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It is quite common to encounter compositional data in a regression
framework in data analysis. When both responses and predictors are compo-
sitional, most existing models rely on a family of log-ratio based transforma-
tions to move the analysis from the simplex to the reals. This often makes the
interpretation of the model more complex. A transformation-free regression
model was recently developed, but it only allows for a single compositional
predictor. However, many datasets include multiple compositional predictors
of interest. Motivated by an application to Hydrothermal Liquefaction (HTL)
data, a novel extension of this transformation-free regression model is pro-
vided that allows for two (or more) compositional predictors to be used via
a latent variable mixture. A modified Expectation-Maximization algorithm is
proposed to estimate model parameters, which are shown to have natural in-
terpretations. Conformal inference is used to obtain prediction limits on the
compositional response. The resulting methodology is applied to the HTL
dataset. Extensions to multiple predictors are discussed.

1. Introduction. As a motivating example, we consider a recent dataset on hydrother-
mal liquefaction (HTL) in chemical recycling. At high temperatures and pressures, biomass
(e.g. plastic) undergoes reactions that produce bio-oil. This allows for materials that would
otherwise be discarded as waste to have some use as a future energy source. The response is
the composition of the produced oil, which has nine dimensions. The dataset also provides the
chemical and elemental compositions of the original biomass, which have four dimensions
each. The uses of the resulting oil from the HTL process are determined by the composi-
tion of the oil, as the oil composition influences acidity, octane number, heating value, and
other important chemical properties (Gollakota, Kishore and Gu, 2018). Existing approaches
for predicting the oil composition are time-consuming and involve solving a customized set
of simultaneous differential equations, which would have many parameters for the diverse
HTL process (Valdez, Tocco and Savage, 2014). In existing literature, statistical models have
been developed that use biochemical or elemental compositions to predict oil yield, but not
oil composition (Lu et al., 2018). The HTL process is a highly complex and interconnected
thermochemical process with underlying chemical reactions that are not fully understood
(Shahbeik et al., 2024). Guirguis et al. (2024) noted that one source of this complexity is the
diversity that exists in the components of the biomass, which makes modeling direct reaction
pathways for each individual biomass incredibly challenging. There is evidence that certain
properties of the biomass make one type of composition more informative than the other.
For example, McKendry (2002) notes that the ratio of cellulose and lignin are critical for
wet biomass conversion, while elemental components (primarily carbon) are more critical
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for dry biomass. When studying the oil yield of lignocellulose biomass, Zhang et al. (2021)
noted that the elemental composition of the initial biomass affected the yield, and claimed
the carbon chain number was a latent factor that influenced this result. Since the underlying
nature of the HTL process is highly complex, we make a simplifying assumption that the oil
composition is a latent mixture of chemical and elemental compositions. This assumption not
only helps us develop an interpretable model, but it also helps us account for heterogeneity of
the biomasses in the examined HTL dataset. Table 1 shows the distribution of biomasses by
category in the HTL dataset. As the table shows, the dataset covers many types of biomasses,
including macroalgae, microalgae, manure, sawdust, sewage sludge, and scrap tires.

Algae
(Macro)

Straw,
Grain

Algae
(Micro)

Other
Grass,
Shrub

Food
Waste

Wood,
Sawdust

Manure
Sewage
Sludge

Scrap
Tire

0.27 0.18 0.16 0.16 0.06 0.04 0.07 0.03 0.02 0.01
TABLE 1

Distribution of Biomasses in HTL Dataset

Regression analysis has been frequently used for inference of problems involving compo-
sitional data, and specifically, regression models with compositional predictors has mainly
been done via log ratio transformations. This concept was first explored by Aitchison and
Bacon-Shone (1984), who proposed a linear log-contrast procedure for hypothesis tests on
compositional covariates. Lin et al. (2014) adopted a linear log-contrast model in a high-
dimensional setting and minimized an ℓ1 regularization criterion to estimate the parameters.
Srinivasan, Xue and Zhan (2022) considered the analysis of high-dimensional microbiome
compositional data and studied knockoff filters to identify significant microbiome features
in a scalar-on-composition regression framework. In this context, the compositional data
were predictors for a scalar response of interest. On the other hand, when handling composi-
tional responses, it is possible to first swap the role of responses and predictors and then use
these aforementioned log ratio-based transformations in the corresponding inverse regression
model. Moreover, some commonly studied strategies were Dirichlet regression (Hijazi and
Jernigan, 2009) and Dirichlet-multinomial regression (Mosimann, 1962), which first mod-
eled the distribution of compositional responses via a Dirichlet-based distribution, and then
linked key parameters of the underlying distribution to non-compositional predictors or co-
variates of interest (Chen and Li, 2013; Douma and Weedon, 2019; Tang and Chen, 2019).
Finally, composition-on-composition regression has been studied through a transformation-
based model framework. Chen, Zhang and Li (2017) applied an isometric log ratio (ilr) trans-
formation to compositional predictors and a compositional response in a regression model.

Despite the large volume of research on compositional data, there are few transformation-
free techniques for composition-on-composition regression. Transformation-based methods
often make use of log ratio transformations; however, these transformations are of limited
use when there are zeros in the predictor and the response. In the motivating example, the
HTL process dataset includes many cases where some of the components in the composition
are zero in both the predictors and the response. Furthermore, log-transformation models
are often more difficult to interpret directly and some may require graphs to interpret main
effects. See Section 2 for more details on existing transformation-based methods. All these
have limited applications of log transformation-based methods in compositional data anal-
ysis. Recently, Fiksel, Zeger and Datta (2022) proposed a transformation-free composition-
on-composition regression model for a single compositional predictor and response. This
approach provided intuitive interpretations of the regression parameters, and did not require
any strong distributional assumptions on the compositional response. However, it was lim-
ited in that it did not generalize to allow multiple compositional predictors, or allow for the
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inclusion of continuous predictors in the model. In particular, the model from Fiksel, Zeger
and Datta (2022) did not address the motivating example because it treated its predictors as
a single composition that must sum to 1, and did not allow for two compositions or subcom-
positions without a significant change to model interpretation.

In this paper, we propose a flexible composition-on-composition latent variable model
that can handle mixtures of two (or more) compositional predictors. We first review existing
methods of regression analysis for compositional predictors in Section 2. In Section 3, we
first introduce a general framework for a latent variable regression model that models the
response as a mixture (or convex combination) of two conditional distributions, with param-
eters selected based on the minimization of the Kullback Leibler distance. An EM algorithm
is then derived for model estimation and the proposed methodology is extended to three or
more predictor variables. Statistical inference procedures are also investigated in Section 3.4.
Comprehensive simulation studies are conducted in Section 4 to evaluate the performance of
the proposed methodology. In Section 5, the proposed methodology is applied to the HTL
dataset, with results shown. Section 6 concludes the paper.

2. Preliminaries. This section provides a brief overview of existing methods for re-
gression analysis of compositional data. First, transformation-based methods are reviewed in
Subsection 2.1, as the majority of existing research in this area uses some form of transfor-
mation. Then, recent transformation-free results are summarized in Subsection 2.2.

2.1. Transformation-Based Methods. The sum-to-one nature of compositional data ren-
ders many classic statistical methods inappropriate or inadequate for compositional data anal-
ysis. For example, it is well known that spurious associations would be found in composi-
tional data analysis if ignoring compositionality (Pearson, 1897). Many log-ratio transfor-
mations or log-contrast models for compositional regression have been explored to address
this analysis challenge. Two of the first transformation methods explored were the additive
log-ratio (ALR) and centered log-ratio (CLR) transformations (Aitchison, 1982). For a com-
positional predictor z ∈ {(z1, . . . , zD) |

∑D
i=1 zi = 1, zi ∈ (0,1)}, the ALR and CLR transfor-

mations are

alr(z)j = log
( zj
zD

)
,(1)

where j = 1, . . . ,D− 1, and

clr(z)j = log
( zj

(
∏D

i=1 zj)
1/D

)
,(2)

where j = 1, . . . ,D. Another popular method is the isometric log-ratio (ILR) transformation
(Egozcue et al., 2003), which is given by

ilr(z)j =

√
D− j

D− j + 1
log

( zj

(
∏D

k=j+1 zk)
1/(D−j)

)
(3)

for j = 1, . . . ,D− 1.
These log-ratios are widely used in downstream statistical modeling of compositional data

analysis and the major draw of these transformations is that, once the compositional data are
transformed, they can be used in standard linear regression models without concern about the
sum-to-one constraint. By adapting statistical methods on these transformed features, many
versatile statistical methods for compositional data analysis have been proposed (Aitchison,
1982; Lin et al., 2014; Srinivasan, Xue and Zhan, 2021).

While these transformations-based methods first map the simplex SD to the reals and
then adapt classic versatile statistical methods to these transformed data, a key limitation is
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that, they do not accommodate compositional data with zeros and ones, which have been
widely observed in the field. Moreover, they make results difficult to interpret. This often
forces analysts to rely on graphs to display how the response changes with the compositional
inputs, but graphs may not be easy to present when the dimension is large. This motivates the
study of transformation-free methods for compositional regression.

2.2. Transformation-Free Methods. Fiksel, Zeger and Datta (2022) proposed a novel
transformation-free direct regression model for a single compositional predictor x ∈ SDs

and response y ∈ SDr . The proposed method is a linear model of the form

E[y | x] = BT x(4)

where B ∈ {RDs×Dr | Bjk ≥ 0,
∑Dr

k=1Bjk = 1 for j = 1, . . . ,Ds}. This implies that B is a
transition (Markov) matrix where each row sums to one and has nonnegative entries. These
restrictions on B ensure that the predicted response will be compositional. The entries of B
give a direct interpretation of how changing the composition of x affects the expected com-
position of y. Let xj and xk be the jth and kth components of x, and let Bj∗,Bk∗ denote
the jth and kth rows of B, respectively. If xj increases by some small ∆ and xk (k ̸= j)
decreases by the same ∆ (since the components must sum to one), then the change in E(y) is
∆(Bj∗−Bk∗), assuming all other proportions in x are held constant. While the authors called
their method direct regression (without transformations) (Fiksel, Zeger and Datta, 2022), we
will refer to any method that regresses one compositional vector on at least another compo-
sitional vector (as done in Equation (4)) as composition-on-composition regression hereafter
in this paper.

To estimate the parameters in B, an Expectation-Maximization (EM) algorithm was used
to minimize a loss function (ℓ) that is based on the Kullback-Leibler distance (KLD). Let xij
be the jth component of xi, yik be the kth component of yi, and Bjk be the kth entry of row
j of B. Specifically, the optimization problem is

min
B

ℓ(B;X,Y ) =min
B

−
N∑
i=1

Dr∑
k=1

yik log
(∑Ds

j=1Bjkxij

yik

)
=max

B

N∑
i=1

Dr∑
k=1

yik log
( Ds∑

j=1

Bjkxij

)
.

(5)

The maximization at the final step of (5) is performed using the EM algorithm. The imple-
mentation of this algorithm is available in the R package codalm. Since closed forms for the
E− and M− steps of this algorithm are provided, the implementation is very fast.

3. Methodology. In this section, the methodology for the latent variable composition-
on-composition regression model is introduced, and then a modified EM algorithm is pro-
posed to estimate its parameters. This model is then extended to accommodate three or more
compositional predictors, and procedures for model inference are investigated in the end.

3.1. A Latent Variable Mixture Model. Assume that the data follow a latent variable
mixture model

f(yi |w∗
i ,x1i,x2i) =w∗

i f1(yi | x1i) + (1−w∗
i )f2(yi | x2i)(6)

w∗
i ∼ Bernoulli(θ)(7)

for i= 1, . . . ,N , where x1i,x2i are compositional vectors for the ith observation (of dimen-
sions Ds1 ,Ds2 , respectively), and yi is the compositional response (of dimension Dr) for
the ith observation. Also, f1, f2 are component densities of yi | x1i,yi | x2i, respectively. The
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latent variables w∗
i determine if the response yi depends on the first or second compositional

predictor. Then, from the law of iterated expectations, it directly follows that

E[yi | x1i,x2i] =E[E[yi |w∗
i ,x1i,x2i]] = θEf1 [yi | x1i] + (1− θ)Ef2 [yi | x2i](8)

The proposed model focuses only on the first moment E[yi | x1i,x2i], which is parameter-
ized as follows:

E[yi | x1i,x2i] = θBT
1 x1i + (1− θ)BT

2 x2i(9)

where θ ∈ (0,1), and B1,B2 are Markov (transition) matrices of dimensions Ds1 ×Dr,Ds2 ×
Dr , respectively, and Dr is the dimension of the response yi. Since B1,B2 are Markov ma-
trices, then their entries must be nonnegative values such that each of their rows sum to 1.
Since BT

1 x1 and BT
2 x2 lie in the response simplex, then any convex combination of them

must also lie in the same simplex. To estimate the parameters, we consider minimizing the
Kullback-Leibler distance (KLD) between each yi and E[yi | x1i,x2i].

B̂1, B̂2, θ̂ =argmin
B1,B2,θ

−
N∑
i=1

Dr∑
ℓ=1

yiℓ log
(θ∑Ds1

j=1B1jℓx1ij + (1− θ)
∑Ds2

k=1B2kℓx2ik

yiℓ

)(10)

= argmax
B1,B2,θ

N∑
i=1

Dr∑
ℓ=1

yiℓ log
(
θ

Ds1∑
j=1

B1jℓx1ij + (1− θ)

Ds2∑
k=1

B2kℓx2ik

)
(11)

= argmax
B1,B2,θ

N∑
i=1

Dr∑
ℓ=1

yiℓ log
( Ds1∑

j=1

Ds2∑
k=1

[
θB1jℓx1ijx2ik + (1− θ)B2kℓx1ijx2ik

])
,(12)

where yiℓ denotes the ℓth component of yi, x1ij denote the jth component of x1i, x2ik de-
notes the kth component of x2i, B1jℓ is the element of B1 at row j and column ℓ, and B2kℓ is
similarly defined. The equality in (12) exploits the fact that the predictors x1,x2 are compo-
sitional, i.e.

∑Ds1

j=1 x1ij = 1 and
∑Ds2

k=1 x2ik = 1. The parameters θ,B1,B2 will be estimated
using an EM algorithm described in the subsequent sections.

It should be noted that the optimization in (12) can be viewed from an estimating equa-
tion approach. Denote the vector of model parameters as Ω= (B1,B2, θ). Then, we want a
function ℓ that satisfies

E
[ dℓ

dΩ
|Ω0

]
= 0(13)

where Ω0 are the true parameters. The function ℓ is taken to be the KLD, which is similar to
Fiksel, Zeger and Datta (2022). The approach taken in this paper will reduce to that of Fiksel,
Zeger and Datta (2022) if the parameter space is restricted to the case where θ = 0 or 1 (i.e.,
only one compositional predictor).

3.2. A Modified EM Algorithm. The EM algorithm is often used to estimate unknown
parameters in mixture models (McLachlan and Krishnan, 2007) with recent applications to
sports marketing (DeSarbo, Chen and Blank, 2017), network psychometrics (Lee and Xue,
2018; Lee et al., 2022), water pollution analysis (Agarwal and Xue, 2020), and others. In
this section, a modified EM algorithm is provided to estimate the parameters θ,B1,B2 in
Model (9). Fiksel, Zeger and Datta (2022) derived an EM algorithm in the single-predictor
case under a multinomial assumption. We have provided similar derivations that follow their
work for the case of two predictors in Section S1 of the supplementary materials (Rios, Xue
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and Zhan, 2024) and we now extend it to the general case that responses are compositional.
It has been shown that, at iteration t of the EM algorithm, the E−step requires computing
the quantities

π
(t+1)
1ijℓ =

θ(t)x1ijB
(t)
1jℓ

θ(t)
∑Ds1

j=1 x1ijB
(t)
1jℓ + (1− θ(t))

∑Ds2

k=1 x2ikB
(t)
2kℓ

,(14)

π
(t+1)
2ikℓ =

(1− θ(t))x2ikB
(t)
2kℓ

θ(t)
∑Ds1

j=1 x1ijB
(t)
1jℓ + (1− θ(t))

∑Ds2

k=1 x2ikB
(t)
2kℓ

.(15)

The M−step for updating the entries of B1,B2 is then

B
(t+1)
1jℓ =

∑N
i=1 yiℓπ

(t+1)
1ijℓ∑N

i=1

∑Dr

ℓ=1 yiℓπ
(t+1)
1ijℓ

,(16)

B
(t+1)
2kℓ =

∑N
i=1 yiℓπ

(t+1)
2ikℓ∑N

i=1

∑Dr

ℓ=1 yiℓπ
(t+1)
2ikℓ

.(17)

While it is possible to also derive similar updates for θ under the multinomial assumption,
it is not trivial to do so in general when the distribution of the data is unknown. However,
(16) and (17) imply that, given a fixed value of θ(t), one can update the entries of B1 and B2.
Inspired by this idea, a modified EM algorithm is proposed to estimate B1,B2, and θ. For ease
of notation, let X1 = {x1i, i= 1, . . . ,N}, X2 = {x2i, i= 1, . . . ,N}, Y = {yi, i= 1, . . . ,N},
and KLD(Y||E[Y|X1,X2]) =

∑N
i=1 KLD(yi||E[yi|x1i,x2i]).

Algorithm 1: Modified EM Algorithm for Dual Composition Model

Inputs: Data X1,X2,Y, initial B(0)
1 ,B(0)

2 , θ(0)

1. Set δ =∞, t= 0, and KLD0 = KLD(Y ||E[Y | X1,X2,B
(0)
1 ,B(0)

2 , θ(0)]).
2. while δ > 10−8 do

3. E-step. Compute π1ijℓ, π2ikℓ in Equations (14), (15) using the entries of
B(t)
1 ,B(t)

2 for each i= 1, . . . ,N , j = 1, . . . ,Ds1 , k = 1, . . . ,Ds2 , ℓ= 1, . . . ,Dr

using the current value of θ(t).
4. M-step. Use equations (16) and (17) to find the entries of B(t+1)

1 ,B(t+1)
2 .

5. for each θ over a fine grid on (0,1) do
6. Compute and store KLDθ = KLD(Y ||E[Y | X1,X2,B

(t+1)
1 ,B(t+1)

2 , θ]).
end
7. θ(t+1) = argminθ KLDθ . Store the smallest KLD as KLDt+1.
8. Update δ = |KLDt+1 − KLDt|, and update t= t+ 1.

end
Output B̂1 = B(t)

1 , B̂2 = B(t)
2 , θ̂ = θ(t)

As inputs, Algorithm 1 takes compositional predictors of dimension N ×Ds1 ,N ×Ds2 ,
compositional responses of dimension N ×Dr , and initial values for B1,B2, and θ. At every
tth iteration, the EM algorithm is used to find the values B(t+1)

1 and B(t+1)
2 that minimize the

KLD for the previous θ(t). Then, θ(t+1) is set to be the value that minimizes the Kullback-
Leibler Distance between the actual response and the expected response (given B(t+1)

1 and
B(t+1)
2 ) over a grid of θ values in (0,1). Since the EM updates for B1 and B2 have a closed
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form, and it is easy to compute the KLD, these updates can be performed quickly. The algo-
rithm converges when the absolute difference between successive KLDs falls below a small
tolerance. Corollary 1 states that the updated estimates in Steps 3 and 4 of each iteration of Al-
gorithm 1 will increase the target multinomial quasi-likelihood for fixed θ, and, equivalently,
decrease the KLD when y is compositional. Therefore, the EM algorithm will converge. The
proof of Corollary 1 can be found in Section S2 of the supplementary materials (Rios, Xue
and Zhan, 2024).

COROLLARY 1. Let f(t) =
∑N

i=1

∑Dr

ℓ=1 yiℓ log
(∑Ds1

j=1

∑Ds2

k=1

[
θB

(t)
1jℓx1ijx2ik + (1 −

θ)B
(t)
2kℓx1ijx2ik

])
be the value of the objective function at iteration t of the EM algorithm

described in Steps 3 and 4 of Algorithm 1 for a fixed θ when the response y is compositional.
Then f(t+ 1)− f(t)≥ 0.

3.3. Three or More Compositional Predictors. The latent variable model with two pre-
dictors (9) has a natural extension to three or more compositional predictors. Suppose there
are p predictor compositions of interest x1, . . . ,xp. Then the model of interest is

E[y | x1, . . . , xp] = θ1BT
1 x1 + θ2BT

2 x2 + · · ·+ θpBT
p xp(18)

where θ1+ θ2+ · · ·+ θp = 1, and each Bs is a transition (Markov) matrix for s= 1, . . . , p. In
other words, the latent variable model is a convex combination of the points BT

s xs ∈ SDr for
s= 1, . . . , p. This ensures that the predicted response is a valid point in the response simplex.
In this model, one may re-parameterize θp = 1−

∑p−1
s=1 θs.

To estimate the parameters for Model (18), Algorithm 1 can be run over a multi-
dimensional grid for θ = (θ1, . . . , θp−1). The E-step becomes

π
(t+1)
sijℓ =

θ
(t)
s xsijB

(t)
sjℓ∑p−1

s=1[θ
(t)
s

∑Ds

j=1 xsijB
(t)
sjℓ] + (1−

∑p−1
s=1 θ

(t)
s )

∑Ds

k=1 xpikB
(t)
pkℓ

(19)

and the M-step becomes

B
(t+1)
sjℓ =

∑N
i=1 yiℓπ

(t+1)
sijℓ∑N

i=1

∑Dr

ℓ=1 yiℓπ
(t+1)
sijℓ

(20)

where j = 1, . . . ,dim(xs). The theoretical results of Corollary 1 can naturally be extended to
higher dimensions. This is summarized in Corollary 2.

COROLLARY 2. Let f(t) =
∑N

i=1

∑Dr

ℓ=1 yiℓ log
(∑p

s=1

∑Ds

j=1

[
θsB

(t)
sjℓxsij

])
be the

value of the objective function at iteration t of the EM algorithm described in equations
(19) and (20) for fixed θ1, . . . , θp, such that

∑p
s=1 θp = 1 and θs > 0, when the response y is

compositional. Then f(t+ 1)− f(t)≥ 0.

Using the results of Corollary 2, the EM algorithm can be modified for p ≥ 3 composi-
tional predictors. The proof of Corollary 2 can be found in Section S2 of the supplementary
materials (Rios, Xue and Zhan, 2024). The modified algorithm is given in Algorithm 2.
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Algorithm 2: Modified EM Algorithm for Multiple Composition Model

Inputs: Data X1,X2, . . . ,Xp,Y, initial B(0)
1 ,B(0)

2 , . . . ,B(0)
p θ(0)

1. Set δ =∞, t= 0, and KLD0 = KLD(Y ||E[Y | X1,X2,B
(0)
1 ,B(0)

2 ,θ(0)]).
2. while δ > 10−8 do

3. E-step. Compute the conditional expectations π1ijℓ, . . . πpijℓ in Equation (19)
using the entries of B(t)

1 ,B(t)
2 , . . . ,B(t)

p for each i= 1, . . . ,N , j = 1, . . . ,Ds,
ℓ= 1, . . . ,Dr , using the current vector θ(t).

4. M-step. Use equation (20) to find the entries of B(t+1)
1 ,B(t+1)

2 , . . . ,B(t+1)
p .

5. for each θ over a fine grid on Sp−1 do
6. Compute and store KLDθ = KLD(Y ||E[Y | X1,X2,B

(t+1)
1 ,B(t+1)

2 ,θ]).
end
7. θ(t+1) = argminθ KLDθ . Store the smallest KLD as KLDt+1.
8. Update δ = |KLDt+1 − KLDt|, and update t= t+ 1.

end
Output B̂1 = B(t)

1 , B̂2 = B(t)
2 , θ̂ = θ(t)

To implement Algorithm 2, the grid would need to be over a (p− 1) dimensional simplex.
For p= 2, this reduces to a fine grid over the unit interval (0,1), which is precisely what is
done in Algorithm 1. For p= 3, a fine grid over the unit simplex would be needed, which is
computationally feasible. For large p, the curse of dimensionality makes it costly to perform
a grid search to find the optimal θ and grid search may not be the best approach in this case.
Finding optimal parameters in this high-dimensional setting is an open research area.

3.4. Model Inference. After finding estimates for the model parameters B1,B2, and θ,
the next logical step is to quantify the uncertainty about these values and perform statistical
inference. Since Model (9) does not specify an exact distribution for the compositional re-
sponse, estimating the uncertainty associated with the estimation of model parameters can
be done in a nonparametric manner. In particular, 95% confidence intervals for θ,B1 and B2

can be constructed using bootstrapping. To obtain a bootstrap sample, the rows of original
data (x1i,x2i,yi) are resampled with replacement. Then, estimates of B1,B2, and θ can be
calculated using this bootstrap sample. This procedure is repeated a relatively large number
of times. Then, for each element of B1,B2, and for θ, 95% confidence intervals can be ob-
tained using the 0.025 and 0.975 quantiles of the corresponding quantities calculated from
those bootstrap resamplings.

From a model-building point of view, an interesting inference procedure is to determine if
a dual predictor model provides any significant advantage over a single compositional pre-
dictor model from Fiksel, Zeger and Datta (2022). There are two related, but not equivalent,
scenarios where one would prefer the single-predictor model. The first scenario is where
θ = 1, and the proposed model (9) exactly reduces to the single-predictor model from Fiksel,
Zeger and Datta (2022) with X1 as a predictor; similarly, if θ = 0, a similar reduction hap-
pens, but X2 is kept instead. The second scenario is when all of the rows of B2 (or similarly,
B1) are equal. In the second scenario, any change in the composition of X2 (or X1, if B1 has
equal rows) would have no effect on the expected response. In either scenario, it will be true
that E[y | x1,x2] = E[y | x1]. However, in the second scenario, the model does not exactly
reduce to the single-predictor model. To see this, consider the latent variable model where
B2 has equal rows. Then

E[y | x1,x2] = θBT
1 x1 + (1− θ)BT

2 x2
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= θBT
1 x1 + (1− θ)(b11Ds2

, . . . , bDr
1Ds2

)T x2

= θBT
1 x1 + (1− θ)(b1, . . . , bDr

)T .

Above, b1, . . . , bDr
are non-negative real numbers that sum to 1, and 1Ds2

is a Ds2 -
dimensional all-one vector. Therefore, even if B2 has all equal rows, the expected value is
not necessarily the same as it would be from Fiksel, Zeger and Datta (2022) due to the pres-
ence of θ.

Suppose we wished to test H0 : θ = 1. If H0 is true, then model (9) reduces to the single
predictor model from Fiksel, Zeger and Datta (2022), using only x1 as a predictor. We propose
a bootstrapping procedure to test this hypothesis, which is summarized in Algorithm 3. To
test H0 : B2 has all equal rows, we propose a permutation test; as this test is similar to that of
Fiksel, Zeger and Datta (2022), it is included in the supplementary materials (Rios, Xue and
Zhan, 2024).

Before explaining Algorithm 3, it is necessary to review some concepts of the Aitchi-
son geometry (Pawlowsky-Glahn and Egozcue, 2006), where compositional vectors belong
to a vector space. Let a and b be compositional vectors in the interior of SD . The per-
turbation operator, which is analogous to vector addition in Euclidean space, is defined as
a ⊕ b = (a1b1, . . . , aDbD)/(

∑D
i=1 aibi). This operation performs element-wise multiplica-

tion on the proportions in a and b, and then re-normalizes the result. This can also be thought
of as applying the composition of b to that of a. To undo this operation, one can use the in-
verse perturbation operator, which is defined as a ⊖ b = (a1/b1, . . . , aD/bD)/(

∑D
i=1 ai/bi).

It follows that a⊕b⊖b = a, so this operation is analogous to subtraction in Euclidean space.
The inverse perturbation operator is used in Algorithm 3.

Algorithm 3: Bootstrap Hypothesis Test for H0 : θ = 1

Inputs: Data X1 = {x1i, i= 1, . . . ,N}, X2 = {x2i, i= 1, . . . ,N}, and
Y = {yi, i= 1, . . . ,N}, number of bootstrap samples B

1. Let B̂0 be the estimate of B1 under H0 from Fiksel, Zeger and Datta (2022), and let
B̂1, B̂2 be the estimates of B1,B2 from Algorithm 1.

2. Find t0 = KLD(Y||E[Y | X1, B̂0])− KLD(Y||E[Y,X1,X2, B̂1, B̂2]) using the
observed data.

3. Using the single-predictor model from Fiksel, Zeger and Datta (2022), regress Y
on X2, and store the fitted values as Ŷ2 = {ŷ21, . . . , ŷ2N}.

4. Let y0i = yi ⊖ ŷ2i, for i= 1, . . . ,N , and let Y0 = {y01, . . . ,y0N}.
for i= 1, . . . ,B do

5. Generate a bootstrap sample from the predictors by resampling N rows from
(X1,X2,Y0) with replacement. Denote the resampled values as X̃1, X̃2, Ỹ.

6. Find B̃0 by fitting the single-predictor model to X̃1, Ỹ.
7. Find B̃1, B̃2 using Algorithm 1 on Ỹ, X̃1, X̃2.
8. Find t∗i = KLD(Ỹ||E[Ỹ | X̃1, B̃0])− KLD(Y||E[Ỹ | X̃1, X̃2, B̃1, B̃2]).

end
9. p-value = (1+

∑B
i=1 I(t

∗
i ≥ t0))/(B + 1)

Output The p-value.

Algorithm 3 takes the compositional predictors and response as input, in addition to a
number of bootstrap samples B. If H0 : θ = 1 is true, then the true model is the single-
predictor model with X1 from Fiksel, Zeger and Datta (2022). In Step 1, Algorithm 3 fits the
single and dual-predictor models to the observed dataset. In Step 2, the difference between
the KLDs of these models (single-mixture) is computed as a test statistic from the sample. In
Steps 3 and 4, the single-predictor model is fit using X2 as a predictor, and the fitted values
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Ŷ2 are stored. In Step 4, the values y0i = yi ⊖ ŷ2i are found for each i = 1, . . . ,N . This is
done so that samples drawn from (X1,X2,Y0) mimic those drawn from the null distribution
where Y only depends on X1. If θ is close to 1, then X2 provides little to no information
about Y, so Y0 will not depend on X2. On the other hand, if θ is close to 0, then ŷ2i ≈ yi, so
ŷ0i will be close to (1/Dr, . . . ,1/Dr), and therefore have little dependence on the value of
x2i for each i= 1, . . . ,N . Then, in Steps 5-8, bootstrap samples are taken from (X1,X2,Y0)
and the bootstrap statistics t∗i are computed for each of these bootstrap samples. The p-value
that is returned by Algorithm 3 is the proportion of the bootstrapped differences in KLDs
that are greater than or equal to the observed difference in KLDs, with 1 added to both the
numerator and denominator include the original sample.

From an inferential viewpoint, it is also of interest to quantify the uncertainty of model pre-
dictions. Suppose we are given new compositional predictors x1,N+1,x2,N+1, and let yN+1

be the true but unobserved corresponding compositional response. Our goal is to construct a
confidence region Cα such that

P (yN+1 ∈Cα)≥ 1− α.(21)

In the case of the HTL dataset, this would provide prediction regions for the oil composi-
tion of a new biomass given its chemical and elemental compositions, which is quite useful
in practice. Since Model (9) does not specify an exact distribution for the compositional
response, it is easier to conduct the prediction inference in a nonparametric manner. In par-
ticular, we use the conformal inference framework (Shafer and Vovk, 2008; Lei et al., 2018)
to provide nonparametric prediction regions for a new observation. Specifically, split confor-
mal inference will be used to efficiently construct prediction intervals via data splitting (Lei
et al., 2018). Conformal inference is not unique to compositional data analysis. It is a flex-
ible, nonparametric technique that can be used to construct prediction regions for a variety
of regression models for real-valued i.i.d. data (Lei et al., 2018) or dependent data (Cher-
nozhukov, Wüthrich and Yinchu, 2018; Yu, Yao and Xue, 2022). Moreover, in the scope
of composition-on-composition regression, this framework can be used to form prediction
regions for any model with a compositional outcome; this includes not only the proposed
model and that of Fiksel, Zeger and Datta (2022), but also the transformation-based models
mentioned in Section 2.

In split conformal prediction, the dataset is split into a proper training set {(yi,x1i,x2i) |
i ∈ I1} of size n1 and a calibration set {(yi,x1i,x2i) | i ∈ I2} of size n2 such that n1 + n2 =
N and I1 ∩ I2 = ∅. Model (9) is fit using the proper training set. Let ŷi be the predicted
composition for x1i,x2i obtained from this fitted model for each i ∈ I2 in the calibration set.
To determine if a candidate ycand is inside Cα, conformity scores are calculated using the
KLD. For ease of notation, let ycand = yn2+1 and I2 = {1,2, . . . , n2}. Then define

Ry,i = KLD(yi||ŷi), i= 1,2, . . . , n2 + 1(22)

π(yn2+1) =
1

n2 + 1

n2+1∑
i=1

I(Ry,i ≤Ry,n2+1)(23)

Under the assumption of exchangeability, Lei et al. (2018) show that a 100(1− α)% pre-
diction region for yn2+1 can then be defined as

Cα = {ycand ∈ SDr | (n2 + 1)π(ycand)≤ ⌈(1− α)(n2 + 1)⌉}(24)

where where the ceiling function ⌈x⌉ maps x to the least integer greater than or equal to x.
To construct a prediction region in (24), one would need to repeat the steps in (22) and (23)
for many different candidates ycand ∈ SDr . To illustrate the prediction region, one can test a
grid of candidate values over SDr and label the points that are in the prediction region. An
example of this is shown with the HTL dataset in Section 5.
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4. Simulation Studies. There were two main goals to the simulation studies performed
in this section. Since log transformation models are the current popular choice for regression
with multiple compositional predictors, the first goal was to compare the fit of the proposed
transformation-free dual-predictor model (9) to a model that relies on log transformations.
The second goal was to study the effect that θ had on the model fit, and to more closely ex-
amine the difference in fits between dual-predictor and single-predictor models for different
choices of θ. For example, if θ is quite small, how would the fit of the proposed dual predic-
tor model compare to a model that only uses a single predictor? As a consequence, the fit of
the proposed dual predictor model was compared to the single-predictor transformation-free
models from Fiksel, Zeger and Datta (2022).

To address the above goals, the proposed model was compared with single-predictor direct
regression models from Fiksel, Zeger and Datta (2022), as well as an ALR regression model
of the form

E[alr(y)ℓ | x1,x2,β] = β0ℓ +

Ds1
−1∑

j=1

β1jℓalr(x1)j +
Ds2

−1∑
j=1

β2jℓalr(x2)j(25)

for ℓ = 1, . . . ,Dr − 1. It is important to note that in Model (25), the regression coefficients
β are not compositional, and they may take any value in the real space. This is different
from the family of transformation-free models with compositional regression parameters. As
a reminder, the ALR transformation to the predictors and response compositions is described
in Section 2. The proposed model was fit via Algorithm 1, which used the grid {0.01, 0.02,
. . . , 0.98, 0.99} to search for values of θ.

In order to study the role of θ in the simulations, the responses yi, i = 1, . . . ,N were
simulated as mixtures of two conditional distributions for (a) θ = 0.5, (b) θ = 0.3, and (c)
θ = 0.1. The choice of θ = 0.5 means that both compositional predictors x1 and x2 are equally
important; for θ = 0.1, x2 has much more weight than x1. The middle case of θ = 0.3 was
chosen as the midpoint between (a) and (c). For each value of θ, three true models were used
to simulate the responses as a mixture of two conditional distributions. These three scenarios
are summarized in Table 2, for convenience. This leads to nine total cases.

Scenario True Coefficients True Model for y | x1,x2
1 B1j ,B2k ∼ Dirichlet(1, . . . ,1) yi ∼ θDirichlet(BT

1 x1i) + (1− θ)Dirichlet(BT
2 x2i)

(a) θ = 0.5 (b) θ = 0.3 (c) θ = 0.1

2 B1j ,B2k ∼ Dirichlet(1, . . . ,1) yi ∼ alr−1(N(alr(θBT
1 x1i + (1− θ)BT

2 x2i),1)
(a) θ = 0.5 (b) θ = 0.3 (c) θ = 0.1

3 β1jℓ ∼N(1,0.5), β2jℓ ∼N(1,0.5) yi ∼ θalr−1(N(E[alr(y | x1i,β1)],1))

(a) θ = 0.5 (b) θ = 0.3 (c) θ = 0.1 +(1− θ)alr−1(N(E[alr(y | x2i,β2)],1))

TABLE 2
Simulation Settings

Scenarios 1 and 2 in Table 2 both simulated the responses as a mixture of distributions
that were parameterized by known transition matrices B1 and B2, so it was expected that
the proposed methodology should be an appropriate choice in these cases for θ = 0.5,0.3.
In Scenario 3, the responses were simulated as a mixture of single-predictor ALR models
with known regression vectors β1 and β2 that are not compositional. In this scenario, since
the underlying mechanism was a mixture of ALR models, it was expected that the dual-
predictor ALR model (25) will perform well in terms of model fit. The main reason why we
did not directly simulate the data using the ALR model (25) was so that we could also study
the role of θ in Scenario 3. Moreover, it was interesting to examine how well the ALR model
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performed when the true response was a mixture of conditional distributions, as when one fits
the ALR model (25), they are not inherently assuming the response is a mixture distribution.

In each scenario in Table 2, the predictors x1,x2 were independent Dirichlet(1, . . . ,1) ran-
dom variables of dimension Ds =Ds1 =Ds2 . Each scenario was executed for sample sizes
N = 100,200, . . . ,700, with dimensions Ds =Dr = 3. For each N , the log mean KLD was
used to compare the fit of the models. The log mean KLD was taken over an independently
generated test set of size 10000. The log mean KLDs are displayed in Figure 1, and a table of
these values is provided in Section S5 of the supplementary materials (Rios, Xue and Zhan,
2024).

FIG 1. Log Mean KLD Comparison for Three Models for Scenarios 1(a,b,c), 2(a,b,c), and 3(a,b,c)

As shown in Figure 1, the proposed latent variable composition-on-composition regression
model (solid line) had the lowest average KLD in Scenarios 1 and 2 for θ = 0.5,0.3. This
was expected because in both of these scenarios, θ was not too close to 0 or 1, and the
regression model was taken to be a mixture of two distributions that are parameterized by
Markov transition matrices, which was the core assumption behind the proposed model (9).



A LATENT VARIABLE MIXTURE MODEL FOR COMPOSITION-ON-COMPOSITION REGRESSION13

Scenario N
100 200 300 400 500 600 700

1(a), θ = 0.5 0.53 0.50 0.50 0.50 0.50 0.50 0.50
2(a), θ = 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.50
3(a), θ = 0.5 0.50 0.50 0.50 0.50 0.50 0.39 0.49
1(b), θ = 0.3 0.35 0.30 0.30 0.30 0.30 0.30 0.30
2(b), θ = 0.3 0.30 0.30 0.30 0.30 0.30 0.30 0.30
3(b), θ = 0.3 0.28 0.30 0.18 0.19 0.23 0.11 0.18
1(c), θ = 0.1 0.17 0.10 0.10 0.16 0.10 0.10 0.10
2(c), θ = 0.1 0.19 0.10 0.10 0.10 0.10 0.12 0.10
3(c), θ = 0.1 0.08 0.10 0.01 0.03 0.03 0.01 0.01

TABLE 3
Estimates of θ for Each Scenario

In all scenarios, when θ = 0.1, the performance between the proposed dual predictor model
and the COC model with x2 only was nearly identical in terms of log mean KLD. This is
shown in Figure 1 by the overlapping gray and blue lines in the final row.

In the third scenario, the true regression model was a mixture of two ALR models (25). In
Scenario 3(a), where θ = 0.5, the proposed dual predictor model performed better than ALR
for N ≤ 400, and had similar performance to the ALR model for N ≥ 600. In Scenarios
3(b) and (c) where θ = 0.3 and θ = 0.1, respectively, the proposed model performed better
than ALR in terms of average log KLD for N ≤ 300. The ALR model performed the best in
Scenario 3(c), but this was because, with θ = 0.1, the responses were mainly following an
ALR model based on x2 only.

Overall, it was demonstrated that when the underlying regression model was a mixture of
distributions, the proposed model appeared to either have the lowest KLD or was reasonably
close in terms of KLD to the best alternative. In all scenarios where θ = 0.5, it was much
better to use the proposed model than the direct regression model from Fiksel, Zeger and
Datta (2022), which only included one predictor. When θ = 0.1, more emphasis was placed
on the x2 predictor as opposed to x1. In these cases, the direct regression model for x2 had
lower mean KLD than the direct regression model for x1.

The estimates of θ for each scenario and each value of N = 100, . . . ,700 are displayed in
Table 3. As shown in Table 3, the estimated values of θ were quite close to the true values
of θ for scenarios 1 and 2, especially for large N . In scenarios 3(b) and 3(c), the value of θ
tended to be underestimated as N increased. This was likely because the true model used to
generate the responses did not use compositional transition matrices, which created bias in
the parameter estimates. Similar comparisons were done for the case when p= 3 in Section
S5 of the supplementary materials.

It was also of interest to briefly examine the Type I error rates and power of the hypothesis
tests proposed in Section 3.4. We considered two hypotheses of interest. The first was H0 :
θ = 0. We also considered H0 : B1 has equal rows; simulated Type I error rates and power
for testing this hypothesis can be found in the supplementary materials (Rios, Xue and Zhan,
2024). We set α = 0.05. To examine Type I error, data of size N = 100 were simulated
1000 times according to Scenarios 1,2, and 3 for θ = 0. For testing Type I error and power,
Scenario 1 was modified. The responses were simulated as yi ∼ θDirichlet(2BT

1 x1i) + (1−
θ)Dirichlet(2BT

2 x2i), as increasing the concentration of the Dirichlet parameters resulted in
higher power and more stable estimates. The bootstrap test used B = 100. The simulated
Type I error was then recorded as the proportion of times that H0 was rejected. In Table 4,
the Type I error rates are shown. All of the rates were close to the nominal Type I error rate
of α= 0.05, except for the Dirichlet scenario, which was lower.

To examine the power of the bootstrap test, data of size N = 500 were simulated 100 times
according to Scenarios 1,2, and 3 for θ = 0.5,0.75, B = 500, and α= 0.05. The power was
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Scenario 1 2 3
Type I Error 0.024 0.058 0.049

TABLE 4
Simulated Type I Error Rates for Bootstrap Test of H0 : θ = 0, N = 100, 1000 simulations

estimated by the proportion of times H0 was rejected. As shown in Table 5, as θ increased, the
power increased. The power was the highest in Scenario 3, when the data were generated by
the ALR mechanism and lowest in Scenario 2. When the effect size was largest (θ = 0.75),
the power was over 95% for all scenarios. We note that larger sample sizes and increased
numbers of permutations are very helpful for achieving higher power.

θ
Scenario 0.5 0.75
1 0.84 1.00
2 0.61 0.97
3 1.00 1.00

TABLE 5
Simulated Power for Bootstrap Test of H0 : θ = 0.

Simulations were also used to examine the coverage rates of the split conformal predic-
tion regions for a new composition at x1,N+1 = x2,N+1 = (1/3,1/3,1/3) and for x1,N+1 =
x2,N+1 = (0.5,0.25,0.25) For each scenario, the true response yN+1 was drawn from the cor-
responding distribution of the response, shown in Table 2. The response data (with N = 500
data points) were simulated 100 times. Each time, the simulated dataset was split equally into
training and testing data. The proposed model was fit to the training dataset, and the testing
dataset was used to determine if the true value of yN+1 was contained in the 95% conformal
prediction region. The results are summarized in Table 6, which shows the empirical coverage
of the 95% conformal prediction regions at the center point of x1 = x2 = (1/3,1/3,1/3) and
x1,N+1 = x2,N+1 = (0.5,0.25,0.25) for N = 500. We can see that the empirical coverage
fluctuated about 0.95 across the scenarios. In general, for Scenarios 1 and 2, the confidence
regions captured the true simulated response yN+1 slightly more than 95% of the time. In
Scenario 3(b), the true response is captured slightly less than 95% of the time.

Scenario
x1,N+1 = x2,N+1 1(a) 1(b) 1(c) 2(a) 2(b) 2(c) 3(a) 3(b) 3(c)
(1/3, 1/3, 1/3) 0.96 0.98 0.99 0.97 0.98 0.99 0.99 0.94 0.98
(0.5, 0.25, 0.25) 0.95 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.99

TABLE 6
Estimated Coverage Rates for 95% Prediction Region for yN+1 with x1,N+1 = x2,N+1

5. Application to HTL Data. To show the efficacy of the proposed methodology, the
dual compositional predictor model was fit to the HTL dataset (Subramanya et al., 2023).
Hydrothermal liquefaction (HTL) of biomass occurs at high temperatures and pressures. Un-
der these conditions, the biomass undergoes reactions that produce several components in
bio-oil. The response of interest was the oil composition (y) which had nine components
y1, . . . , y9. There were two compositional predictors of interest: the chemical composition of
the biomass (x1) and the elemental composition of the biomass (x2). These predictors had
four components each. The response and predictor variables are summarized in Table 7. The
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data contained N = 413 complete-case rows. The full HTL data set is available on Mendeley
data (Mahadevan et al., 2023).

Variable Description
y1 Esters
y2 Oxygenated single ring aromatics
y3 Furans
y4 Long chain fatty acids
y5 Long chain alcohols
y6 Aldehydes and Ketones
y7 N-containing compounds
y8 Aliphatics
y9 Polycyclic aromatics
x11 Carbohydrate
x12 Protein
x13 Lipid
x14 Lignin
x21 Carbon (C)
x22 Hydrogen (H)
x23 Nitrogen (N)
x24 Oxygen (O)

TABLE 7
Response and Predictor Variables in HTL Dataset

We first fit the proposed dual model to the full dataset. For the dual predictor model,
estimates of B1,B2, and θ were found using Algorithm (1). The grid points for Algorithm
(1) were (0.01,0.02, . . . ,0.99). The KLD for the dual predictor model is minimized at θ̂ =
0.76. The value of θ̂ = 0.76 indicates that an estimated 76% of the biomasses in the HTL
dataset belonged to a latent group whose oil composition is better characterized by their
biochemical composition, as opposed to their elemental composition. Algorithm 1 converged
in 11 iterations. The corresponding estimates B̂1, B̂2 are displayed in Table 8 and Table 9,
respectively.

Chemical y1 y2 y3 y4 y5 y6 y7 y8 y9
Carbohydrate 0.31 0.23 0.07 0.08 0 0.18 0.01 0.12 0
Protein 0.14 0 0 0.06 0.09 0 0.68 0.03 0
Lipid 0.05 0.04 0 0.49 0 0 0 0.21 0.21
Lignin 0 0.85 0.02 0 0 0.05 0 0 0.08

TABLE 8
Estimates for B1 in Model (9), Chemical Composition

Element y1 y2 y3 y4 y5 y6 y7 y8 y9
Carbon 0.09 0.24 0 0 0 0 0.06 0 0.61
Hydrogen 0 0 0 1 0 0 0 0 0
Nitrogen 0 0 0 0 0 0 1 0 0
Oxygen 0 0 0 0.47 0.27 0.26 0 0 0

TABLE 9
Estimates for B2 in Model (9), Elemental Composition
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Chemical y1 y2 y3 y4 y5 y6 y7 y8 y9
Carbohydrate 0.25 0.19 0.05 0.13 0.04 0.17 0.02 0.09 0.06
Protein 0.13 0.01 0 0.10 0.10 0.01 0.56 0.03 0.06
Lipid 0.05 0.08 0 0.42 0 0 0.02 0.16 0.27
Lignin 0 0.71 0.01 0.06 0.01 0.07 0 0 0.14

TABLE 10
Estimates for B1 in Chemical Only Model

Element y1 y2 y3 y4 y5 y6 y7 y8 y9
Carbon 0.29 0.09 0 0.08 0.02 0 0.20 0.11 0.21
Hydrogen 0 0 0 1 0 0 0 0 0
Nitrogen 0 0 0 0 0 0 1 0 0
Oxygen 0.06 0.41 0.06 0.09 0.09 0.24 0 0.05 0

TABLE 11
Estimates for B2 in Elemental Only Model

The interpretation of B̂1 and B̂2, is straightforward. To interpret the coefficients in Tables
8 and 9, recall that if component i of the chemical composition of the biomass is increased
by a small ∆ at the cost of decreasing another distinct component j ̸= i of the chemical
composition by ∆, then the expected change in the oil composition is θ̂∆(B̂1i∗ − B̂1j∗),
assuming that the elemental composition of the substance is unchanged. For example, fixing
the elemental composition, if we increase Protein by ∆ and decrease Lipids by ∆, then
the expected changes in y1 (Esters) and y2 (Oxygenated single ring aromatics) are 0.068∆
and −0.030∆, respectively, after rounding to 2 decimal places. Similarly, if the chemical
composition of a biomass is fixed, then increasing Nitrogen by ∆ and decreasing Oxygen by
∆ yields an expected increase of (1− θ̂)(1− 0)∆= 0.24∆ in y7 (N-containing compounds)
and an expected decrease of 0.06∆ in y6 (Aldehydes and Ketones). It is also intuitive that
the third row of B̂2 is concentrated entirely on y7, as y7 corresponds to Nitrogen-containing
compounds, and the third elemental predictor is Nitrogen.

We considered three models for comparison. The first was the proposed model (9) that used
both the chemical and elemental compositions as predictors. The second model only used the
chemical composition as a predictor. The third model only used the elemental composition
as a predictor. The second and third models were fit using the R package codalm, which is
based on the methodology from Fiksel, Zeger and Datta (2022).

To compare the dual predictor model with a model that only used chemical composition,
we first tested H0 : θ = 1 and H0 : θ = 0 using Algorithm 3 with B = 500. The test for
H0 : θ = 1 had a p-value of 0.0019, and the test for H0 : θ = 0 had a p-value of 0.0159. Both
tests had p-values less than 0.05, which yielded sufficient evidence to reject H0 in each case.
We also tested H0 : B2 has equal rows versus the alternative that H0 is not true. This can be
done using a global permutation test, as described in the supplementary materials (Rios, Xue
and Zhan, 2024). 500 permutations were used to shuffle the rows of x2 for fixed x1, y, and
the difference in KLDs (reduced - full) was calculated for each permutation. The observed
difference in KLDs was 2.242, with a p-value of 0.0059. Since this p-value was low, there
was sufficient evidence to reject H0 in favor of HA. When testing H0 : B1 has equal rows, the
observed difference in KLDs was 68.811 with a p-value of 0.0019. We similarly rejected H0

in this case. For comparison, the values of B1 under the chemical only model are displayed
in Table 10, and the values of B2 under the elemental only model are displayed in Table 11.
By comparing these tables to the estimates for B1,B2 under the dual model, it was apparent
that there are several differences in the estimates for B2. For example, in the elemental-only
model, Oxygen had a much stronger effect on y2 (Oxygenated single ring aromatics) and y6
(Aldehydes and Ketones) than it did in the dual predictor model.
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To further analyze the data, we constructed 95% confidence intervals for θ,B1, and B2

using 500 bootstrap resamples. To create each resample, the original data rows (x1i,x2i,yi)
were resampled with replacement from the original dataset until N = 413 points were ob-
tained. For each element of B1 and B2, pointwise 95% confidence intervals were found using
the 0.025 and 0.975 quantiles of the bootstrap resamples. For each row of B1 and B2, a
Bonferroni correction was performed by using α = 0.05/9 instead to obtain simultaneous
confidence intervals that maintain 95% coverage across each row. These intervals are shown
in Figures 2 and 3 for B1 and B2, respectively. In these figures, the gray confidence intervals
represent the pointwise percentile-based 95% bootstrap confidence intervals, and the black
lines represent the Bonferroni-adjusted 95% confidence intervals. In all cases, the Bonferroni
intervals (black bands) were wider than their pointwise counterparts. The difference between
the Bonferroni and pointwise intervals was quite minor for Carbohydrates, Proteins, Lignins,
and most of the components of Carbon and Oxygen. Additionally, most components of B1

and B2 that were estimated to be zero had confidence limits that were very close to zero, and
therefore did not appear in the figures. The exceptions to these were components 1, 4, and 9
of the Hydrogen row in B2, and components 7 and 9 of the Nitrogen row in B2, all of which
had Bonferroni confidence limits that were quite wide, indicating more uncertainty in these
estimates. Finally, the 95% percentile-based confidence interval for θ was (0.71,0.85).

FIG 2. 95% Bootstrap Confidence Intervals for B1 (regression coefficients for chemical composition). Black lines
are Bonferroni adjusted. Gray lines represent pointwise limits.

Finally, to illustrate the use of split conformal inference, the HTL dataset was randomly
separated into two equal partitions for training and testing. The dual predictor model was fit
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FIG 3. 95% Bootstrap Confidence Intervals for B2 (regression coefficients for elemental composition). Black lines
are Bonferroni adjusted. Gray lines represent pointwise limits.

to the training dataset. The goal was to form and visualize a 95% prediction region for a new
oil composition yN+1 given predictors x1 = x2 = (0.25,0.25,0.25,0,25). An equally spaced
grid on a 9-dimensional simplex was used to find candidates for yN+1. Each candidate in
the grid was labeled as being inside the 95% confidence region or not. Since the confidence
region was a 9-dimensional space, it was visualized using

(
9
2

)
= 36 bivariate scatterplots,

which are shown in Figure 4. In Figure 4, points that are inside the 95% prediction region for
yN+1 are colored in gray. Points that are not inside the region are dark. This gives us some
insight as to what types of oil composition are implausible to consider for these values of x1
(chemical composition) and x2 (elemental composition). For example, by looking at the third
row of the figure, it seems that having high values of y3 (Furans) is unlikely, as most of the
dots in the third row are dark for y3 > 0.4.

6. Conclusion. To the best of our knowledge, this is the first paper that proposed a
transformation-free compositional latent variable model that can accommodate more than
one compositional predictor. The proposed latent variable model represents the expected re-
sponse as a convex combination of two (or more) conditional expectations. The theoretical
results of Fiksel, Zeger and Datta (2022) are extended to prove that the parameter estimates
from the EM algorithm minimize the Kullback-Leibler distance between the observed and ex-
pected responses. An algorithm is shown for estimating the mixture parameter θ in addition
to the model covariates. Furthermore, Section 3.3 describes the inclusion of more than two
compositional covariates. Overall, these are significant extensions of the existing methodol-
ogy proposed in Fiksel, Zeger and Datta (2022).
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FIG 4. Two-Dimensional Projections of a 95% Prediction Region for yN+1 at x1,N+1 = x2,N+1 =
(0.25,0.25,0.25,0.25). Gray points are in the prediction region; black points are not.

This methodology can be applied to compositions of higher dimension, and the resulting
parameter estimates are easy to interpret. Furthermore, the proposed model can accommodate
zeros in both the responses and covariates, which is an advantage over existing log transfor-
mation methods. These advantages are demonstrated in Section 5, where the latent variable
dual predictor model is applied to the HTL dataset, which is an important application in
chemical recycling. The dimension of the oil composition (y) is much larger than those of
the chemical (x1) and elemental (x2) compositions. Furthermore, zeros exist in y,x1, and x2.
The interpretation of the parameter estimates showed that, among many things, the elemental
composition was useful for predicting the percentages of nitrogen-containing compounds and
long-chain fatty acids. The majority of the components in the oil are explained by changes in
protein, carbohydrates, and other chemical compositions of the biomass. It is our hope that
this methodology will be of use to analysts dealing with multiple compositional predictors.

There is much future work to be done in this area. The EM algorithm provides quick and
numerically stable solutions for estimating the elements of the transition matrices B1,B2.
However, these estimates assume that θ is constant. Allowing for subject-level weights would
be an interesting and more flexible extension of this work. These weights could be estimated
as functions of compositional covariates, or non-compositional covariates, such as time or
temperature. Furthermore, the algorithms used to estimate the mixture parameters in this
paper may not scale well computationally for a large number of compositional predictors.
More work could be done to find an efficient way to estimate these parameters in an even
higher dimensional setting. It would also be interesting to see this methodology applied to
more real datasets. Finally, this model estimated parameters by minimizing the KL-distance
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between the observed and expected responses. There could be other criteria or methods that
are useful for parameter estimation in this setting.
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SUPPLEMENTARY MATERIAL

Supplementary Information: Proofs and Additional Simulation Results
This file provides more detailed information on the proof of Corollary 1 and Corollary 2, the
permutation test referenced in Section 3, and additional simulation results of interest.

HTL Dataset and Source Code
This zip file contains the HTL dataset and all R code used to produce the analyses shown in
this paper and the supplementary information.
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