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Abstract
Given the widely available online customer ratings on products, the individual-level rating
prediction and clustering of customers and products are increasingly important for sellers to create
targeting strategies for expanding the customer base and improving product ratings. However, the
massive missing data problem is a significant challenge for modeling online product ratings. To
address this issue, we propose a new co-clustering methodology based on a bipartite network
modeling of large-scale ordinal product ratings. Our method extends existing co-clustering
methods by incorporating covariates and ordinal ratings in the model-based co-clustering of a
weighted bipartite network. We devise an efficient variational EM algorithm for model
estimation. A simulation study demonstrates that our methodology is scalable for modeling large
datasets and provides accurate estimation and clustering results. We further show that our model
can successfully identify different groups of customers and products with meaningful
interpretations and achieve promising predictive performance in a real application

for customer targeting.
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1 Introduction

Online reviews can increase demand and drive revenue (e.g., Hu et al. 2008; Luca, 2016)
and companies are paying close attention to online ratings of their products. For E-commerce
companies and digital content providers which have collected a huge number of online product
ratings, the data can be analyzed to produce useful information to benefit sellers on those platforms.
For example, they can provide model-generated product ratings to help each online seller to
identify potential customers in a database who will rate the seller’s products highly. The strategy
of targeting potential customers who will rate a given product higher than its current rating is better
than targeting all customers in the database when the goal is to improve product rating. With such
predicted product ratings, an online seller can focus on a smaller target population to maximize
the impact of marketing efforts, have a better chance to expand customer base, and get a boost in
product rating at the same time. Here we propose a methodology to cluster different groups of
customers, based on which to generate model-based, individual-level rating predictions.

It is not an easy task to mine online ratings to identify, for any given product, the potential
consumers who will rate the product highly. To develop a solution to the targeting problem, we
start with the following assumption. If Customer A has the same or very similar opinion as
Customer B on a product, and if B rates a different product highly, A is more likely to have B's
opinion on the different product (and rates it highly) than that of a randomly chosen customer (e.g.,
Riccietal. 2011; Schafer et al., 2007). Model-based clustering methods can then be used to identify
customer groups with similar tastes. It is worth pointing out that, in the context of E-commerce,
there are usually a large number of products (e.g., substitutable and complementary products)
under study. When too many products are included in the study and the products are not liked or
disliked by “similar” customers in a homogenous fashion, it will be difficult, if not impossible, to
group customers with all products in one product group. As such, our model-based co-clustering
becomes a useful tool because it simultaneously clusters customers and products into smaller and
more homogeneous customer groups and product groups. Customers clustered together tend to

have similar rating patterns towards various product groups, and products clustered together tend



to be rated by various customer groups in a similar manner. Having multiple product clusters
allows us to study how customers’ rating patterns vary by different product groups.

There are several challenges to overcome in applying a co-clustering technique to identify
groups of customers with similar tastes. One major challenge is that the scale usage in ratings can
vary substantially among the customers. Thus, when two customers provide the same rating on a
product, they may imply very different levels of liking. For example, using a five-point scale for
illustration purposes here, suppose both customers A and B give a 4-star rating on a product, but
most of A’s other ratings are 5-star, and most of B’s other ratings range from 2-star to 4-star. In
such a case, A’s 4-star suggests some level of disliking, while B’s 4-star suggests a high level of
liking. In fact, many studies in survey research support the presence of heterogeneity in
respondents’ usage of scale, relatively independent of the content under evaluation (e.g.,
Baumgartner and Steenkamp 2001, 2006). Following similar notions in such literature, concerning
online ratings, customers are also likely to have different types of scale usage relatively
independent of the products under review: some of them tend to provide more friendly ratings, and
some of them tend to be more critical in reviewing. Ignoring such difference in rating patterns can
lead to misinterpretation of the ratings. Our proposed model-based co-clustering methodology that
takes the potential heterogeneity in rating pattern into explicit consideration to identify different
groups of customers with similar tastes. We simultaneously classify customers and products into
separate customer clusters and product clusters so that members within a customer cluster are
likely to have similar rating patterns toward product clusters, in terms of (1) their probabilities of
rating the products — i.e., which products they rate and (2) their rating values — i.e., what ratings
they assign. Conditional on cluster memberships, the proposed model provides model-based
prediction of review propensities and product ratings, which are used to obtain individual-level
rating predictions.

The proposed methodology also aims to address the following modeling and computational
challenges for simultaneouly clustering customers and products based on their online ratings. First

of all, online databases are usually fairly large, and such rating data generally contain a substantial



amount of missing values (Ying et al., 2006) as each customer typically rates a very small portion
of available products. Although matrix factorization techniques have been widely used in
recommendation systems since the success in the Netflix prize challenge (Koren et al., 2009), it is
still a significant challenge for state-of-the-art matrix factorization methods to recover the massive
missing online ratings. It is worth pointing out that the ground-breaking work such as Candés and
Recht (2009), Candes and Tao (2010), and Keshavan et al. (2010) on the effectiveness and
optimality results of matrix factorization quantified the minimum number of observed ratings as
follows:

number of observed ratings > C; (number of customers) - r - log(number of customers)
and

number of observed ratings > C,(number of products) - r - log(the number of products)
where C; and C, are two positive constants, and r is the rank of the underying rating matrix to be
recoved. However, the conditions are unlikely to hold for many online rating data sets. For example,
in our empirical study with 13,600 customers, 2,657 products, and 24,419 product ratings, the
right-hand side of both inequalities can be as large as one hundred and twenty thousand multiplied
by the rank 7, which can be at least twenty times the number of observed ratings even when r = 4.
To deal with such few ratings, we need to carefully model the ordinal nature of rating data and
incorporate more structural assumptions than the low-rank assumption in matrix factorization to
extract useful information.

In this paper, we employ a different approach based on network modeling to overcome the
massive missing data problem. We enrich data by considering an online product rating database
as a bipartite network, thus taking advantage of not only the observed ratings but also the network
structure (i.e., who rates what). As shown in Figure 1, a bipartite network contains two disjoint
sets of nodes — one set of customers and one set of products, and an edge exists only between a
customer node and a product node (Wasserman and Faust 1994; Hanneman and Riddle 2005). The
edges of the bipartite network are weighted by the corresponding product ratings. We extend finite

mixture clustering methods (e.g., DeSarbo and Cron 1988; Kamakura and Russell 1989; Wedel



and DeSarbo 1995) to the bipartite network to derive clusters for both customers and products, and
assume a proportional odds model for the ordinal product ratings in our network setting.
[Insert Figure 1 Here]

Second, we allow the incorporation of covariates (e.g., customer and product attributes) in
our network model, which produces a further computational challenge - simultaneously estimating
regression type coefficients. This, together with a large dataset, call for a scalable clustering
procedure for implementation. Here, to meet the challenge, we devise a variational expectation-
maximization (VEM) algorithm and its stochastic version (S-VEM). We implemented both VEM
and S-VEM with the templated C++ library RcppArmadillo, providing a balance between
computational efficiency, estimation accuracy, and ease of use. Note that, the proposed method
includes several commonly used network models as special cases, such as a bipartite version of
the exponential-family random graph model (Vu et al. 2013) and a bipartite version of stochastic
block model (Karrer and Newman 2011).

In a simulation study, we show that our model outperforms several benchmark models in
terms of cluster recovery, parameter recovery, and computational efficiency. We apply the
proposed model to an Amazon product rating dataset to demonstrate how our methodology can
generate useful information for marketing managers and researchers. Results from our method can
help an online seller to identify potential customers who are likely to rate her product and rate it
highly. By targeting these potential customers, the seller may improve product rating and further
expand her customer base with more focused marketing efforts.

The rest of the paper is organized as follows. We first review the relevant literature in
Section 2. Then, we present our proposed methodology and theoretical properties in Section 3, and
describe the model estimation and prediction technique in Section 4. In Section 5, we perform a
simulation study to compare performance of the proposed method versus several network-based
benchmark models. Section 6 provides a real data application to further examine the performance
of the proposed method and discusses managerial implications. Finally, we present our conclusions

and directions for future research in Section 7.



2 Review of Existing Co-Clustering Methodologies

Many data sets can be described as two-dimensional matrices, also called two-way data.
One dimension represents a set of individuals (e.g., subjects, persons, cases), and the other
dimension represents a set of variables or subjects (e.g., products, features). Co-clustering is
defined as classifications on each of the two sets, (e.g., a set of products are classified into product
groups and a set of customers are classified into customer groups). In particular, the model-based
co-clustering refers to the class of co-clustering methods that design a model based on statistical
assumptions and then estimate the model parameters based on the given data (Govaert and Nadif
2013). There are two main streams of model-based co-clustering methods. One is non-network
approaches, and the other is network approaches or designated as graph models. The non-network
models, also called the latent block models, typically require the two-way data matrix to be
complete (without any missing data) for good model performance. The network models do not
require the data matrix to be complete because they model both the existence of data entry in each
cell and the data value if there is data entry in the cell.

In the context of E-commerce, traditional non-network methods utilize a two-way data
matrix with customers as rows, products/questions as columns, and matrix entries as responses to
perform simultaneous clustering of both rows and columns. More specifically, it categorizes rows
and columns as corresponding homogeneous groups, which are assumed to have the same group-
specific effects on the responses (e.g., Vichi 2001; DeSarbo et al. 2004; Rocci and Vichi 2008;
Govaert and Nadif 2010; Pledger and Arnold 2014). More recent advancements in the non-network
models are Jacques and Biernacki (2018) and Matechou et al. (2016) in which the authors extend
the latent block models to ordinal data. However, this stream of models does not work well when
the dataset is very large and contains a lot of missing values. Also, when partitioning the columns
and the rows of the data matrix, they do not incorporate attributes of the columns and rows.

Compared to non-network models, network models generally have better performance with
large datasets and missing data. However, the existing clustering approaches with bipartite

networks have strict assumptions and restrictions which limit their applicability in our setting. The



first type of existing approaches is projection-based (e.g., Newman 2001; Zhou et al. 2007). They
perform the co-clustering in a two-step fashion by first projecting a bipartite network to one-mode
networks and then perform some standard community detection algorithms. For example, in our
case, these methods project a bipartite rating network into a network of customers in which
customers who rate the same product are connected, or into a network of products where products
rated by the same customers are connected. Unfortunately, after the one-mode projection,
information of the eliminated set of nodes is lost, and it is difficult to establish links between
customers and products. The second type of approaches employs a minimum description length
based stochastic block model or mixture model to describe the structure and identifies the blocks
(clusters) for a network (e.g., Larremore et al. 2014; Saldana et al. 2017; Zhou and Amini 2020;
Razaee et al. 2019; Agarwal and Xue. 2020; Lee et al. 2020; Lee et al. 2022). For these types of
network models, the bipartite version of the stochastic block model is the closest to our proposed
model (Larremore et al. 2014; Keribin et al 2015; Zhou and Amini 2020; Razaee et al. 2019). For
example, Zhou and Amini (2020) proposed a model for bipartite network clustering. Razaee et al.
(2019) proposed a matched bipartite block model for mixed clustering that focuses on the latent
one-to-one correspondence between clusters of the two sides. However, these models focus on
binary data or categorical data. Differently, our proposed model, stemming from the bipartite
version of the stochastic block model, focuses on ordinal data, which are typical of the Likert,
Edwards, and semantic differential type ratings scales frequently encountered in online ratings.
Modeling ordinal networks adds another computational challenge for that matter. In addition, we
allow the incorporation of node attributes in the modeling. As a result, our model considers the
effect of node covariates on network structure.
3 Methodology
3.1 The Proposed Model

We model an online rating dataset as a weighted bipartite network: when a customer rates
a product, a weighted edge connects the customer node and the product node, and the weight

represents the given ordinal product rating. The proposed model-based co-clustering methodology



provides a generative model for the weighted bipartite rating network and extends the methodology
and applicability of stochastic block models. The proposed methodology can extract the common
rating patterns like stochastic block models, and it can incorporate both customer and product
covariates to form customer clusters and product clusters simultaneously. More specifically, the
co-clusering is embedded in the following two aspects of the proposed bipartite rating network
structure: for any given pair of customer cluster and product cluster, (i) the review propensity is
homogeneous in terms of its responsiveness to the customer covariates and product attributes that
are used to parameterize the review probabilities; and, (ii) the ordinal product ratings follow the
same proportional odds model with cluster-specific parameters.

Our proposed method thus has three key components: (1) latent cluster memberships for
customers and products, (2) rating network structure based on the latent cluster memberships,
customer covariates, and product attributes, and (3) distributions of the ordinal product ratings
given latent clusters and network edges. In what follows, we present the details for the components
(1)-(3), respectively.

To begin with, we model the latent customer and product memberships in the rating
network. Suppose that there are K clusters of customers and L clusters of products. (The values of
K and L are determined by using an information criterion; See Web Appendix B). We assume that
the cluster membership of customer i, denoted by Z;*€{1, ..., K}, follows a multinomial distribution:

Z'~;gMultinomial(1; 7y, ..., Tg), i€{1, ..., N}, (1)
where unknown parameters {7y, ..., Tgx } denote customer membership probabilities. Similarly, the

cluster membership of product j, denoted by Z ]P e{1, ..., L}, follows a multinomial distribution:

Z] ~qMultinomial(1; @y, ..., @), je{1, ..., M}, )

where {¢,...,¢;} denote product membership probabilities. Concomitant variables such as
demographics and psychographics can be incorporated to profile the customer or product
membership probabilities as in DeSarbo et al. (2017).

Next, we model the bipartite rating network structure (i.e., the existence of network edges)

given the latent cluster memberships. For any customer i in cluster ke{1, ..., K} and product j in



cluster le{1,...,L}, we model the existence of the network edge E;; (that is, whether or not
customer I rates product j) by an independent cluster-specific Bernoulli distribution parameterized
by customer covariates and product attributes:

EU|Zl” = k, Z]p = l~ind Bernoulli (PU(O) = Pij(el(c)b %, 0?)), (3)

exp (9,21+(x’i‘)'9}§+(xg.’)’9§’)

!
1+exp (0£l+(X’i‘),9}é+(X?) 0?)’

0 P\ —
Pyj(6i, 05, 07) = 4)
where X}' denotes covariates of customer i, X]’-’ denotes attributes of product j, @} and deenote
cluster-specific parameters of interest, and 6y, denotes the cluster-specific intercept. Since

P;j(8) = Po(E;j = 1|12} = k,Z} =1) and 1 — P;;(0) = Py(E;; = 0|Z} = k,Z] = L), we have

exp (€00 + e;;(X4)' 0% + e;;(XP) 67
PO(Eijzeij|Zly=k,Z]P=l)= ( Yk YA k U( 1) l)

1+ exp (68 + (Y6} + (x7) 67) )

for e;j€{0,1}. Hence, Py (Ei i=ejlZ =k Z ]P = l) uses the cluster-specific parameters to model
the probability of the existence of a rating between customer i and product j. The proposed cluster-
specific Bernoulli distribution provides a generative model for the bipartite rating network.

Now, it remains to model the distributions of product ratings given latent clusters and
observed network edges. For any customer i in cluster k and product j in cluster [, we utilize the
cluster-specific rating distribution based on the proportional odds model (McCullagh 1980) to
model the ordinal product rating Y;;. Suppose that ordinal ratings are based on an R-point Likert
scale. To simplify the notation, we define the conditional probability of the rating Y;; being r =
1, ..., R, given the latent cluster memberships (i.e., Z} = k,Z ]P = [) and the existence of a review
(i.e., E;j = 1) as follows:

o, =P =r|Z} =k Z] =L E;=1). (6)
Also, denote by Y}, the cumulative probability that Y; j 18 no greater than 7:

ijrs

Y, =PV <r|zZ} =k Z] =LE;=1) = off; + -+ 0ff (7)

ijr ijre



Let & = (8f") be the unknown proportional odds parameters. Given Z}* = k and Z] = I, we use

the following proportional odds model to specify the cluster-specific rating distribution as:

vkt
vkl _ yr_\ _ skl
loglt(Yl] r) = log (1—\(’.‘! ) = §,". (8)
l,r
Thus a){‘]lr, r =1, ..., R, can be expressed in terms of parameters & as follows:
Kl Kl Kl exp(85") exp(87t 1)
— _ - <r<R-
Wijr Ylfr YU r-1 " 1+exp(6,’fl) 1+exp(8KL,) 2srsR-1
Kkl _ exp(61 ) _ eXp(SI}gl—l 9
Wij1 = 1+exp(6kl) and w” rR=1 1+exp(skL )’ ®)

3.2 Parameter Identification

The proposed model includes a group of discrete latent random variables (i.e., cluster
memberships of customers and products), which usually leads to the invariance of the likelihood
function under relabeling of the cluster memberships. Thus, the identifiability of parameters is
obtained up to a label switching on the cluster memberships (Stephens, 2000). Allman et al. (2011)
and Matias and Miele (2017) studied the identifiability of the parameters in a broad class of random
graph mixture models including the weighted random graphs. It is worth pointing out that the
bipartite network model in this paper is a special case of weighted random graphs here. Thus, we
can adapt their results to our context and obtain the conditions of parameter identification for our
proposed model. Following Theorems 12-14 of Allman et al. (2011) and Proposition 1 of Matias
and Miele (2017), we can study the identification of the membership probabilities, conditional
probabilities of observing an edge, and proportional odds parameters when the network size is not
too small. Furthermore, following Theorem 1 of Lee, Xue, and Hunter (2020), if consumer
covariates and product attributes are linearly independent, all the parameters of the proposed model
are identified up to label switching with probability one. After adapting the proof to our context,
we have the following theorem about parameter identification, whose proof is presented in Web
Appendix A.
Theorem 1. Suppose that (i) the K X L parameter values {0,?1, ¥, 0?: k=1,..,KI1l=1,.., L}

are distinct, (ii) the K X L parameter values {5{“, ) 5}51: k=1,.,KI1=1, ...,L} are distinct,



(iii) the parameters of finite mixtures of proportional odds models are identifiable up to label
switching, and (iv) consumer covariates and product attributes are linearly independent, as long
as the network size M or N is not too small, then the membership probabilities (Tt, @), network
parameters 0, and proportional odds parameters 8§ are identified up to label switching with

probability one, except for a subset of the parameter space whose Lebesgue measure is zero.

4 Model Estimation and Prediction
In this section, we first present the estimation procedure for the proposed method, and then

show how model-based predictions of review propensities and ratings are obtained.

4.1. The Likelihood Function

Given the proposed generative model in Section 3, we need to estimate the model
parameters @ = (6,6, 1, @) from observed reviews E = (E;;), ratings ¥ = (Y;;), customer
covariates X* = (X}) and product attributes X? = (X]P). To this end, we first write down the
likelihood function for the proposed model:

L(O|E,Y, X% XP)
K L
=2 2L [{me
k=11=1 i j

P,; (60, 63, 9?)]1_517

1,lf YU =T
O,If YU Fr

Eij

Pij(elgll ep) 1_[((‘)1]7‘ 1Y _r] [1

(10)

where 1yl.j=r = { is the indicator function for the product ratings. After incorporating

latent clusters, we obtain the complete-data likelihood for our proposed model as follows:

£.(®|Z E Y, X*XP) = P(E,Y,Z|®, X", XP) = P(Z|®)P(E,Y|Z, 0, X" XP)

2 z}z? Lyyj=r "
=\l Lo NIL T [polhp o) | [(57) ] [0
» 1_Eij
-y (o8 paon, )

r=1

(11)
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Zj
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j o . _ : —_
jr isafunction of 8, 1y, _, = 1if¥}; =

where Z = (2%,27) = (2%, ... Z¥), (2], ... Z5)) )
r and zero otherwise. The traditional Expectation-Maximization (EM) algorithm is used
extensively to solve the maximum likelihood estimation involving latent variables. However, the
E-step here requires the computation of an intractable conditional expectation of the complete-data
likelihood £L.(®|Z, E,Y, X", XP). To address this issue, we propose a variational EM algorithm
and its stochastic version to estimate the model parameters @ = (0, §, i, ). In the following sub-
sections, we first present the variational EM denoted by VEM (e.g., Neal and Hinton 1998;
Jaakkola and Jordon 1996 & 1997) for our proposed model, and then examine the nature of the
stochastic EM (SEM) (Celeux et al. 1995; Nielsen 2000) to introduce the stochastic version of
VEM, denoted by S-VEM. The VEM uses the variational distribution to approximate the
intractable conditional distribution in the traditional EM algorithm and enjoys the ascent property
of evidence lower bound in the algorithm (Blei et al. 2017). The SEM estimates the conditional
expectation by incorporating an additional simulation step after the E-step in the traditional EM
algorithm and enjoys an appealing asymptotic result (Nielsen 2000). However, it is an open
research question to provide a rigorous convergence guarantee for VEM and S-VEM when solving
the general network-based clustering problem (Blei et al. 2017), which is important. Similar to
numerous existing works (e.g., Zaheer et al 2016; Matias and Miele, 2017; Blei et al 2017), we

find that VEM and S-VEM are well behaved, and both provide satisfactory performance in our

simulation and empirical studies.

4.2. Variational EM (VEM)
The EM algorithm iterates between an expectation step (E-step) and a maximization step
(M-step) until convergence:
e E-step: Compute the expected value of the complete-data log likelihood function:
Q(010W) = E; o0 (l0gLc(OIZ, E, Y, X*, XP))
(12)
= j log P(E,Y,Z|0,X% X?) P(Z|E,Y; 0®)dZ

e M-step: Maximize the function obtained from E-step to obtain @¢+1:



o+ = arg(gnax Q(e|e®). (13)
Unfortunately, P(Z|E,Y; ®) in the E-step is intractable and Q(®]|0®) does not have a closed
form, which leads to the numeric challenge of computing and updating @ **% in the M-step (Beal
2003; Daudinet al. 2008; Blei et al. 2017). To overcome this problem, we use the variational EM
approach (e.g., Neal and Hinton 1998; Jaakkola and Jordon 1996 & 1997; Jordan et al. 1999; Beal
2003; Wainwright and Jordan 2008; Blei et al. 2017; Ansari et al. 2018) in which we approximate

the intractable distribution P(Z |E, Y; G(t)) by a simple mean-field distribution q(Z; u,v), called

the variational distribution, indexed by mean-field parameters (u,v). Here we set:

N M

aZuv) = q@5u)a@iv) = | [a@su | [a@iv), (14)
i=1 j=1

q(Z{; u;) ~Multinomial(1; u;), (15)

q(Z]'; v;) ~Multinomial(1; v;), (16)

where u; = (u;4, ..., Ujx) and v; = (vj 4, ..., vj ) are variational parameters. We search over the
space of variational distributions to find a member that is closest to P(Z |E, Y; G)(t)) based on the
Kullback-Leibler (KL) divergence (Kullback and Leibler 1951). The KL divergence measures the

closeness between q(Z; u, v) and P(Z |E JY; (E)(t)), so our goal is to minimize the KL divergence:

(Z;uv)
1 on )’ (17)
P(Z|E Y;0W)
where, E, () refers to taking expectations with respect to the variational distribution. The KL

KL (q(Z:wv)||P(Z|E,Y; 00)) = E, <log

divergence is not directly computable, but it can be further derived as shown in the following
expression (see Web Appendix B for details):

KL (q(Z;w,v)||P(Z|E,Y; 0©)) = E,(log 4(Z; u,v)) — E, (log P(Z|E,¥; 0©))

= 10g£(0V|E,Y) - E, (10g£.(0|Z,E, Y)) + E,(log ¢(Z; u,v)).
We define the following term as the evidence lower bound (ELBO), which is a lower bound on

(18)

the logarithm of the likelihood function:

ELBO(0®,u,v |E, Y, X% XP)
= E, (logL.(0|Z,E, ¥, X%, X?) ) - E,(log q(Z;w, v)). (15)

Thus, minimizing the KL divergence is equivalent to maximizing ELBO with respect to (u, v):



KL (q(Z;u,v)[|P(Z[E,Y; 0©))
=logL(®@Y|E,Y,X* X?) — ELBO(0®,u, v |E,Y, X% XP).
This evidence lower bound can be computed in a closed form (see Web Appendix B) and we

(20)

maximize ELBO with respect to (u,v) in the Variational EM algorithm. In the following
variational M-step, maximization with respect to @ may be accomplished, which is presented in

Web Appendix B. We summarize the algorithm details as Algorithm 1.

1. Initialize @@, 4(® (0
2. Repeat
3. Variational E-step: update variational parameters

(u®*D,v(t+D) = argmax ELBO(0®, u, v |E, Y, X*, XP)
(wv)

4. Variational M-step: update O
0(*D = argmax ELBO(@, u**V, v+ |E ¥, X*, XP)
)

5. Until convergence

Algorithm 1 The Proposed Variational EM (VEM)
After obtaining the parameter estimates, one may assign customer i and product j to the

derived customer and product clusters according to the corresponding estimated probabilities:

Z¥ = argmax q(Z}; iT,), 21)
k=1,...K

-0 _ D. s

A= aEmaalin) )

Remark 1. When calculating the expectation terms E[-] of ELBO in equation (19), for each
customer i, ie{1, ..., N}, we have to consider each possible value of k € {1, ..., K}, and for each
product j, je{1,..., M}, we consider each possible value of [ € {1, ...,L}. This step is separable
over all pairs of nodes. For each pair, the expectation operator puts different weights (u, v) based
on different possibilities of the pair belonging to different clusters. This step (O(K X L)) can be
very computationally expensive when K and L are large. Following the notion of stochastic EM
(SEM) (Celeux et al. 1995; Nielsen 2000), we propose a stochastic version of VEM by introducing

an additional S-step after the variational E-step in VEM, thus overcome the computational



bottleneck by replacing E,[-] with an empirical estimate. We included the technical details in the

Web Appendix C.

Remark 2. In the literature, to the best of our knowledge, it is still an open question to establish
the asymptotic properties of variational approximation in model-based clustering of network data.
Westling and McCormick (2019) pointed out the connection between variational approximation
in a class of mixture models based on the i.i.d. observations and M-estimation and then studied the
theoretical properties for variational estimators in this class of mixture models by using the results
of M-estimation (van der Vaart, 2000). Specifically, Proposition 1 and Theorem 1 of Westling and
McCormick (2019) require the i.i.d. assumption to study their defined profiled objective function
of variational approximation through the theory of M-estimation such as Theorem 5.14 of van der
Vaart (2000). Thus, the theory of Westling and McCormick (2019) excludes the dyadic data in
network models. It will be an important research question to fill this gap.
4.3. Prediction

After estimating parameters and cluster memberships from the proposed VEM or S-VEM,
we can use the estimates to obtain model-based predictions of review propensities and ratings
between any customer ie{1, ..., N} and any product je{1, ..., M}. Let 0 be the estimate of network
parameters 6 and & be the estimate of proportional odds parameters &. Given the model parameter
estimates, conditional on the latent cluster memberships, we predict the review propensity of

customer i for product j as

D> PolEy =112 = k,2) = Da(@! = ki @)a(2] = 1;7)

69, +(x¥) 8%+ (x?) o7 2
EXP( et (X) k+( 1) l) q(Zl}t =k; ﬂ‘l)q(Z]P = l;l’?}).

= Lkl — — —
1+exp (9,21+(X}L)'9}g+(xﬁ?)'ef)

We obtain the conditional distribution of ordinal rating Y;; while products being rated as

Ps(Yy =7zt =k, 20 = LE; =1) = 0f,, 1 =1,..,R, (24)

or more specifically, for2 <r <R — 1:
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And, forr =1orr = R:

exp S/EI
Ps(Yy =1|2¢ =k ,Z] = LE; =1) = —1+ex£(27;)l)’ (26)
Skl
Ps(Yy = R|ZF =k, 2P = LE;=1) =1~ exe(9F ) 27)
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Therefore, given parameter estimates, we predict the rating of customer i on product j via:

Y, =Yrr X Ps(Yi =r|Zt =k ,z}’ =LE; =1)q(Z} = k; ﬁl)q(Z]P =1;7). (28)

5 A Simulation Study

A full factorial experiment design was used to compare the performance of the proposed
model versus several network-based benchmark models. The results in the simulation study are
used to demonstrate the effectiveness and efficiency of the proposed algorithm and examine the
numerical performance of our proposed method when the data follow the generative model
introduced in the paper. Consistent with past research involving factorial experiment design for
newly proposed segmentation methods (e.g., Kim et al. 2012; DeSarbo et al. 2017), we
experimentally manipulated three factors (see Table 1) and generated 3 X 2 X 2 = 12 settings
based on the size of the network (X1: small network vs. medium network vs. large network), the
number of clusters (X2: more vs. less), and the existence of covariates (X3: yes vs. no). These
factors and their levels were specified to reflect various conditions representing a variety of
potential marketing applications. We attempted to create a variety of empirical settings which
would realistically test the comparative performance of these methods. With each generated setting,
we have run 5 replications. Please refer to Web Appendix D for details.

[Insert Table 1 Here]
We consider the proposed method with S-VEM versus the following benchmark models in

the numerical comparison:



(1) The bipartite version of stochastic block model with binary data (Karrer and Newman 2011),
which cannot incorporate covariates.

(2) The bipartite version of stochastic block model with binary data, which incorporates covariates.

(3) The bipartite version of stochastic block model with ordinal data, which cannot incorporate
covariates.

Moreover, we consider two versions of the proposed method, one with VEM and the other without

covariates, as two additional benchmark methods:

(4) The proposed network model with covariates but implemented with VEM.

(5) The proposed network model without covariates.

In the literature, the model-based non-network co-clustering method for ordinal data
proposed by Jacques and Biernacki (2018) can be another potential benchmark model. However,
it is not designed to deal with large data sets containing a large number of missing data points, and
thus takes longer than the job time limit of the university server we run our codes on when applied
to our simulated datasets. Therefore, we exclude this method in the numerical comparison and
focus on comparing the results between our proposed model and the various benchmark models
described in (1) to (5) above.

We consider the following performance measures in our simulation study: (1) Cluster
membership recovery, measured by the percentage of correctly predicted cluster memberships;
and, (2) Parameter recovery, measured by the root mean squared error (RMSE) between the actual
and recovered coefficients. Table 2 presents the summary of performance measures of the
proposed model versus the five benchmark models under study across all settings. Based on the
overall performance, our proposed model outperforms all benchmark models in terms of customer
cluster membership recovery and has a comparable recovery rate for product memberships with
benchmark models 1, 3, and 5. In addition, our proposed model outperforms the benchmarks in
terms of parameter recovery. We summarize the performance measures by factor level (i.e.,
network size, the number of customer clusters) in Web Appendix D.

[Insert Table 2 Here]



To demonstrate the advantage of the stochastic version of variational EM (S-VEM) over
the non-stochastic version of varational EM (VEM) when implementing the proposed model, we
compare the computational efficiency of the proposed model and benchmark model 4. More
specifically, we measure the total running time, the number of iterations required for convergence
and the average time of each iteration. We present the medians instead of means of these
computational performance measures in Table 3, to avoid the outliers due to the instability issue
of the university server.

[Insert Table 3 Here]

Consistent with our expectation, as shown in Table 3, the S-VEM does not shorten running
time with small and medium networks, but it significantly reduces the running time for large
networks. In the large network setting, the S-VEM algorithm can search the parmater space more
quickly, therefore it has shorter time per iteration in general together with a larger number of

iterations.

6 The Empirical Application

6.1 The Amazon Product Rating Dataset

To demonstrate the capability of our proposed methodology, we apply our model to a
publicly available Amazon product rating data set for the pre-defined ‘Clothing, Shoes and Jewelry’
category (He and McAuley 2016; McAuley et al. 2015). This pre-defined category dataset contains
many products, which consist of both substitutable and complementary items. Thus, there are
likely multiple ratings from each customer as well as some overlaps of products rated by different
customers, allowing us to evaluate customers’ review patterns. Here we use the 1-5-core dataset
in which each customer provides at least one rating, and each product receives at least five ratings.
We focus on ratings posted in the year 2014, which is the most recent year of data available to us.

[Insert Table 4 Here]

Table 4 summarizes the descriptive statistics of our dataset (Web Appendix E lists the

correlation matrices of the variables of interests), which contains 13,600 customers, 2,657 products,



and 24,419 product ratings. This means, out of 13,600%2,657=36,135,200 customer-product pairs,
only 0.06% have ratings. The massive missing rating issue posts a significant challenge for matrix
factorization techniques for recommendation systems. The number of observed product ratings is
significantly smaller than the stated threshold (that is 13,600x4xlog(13,600)~224,865) to achieve
an effective reconstruction of the rating matrix (Candés and Recht, 2009).

On average, a product receives 9.19 ratings (median=7, SD=7.95), and a customer provides
4.68 ratings (median=4, SD=3.04). These statistics confirm the fact that customers rate only a
small handful of products out of a huge number of available products which presents a massive
missing data challenge for the analysis ahead. Looking at the average rating received per product,
the mean is 4.25 (median=4.33, SD=0.52). The average rating provided per customer has a mean
of 4.22 (median=4.38, SD=0.75). The product ratings are heavily skewed towards the high end of

the scale.

6.2 Implementation and Selection of Covariates

We applied the proposed model to the Amazon rating dataset described above. More
specifically, our proposed methodology models the online rating dataset as a weighted bipartite
network and performs two-way clustering: a derived customer (product) cluster is a group of
customer nodes with similar connectivity pattern to product (customer) cluster, and their
connectivity patterns are affected similarly by the customer and product attributes. In this context,
our methodology thus considers the ratings given by each customer, the ratings received by each
product, as well as who rates what. Also, to account for the effects of other variables on who rates

what, we employ product price as the product attribute (X]’-’), and customer spending level (average

purchase price) as customer covariates (X} ) in the model of rating network structure to
parameterize the model component on whether a customer rates a product (i.e., the network edges).
Product price and customer spending level are included because price/spending level may affect

customers’ expectation, and in turn affect the after-purchasing satisfaction. Limited by the data



availability, we do not have demographic variables. But our proposed model is able to incorporate
demographics and other variables when they are available.
6.3 Co-Clustering Results

With our dataset, we choose four customer clusters and three product clusters, given their
satisfactory predictive performance in the network cross-validation (Chen et al., 2018; Li et al.,
2020). Tables F-1, F-2, and F-3 in Web Appendix F list the network model parameter estimates.
After obtaining the parameter estimates, we derive the latent memberships by assigning each
customer and product to various clusters separately according to the corresponding (largest)
estimated probabilities. Table 5 summarizes the descriptive statistics of customers by cluster. The
clustering results suggest that customers have highly heterogeneous tastes and review patterns, as
shown by their rating distributions, number of ratings, and review propensities. For the customers
under study, the mixing proportions (i.e., the relative sizes of the derived clusters) are 18% for
Customer Cluster 1, 25% for Customer Cluster 2, 6% for Customer Cluster 3, and 50% for
Customer Cluster 4. We perform both parametric and nonparametric statistical tests to compare
the differences across clusters (See Web Appendix G) and draw inferences about the population.
Based on Table 5, we find:

e Customer Cluster 1 (labeled as “critical reviewers”) consists of customers whose ratings
are polarized. They tend to have strong opinions on the products and use the 1-, 2- and 3-star much
more often than the other customer clusters: 25% of their ratings are 1-star, 20% are 2-star, 26%
are 3-star, while 24% are 5-star and 4% are 4-star. On average, they have the lowest mean rating
per customer (mean=3.32, median=3.50), and a relatively low review propensity (mean=0.064%,
median=0.054%).

e Customer Cluster 2 (labeled as “fair reviewers ) consists of customers who tend to use the
middle of scale by assigning 4-star (57%) and 3-star (20%), along with a small number of 1-star
(0.5%), 2-star (5%) and 5-star (16%). On average, they have a relatively high review propensity
(mean=0.071%, median=0.053%).



e Customer Cluster 3 (labeled as “‘friendly reviewers ) consists of customers whose ratings
are very friendly. These customers tend to use 5- and 4-star: 59% of their ratings are 5-star, and
34% are 4-star. On average, they have the largest number of ratings provided per customer
(mean=6.27, median=6), and a relatively low review propensity (mean=0.064%, median =0.054%).

e Customer Cluster 4 (labeled as “super nice reviewers ) consists of customers who are most
likely to give a 5-star (97% of ratings). On average, they have the highest average rating per
customer (mean = 4.65, median=4.86), the highest spending power (mean = $22.17,
median=%$16.26), the smallest number of ratings provided per customer (mean=4.46, median=4),
and a relatively high review propensity (mean=0.072%, median=0.055%).

[Insert Table 5 Here]

To facilitate customer clustering, our model also identifies 3 product clusters of distinct
characteristics as summarized in Table 6. The mixing proportions are 9% for Product Cluster 1,
59% for Product Cluster 2, and 32% for Product Cluster 3. Based on Table 6, we find:

e Product Cluster 1 (labeled as “most rated products”) consists of products which are most
rated on average. The average number of ratings per product is three to four times more than the
other two clusters. On average, they have a medium level of average rating per product
(mean=4.22, median=4.27). A lot of products in this cluster have very good selling performance:
16% of the products in this cluster are listed as Top 100 products based on Amazon’s best seller
rank, and 18% are listed between Top 101 to Top 500. Both percentages are much higher than
those of the other two clusters. They have particularly high average review propensity
(mean=0.219%, median=0.214%).

e Product Cluster 2 (labeled as “lower and less rated products™) consists of products which
tend to be less rated together with lower ratings. On average, these products have the lowest
average rating per product (mean=4.01, median=4.13), the smallest number of ratings per product
(mean=6.70, median=6), and the lowest review propensity (mean=0.052%, median =0.053%).

e Product Cluster 3 (labeled as “highest rated products) consists of products which are

highest rated on average. They have the highest average ratings per product (mean=4.70,



median=4.71), and the highest price (mean=22.00, median=14.99) on average. Products from well-
known brands tend to show up in this cluster. On average, products in this cluster have a relatively
low review propensity (mean=0.063%, median=0.062%).

[Insert Table 6 Here]

To gain a higher-level understanding of the identified customer groups’ review pattern with
the product groups, we present the histogram of observed ratings for each product-customer cluster
pair (see Figure 2). As shown in Figure 2, the rating distributions are much more homogenous
within each customer cluster than within each product cluster. In other words, customers within
each customer cluster (of similar tastes) appear to be quite homogeneous: the majority of
customers in clusters 2, 3 and 4 have similar tastes, respectively, no matter what products are
considered, but the rating patterns for Customer Cluster 1 vary with the product clusters being
considered.

We also present the estimated review propensities at the cluster level. Figure H in Web
Appendix H shows the predicted review propensities as a network: a node represents a customer
cluster or a product cluster; the area of a square represents cluster size; and the link width
represents the corresponding review propensity. As indicated in Figure H, customers’ review
propensities vary substantially toward different product clusters. Product Cluster 1, although its
size is small, has a significantly larger propensity to be reviewed by all customer clusters. We
consider this group of products as “buzz” products. Their review propensities are on average 2 to
6 times larger than that of other product clusters. This is aligned with the fact that Product Cluster
1 contains many “most rated” products. Table H in Web Appendix H summarizes the descriptive
statistics of the review propensities for each customer-product cluster pair.

6.4 Predictive Performance

For predictive validation, we randomly pick 5% of customers in the dataset and withhold
one rating from each of them. Using this hold-out data, we compared the predictive performance
of the proposed methods and its sub-model which does not use any covariates to parameterize the

rating network structure. In addition, we compared the predictive performance of the proposed



methods with two state-of-the-art approaches, including the spectral algorithm OptSpace proposed
by Raghunandan et al. (2010) and one of the famous matrix factorization approaches introduced
by Koren et al (2009). It is worth pointing out that Raghunandan et al. (2010) achieved the optimal
sample complexity in the matrix completion problem and Koren et al (2009) presented the matrix
factorization models in the Netflix Prize competition. The OptSpace algorithm of Raghunandan et
al. (2010)  was  implemented in R  package  ROptSpace  (https://cran.r-

project.org/web/packages/ROptSpace/index.html). The implementation of matrix factorization

using the stochastic gradient descent optimization popularized by Simon Funk that won the third
place in the Netflix Prize competition was implemented as the FunkSVD function in R package

recommenderlab (https://cran.r-project.org/web/packages/recommenderlab/index.html).

As shown in Table 7, our proposed method has the smallest RMSE, and the differences
between the proposed methods and its sub-model as well as the two state-of-the-art approaches
(FunkSVD and OptSpace) are statistically significant, since the differences are at least 8.5 standard
errors away from zero. To further test the proposed model’s predictive performance, we compared
its 25% hit rate of top reviews versus that of the its sub-model as well as the two state-of-the-art
approaches: with the hold-out data, we selected the first quantiles of the reviews based on the
withhold ratings and the predicted ratings separately; then we calculated what percentage of the
‘true’ top 25% reviews were overlapped by the top 25% based on the predicted ratings. Also, our
proposed model has much higher hit rates than the others. This indicates that our model has the
potential to help sellers identify who are more likely to rate their products highly.

Our method empowers E-commerce platforms to help sellers who are interested in boosting
their product ratings with better customer targeting strategies. For example, the seller of a product
could use results from the proposed methodology to identify “high value” potential customers who
will rate the product higher than its current rating. Then the online seller can send reminders to
“high value” customers to review their recent purchases and offer special discounts to invite
potential “high value” customers to participate in an “early reviewer” program. By targeting the

potential “high value” customers, an online seller may expand her customer base, achieve a higher


https://cran.r-project.org/web/packages/ROptSpace/index.html
https://cran.r-project.org/web/packages/ROptSpace/index.html
https://cran.r-project.org/web/packages/recommenderlab/index.html

product rating, and maximize marketing efforts without wasting resources to target “/ow value”
customers who are not interested in the product or likely to give poor ratings.
[Insert Table 7 Here]
7 Conclusion
In this paper, we propose a new model-based co-clustering methodology that utilizes large-

scale online product rating networks to simultaneously cluster customers and products. The

proposed model identifies customers with similar tastes and rating patterns. More specifically, our
method classifies customers and products into separate customer clusters and product clusters,
identifies memberships of the derived clusters, estimates the cluster-level model parameters, and
provides probability estimates linking individual members from a customer cluster to those from
a product cluster. Results from the co-clustering are used to generate individual-level rating
predictions. Different from previous research, we extend finite mixture clustering methods to
bipartite network modeling, focus on ordinal data, and devise efficient variational inference
methods for computation so that our method better accommodates large-scale rating data in E-
commerce. In addition, we incorporate not only the rating information but also customer and
product attributes to derive the clusters.

To conclude, the proposed methodology provides marketing researchers and managers
with a powerful tool for analyzing online rating data and help online sellers to design effective
customer targeting strategies. Future research could consider incorporating concomitant variables
directly in the model to automatically profile identified clusters. One might also consider

incorporating dynamics to capture the evolvement of clusters over time.
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Table 1 Monte Carlo Experimental Design Factors

Factors Levels Codes
Small network: N=250, M=50 1
Size of the Network (X1) Medium network: N=3000, M=300 2
Large network: N=10000, M=3000 3
More: K=4, =3 1
Number of Clusters (X2) Less: K=3. L3 5
. . With Covariates 1
Existence of Covariates (X3) Without Covariates 5

Table 2 Overall Performance of Proposed Model and Benchmark Models
for the Monte Carlo Study (Mean)

Pﬁggg’d Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 | Benchmark 5
Hit Rate: Customers (0969004) (0967078) (0967077) (0968015) (00..08076) (0968064)
Hit Rate: Products (0969064) (0969062) (0968018) (0969073) (00..09025) (00.69082)
RMSE (8°) (0960094) (0965147) (0961034) (0(?.0510 7) (09'0102) (09'04188)
RMSE (6Y) (00,’00085) NA (00,60074) NA (00.61008) NA
RMSE (67) (00,60021) NA (0960042) NA (0960021) NA
RMSE (@) (0%1098) NA NA (oo.goog) (0().62078) (0961088)

Note: Numbers in parentheses are

standard errors.



Table 3 Computational Efficiency Measures of Proposed Model and Benchmark Models

for the Monte Carlo Study (Median)

Network Size

Small Medium Large
Network Network Network
Total Time Proposed Model 0.07 1.42 26.20
(Unit: hour) Benchmark 4 0.02 0.94 42.61
The Number of Tterations Proposed Model 768.50 1528.50 507.50
Benchmark 4 95.50 476.00 442.00
Time per Iteration Proposed Model 0.36 3.08 163.22
(Unit: second) Benchmark 4 0.68 7.09 232.52
Table 4 Descriptive Statistics of the Dataset
Mean | Median Min Max SD
Customer Number of Products Rated Per Customer 4.68 4.00 1 48 3.04
(N=13600) Average Rating Provided Per Customer 4.22 4.38 1 5 0.75
Customer’s Average Spending Level 21.33 15.96 0.01 342 21.41
Product Number of Ratings Received Per Product 9.19 7 5 172 7.95
(M=2657) Average Rating Received Per Product 4.25 4.33 1.8 5.0 0.52
Product Price 20.17 12.99 0.01 295 24.26
Best Sellers Rank: Top 100 5%
Best Sellers Rank: Top 101-500 11%




Table 5 Descriptive Statistics of Customers by Cluster

1 in the format Mean|Median|Min|Max

Customer
Cluster

1: Critical Reviewer

2: Fair Reviewer

3: Friendly Reviewer

4: Super Nice

Cluster Size

2511

3456

841

6792

Mixing
Proportion

18%

25%

6%

50%

Rating
Distribution

100%:
75%;
50%1

25%

HmE_N
1 2 3 4 5

100%

75%

50%:
25%:
0% — _ . ‘ .
1 2 3 4 5

100%:
75%
50%1
25%; .
0% - .
2 3 4

1 5

100%:

75%:

50%;

25%;

0% !
1 2 3 4 5

Avg Rating
Per
Customert

3.32(3.50|1.00[4.80

3.98/4.00/1.60[4.92

4.40/4.50[2.83]4.93

4.65/4.86/1.80]5.00

No. of
Ratings Per
Customert

4.59/4]1146

47741135

6.27/6]2/44

4.46/4]1148

Spending
Power{

20.03/14.95(0.01/294.99

20.91/15.99/0.01]194.99

20.22|15.89]1.00]147.08

22.17]16.26/0.01[342.00

Review
Propensityt

0.064%]0.054%|0.011%]0.220%

0.071%]0.053%]0.008%]0.355%

0.064%|0.054%]0.020%]0.194%

0.072%]0.055%]0.010%| 0.255%




1 in the format Mean|Median|Min|Max

Table 6 Descriptive Statistics of Products by Cluster

Product Cluster

1: Most Rated

2: Less and Lower Rated

3: Highest Rated

Cluster Size 229 1575 853
Mixing Proportion 9% 59% 32%

100% 100% 100%

75% 75% 75%
Rating Distribution - e iy

25% 25% I 25%

0%l __-. - ---. %] __—-
] 5 3 4 5 1 2 3 4 5 i 2 3 4 5

Avg Rating Per Product? 4.22|14.27|2.45)4.89 4.01/4.13|1.80}4.80 4.7014.71|4.12|5.00
No. of Ratings Per Product} 27.79]22|13|172 6.70|6/5|17 8.79|8|5|17
Price} 16.52[9.99]0.01]149.00 19.70]12.99]0.01]281.25 22.00/14.99]0.01]295.00
Review Propensityt 0.219%]0.214%0.023%0.355% 0.052%]0.053%0.008%]0.061% 0.063%]0.062%]0.009%0.081%
% as Top 100 Best Sellers 16% 2% 5%
% as Top 100-500 Best Sellers 18% 8% 13%




Table 7 Predictive Performance of Ratings

Proposed Sub-model FunkSVD ROptSpace
1.111 1.145 1.526 4.359
RMSE (0.004) (0.004) (0.005) (0.004)
Hit Rate of 0.320 0.283 0.299 0.229
Top 25% Raters (0.003) (0.003) (0.003) (0.003)

Note: Numbers in parentheses are standard errors. Numbers are based on 500 random subsets of size 100.
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Figure 1 A Bipartite Network Representation of a Rating Database

customer_seg: 1

customer_seg: 2 \ | customer_seg: 3

customer_seg: 4

| :Bas™pnpoid

12345

.. —-Il |-
2 345 2 3 4 5
Ratmg

z :Basjonpoud

||

¢ :6asjonpoud

Most Rated

Less and
Lower Rated

Highest Rated

Figure 2 The Distributions of Observed Ratings for Customer-Product Cluster Pairs
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