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Abstract 

Given the widely available online customer ratings on products, the individual-level rating 

prediction and clustering of customers and products are increasingly important for sellers to create 

targeting strategies for expanding the customer base and improving product ratings. However, the 

massive missing data problem is a significant challenge for modeling online product ratings. To 

address this issue, we propose a new co-clustering methodology based on a bipartite network 

modeling of large-scale ordinal product ratings. Our method extends existing co-clustering 

methods by incorporating covariates and ordinal ratings in the model-based co-clustering of a 

weighted bipartite network. We devise an efficient variational EM algorithm for model 

estimation. A simulation study demonstrates that our methodology is scalable for modeling large 

datasets and provides accurate estimation and clustering results. We further show that our model 

can successfully identify different groups of customers and products with meaningful 

interpretations and achieve promising predictive performance in a real application 

for customer targeting.  
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1 Introduction 

Online reviews can increase demand and drive revenue (e.g., Hu et al. 2008; Luca, 2016) 

and companies are paying close attention to online ratings of their products. For E-commerce 

companies and digital content providers which have collected a huge number of online product 

ratings, the data can be analyzed to produce useful information to benefit sellers on those platforms. 

For example, they can provide model-generated product ratings to help each online seller to 

identify potential customers in a database who will rate the seller’s products highly. The strategy 

of targeting potential customers who will rate a given product higher than its current rating is better 

than targeting all customers in the database when the goal is to improve product rating. With such 

predicted product ratings, an online seller can focus on a smaller target population to maximize 

the impact of marketing efforts, have a better chance to expand customer base, and get a boost in 

product rating at the same time. Here we propose a methodology to cluster different groups of 

customers, based on which to generate model-based, individual-level rating predictions. 

It is not an easy task to mine online ratings to identify, for any given product, the potential 

consumers who will rate the product highly. To develop a solution to the targeting problem, we 

start with the following assumption. If Customer A has the same or very similar opinion as 

Customer B on a product, and if B rates a different product highly, A is more likely to have B's 

opinion on the different product (and rates it highly) than that of a randomly chosen customer (e.g., 

Ricci et al. 2011; Schafer et al., 2007). Model-based clustering methods can then be used to identify 

customer groups with similar tastes. It is worth pointing out that, in the context of E-commerce, 

there are usually a large number of products (e.g., substitutable and complementary products) 

under study. When too many products are included in the study and the products are not liked or 

disliked by “similar” customers in a homogenous fashion, it will be difficult, if not impossible, to 

group customers with all products in one product group. As such, our model-based co-clustering 

becomes a useful tool because it simultaneously clusters customers and products into smaller and 

more homogeneous customer groups and product groups. Customers clustered together tend to 

have similar rating patterns towards various product groups, and products clustered together tend 



to be rated by various customer groups in a similar manner. Having multiple product clusters 

allows us to study how customers’ rating patterns vary by different product groups.  

There are several challenges to overcome in applying a co-clustering technique to identify 

groups of customers with similar tastes. One major challenge is that the scale usage in ratings can 

vary substantially among the customers. Thus, when two customers provide the same rating on a 

product, they may imply very different levels of liking. For example, using a five-point scale for 

illustration purposes here, suppose both customers A and B give a 4-star rating on a product, but 

most of A’s other ratings are 5-star, and most of B’s other ratings range from 2-star to 4-star. In 

such a case, A’s 4-star suggests some level of disliking, while B’s 4-star suggests a high level of 

liking. In fact, many studies in survey research support the presence of heterogeneity in 

respondents’ usage of scale, relatively independent of the content under evaluation (e.g., 

Baumgartner and Steenkamp 2001, 2006). Following similar notions in such literature, concerning 

online ratings, customers are also likely to have different types of scale usage relatively 

independent of the products under review: some of them tend to provide more friendly ratings, and 

some of them tend to be more critical in reviewing. Ignoring such difference in rating patterns can 

lead to misinterpretation of the ratings. Our proposed model-based co-clustering methodology that 

takes the potential heterogeneity in rating pattern into explicit consideration to identify different 

groups of customers with similar tastes. We simultaneously classify customers and products into 

separate customer clusters and product clusters so that members within a customer cluster are 

likely to have similar rating patterns toward product clusters, in terms of (1) their probabilities of 

rating the products – i.e., which products they rate and (2) their rating values – i.e., what ratings 

they assign. Conditional on cluster memberships, the proposed model provides model-based 

prediction of review propensities and product ratings, which are used to obtain individual-level 

rating predictions. 

The proposed methodology also aims to address the following modeling and computational 

challenges for simultaneouly clustering customers and products based on their online ratings. First 

of all, online databases are usually fairly large, and such rating data generally contain a substantial 



amount of missing values (Ying et al., 2006) as each customer typically rates a very small portion 

of available products. Although matrix factorization techniques have been widely used in 

recommendation systems since the success in the Netflix prize challenge (Koren et al., 2009), it is 

still a significant challenge for state-of-the-art matrix factorization methods to recover the massive 

missing online ratings. It is worth pointing out that the ground-breaking work such as Candès and 

Recht (2009), Candès and Tao (2010), and Keshavan et al. (2010) on the effectiveness and 

optimality results of matrix factorization quantified the minimum number of observed ratings as 

follows: 

number of observed ratings ≥ 𝐶𝐶1(number of customers) ∙ 𝑟𝑟 ∙ log(number of customers) 

and 

number of observed ratings ≥ 𝐶𝐶2(number of products) ∙ 𝑟𝑟 ∙ log(the number of products) 

where 𝐶𝐶1 and 𝐶𝐶2 are two positive constants, and 𝑟𝑟 is the rank of the underying rating matrix to be 

recoved. However, the conditions are unlikely to hold for many online rating data sets. For example, 

in our empirical study with 13,600 customers, 2,657 products, and 24,419 product ratings, the 

right-hand side of both inequalities can be as large as one hundred and twenty thousand multiplied 

by the rank 𝑟𝑟, which can be at least twenty times the number of observed ratings even when 𝑟𝑟 = 4. 

To deal with such few ratings, we need to carefully model the ordinal nature of rating data and 

incorporate more structural assumptions than the low-rank assumption in matrix factorization to 

extract useful information.  

In this paper, we employ a different approach based on network modeling to overcome the 

massive missing data problem. We enrich data by considering an online product rating database 

as a bipartite network, thus taking advantage of not only the observed ratings but also the network 

structure (i.e., who rates what). As shown in Figure 1, a bipartite network contains two disjoint 

sets of nodes – one set of customers and one set of products, and an edge exists only between a 

customer node and a product node (Wasserman and Faust 1994; Hanneman and Riddle 2005). The 

edges of the bipartite network are weighted by the corresponding product ratings. We extend finite 

mixture clustering methods (e.g., DeSarbo and Cron 1988; Kamakura and Russell 1989; Wedel 



and DeSarbo 1995) to the bipartite network to derive clusters for both customers and products, and 

assume a proportional odds model for the ordinal product ratings in our network setting. 

[Insert Figure 1 Here] 

Second, we allow the incorporation of covariates (e.g., customer and product attributes) in 

our network model, which produces a further computational challenge - simultaneously estimating 

regression type coefficients. This, together with a large dataset, call for a scalable clustering 

procedure for implementation. Here, to meet the challenge, we devise a variational expectation-

maximization (VEM) algorithm and its stochastic version (S-VEM). We implemented both VEM 

and S-VEM with the templated C++ library RcppArmadillo, providing a balance between 

computational efficiency, estimation accuracy, and ease of use. Note that, the proposed method 

includes several commonly used network models as special cases, such as a bipartite version of 

the exponential-family random graph model (Vu et al. 2013) and a bipartite version of stochastic 

block model (Karrer and Newman 2011).  

In a simulation study, we show that our model outperforms several benchmark models in 

terms of cluster recovery, parameter recovery, and computational efficiency. We apply the 

proposed model to an Amazon product rating dataset to demonstrate how our methodology can 

generate useful information for marketing managers and researchers. Results from our method can 

help an online seller to identify potential customers who are likely to rate her product and rate it 

highly. By targeting these potential customers, the seller may improve product rating and further 

expand her customer base with more focused marketing efforts.  

The rest of the paper is organized as follows. We first review the relevant literature in 

Section 2. Then, we present our proposed methodology and theoretical properties in Section 3, and 

describe the model estimation and prediction technique in Section 4. In Section 5, we perform a 

simulation study to compare performance of the proposed method versus several network-based 

benchmark models. Section 6 provides a real data application to further examine the performance 

of the proposed method and discusses managerial implications. Finally, we present our conclusions 

and directions for future research in Section 7. 



2 Review of Existing Co-Clustering Methodologies 

Many data sets can be described as two-dimensional matrices, also called two-way data. 

One dimension represents a set of individuals (e.g., subjects, persons, cases), and the other 

dimension represents a set of variables or subjects (e.g., products, features). Co-clustering is 

defined as classifications on each of the two sets, (e.g., a set of products are classified into product 

groups and a set of customers are classified into customer groups). In particular, the model-based 

co-clustering refers to the class of co-clustering methods that design a model based on statistical 

assumptions and then estimate the model parameters based on the given data (Govaert and Nadif 

2013). There are two main streams of model-based co-clustering methods. One is non-network 

approaches, and the other is network approaches or designated as graph models. The non-network 

models, also called the latent block models, typically require the two-way data matrix to be 

complete (without any missing data) for good model performance. The network models do not 

require the data matrix to be complete because they model both the existence of data entry in each 

cell and the data value if there is data entry in the cell. 

In the context of E-commerce, traditional non-network methods utilize a two-way data 

matrix with customers as rows, products/questions as columns, and matrix entries as responses to 

perform simultaneous clustering of both rows and columns. More specifically, it categorizes rows 

and columns as corresponding homogeneous groups, which are assumed to have the same group-

specific effects on the responses (e.g., Vichi 2001; DeSarbo et al. 2004; Rocci and Vichi 2008; 

Govaert and Nadif 2010; Pledger and Arnold 2014). More recent advancements in the non-network 

models are Jacques and Biernacki (2018) and Matechou et al. (2016) in which the authors extend 

the latent block models to ordinal data. However, this stream of models does not work well when 

the dataset is very large and contains a lot of missing values. Also, when partitioning the columns 

and the rows of the data matrix, they do not incorporate attributes of the columns and rows.  

Compared to non-network models, network models generally have better performance with 

large datasets and missing data. However, the existing clustering approaches with bipartite 

networks have strict assumptions and restrictions which limit their applicability in our setting. The 



first type of existing approaches is projection-based (e.g., Newman 2001; Zhou et al. 2007). They 

perform the co-clustering in a two-step fashion by first projecting a bipartite network to one-mode 

networks and then perform some standard community detection algorithms. For example, in our 

case, these methods project a bipartite rating network into a network of customers in which 

customers who rate the same product are connected, or into a network of products where products 

rated by the same customers are connected. Unfortunately, after the one-mode projection, 

information of the eliminated set of nodes is lost, and it is difficult to establish links between 

customers and products. The second type of approaches employs a minimum description length 

based stochastic block model or mixture model to describe the structure and identifies the blocks 

(clusters) for a network (e.g., Larremore et al. 2014; Saldana et al. 2017; Zhou and Amini 2020; 

Razaee et al. 2019; Agarwal and Xue. 2020; Lee et al. 2020; Lee et al. 2022). For these types of 

network models, the bipartite version of the stochastic block model is the closest to our proposed 

model (Larremore et al. 2014; Keribin et al 2015; Zhou and Amini 2020; Razaee et al. 2019). For 

example, Zhou and Amini (2020) proposed a model for bipartite network clustering. Razaee et al. 

(2019) proposed a matched bipartite block model for mixed clustering that focuses on the latent 

one-to-one correspondence between clusters of the two sides. However, these models focus on 

binary data or categorical data. Differently, our proposed model, stemming from the bipartite 

version of the stochastic block model, focuses on ordinal data, which are typical of the Likert, 

Edwards, and semantic differential type ratings scales frequently encountered in online ratings. 

Modeling ordinal networks adds another computational challenge for that matter. In addition, we 

allow the incorporation of node attributes in the modeling. As a result, our model considers the 

effect of node covariates on network structure. 

3 Methodology 

3.1 The Proposed Model 

We model an online rating dataset as a weighted bipartite network: when a customer rates 

a product, a weighted edge connects the customer node and the product node, and the weight 

represents the given ordinal product rating. The proposed model-based co-clustering methodology 



provides a generative model for the weighted bipartite rating network and extends the methodology 

and applicability of stochastic block models. The proposed methodology can extract the common 

rating patterns like stochastic block models, and it can incorporate both customer and product 

covariates to form customer clusters and product clusters simultaneously. More specifically, the 

co-clusering is embedded in the following two aspects of the proposed bipartite rating network 

structure: for any given pair of customer cluster and product cluster, (i) the review propensity is 

homogeneous in terms of its responsiveness to the customer covariates and product attributes that 

are used to parameterize the review probabilities; and, (ii) the ordinal product ratings follow the 

same proportional odds model with cluster-specific parameters.  

Our proposed method thus has three key components: (1) latent cluster memberships for 

customers and products, (2) rating network structure based on the latent cluster memberships, 

customer covariates, and product attributes, and (3) distributions of the ordinal product ratings 

given latent clusters and network edges. In what follows, we present the details for the components 

(1)-(3), respectively.  

To begin with, we model the latent customer and product memberships in the rating 

network. Suppose that there are 𝐾𝐾 clusters of customers and 𝐿𝐿 clusters of products. (The values of 

𝐾𝐾 and 𝐿𝐿 are determined by using an information criterion; See Web Appendix B). We assume that 

the cluster membership of customer 𝑖𝑖, denoted by 𝑍𝑍𝑖𝑖𝑢𝑢ϵ{1, … ,𝐾𝐾}, follows a multinomial distribution:  

 𝑍𝑍𝑖𝑖𝑢𝑢~𝑖𝑖𝑖𝑖𝑖𝑖Multinomial(1;𝜋𝜋1, … ,𝜋𝜋𝐾𝐾), 𝑖𝑖𝑖𝑖{1, … ,𝑁𝑁}, (1) 

where unknown parameters {𝜋𝜋1, … ,𝜋𝜋𝐾𝐾} denote customer membership probabilities. Similarly, the 

cluster membership of product j, denoted by 𝑍𝑍𝑗𝑗
𝑝𝑝ϵ{1, … , 𝐿𝐿}, follows a multinomial distribution:  

 𝑍𝑍𝑗𝑗
𝑝𝑝~𝑖𝑖𝑖𝑖𝑖𝑖Multinomial(1;𝜑𝜑1, … ,𝜑𝜑𝐿𝐿), 𝑗𝑗𝑗𝑗{1, … ,𝑀𝑀}, (2) 

where {𝜑𝜑1, … ,𝜑𝜑𝐿𝐿 } denote product membership probabilities. Concomitant variables such as 

demographics and psychographics can be incorporated to profile the customer or product 

membership probabilities as in DeSarbo et al. (2017). 

Next, we model the bipartite rating network structure (i.e., the existence of network edges) 

given the latent cluster memberships. For any customer 𝑖𝑖 in cluster 𝑘𝑘ϵ{1, … ,𝐾𝐾} and product 𝑗𝑗 in 



cluster 𝑙𝑙ϵ{1, … , 𝐿𝐿} , we model the existence of the network edge 𝐸𝐸𝑖𝑖𝑖𝑖  (that is, whether or not 

customer 𝑖𝑖 rates product 𝑗𝑗) by an independent cluster-specific Bernoulli distribution parameterized 

by customer covariates and product attributes: 

 𝐸𝐸𝑖𝑖𝑖𝑖|𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙~𝑖𝑖𝑖𝑖𝑖𝑖 Bernoulli �𝛲𝛲𝑖𝑖𝑖𝑖(𝜽𝜽) = 𝛲𝛲𝑖𝑖𝑖𝑖�𝜃𝜃𝑘𝑘𝑘𝑘0 ,𝜽𝜽𝑘𝑘𝑢𝑢,𝜽𝜽𝑙𝑙

𝑝𝑝��, (3) 

𝛲𝛲𝑖𝑖𝑖𝑖�𝜃𝜃𝑘𝑘𝑘𝑘0 ,𝜽𝜽𝑘𝑘𝑢𝑢,𝜽𝜽𝑙𝑙
𝑝𝑝� =

exp �𝜃𝜃𝑘𝑘𝑘𝑘
0 +�𝑿𝑿𝑖𝑖

𝑢𝑢�′𝜽𝜽𝑘𝑘
𝑢𝑢+�𝑿𝑿𝑗𝑗

𝑝𝑝�
′
𝜽𝜽𝑙𝑙
𝑝𝑝�

1+exp �𝜃𝜃𝑘𝑘𝑘𝑘
0 +�𝑿𝑿𝑖𝑖

𝑢𝑢�′𝜽𝜽𝑘𝑘
𝑢𝑢+�𝑿𝑿𝑗𝑗

𝑝𝑝�
′
𝜽𝜽𝑙𝑙
𝑝𝑝�

, (4) 

where 𝑿𝑿𝑖𝑖𝑢𝑢 denotes covariates of customer 𝑖𝑖, 𝑿𝑿𝑗𝑗
𝑝𝑝 denotes attributes of product 𝑗𝑗, 𝜽𝜽𝑘𝑘𝑢𝑢 and 𝜽𝜽𝑙𝑙

𝑝𝑝denote 

cluster-specific parameters of interest, and 𝜃𝜃𝑘𝑘𝑘𝑘0  denotes the cluster-specific intercept. Since 

𝛲𝛲𝑖𝑖𝑖𝑖(𝜽𝜽) = 𝑃𝑃𝜽𝜽�𝐸𝐸𝑖𝑖𝑖𝑖 = 1|𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙� and 1 − 𝛲𝛲𝑖𝑖𝑖𝑖(𝜽𝜽) = 𝑃𝑃𝜽𝜽�𝐸𝐸𝑖𝑖𝑖𝑖 = 0|𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘,𝑍𝑍𝑗𝑗

𝑝𝑝 = 𝑙𝑙�, we have 

𝑃𝑃𝜽𝜽�𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖|𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙� =

exp �𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃𝑘𝑘𝑘𝑘0 + 𝑒𝑒𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑢𝑢)′𝜽𝜽𝑘𝑘𝑢𝑢 + 𝑒𝑒𝑖𝑖𝑖𝑖�𝑿𝑿𝑗𝑗
𝑝𝑝�

′
𝜽𝜽𝑙𝑙
𝑝𝑝�

1 + exp �𝜃𝜃𝑘𝑘𝑘𝑘0 + (𝑿𝑿𝑖𝑖𝑢𝑢)′𝜽𝜽𝑘𝑘𝑢𝑢 + �𝑿𝑿𝑗𝑗
𝑝𝑝�

′
𝜽𝜽𝑙𝑙
𝑝𝑝�

 (5) 

for 𝑒𝑒𝑖𝑖𝑖𝑖ϵ{0,1}. Hence, 𝑃𝑃𝜽𝜽�𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖|𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙� uses the cluster-specific parameters to model 

the probability of the existence of a rating between customer 𝑖𝑖 and product 𝑗𝑗. The proposed cluster-

specific Bernoulli distribution provides a generative model for the bipartite rating network. 

Now, it remains to model the distributions of product ratings given latent clusters and 

observed network edges. For any customer 𝑖𝑖 in cluster 𝑘𝑘 and product 𝑗𝑗 in cluster 𝑙𝑙, we utilize the 

cluster-specific rating distribution based on the proportional odds model (McCullagh 1980) to 

model the ordinal product rating 𝑌𝑌𝑖𝑖𝑖𝑖. Suppose that ordinal ratings are based on an 𝑅𝑅-point Likert 

scale. To simplify the notation, we define the conditional probability of the rating 𝑌𝑌𝑖𝑖𝑖𝑖 being 𝑟𝑟 =

1, … ,𝑅𝑅, given the latent cluster memberships (i.e., 𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙) and the existence of a review 

(i.e., 𝐸𝐸𝑖𝑖𝑖𝑖 = 1) as follows: 

 𝜔𝜔𝑖𝑖𝑖𝑖,𝑟𝑟
𝑘𝑘𝑘𝑘 = 𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑟𝑟|𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘,𝑍𝑍𝑗𝑗

𝑝𝑝 = 𝑙𝑙,𝐸𝐸𝑖𝑖𝑖𝑖 = 1 ). (6) 
Also, denote by Υ𝑖𝑖𝑖𝑖,𝑟𝑟

𝑘𝑘𝑘𝑘 , the cumulative probability that 𝑌𝑌𝑖𝑖𝑖𝑖 is no greater than 𝑟𝑟:  

 Υ𝑖𝑖𝑖𝑖,𝑟𝑟
𝑘𝑘𝑘𝑘 = 𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 ≤ 𝑟𝑟�𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘,𝑍𝑍𝑗𝑗

𝑝𝑝 = 𝑙𝑙,𝐸𝐸𝑖𝑖𝑖𝑖 = 1 � = 𝜔𝜔𝑖𝑖𝑖𝑖,1
𝑘𝑘𝑘𝑘 + ⋯+ 𝜔𝜔𝑖𝑖𝑖𝑖,𝑟𝑟

𝑘𝑘𝑘𝑘 . (7) 



Let 𝜹𝜹 = (𝛿𝛿𝑟𝑟𝑘𝑘𝑘𝑘) be the unknown proportional odds parameters. Given 𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘 and 𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙, we use 

the following proportional odds model to specify the cluster-specific rating distribution as:  

 logit�Υ𝑖𝑖𝑖𝑖,𝑟𝑟
𝑘𝑘𝑘𝑘 � = log �

Υ𝑖𝑖𝑖𝑖,𝑟𝑟
𝑘𝑘𝑘𝑘

1−Υ𝑖𝑖𝑖𝑖,𝑟𝑟
𝑘𝑘𝑘𝑘 � = 𝛿𝛿𝑟𝑟𝑘𝑘𝑘𝑘. (8) 

Thus 𝜔𝜔𝑖𝑖𝑖𝑖,𝑟𝑟
𝑘𝑘𝑘𝑘 , 𝑟𝑟 = 1, … ,𝑅𝑅, can be expressed in terms of parameters 𝜹𝜹 as follows: 

 𝜔𝜔𝑖𝑖𝑖𝑖,𝑟𝑟
𝑘𝑘𝑘𝑘 = Υ𝑖𝑖𝑖𝑖,𝑟𝑟

𝑘𝑘𝑘𝑘 − Υ𝑖𝑖𝑖𝑖,𝑟𝑟−1
𝑘𝑘𝑘𝑘 = exp�𝛿𝛿𝑟𝑟𝑘𝑘𝑘𝑘�

1+exp�𝛿𝛿𝑟𝑟𝑘𝑘𝑘𝑘�
− exp�𝛿𝛿𝑟𝑟−1𝑘𝑘𝑘𝑘 �

1+exp�𝛿𝛿𝑟𝑟−1
𝑘𝑘𝑘𝑘 �

,  2 ≤ 𝑟𝑟 ≤ 𝑅𝑅 − 1  

 
𝜔𝜔𝑖𝑖𝑖𝑖,1
𝑘𝑘𝑘𝑘 = exp�𝛿𝛿1𝑘𝑘𝑘𝑘�

1+exp�𝛿𝛿1
𝑘𝑘𝑘𝑘�

 and 𝜔𝜔𝑖𝑖𝑖𝑖,𝑅𝑅
𝑘𝑘𝑘𝑘 = 1 − exp�𝛿𝛿𝑅𝑅−1

𝑘𝑘𝑘𝑘 �
1+exp�𝛿𝛿𝑅𝑅−1

𝑘𝑘𝑘𝑘 �
. (9) 

3.2 Parameter Identification 

 The proposed model includes a group of discrete latent random variables (i.e., cluster 

memberships of customers and products), which usually leads to the invariance of the likelihood 

function under relabeling of the cluster memberships. Thus, the identifiability of parameters is 

obtained up to a label switching on the cluster memberships (Stephens, 2000). Allman et al. (2011) 

and Matias and Miele (2017) studied the identifiability of the parameters in a broad class of random 

graph mixture models including the weighted random graphs. It is worth pointing out that the 

bipartite network model in this paper is a special case of weighted random graphs here. Thus, we 

can adapt their results to our context and obtain the conditions of parameter identification for our 

proposed model. Following Theorems 12-14 of Allman et al. (2011) and Proposition 1 of Matias 

and Miele (2017), we can study the identification of the membership probabilities, conditional 

probabilities of observing an edge, and proportional odds parameters when the network size is not 

too small. Furthermore, following Theorem 1 of Lee, Xue, and Hunter (2020), if consumer 

covariates and product attributes are linearly independent, all the parameters of the proposed model 

are identified up to label switching with probability one. After adapting the proof to our context, 

we have the following theorem about parameter identification, whose proof is presented in Web 

Appendix A.  

Theorem 1. Suppose that (i) the 𝐾𝐾 × 𝐿𝐿 parameter values �𝜃𝜃𝑘𝑘𝑘𝑘0 ,𝜽𝜽𝑘𝑘𝑢𝑢,𝜽𝜽𝑙𝑙
𝑝𝑝: 𝑘𝑘 = 1, … ,𝐾𝐾, 𝑙𝑙 = 1, … , 𝐿𝐿� 

are distinct, (ii) the 𝐾𝐾 × 𝐿𝐿 parameter values �𝛿𝛿1𝑘𝑘𝑘𝑘, … , 𝛿𝛿𝑅𝑅𝑘𝑘𝑘𝑘: 𝑘𝑘 = 1, … ,𝐾𝐾, 𝑙𝑙 = 1, … , 𝐿𝐿� are distinct, 



(iii) the parameters of finite mixtures of proportional odds models are identifiable up to label 

switching, and (iv) consumer covariates and product attributes are linearly independent, as long 

as the network size M or 𝑁𝑁 is not too small, then the membership probabilities (𝝅𝝅,𝝋𝝋), network 

parameters 𝜽𝜽 , and proportional odds parameters 𝜹𝜹  are identified up to label switching with 

probability one, except for a subset of the parameter space whose Lebesgue measure is zero. 

4 Model Estimation and Prediction 

In this section, we first present the estimation procedure for the proposed method, and then 

show how model-based predictions of review propensities and ratings are obtained. 

4.1. The Likelihood Function 

Given the proposed generative model in Section 3, we need to estimate the model 

parameters 𝚯𝚯 = (𝜽𝜽,𝜹𝜹,𝝅𝝅,𝝋𝝋)  from observed reviews 𝑬𝑬 = (𝐸𝐸𝑖𝑖𝑖𝑖) , ratings 𝒀𝒀 = (𝑌𝑌𝑖𝑖𝑖𝑖) , customer 

covariates 𝑿𝑿𝑢𝑢 = (𝑿𝑿𝑖𝑖𝑢𝑢) and product attributes 𝑿𝑿𝑝𝑝 = (𝑿𝑿𝑗𝑗
𝑝𝑝). To this end, we first write down the 

likelihood function for the proposed model: 

ℒ(𝚯𝚯|𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝)

= �����𝜋𝜋𝑘𝑘𝜑𝜑𝑙𝑙 �𝛲𝛲𝑖𝑖𝑖𝑖�𝜃𝜃𝑘𝑘𝑘𝑘0 ,𝜽𝜽𝑘𝑘𝑢𝑢,𝜽𝜽𝑙𝑙
𝑝𝑝���𝜔𝜔𝑖𝑖𝑖𝑖,𝑟𝑟

𝑘𝑘𝑘𝑘 �
𝟏𝟏𝑌𝑌𝑖𝑖𝑖𝑖=𝑟𝑟

𝑅𝑅

𝑟𝑟=1

�

𝐸𝐸𝑖𝑖𝑖𝑖

�1
𝑗𝑗𝑖𝑖

𝐿𝐿

𝑙𝑙=1

𝐾𝐾

𝑘𝑘=1

− 𝛲𝛲𝑖𝑖𝑖𝑖�𝜃𝜃𝑘𝑘𝑘𝑘0 ,𝜽𝜽𝑘𝑘𝑢𝑢,𝜽𝜽𝑙𝑙
𝑝𝑝��

1−𝐸𝐸𝑖𝑖𝑖𝑖� , 

(10) 

where 𝟏𝟏𝑌𝑌𝑖𝑖𝑖𝑖=𝑟𝑟 = �
1, if  𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑟𝑟
0, if  𝑌𝑌𝑖𝑖𝑖𝑖 ≠ 𝑟𝑟  is the indicator function for the product ratings. After incorporating 

latent clusters, we obtain the complete-data likelihood for our proposed model as follows: 

ℒ𝑐𝑐(𝚯𝚯|𝒁𝒁,𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝) = 𝑃𝑃(𝑬𝑬,𝒀𝒀,𝒁𝒁|𝚯𝚯,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝) = 𝑃𝑃(𝒁𝒁|𝚯𝚯)𝑃𝑃(𝑬𝑬,𝒀𝒀|𝒁𝒁,𝚯𝚯,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝)

= ��𝜋𝜋𝑍𝑍𝑖𝑖𝑢𝑢
𝑖𝑖

�𝜑𝜑𝑍𝑍𝑗𝑗𝑝𝑝
𝑗𝑗

�����𝛲𝛲𝑖𝑖𝑖𝑖 �𝜃𝜃𝑍𝑍𝑖𝑖𝑢𝑢𝑍𝑍𝑗𝑗𝑝𝑝
0 ,𝜽𝜽𝑍𝑍𝑖𝑖𝑢𝑢

𝑢𝑢 ,𝜽𝜽𝑍𝑍𝑗𝑗𝑝𝑝
𝑝𝑝 ���𝜔𝜔𝑖𝑖𝑖𝑖,𝑟𝑟

𝑍𝑍𝑖𝑖
𝑢𝑢𝑍𝑍𝑗𝑗

𝑝𝑝

�
𝟏𝟏𝑌𝑌𝑖𝑖𝑖𝑖=𝑟𝑟

𝑅𝑅

𝑟𝑟=1

�

𝐸𝐸𝑖𝑖𝑖𝑖

�1
𝑗𝑗𝑖𝑖

− 𝛲𝛲𝑖𝑖𝑖𝑖 �𝜃𝜃𝑍𝑍𝑖𝑖𝑢𝑢𝑍𝑍𝑗𝑗𝑝𝑝
0 ,𝜽𝜽𝑍𝑍𝑖𝑖𝑢𝑢

𝑢𝑢 ,𝜽𝜽𝑍𝑍𝑗𝑗𝑝𝑝
𝑝𝑝 ��

1−𝐸𝐸𝑖𝑖𝑖𝑖
�, 

(11) 



where 𝒁𝒁 = (𝒁𝒁𝒖𝒖,𝒁𝒁𝒑𝒑) = �(𝑍𝑍1𝑢𝑢, … ,𝑍𝑍𝑁𝑁𝑢𝑢), �𝑍𝑍1
𝑝𝑝, … ,𝑍𝑍𝑀𝑀

𝑝𝑝 ��, 𝜔𝜔𝑖𝑖𝑖𝑖,𝑟𝑟
𝑍𝑍𝑖𝑖
𝑢𝑢𝑍𝑍𝑗𝑗

𝑝𝑝

 is a function of 𝜹𝜹, 𝟏𝟏𝑌𝑌𝑖𝑖𝑖𝑖=𝑟𝑟 = 1 if 𝑌𝑌𝑖𝑖𝑖𝑖 =

𝑟𝑟  and zero otherwise. The traditional Expectation-Maximization (EM) algorithm is used 

extensively to solve the maximum likelihood estimation involving latent variables. However, the 

E-step here requires the computation of an intractable conditional expectation of the complete-data 

likelihood ℒ𝑐𝑐(𝚯𝚯|𝒁𝒁,𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝). To address this issue, we propose a variational EM algorithm 

and its stochastic version to estimate the model parameters 𝚯𝚯 = (𝜽𝜽,𝜹𝜹,𝝅𝝅,𝝋𝝋). In the following sub-

sections, we first present the variational EM denoted by VEM (e.g., Neal and Hinton 1998; 

Jaakkola and Jordon 1996 & 1997) for our proposed model, and then examine the nature of the 

stochastic EM (SEM) (Celeux et al. 1995; Nielsen 2000) to introduce the stochastic version of 

VEM, denoted by S-VEM. The VEM uses the variational distribution to approximate the 

intractable conditional distribution in the traditional EM algorithm and enjoys the ascent property 

of evidence lower bound in the algorithm (Blei et al. 2017). The SEM estimates the conditional 

expectation by incorporating an additional simulation step after the E-step in the traditional EM 

algorithm and enjoys an appealing asymptotic result (Nielsen 2000). However, it is an open 

research question to provide a rigorous convergence guarantee for VEM and S-VEM when solving 

the general network-based clustering problem (Blei et al. 2017), which is important. Similar to 

numerous existing works (e.g., Zaheer et al 2016; Matias and Miele, 2017; Blei et al 2017), we 

find that VEM and S-VEM are well behaved, and both provide satisfactory performance in our 

simulation and empirical studies.  

4.2. Variational EM (VEM) 

  The EM algorithm iterates between an expectation step (E-step) and a maximization step 

(M-step) until convergence: 

• E-step:  Compute the expected value of the complete-data log likelihood function: 

𝑄𝑄�𝚯𝚯|𝚯𝚯(𝑡𝑡)� = 𝐸𝐸𝒁𝒁|𝑬𝑬,𝒀𝒀;𝜣𝜣(𝑡𝑡)�logℒ𝑐𝑐(𝚯𝚯|𝒁𝒁,𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝)�

= � log 𝑃𝑃(𝑬𝑬,𝒀𝒀,𝒁𝒁|𝚯𝚯,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝)𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)�𝒅𝒅𝒅𝒅 
(12) 

• M-step: Maximize the function obtained from E-step to obtain 𝚯𝚯(𝑡𝑡+1): 



 𝚯𝚯(𝑡𝑡+1) = argmax
𝚯𝚯

𝑄𝑄�𝚯𝚯|𝚯𝚯(𝑡𝑡)�. (13) 

Unfortunately, 𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)� in the E-step is intractable and 𝑄𝑄�𝚯𝚯|𝚯𝚯(𝑡𝑡)� does not have a closed 

form, which leads to the numeric challenge of computing and updating 𝚯𝚯(𝑡𝑡+1) in the M-step (Beal 

2003; Daudinet al. 2008; Blei et al. 2017). To overcome this problem, we use the variational EM 

approach (e.g., Neal and Hinton 1998; Jaakkola and Jordon 1996 & 1997; Jordan et al. 1999; Beal 

2003; Wainwright and Jordan 2008; Blei et al. 2017; Ansari et al. 2018) in which we approximate 

the intractable distribution 𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)� by a simple mean-field distribution 𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂), called 

the variational distribution，indexed by mean-field parameters (𝒖𝒖,𝝂𝝂). Here we set: 

𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂) = 𝑞𝑞(𝒁𝒁𝒖𝒖;𝒖𝒖 )𝑞𝑞(𝒁𝒁𝒑𝒑;𝒗𝒗) = �𝑞𝑞(𝑍𝑍𝑖𝑖𝑢𝑢;𝒖𝒖𝑖𝑖)�𝑞𝑞�𝑍𝑍𝑗𝑗
𝑝𝑝;𝒗𝒗𝑗𝑗�

𝑀𝑀

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

, (14) 

𝑞𝑞(𝑍𝑍𝑖𝑖𝑢𝑢;𝒖𝒖𝑖𝑖) ~ Multinomial(1;𝒖𝒖𝑖𝑖), (15) 

𝑞𝑞�𝑍𝑍𝑗𝑗
𝑝𝑝;𝒗𝒗𝑗𝑗� ~ Multinomial(1;𝒗𝒗𝑗𝑗), (16) 

where 𝒖𝒖𝑖𝑖 = (𝑢𝑢𝑖𝑖,1, … , 𝑢𝑢𝑖𝑖,𝐾𝐾) and 𝒗𝒗𝑗𝑗 = (𝑣𝑣𝑗𝑗,1, … , 𝜈𝜈𝑗𝑗,𝐿𝐿) are variational parameters. We search over the 

space of variational distributions to find a member that is closest to 𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)� based on the 

Kullback-Leibler (KL) divergence (Kullback and Leibler 1951). The KL divergence measures the 

closeness between 𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂) and 𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)�, so our goal is to minimize the KL divergence:  

KL �𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂)||𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)�� = 𝐸𝐸𝑞𝑞 �log 
𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂)

𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)�
�, (17) 

where, 𝐸𝐸𝑞𝑞(∙) refers to taking expectations with respect to the variational distribution. The KL 

divergence is not directly computable, but it can be further derived as shown in the following 

expression (see Web Appendix B for details):  

KL �𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂)||𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)�� = 𝐸𝐸𝑞𝑞�log 𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂)� − 𝐸𝐸𝑞𝑞 �log 𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)�� 

= logℒ�𝚯𝚯(𝑡𝑡)�𝑬𝑬,𝒀𝒀� − 𝐸𝐸𝑞𝑞 �logℒ𝑐𝑐�𝚯𝚯(𝑡𝑡)�𝒁𝒁,𝑬𝑬,𝒀𝒀�� + 𝐸𝐸𝑞𝑞�log 𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂)�. 
(18) 

We define the following term as the evidence lower bound (ELBO), which is a lower bound on 

the logarithm of the likelihood function: 

ELBO�𝚯𝚯(𝑡𝑡),𝒖𝒖,𝝂𝝂 |𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝�
= 𝐸𝐸𝑞𝑞 �logℒ𝑐𝑐�𝚯𝚯(𝑡𝑡)�𝒁𝒁,𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝�� − 𝐸𝐸𝑞𝑞�log 𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂)�. 

(19) 

Thus, minimizing the KL divergence is equivalent to maximizing ELBO with respect to (𝒖𝒖,𝝂𝝂): 



KL �𝑞𝑞(𝒁𝒁;𝒖𝒖,𝝂𝝂)||𝑃𝑃�𝒁𝒁�𝑬𝑬,𝒀𝒀;𝚯𝚯(𝑡𝑡)�� 
= logℒ�𝚯𝚯(𝑡𝑡)�𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝� − ELBO�𝚯𝚯(𝑡𝑡),𝒖𝒖,𝝂𝝂 |𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝�. 

(20) 

This evidence lower bound can be computed in a closed form (see Web Appendix B) and we 

maximize ELBO with respect to (𝒖𝒖,𝝂𝝂)  in the Variational EM algorithm. In the following 

variational M-step, maximization with respect to 𝚯𝚯 may be accomplished, which is presented in 

Web Appendix B. We summarize the algorithm details as Algorithm 1.  

1. Initialize 𝚯𝚯(0),𝒖𝒖(0),𝝂𝝂(0) 
2. Repeat 
3. Variational E-step: update variational parameters  

�𝒖𝒖(𝑡𝑡+1), 𝝂𝝂(𝑡𝑡+1)� = argmax
(𝒖𝒖,𝝂𝝂)

ELBO�𝚯𝚯(𝑡𝑡),𝒖𝒖,𝝂𝝂 |𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝� 

4. Variational M-step: update 𝚯𝚯  
𝚯𝚯(𝑡𝑡+1) = argmax

𝚯𝚯
ELBO�𝚯𝚯,𝒖𝒖(𝑡𝑡+1),𝝂𝝂(𝑡𝑡+1) |𝑬𝑬,𝒀𝒀,𝑿𝑿𝑢𝑢,𝑿𝑿𝑝𝑝� 

5. Until convergence 

Algorithm 1 The Proposed Variational EM (VEM)  

After obtaining the parameter estimates, one may assign customer i and product 𝑗𝑗 to the 

derived customer and product clusters according to the corresponding estimated probabilities: 

 𝑍𝑍𝚤𝚤𝑢𝑢� = argmax
𝑘𝑘=1,…,𝐾𝐾

𝑞𝑞(𝑍𝑍𝑖𝑖𝑢𝑢;𝒖𝒖𝚤𝚤� ),  (21) 

 𝑍𝑍𝚥𝚥
𝑝𝑝� = argmax

𝑙𝑙=1,…,𝐿𝐿
𝑞𝑞�𝑍𝑍𝑗𝑗

𝑝𝑝;𝒗𝒗𝚥𝚥� �. (22) 
 
Remark 1. When calculating the expectation terms 𝐸𝐸𝑞𝑞[∙] of ELBO in equation (19), for each 

customer 𝑖𝑖, 𝑖𝑖𝑖𝑖{1, … ,𝑁𝑁}, we have to consider each possible value of 𝑘𝑘 ∈ {1, … ,𝐾𝐾}, and for each 

product 𝑗𝑗, 𝑗𝑗𝑗𝑗{1, … ,𝑀𝑀}, we consider each possible value of 𝑙𝑙 ∈ {1, … , 𝐿𝐿}. This step is separable 

over all pairs of nodes. For each pair, the expectation operator puts different weights (𝒖𝒖,𝒗𝒗) based 

on different possibilities of the pair belonging to different clusters. This step  (O(K × L)) can be 

very computationally expensive when 𝐾𝐾 and 𝐿𝐿 are large. Following the notion of stochastic EM 

(SEM) (Celeux et al. 1995; Nielsen 2000), we propose a stochastic version of VEM by introducing 

an additional S-step after the variational E-step in VEM, thus overcome the computational 



bottleneck by replacing 𝐸𝐸𝑞𝑞[∙] with an empirical estimate. We included the technical details in the 

Web Appendix C. 

 

Remark 2. In the literature, to the best of our knowledge, it is still an open question to establish 

the asymptotic properties of variational approximation in model-based clustering of network data. 

Westling and McCormick (2019) pointed out the connection between variational approximation 

in a class of mixture models based on the i.i.d. observations and M-estimation and then studied the 

theoretical properties for variational estimators in this class of mixture models by using the results 

of M-estimation (van der Vaart, 2000). Specifically, Proposition 1 and Theorem 1 of Westling and 

McCormick (2019) require the i.i.d. assumption to study their defined profiled objective function 

of variational approximation through the theory of M-estimation such as Theorem 5.14 of van der 

Vaart (2000). Thus, the theory of Westling and McCormick (2019) excludes the dyadic data in 

network models. It will be an important research question to fill this gap. 

4.3. Prediction 

After estimating parameters and cluster memberships from the proposed VEM or S-VEM, 

we can use the estimates to obtain model-based predictions of review propensities and ratings 

between any customer 𝑖𝑖𝑖𝑖{1, … ,𝑁𝑁} and any product 𝑗𝑗𝑗𝑗{1, … ,𝑀𝑀}. Let 𝜽𝜽� be the estimate of network 

parameters 𝜽𝜽 and 𝜹𝜹� be the estimate of proportional odds parameters 𝜹𝜹. Given the model parameter 

estimates, conditional on the latent cluster memberships, we predict the review propensity of 

customer 𝑖𝑖 for product 𝑗𝑗 as 

� 𝑃𝑃𝜽𝜽��𝐸𝐸𝑖𝑖𝑖𝑖 = 1�𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘 ,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙�𝑞𝑞(𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘;𝒖𝒖𝚤𝚤� )𝑞𝑞�𝑍𝑍𝑗𝑗

𝑝𝑝 = 𝑙𝑙;𝒗𝒗𝚥𝚥� �
𝑘𝑘,𝑙𝑙

 

= ∑
exp �𝜃𝜃𝑘𝑘𝑘𝑘

0� +�𝑿𝑿𝑖𝑖
𝑢𝑢�′𝜽𝜽𝑘𝑘

𝑢𝑢�+�𝑿𝑿𝑗𝑗
𝑝𝑝�

′
𝜽𝜽𝑙𝑙
𝑝𝑝��

1+exp �𝜃𝜃𝑘𝑘𝑘𝑘
0� +�𝑿𝑿𝑖𝑖

𝑢𝑢�′𝜽𝜽𝑘𝑘
𝑢𝑢�+�𝑿𝑿𝑗𝑗

𝑝𝑝�
′
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𝑝𝑝��
𝑞𝑞(𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘;𝒖𝒖𝚤𝚤� )𝑞𝑞�𝑍𝑍𝑗𝑗

𝑝𝑝 = 𝑙𝑙;𝒗𝒗𝚥𝚥� �𝑘𝑘,𝑙𝑙 . 
(23) 

We obtain the conditional distribution of ordinal rating 𝑌𝑌𝑖𝑖𝑖𝑖 while products being rated as 

 𝑃𝑃𝜹𝜹��𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑟𝑟�𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘 ,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙,𝐸𝐸𝑖𝑖𝑖𝑖 = 1� = 𝜔𝜔𝚤𝚤𝚤𝚤,𝑟𝑟

𝑘𝑘𝑘𝑘�, 𝑟𝑟 = 1, … ,𝑅𝑅, (24) 

or more specifically, for 2 ≤ 𝑟𝑟 ≤ 𝑅𝑅 − 1: 



𝑃𝑃𝜹𝜹��𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑟𝑟�𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘 ,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙,𝐸𝐸𝑖𝑖𝑖𝑖 = 1� =

exp�𝛿𝛿𝑟𝑟𝑘𝑘𝑘𝑘
� �

1+exp�𝛿𝛿𝑟𝑟𝑘𝑘𝑘𝑘
� �

−
exp�𝛿𝛿𝑟𝑟−1

𝑘𝑘𝑘𝑘��

1+exp�𝛿𝛿𝑟𝑟−1
𝑘𝑘𝑘𝑘��

,   (25) 

And, for 𝑟𝑟 = 1 or 𝑟𝑟 = 𝑅𝑅: 

𝑃𝑃𝜹𝜹��𝑌𝑌𝑖𝑖𝑖𝑖 = 1�𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘 ,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙,𝐸𝐸𝑖𝑖𝑖𝑖 = 1� =

exp�𝛿𝛿1
𝑘𝑘𝑘𝑘� �

1+exp�𝛿𝛿1
𝑘𝑘𝑘𝑘� �

 , (26) 

𝑃𝑃𝜹𝜹��𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑅𝑅�𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘 ,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙,𝐸𝐸𝑖𝑖𝑖𝑖 = 1� = 1 −

exp�𝛿𝛿𝑅𝑅−1
𝑘𝑘𝑘𝑘� �

1+exp�𝛿𝛿𝑅𝑅−1
𝑘𝑘𝑘𝑘� �

.   (27) 

Therefore, given parameter estimates, we predict the rating of customer 𝑖𝑖 on product 𝑗𝑗 via: 

𝑌𝑌𝚤𝚤𝚤𝚤� = ∑ 𝑟𝑟 × 𝑃𝑃𝜹𝜹��𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑟𝑟�𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘 ,𝑍𝑍𝑗𝑗
𝑝𝑝 = 𝑙𝑙,𝐸𝐸𝑖𝑖𝑖𝑖 = 1�𝑞𝑞(𝑍𝑍𝑖𝑖𝑢𝑢 = 𝑘𝑘;𝒖𝒖𝚤𝚤� )𝑞𝑞�𝑍𝑍𝑗𝑗

𝑝𝑝 = 𝑙𝑙;𝒗𝒗𝚥𝚥� �𝑟𝑟,𝑘𝑘,𝑙𝑙 . (28) 

 

5 A Simulation Study 

 A full factorial experiment design was used to compare the performance of the proposed 

model versus several network-based benchmark models. The results in the simulation study are 

used to demonstrate the effectiveness and efficiency of the proposed algorithm and examine the 

numerical performance of our proposed method when the data follow the generative model 

introduced in the paper. Consistent with past research involving factorial experiment design for 

newly proposed segmentation methods (e.g., Kim et al. 2012; DeSarbo et al. 2017), we 

experimentally manipulated three factors (see Table 1) and generated 3 × 2 × 2 = 12 settings 

based on the size of the network (X1: small network vs. medium network vs. large network), the 

number of clusters (X2: more vs. less), and the existence of covariates (X3: yes vs. no). These 

factors and their levels were specified to reflect various conditions representing a variety of 

potential marketing applications. We attempted to create a variety of empirical settings which 

would realistically test the comparative performance of these methods. With each generated setting, 

we have run 5 replications. Please refer to Web Appendix D for details. 

[Insert Table 1 Here] 

We consider the proposed method with S-VEM versus the following benchmark models in 

the numerical comparison: 



(1) The bipartite version of stochastic block model with binary data (Karrer and Newman 2011), 

which cannot incorporate covariates. 

(2) The bipartite version of stochastic block model with binary data, which incorporates covariates. 

(3) The bipartite version of stochastic block model with ordinal data, which cannot incorporate 

covariates. 

Moreover, we consider two versions of the proposed method, one with VEM and the other without 

covariates, as two additional benchmark methods:  

(4) The proposed network model with covariates but implemented with VEM.  

(5) The proposed network model without covariates. 

In the literature, the model-based non-network co-clustering method for ordinal data 

proposed by Jacques and Biernacki (2018) can be another potential benchmark model. However, 

it is not designed to deal with large data sets containing a large number of missing data points, and 

thus takes longer than the job time limit of the university server we run our codes on when applied 

to our simulated datasets. Therefore, we exclude this method in the numerical comparison and 

focus on comparing the results between our proposed model and the various benchmark models 

described in (1) to (5) above. 

We consider the following performance measures in our simulation study: (1) Cluster 

membership recovery, measured by the percentage of correctly predicted cluster memberships; 

and, (2) Parameter recovery, measured by the root mean squared error (RMSE) between the actual 

and recovered coefficients. Table 2 presents the summary of  performance measures of the 

proposed model versus the five benchmark models under study across all settings. Based on the 

overall performance, our proposed model outperforms all benchmark models in terms of customer 

cluster membership recovery and has a comparable recovery rate for product memberships with 

benchmark models 1, 3, and 5. In addition, our proposed model outperforms the benchmarks in 

terms of parameter recovery. We summarize the performance measures by factor level (i.e., 

network size, the number of customer clusters) in Web Appendix D.  

[Insert Table 2 Here] 



To demonstrate the advantage of the stochastic version of variational EM (S-VEM) over 

the non-stochastic version of varational EM (VEM) when implementing the proposed model, we 

compare the computational efficiency of the proposed model and benchmark model 4. More 

specifically, we measure the total running time, the number of iterations required for convergence 

and the average time of each iteration. We present the medians instead of means of these 

computational performance measures in Table 3, to avoid the outliers due to the instability issue 

of the university server.  

[Insert Table 3 Here] 

Consistent with our expectation, as shown in Table 3, the S-VEM does not shorten running 

time with small and medium networks, but it significantly reduces the running time for large 

networks. In the large network setting, the S-VEM algorithm can search the parmater space more 

quickly, therefore it has shorter time per iteration in general together with a larger number of 

iterations.  

6 The Empirical Application 

6.1 The Amazon Product Rating Dataset 

To demonstrate the capability of our proposed methodology, we apply our model to a 

publicly available Amazon product rating data set for the pre-defined ‘Clothing, Shoes and Jewelry’ 

category (He and McAuley 2016; McAuley et al. 2015). This pre-defined category dataset contains 

many products, which consist of both substitutable and complementary items. Thus, there are 

likely multiple ratings from each customer as well as some overlaps of products rated by different 

customers, allowing us to evaluate customers’ review patterns. Here we use the 1-5-core dataset 

in which each customer provides at least one rating, and each product receives at least five ratings. 

We focus on ratings posted in the year 2014, which is the most recent year of data available to us. 

[Insert Table 4 Here] 

Table 4 summarizes the descriptive statistics of our dataset (Web Appendix E lists the 

correlation matrices of the variables of interests), which contains 13,600 customers, 2,657 products, 



and 24,419 product ratings. This means, out of 13,600×2,657=36,135,200 customer-product pairs, 

only 0.06% have ratings. The massive missing rating issue posts a significant challenge for matrix 

factorization techniques for recommendation systems. The number of observed product ratings is 

significantly smaller than the stated threshold (that is 13,600×4×log(13,600)≈224,865) to achieve 

an effective reconstruction of the rating matrix (Candès and Recht, 2009).  

On average, a product receives 9.19 ratings (median=7, SD=7.95), and a customer provides 

4.68 ratings (median=4, SD=3.04). These statistics confirm the fact that customers rate only a 

small handful of products out of a huge number of available products which presents a massive 

missing data challenge for the analysis ahead. Looking at the average rating received per product, 

the mean is 4.25 (median=4.33, SD=0.52). The average rating provided per customer has a mean 

of 4.22 (median=4.38, SD=0.75). The product ratings are heavily skewed towards the high end of 

the scale.  

6.2 Implementation and Selection of Covariates 

We applied the proposed model to the Amazon rating dataset described above. More 

specifically, our proposed methodology models the online rating dataset as a weighted bipartite 

network and performs two-way clustering: a derived customer (product) cluster is a group of 

customer nodes with similar connectivity pattern to product (customer) cluster, and their 

connectivity patterns are affected similarly by the customer and product attributes. In this context, 

our methodology thus considers the ratings given by each customer, the ratings received by each 

product, as well as who rates what. Also, to account for the effects of other variables on who rates 

what, we employ product price as the product attribute (𝑿𝑿𝑗𝑗
𝑝𝑝), and customer spending level (average 

purchase price) as customer covariates (𝑿𝑿𝑖𝑖𝑢𝑢 ) in the model of rating network structure to 

parameterize the model component on whether a customer rates a product (i.e., the network edges). 

Product price and customer spending level are included because price/spending level may affect 

customers’ expectation, and in turn affect the after-purchasing satisfaction. Limited by the data 



availability, we do not have demographic variables. But our proposed model is able to incorporate 

demographics and other variables when they are available.  

6.3 Co-Clustering Results 

With our dataset, we choose four customer clusters and three product clusters, given their 

satisfactory predictive performance in the network cross-validation (Chen et al., 2018; Li et al., 

2020). Tables F-1, F-2, and F-3 in Web Appendix F list the network model parameter estimates. 

After obtaining the parameter estimates, we derive the latent memberships by assigning each 

customer and product to various clusters separately according to the corresponding (largest) 

estimated probabilities. Table 5 summarizes the descriptive statistics of customers by cluster. The 

clustering results suggest that customers have highly heterogeneous tastes and review patterns, as 

shown by their rating distributions, number of ratings, and review propensities. For the customers 

under study, the mixing proportions (i.e., the relative sizes of the derived clusters) are 18% for 

Customer Cluster 1, 25% for Customer Cluster 2, 6% for Customer Cluster 3, and 50% for 

Customer Cluster 4. We perform both parametric and nonparametric statistical tests to compare 

the differences across clusters (See Web Appendix G) and draw inferences about the population. 

Based on Table 5, we find: 

• Customer Cluster 1 (labeled as “critical reviewers”) consists of customers whose ratings 

are polarized. They tend to have strong opinions on the products and use the 1-, 2- and 3-star much 

more often than the other customer clusters: 25% of their ratings are 1-star, 20% are 2-star, 26% 

are 3-star, while 24% are 5-star and 4% are 4-star. On average, they have the lowest mean rating 

per customer (mean=3.32, median=3.50), and a relatively low review propensity (mean=0.064%, 

median=0.054%). 

• Customer Cluster 2 (labeled as “fair reviewers”) consists of customers who tend to use the 

middle of scale by assigning 4-star (57%) and 3-star (20%), along with a small number of 1-star 

(0.5%), 2-star (5%) and 5-star (16%). On average, they have a relatively high review propensity 

(mean=0.071%, median=0.053%). 



• Customer Cluster 3 (labeled as “friendly reviewers”) consists of customers whose ratings 

are very friendly. These customers tend to use 5- and 4-star: 59% of their ratings are 5-star, and 

34% are 4-star. On average, they have the largest number of ratings provided per customer 

(mean=6.27, median=6), and a relatively low review propensity (mean=0.064%, median =0.054%). 

• Customer Cluster 4 (labeled as “super nice reviewers”) consists of customers who are most 

likely to give a 5-star (97% of ratings). On average, they have the highest average rating per 

customer (mean = 4.65, median=4.86), the highest spending power (mean = $22.17, 

median=$16.26), the smallest number of ratings provided per customer (mean=4.46, median=4), 

and a relatively high review propensity (mean=0.072%, median=0.055%). 

[Insert Table 5 Here] 

To facilitate customer clustering, our model also identifies 3 product clusters of distinct 

characteristics as summarized in Table 6. The mixing proportions are 9% for Product Cluster 1, 

59% for Product Cluster 2, and 32% for Product Cluster 3. Based on Table 6, we find: 

• Product Cluster 1 (labeled as “most rated products”) consists of products which are most 

rated on average. The average number of ratings per product is three to four times more than the 

other two clusters. On average, they have a medium level of average rating per product 

(mean=4.22, median=4.27). A lot of products in this cluster have very good selling performance: 

16% of the products in this cluster are listed as Top 100 products based on Amazon’s best seller 

rank, and 18% are listed between Top 101 to Top 500. Both percentages are much higher than 

those of the other two clusters. They have particularly high average review propensity 

(mean=0.219%, median=0.214%). 

• Product Cluster 2 (labeled as “lower and less rated products”) consists of products which 

tend to be less rated together with lower ratings. On average, these products have the lowest 

average rating per product (mean=4.01, median=4.13), the smallest number of ratings per product 

(mean=6.70, median=6), and the lowest review propensity (mean=0.052%, median =0.053%). 

• Product Cluster 3 (labeled as “highest rated products”) consists of products which are 

highest rated on average. They have the highest average ratings per product (mean=4.70, 



median=4.71), and the highest price (mean=22.00, median=14.99) on average. Products from well-

known brands tend to show up in this cluster. On average, products in this cluster have a relatively 

low review propensity (mean=0.063%, median=0.062%). 

[Insert Table 6 Here] 

To gain a higher-level understanding of the identified customer groups’ review pattern with 

the product groups, we present the histogram of observed ratings for each product-customer cluster 

pair (see Figure 2). As shown in Figure 2, the rating distributions are much more homogenous 

within each customer cluster than within each product cluster. In other words, customers within 

each customer cluster (of similar tastes) appear to be quite homogeneous: the majority of 

customers in clusters 2, 3 and 4 have similar tastes, respectively, no matter what products are 

considered, but the rating patterns for Customer Cluster 1 vary with the product clusters being 

considered. 

 We also present the estimated review propensities at the cluster level. Figure H in Web 

Appendix H shows the predicted review propensities as a network: a node represents a customer 

cluster or a product cluster; the area of a square represents cluster size; and the link width 

represents the corresponding review propensity.  As indicated in Figure H, customers’ review 

propensities vary substantially toward different product clusters. Product Cluster 1, although its 

size is small, has a significantly larger propensity to be reviewed by all customer clusters. We 

consider this group of products as “buzz” products. Their review propensities are on average 2 to 

6 times larger than that of other product clusters. This is aligned with the fact that Product Cluster 

1 contains many “most rated” products. Table H in Web Appendix H summarizes the descriptive 

statistics of the review propensities for each customer-product cluster pair. 

6.4 Predictive Performance 

For predictive validation, we randomly pick 5% of customers in the dataset and withhold 

one rating from each of them. Using this hold-out data, we compared the predictive performance 

of the proposed methods and its sub-model which does not use any covariates to parameterize the 

rating network structure. In addition, we compared the predictive performance of the proposed 



methods with two state-of-the-art approaches, including the spectral algorithm OptSpace proposed 

by Raghunandan et al. (2010) and one of the famous matrix factorization approaches introduced 

by Koren et al (2009). It is worth pointing out that Raghunandan et al. (2010) achieved the optimal 

sample complexity in the matrix completion problem and Koren et al (2009) presented the matrix 

factorization models in the Netflix Prize competition. The OptSpace algorithm of Raghunandan et 

al. (2010) was implemented in R package ROptSpace (https://cran.r-

project.org/web/packages/ROptSpace/index.html). The implementation of matrix factorization 

using the stochastic gradient descent optimization popularized by Simon Funk that won the third 

place in the Netflix Prize competition was implemented as the FunkSVD function in R package 

recommenderlab (https://cran.r-project.org/web/packages/recommenderlab/index.html).  

As shown in Table 7, our proposed method has the smallest RMSE, and the differences 

between the proposed methods and its sub-model as well as the two state-of-the-art approaches 

(FunkSVD and OptSpace) are statistically significant, since the differences are at least 8.5 standard 

errors away from zero. To further test the proposed model’s predictive performance, we compared 

its 25% hit rate of top reviews versus that of the its sub-model as well as the two state-of-the-art 

approaches: with the hold-out data, we selected the first quantiles of the reviews based on the 

withhold ratings and the predicted ratings separately; then we calculated what percentage of the 

‘true’ top 25% reviews were overlapped by the top 25% based on the predicted ratings. Also, our 

proposed model has much higher hit rates than the others. This indicates that our model has the 

potential to help sellers identify who are more likely to rate their products highly.  

Our method empowers E-commerce platforms to help sellers who are interested in boosting 

their product ratings with better customer targeting strategies. For example, the seller of a product 

could use results from the proposed methodology to identify “high value” potential customers who 

will rate the product higher than its current rating. Then the online seller can send reminders to 

“high value” customers to review their recent purchases and offer special discounts to invite 

potential “high value” customers to participate in an “early reviewer” program. By targeting the 

potential “high value” customers, an online seller may expand her customer base, achieve a higher 

https://cran.r-project.org/web/packages/ROptSpace/index.html
https://cran.r-project.org/web/packages/ROptSpace/index.html
https://cran.r-project.org/web/packages/recommenderlab/index.html


product rating, and maximize marketing efforts without wasting resources to target “low value” 

customers who are not interested in the product or likely to give poor ratings.  

[Insert Table 7 Here] 

7  Conclusion 

In this paper, we propose a new model-based co-clustering methodology that utilizes large-

scale online product rating networks to simultaneously cluster customers and products. The 

proposed model identifies customers with similar tastes and rating patterns. More specifically, our 

method classifies customers and products into separate customer clusters and product clusters, 

identifies memberships of the derived clusters, estimates the cluster-level model parameters, and 

provides probability estimates linking individual members from a customer cluster to those from 

a product cluster. Results from the co-clustering are used to generate individual-level rating 

predictions. Different from previous research, we extend finite mixture clustering methods to 

bipartite network modeling, focus on ordinal data, and devise efficient variational inference 

methods for computation so that our method better accommodates large-scale rating data in E-

commerce. In addition, we incorporate not only the rating information but also customer and 

product attributes to derive the clusters.  

To conclude, the proposed methodology provides marketing researchers and managers 

with a powerful tool for analyzing online rating data and help online sellers to design effective 

customer targeting strategies. Future research could consider incorporating concomitant variables 

directly in the model to automatically profile identified clusters. One might also consider 

incorporating dynamics to capture the evolvement of clusters over time.  
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Table 1 Monte Carlo Experimental Design Factors 

Factors Levels Codes 

Size of the Network (X1) 
Small network:  N=250, M=50 1 
Medium network: N=3000, M=300 2 
Large network:  N=10000, M=3000 3 

Number of Clusters (X2) More:  K=4, L=3 1 
Less:  K=3, L=3 2 

Existence of Covariates (X3) With Covariates 1 
Without Covariates 2 

 
Table 2 Overall Performance of Proposed Model and Benchmark Models 

for the Monte Carlo Study (Mean) 
 

 Proposed 
Model Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 Benchmark 5 

Hit Rate: Customers 0.90 
(0.004) 

0.77 
(0.008) 

0.77 
(0.007) 

0.81 
(0.005) 

0.87 
(0.006) 

0.86 
(0.004) 

Hit Rate: Products 0.96 
(0.004) 

0.96 
(0.002) 

0.81 
(0.008) 

0.97 
(0.003) 

0.92 
(0.005) 

0.98 
(0.002) 

RMSE (𝜽𝜽0) 0.09 
(0.004) 

0.54 
(0.017) 

0.13 
(0.004) 

0.50 
(0.017) 

0.14 
(0.004) 

0.48 
(0.018) 

RMSE (𝜽𝜽𝑢𝑢) 0.08 
(0.005) NA 0.07 

(0.004) NA 0.10 
(0.008) NA 

RMSE (𝜽𝜽𝑝𝑝) 0.02 
(0.001) NA 0.04 

(0.002) NA 0.02 
(0.001) NA 

RMSE (𝝎𝝎) 0.19 
(0.008) NA NA 0.30 

(0.008) 
0.27 

(0.008) 
0.18 

(0.008) 
Note: Numbers in parentheses are standard errors. 

 
  



Table 3 Computational Efficiency Measures of Proposed Model and Benchmark Models  
for the Monte Carlo Study (Median) 

 

 

Network Size 
Small 

Network 
Medium 
Network 

Large 
Network 

Total Time  
(Unit: hour) 

Proposed Model 0.07 1.42 26.20 

Benchmark 4 0.02 0.94 42.61 

The Number of Iterations Proposed Model 768.50 1528.50 507.50 

Benchmark 4 95.50 476.00 442.00 

Time per Iteration  
(Unit: second) 

Proposed Model 0.36 3.08 163.22 

Benchmark 4 0.68 7.09 232.52 

 

Table 4 Descriptive Statistics of the Dataset 

  Mean Median Min Max SD 
Customer 
(N=13600) 

Number of Products Rated Per Customer 4.68 4.00 1 48 3.04 
Average Rating Provided Per Customer 4.22 4.38 1 5 0.75 
Customer’s Average Spending Level 21.33 15.96 0.01 342 21.41 

Product 
(M=2657) 

Number of Ratings Received Per Product 9.19 7 5 172 7.95 
Average Rating Received Per Product 4.25 4.33 1.8 5.0 0.52 
Product Price 20.17 12.99 0.01 295 24.26 
Best Sellers Rank: Top 100  5%     
Best Sellers Rank: Top 101-500  11%     

 

 



Table 5 Descriptive Statistics of Customers by Cluster  

† in the format Mean|Median|Min|Max 

 

  

Customer 
Cluster 

1: Critical Reviewer 2: Fair Reviewer 3: Friendly Reviewer 4: Super Nice 

Cluster Size 2511 3456 841 6792 
Mixing 
Proportion 18% 25% 6% 50% 

Rating 
Distribution 

    
Avg Rating 
Per 
Customer† 

3.32|3.50|1.00|4.80 3.98|4.00|1.60|4.92 4.40|4.50|2.83|4.93 4.65|4.86|1.80|5.00 

No. of 
Ratings Per 
Customer† 

4.59|4|1|46 4.77|4|1|35 6.27|6|2|44 4.46|4|1|48 

Spending 
Power† 20.03|14.95|0.01|294.99 20.91|15.99|0.01|194.99 20.22|15.89|1.00|147.08 22.17|16.26|0.01|342.00 

Review 
Propensity† 0.064%|0.054%|0.011%|0.220% 0.071%|0.053%|0.008%|0.355% 0.064%|0.054%|0.020%|0.194% 0.072%|0.055%|0.010%| 0.255% 



 

 

Table 6 Descriptive Statistics of Products by Cluster 

† in the format Mean|Median|Min|Max 

 

 

 

 

 

 

 

 

 

Product Cluster 1: Most Rated 2: Less and Lower Rated 3: Highest Rated  
Cluster Size 229 1575 853 
Mixing Proportion 9% 59% 32% 

Rating Distribution 

   
Avg Rating Per Product† 4.22|4.27|2.45|4.89 4.01|4.13|1.80|4.80 4.70|4.71|4.12|5.00 
No. of Ratings Per Product† 27.79|22|13|172 6.70|6|5|17 8.79|8|5|17 
Price† 16.52|9.99|0.01|149.00 19.70|12.99|0.01|281.25 22.00|14.99|0.01|295.00 
Review Propensity† 0.219%|0.214%|0.023%|0.355% 0.052%|0.053%|0.008%|0.061% 0.063%|0.062%|0.009%|0.081% 
% as Top 100 Best Sellers 16% 2% 5% 
% as Top 100-500 Best Sellers 18% 8% 13% 
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Table 7 Predictive Performance of Ratings 

 Proposed Sub-model FunkSVD ROptSpace 

RMSE 1.111 
(0.004) 

1.145 
(0.004) 

1.526 
(0.005) 

4.359 
(0.004) 

Hit Rate of  
Top 25% Raters 

0.320 
(0.003) 

0.283 
(0.003) 

0.299 
(0.003) 

0.229 
(0.003) 

Note: Numbers in parentheses are standard errors. Numbers are based on 500 random subsets of size 100. 

 

 

Figure 1 A Bipartite Network Representation of a Rating Database 

 

 
Figure 2 The Distributions of Observed Ratings for Customer-Product Cluster Pairs 
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