, ε0,
and W0 is the screened coulomb interaction. The self-
consistency requires repeated construction of Σ and re-
evaluation of eq 2; multiple flavors of self-consistent
approaches have been developed.23,24 Typically, the con-
vergence pattern is smooth. If the KS DFT single-particle
states are close to the Dyson orbitals, the “one-shot” correction
provides good estimates of QP energies, yet the quality of the
mean-field eigenstates is not a priori known.
A step beyond this practice is to diagonalize HQP in eq 2 in

the orbital basis, yielding Dyson orbitals (in the first iteration)
and updated one-shot QP energies in the GW approximation.7

Note that, in principle, the nonlinear problem in eq 2 holds for
multiple values of ω associated with satellite features.40−42 In
this Letter, we will focus only on the primary QP peaks, i.e., we
seek a single solution to the QP Hamiltonian in the vicinity of
ε0 and look for the fixed point solutions to Hi i QP i i= | [ ]|
. Note that HQP is non-Hermitian, and each QP state, in
general, corresponds to HQP computed at a different frequency.
In practical schemes,25,39,43,44 it is common to construct a

single “static” effective Hamiltonian (yielding orthogonal
eigenstates). However, due to the nonlinearity of this problem,
it is not entirely clear at what frequency the self-energy should
be evaluated. For strongly diagonally dominant HQP, i.e., those
where KS DFT orbitals are, in fact, close to the Dyson orbitals,
one may evaluate ωi as the fixed point solution for the diagonal

Figure 1. Illustration of the stochastic compression technique, which
samples the “rest subspace” using a set of (filtered) random vectors,
here spanning the single particle states of the gold substrate.
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entries. The remaining off-diagonal self-energy is e.g.,
( ) ( ) ( ) ( )ij ij i ji i ij j ji j

1
4

= [ + + + ]. In this form,
it is possible to construct a static and hermitized QP
Hamiltonian. By enforcing the hermicity of HQP, we impose
that the resulting QP states are orthonormal. The QP energies
are purely real, corresponding to an infinite lifetime QP.
Alternatively, one can therefore relax the latter step by taking

( ) ( )ij ij i ij j
1
2

= [ + ].
Note that both approaches strongly depend on the basis

choice. We illustrate this in detail in the Supporting
Information (SI) for the acrolein molecule, for which the
magnitudes of the off-diagonal terms are 98.5% smaller than
the diagonal terms for the canonical KS DFT basis. The
situation changes dramatically when maximally localized
(Pipek-Mezek-Wannier) orbitals are employed. These differ
from the canonical states by a unitary transformation.
Depending on the construction of a single HQP, the resulting
QP energies change by as much as 10% and translate to
changes of 0.77 eV on average for acrolein.
Since our goal is to determine Dyson orbitals for a selected

subspace of interest (which will be constructed from localized
basis states), we avoid any approximation to the fixed point
solution. In this method, the whole QP Hamiltonian is
evaluated at multiple frequencies, and the QP eigenvalues are
found as the fixed point solutions in eq 2. No assumptions are
made about the hermicity of the Hamiltonian matrix; a
graphical example of such a fixed point solution for HQP is also
illustrated in the SI.

■ STOCHASTIC COMPRESSION OF QP STATES
When a large system with a subspace of particular interest is
studied, it is prohibitively expensive to employ all M electronic
states. It is also insufficient to assume that the Hamiltonian
matrix takes a block-diagonal form due to the coupling
between the subspace and its orthogonal complement. To
handle such a case, we propose a method of stochastic matrix
compression, where a portion of the HQP matrix is represented
by a set of random vectors. These vectors sample a large
portion of the Hilbert space, which contributes to the overall
QP shift and affects the Dyson orbitals, but for which each
individual single particle state has only a limited contribution.
As illustrated in Figure 1, we separate the “core subspace”

spanned by Nc deterministic states, {ϕc} (e.g., the original KS
DFT eigenstates), and the remainder spanned by a Ns
stochastic state {ζ}, constructed as a random linear
combination of the KS states that are orthogonal to the {ϕc}
set: ci

N
i i1 c

s| = |= . In the final step, the individual
random states are orthogonalized via the Gram-Schmidt
process. Because this change of basis is guaranteed to be a
unitary transformation of the Hamiltonian matrix, when the
whole system is diagonalized, the resulting eigenstates will be
the same. When the Hamiltonian matrix is truncated on this
new stochastic basis, the coupling of each stochastic state to
the core subspace will represent the subspace interaction with
the full environment. In this way, we have “compressed” the
information on the whole system environment into a single
state. Given that the fixed point solution is basis independent
(as illustrated in Figure S.3), a total number of states Nc + Ns is
the same as the dimension of HQP, M, we necessarily obtain the
same QP energies. For fewer random states, Nc + Ns < M, the
computation is less expensive. The accuracy of the eigenvalues

of the truncated Hamiltonian can, in theory, be systematically
improved by the expansion of the core or stochastic subspaces.
The conceptual advantage to increasing Ns rather than Nc lies
in the removal of bias. We can not presume to know the
optimal metric for identifying Nc for a given system, but
through the use of stochastic states, we can achieve an
unbiased, systematic improvement of the result. Note that the
QP energy has a finite statistical error, which decreases as

N1/ s with the number of states sampling the off-diagonal
self-energy contributions. As we show below, the convergence
of the QP energies is smooth. Further, note that instead of the
canonical single particle states in the above equation, we
achieve further speedup if a preselected (filtered) subset of
states (orthogonal to the {ϕc}) is used in the construction of
|ζ⟩.

■ RESULTS
We now demonstrate the method practically for the CO2
molecule on the Au substrate for which we intend to extract
the energies of quasi-hole states on the molecule (i.e.,
corresponding to the charge removal energies from CO2 on
the surface). We first construct a minimal example that we can
solve entirely and illustrate how stochastic sampling smoothes
the convergence of the QP energies. Later, we show a realistic
example with nearly 3,000 electrons, which cannot be easily
solved without the sampling methodology (See the SI for
computational details.).
We will demonstrate the success of our stochastic sampling

method on a minimal system of CO2 on a bilayer of 8 gold
atoms. This system contains only 52 occupied states, which we
treat explicitly at the GW level using the Stochastic GW
methodology and the diagonalization procedure discussed in
the SI. Note that, in principle, the hybridization extends
beyond merely the occupied manifold, but to illustrate the
methodology, we consider only the rotation within the
occupied subspace. To see the surface-induced changes,
calculate the QP states for a CO2 molecule in a vacuum (N
= 8) and for the minimal composite system (N = 52). We find,
via projection, that the Dyson orbitals of the seven lowest
valence states of the molecule change only within the
molecular subspace, but they do not hybridize with the
surface, and adding the surface states does not impact the deep
valence states of the molecule.
In contrast, the HOMO state behaves differently: no single

DFT state is in one-to-one correspondence to the isolated
molecular HOMO (indeed, this is also true for the Dyson
orbitals computed at the G0W0 level). Instead, there are
multiple hybridized states sufficiently localized on the molecule,
whose eigenvalues lie within a small range of energies. We aim
to characterize them and, consequently, to find a characteristic
QP energy for this distribution of HOMO QP for the CO2
molecule on Au.
We thus define a “core subspace” comprising the states with

the most molecular character. In the realistic system, the
molecular HOMO has hybridized with hundreds of surface
states (see the inset of Figure 3), preventing us from including
all of these hybridized states explicitly, i.e., in the core
subspace. In practice, we define the core molecular states based
on their projection onto a set of maximally localized molecular
orbitals. These are constructed by applying a unitary
transformation to the entire system which minimizes the
spread of 8 orbitals around the CO2 molecule per the Pipek-
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Mezey Wannierization scheme.36,45 The corresponding pro-
jection value is

Pi
j

j i
2= | | |

(5)

Here, {|ξ⟩} and {|ϕ⟩} are the sets of transformed (localized)
and canonical KS DFT states, respectively. Each KS state with
P greater than a chosen threshold is included in the core
region. This preselection separates the “core” subspace from
the rest.
We now track the fixed point HOMO QP solution with the

number of states considered in the HQP, i.e., we gradually add
more states outside of the core subspace. The molecular
HOMO is hybridized with many surface states. We thus define
a single energy for this state by taking its mean value,
constructed by weighting by the projection onto the HOMO
of CO2 in a vacuum. The results are shown by the green color
in Figure 2. The leftmost point represents only the core space,

containing 12 orbitals corresponding to 23% of the entire HQP.
The size of the problem is increased by adding states
depending on their distance from the KS DFT HOMO
energy. One would expect, from perturbation theory, that the
hybridization of states will be small for energetically distant
states. However, this does not produce a smooth convergence
(green line in Figure 2) as it appears that the first order
perturbation correction in orbitals would not suffice and the
correlations (accounted for at the GW level) play a larger role.
To demonstrate the stochastic approach, we now instead

sample the remaining KS states using random vectors:

N
we1

env j

N

j
i

j
1

env
j| = |

= (6)

Here, θj ∈ [0, 2π] is randomly chosen, and Nenv is the number
of “rest” states sampled with weight wi. Nenv is the upper bound
to M − Nc, corresponding to the exhaustion of the sampled
subspace. Note that we can sample all remaining states evenly
(wi = 1∀i), but generally, we consider a random selection from

a distribution within the sampled subspace (determined by Pi
in eq 5) as we show later.
Once we have obtained the set {ζ}, we randomly draw Ns of

them, and the fixed point solution is then found for HQP with
the dimension of Nc + Ns. We plot this result as a function of
“percent compression” which is 100 × (1 − (M/Nocc)). Here,
Nocc is the number of electrons in the entire system. The results
for Nc = 12 and variable Ns are in Figure 2 and show a
monotonic and smooth convergence toward to the asymptotic
value (obtained for the entire 52 occupied states). The
stochastic sampling was repeated ten times for each step with a
different set of Ns random vectors; the standard deviations are
indicated in the plot, and they naturally disappear in the
complete basis limit. For instance, for Ns = 20, i.e., 38%
compression of the system, we see a difference of 0.057 ± 0.19
eV between the mean HOMO QP energies. For an increased
core space, Nc = 15, we see that the HOMO QP value
converges similarly; i.e., the size of the core space is not
changing the convergence profile significantly. For Ns = 20
(i.e., 32.5% compression of matrix rank), the resulting
spectrum mean falls within 100 meV of the value obtained
from the diagonalization of the full matrix.
Without any prior knowledge or arbitrary truncation of the

KS states, we can capture molecule−surface hybridization
effects by employing stochastic states representing the
substrate environment. This description is systematically
improvable by increasing both Nc and Ns. In general, the
cost reduction provided by the stochastic sampling is due to
circumventing the explicit treatment of (in principle) all single-
particle states that contribute little to the expectation value of
an operator.46 Here, we sample the QP energies of the selected
states of CO2. For a small system such as the one used here,
the amount of compression is less significant, as most of the
states contribute to the QP HOMO energy.
We now turn to a realistic large-scale system, for which such

a calculation would not be possible with standard methods.
Here, we study a CO2 molecule on an extended Au-111 surface
of 270 atoms, containing 2986 electrons. The system is treated
analogously to the minimal example: we selected core
subspaces of 15 and 25 states. Nc = 15 was the core subspace
identified when the projection threshold PT = 0.04. Next, the
stochastic sampling uses a filtered distribution in eq 6 in which
we consider a linear combination of states that are sufficiently
localized on the molecules. In practice, this step determines the
sampled subspace, which is practically restricted to states with
P greater than a selected threshold, PT. Here, we consider two
cases: PT = 10−3 and PT = 5 × 10−4.
From Figure 3 we can see that the HOMO energy converges

with 95% compression (5% of the total number of states used).
[In practical execution on HPC machines, namely at the
National Energy Research Scientific Computing Center using a
Intel Xeon Processor E5-698 v3 at 2.3 GHz, the difference in
computational cost for using 96% and 92% compressed matrix
amounts to ∼77,000 CPU·hrs. For the maximally compressed
converged calculation (96% compression), the entire calcu-
lation amounts to ∼60,000 CPU·hrs.] For slightly increased
selectivity (i.e., lower projection threshold P), stochastic
sampling of the hybridization converges similarly. Further,
the size of the core subspace does not significantly impact the
convergence rate: when Nc = 25 with the filtering threshold of
PT = 5 × 10−4, the curve matches that of the Nc = 15 for the
same value of PT. This suggests that the number of states
required does not vary significantly with the particular size of

Figure 2. Hybridized HOMO Convergence (Minimal System): Core
sizes of Nc = 12 and Nc = 15 are used, with the remaining states
sampled with equal weight. In contrast, adding the states by energy (ε
ordered) demonstrates the lack of smooth convergence. The gray-
shaded region shows where the spectrum converges within 0.1 eV.
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the core subspace. Practically, we see that little or no
optimization of the core subspace is required for convergence.
Finally, note that when the orbital rehybridization is used at

the G0W0 level, the HOMO QP energy moves down in energy
by more than 1 eV. Since approximate semilocal KS DFT is
known to suffer from overdelocalization,47 it is expected that
the physical Dyson orbitals are more localized than the
canonical KS DFT eigenstates.
Indeed, if we inspect the orbital shape and distribution for

the single most molecule-like state, the Dyson orbital and the
corresponding DFT KS eigenstate are distinct, and the former
is slightly more localized on the molecule (Figure 4). The

visual changes are, however, not indicative of the magnitude of
the QP energy shift accomplished, and hence, these are better
inspected in Figure 3. In turn, stronger localization of HOMO
is typically associated with its energy decrease.9,48 These
observations are thus in line with what the MBPT should
accomplish and underline the need for a more appropriate
treatment of surface phenomena. Without studying the change

in the orbital structure itself, the large downward energy shift,
accomplished by accounting for interactions with higher
energy states, emphasizes the importance of taking GW
calculations beyond the diagonal approximation.

■ OUTLOOK
The rapid convergence of the QP energies with Ns implies that
when we stochastically sample the matrix, aided by
preselection and filtering, we can represent the full QP
spectrum for a molecule that hybridizes with an extended
surface by using less than 5% of the system. The HQP matrix
size is thus compressed by 95%. This is largely due to the
significant “redundancy” of information encoded in individual
single-particle states, and the sampling allows sampling of all
(or a large filtered portion of them) simultaneously through
random vectors. The approach presented here will enable the
treatment of large-scale interfacial problems and opens the
door for efficient, self-consistent stochastic MBPT.
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(38) Romanova, M.; Vlcěk, V. Stochastic many-body calculations of
moire ́ states in twisted bilayer graphene at high pressures. npj
Computational Materials 2022, 8, 11.
(39) Vlc ̌ek, V.; Baer, R.; Rabani, E.; Neuhauser, D. Simple
eigenvalue-self-consistent ΔGW. The Journal of Chemical Physics
2018, 149, 174107.
(40) Mejuto-Zaera, C.; Weng, G.; Romanova, M.; Cotton, S. J.;
Whaley, K. B.; Tubman, N. M.; Vlcěk, V. Are multi-quasiparticle
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