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ABSTRACT

Foliar traits such as specific leaf area (SLA), leaf nitrogen (N), and phosphorus (P) concentrations play important
roles in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been
generated using statistical upscaling approaches based on in-situ trait observations. Here, we intercompare such
global upscaled foliar trait maps at 0.5° spatial resolution (six maps for SLA, five for N, three for P), categorize
the upscaling approaches used to generate them, and evaluate the maps with trait estimates from a global
database of vegetation plots (sPlotOpen). We disentangled the contributions from different plant functional types
(PFTs) to the upscaled maps and quantified the impacts of using different plot-level trait metrics on the evalu-
ation with sPlotOpen: community weighted mean (CWM) and top-of-canopy weighted mean (TWM). We found
that the global foliar trait maps of SLA and N differ drastically and fall into two groups that are almost uncor-
related (for P only maps from one group were available). The primary factor explaining the differences between
these groups is the use of PFT information combined with remote sensing-derived land cover products in one
group while the other group mostly relied on environmental predictors alone. The maps that used PFT and
corresponding land cover information exhibit considerable similarities in spatial patterns that are strongly driven
by land cover. The maps not using PFTs show a lower level of similarity and tend to be strongly driven by in-
dividual environmental variables. Upscaled maps of both groups were moderately correlated to sPlotOpen data
aggregated to the grid-cell level (R = 0.2-0.6) when processing sPlotOpen in a way that is consistent with the
respective trait upscaling approaches, including the plot-level trait metric (CWM or TWM) and the scaling to the
grid cells with or without accounting for fractional land cover. The impact of using TWM or CWM was relevant,
but considerably smaller than that of the PFT and land cover information. The maps using PFT and land cover
information better reproduce the between-PFT trait differences of sPlotOpen data, while the two groups per-
formed similarly in capturing within-PFT trait variation.

Our findings highlight the importance of explicitly accounting for within-grid-cell trait variation, which has
important implications for applications using existing maps and future upscaling efforts. Remote sensing infor-
mation has great potential to reduce uncertainties related to scaling from in-situ observations to grid cells and the
regression-based mapping steps involved in the upscaling.

1. Introduction

Vascular plants play a crucial role in the terrestrial Earth system due
to their exchange of carbon, water, nutrients, and energy with the at-
mosphere and the pedosphere. Moreover, plants are important elements
in the biosphere as they are strong drivers of the population dynamics of
other organisms. Functional traits are important for characterizing
vegetation function and plant ecological strategies related to metrics of
performance, such as nutrient retention, biomass accumulation and CO,
uptake (Bongers et al., 2021; Diaz et al., 2016; Wright et al., 2004). In
particular, morphological and chemical leaf traits, such as specific leaf
area (SLA) and leaf concentrations of phosphorus (P) and nitrogen (N),
are key components of the leaf economic spectrum (Wright et al., 2004).
In turn, the leaf economic spectrum contributes to determining plant
growth strategies and canopy carbon exchange dynamics globally
(Reich, 2014).

Due to their important roles in plant metabolism, the leaf traits N, P
and SLA have been used as inputs to land surface models (Walker et al.,
2017), but often in highly simplified ways. This is due to the challenges
of estimating these traits robustly at the global scale using currently
available remote sensing methods due to their weaker light absorption
signals compared to leaf chlorophyll content for which global maps
already exist (Croft et al., 2020; Wan et al., 2024; Xu et al., 2022).
Therefore, many land surface modeling applications have been using
plant functional type (PFT) look-up tables for key traits such as photo-
synthetic capacity, which is closely related with N, P and SLA (Kattge
etal., 2009; Walker et al., 2014). These look-up tables contain PFT mean
trait values that can be combined with remote sensing-based maps of
land-cover types dominated by particular PFTs to approximate global
trait distributions, but these approaches ignore large within-PFT trait
variability driven by inter- and intraspecific trait variation (Kattge et al.,
2011; Scheiter et al., 2013; Van Bodegom et al., 2012). Furthermore,

representing land cover types by only their dominant PFTs emphasizes
top-of-canopy vegetation and ignores the complexity of multi-layered
ecosystems.

To overcome the limitations of simplified approaches based on PFT
mean trait values for land surface modeling applications and to address
ecological questions e.g. related to aspects of functional biodiversity,
static maps of SLA, N, P and other traits have been produced based on in-
situ, leaf-level trait measurements using statistical upscaling approaches
at regional (Loozen et al., 2020; Simova et al., 2018; Swenson and
Weiser, 2010; Zhang et al., 2021) and global scales (Boonman et al.,
2020; Butler et al., 2017; Madani et al., 2018; Moreno-Martinez et al.,
2018; Schiller et al., 2021; Vallicrosa et al., 2022; van Bodegom et al.,
2014; Wolf et al., 2022). These upscaled maps of N, P and SLA were
generated using different methods, different trait databases and were
developed for a range of purposes, such as supporting land surface
modeling, biodiversity characterization or a trait-based estimation of
the distribution of vegetation types. Given these contrasting approaches
and aims, we sought to understand the degree of consistency among
these maps, as well as their performance when evaluated in comparison
to plot level in-situ data.

For potential users, the reliability of upscaled global foliar trait maps
and their suitability for specific purposes are difficult to assess. Identi-
fying the key sources of uncertainties and limitations of these maps can
provide guidance for users and help improve the global mapping of plant
traits. Here, we provide a comprehensive evaluation of the current
global upscaled foliar trait maps of SLA, N, P consisting of the following
elements:

1) Categorization of upscaling approaches;
2) Comparison of spatial patterns and attribution of differences to
upscaling methodology;
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3) Evaluation against trait estimates based on a global vegetation plot
database.

2. Materials and methods
2.1. Terminology

The upscaling of foliar trait maps is relevant for different scientific
communities (e.g., land surface modeling, vegetation remote sensing,
macroecology), which may use different or partly similar terms with
different meanings. To avoid misunderstandings and be able to use
convenient shorthand notations for concepts frequently used throughout
the manuscript, we clarify our use of key terms with the following def-
initions (Table 1). We do not claim that these definitions are necessarily
optimal or universal, rather, they serve as a pragmatic way to clarify
terms used in the presentation of our study. Note that the land cover
types (LCTs) we consider are land cover functional types that can be
directly matched to PFTs (Table 1) in the sense used in previous work
(Friedl et al., 2002; Poulter et al., 2015). We use the more general term
PFT information’ to include both (in-situ) PFT and (grid-cell-level) LCT
for the sake of convenience as PFT and LCT data were typically used
together in the upscaling.

2.2. Trait maps

We identified seven publications in the literature (state June 2022)
that present global, statistically upscaled trait maps with at least one of
the three traits SLA, N or P: van Bodegom et al. (2014); Butler et al.
(2017); Madani et al. (2018), Moreno-Martinez et al. (2018), Boonman
et al. (2020), Schiller et al. (2021), and Vallicrosa et al. (2022) (Table 2).
For the sake of simplicity, we use a short version of the last name of the
first author of each map-related publication to refer to the different
maps, e.g., ‘Bodegom’ refers to the map of van Bodegom et al. (2014).
‘Moreno’ refers to Moreno-Martinez et al. (2018) (see Table 2).

The degree of completeness of the spatial coverage of the maps
differed. Four maps provided gap-free global maps (Bodegom, Butler,
Madani, Boonman), while the two high-resolution maps excluded
cropland (Moreno, Vallicrosa). Schiller had gaps in different regions due
to the availability/selection of plant photographs from iNaturalist. All
upscaling approaches except Madani only considered trait variation in
natural vegetation and excluded foliar traits in croplands. This implies
that trait values in cropland areas indicate traits of natural vegetation
actually or potentially occurring there. While most approaches consid-
ered vegetation of different growth forms, Vallicrosa only mapped traits
for woody vegetation (Table 2).

Table 1
Glossary of terms.

Plant functional type (PFT)  classification of plants, mostly based on growth form,
leaf type and leaf phenology. Example: evergreen
needleleaf tree.

remote sensing-based classification of the land cover,
dominated by specific PFTs. Example: evergreen
needleleaf forest.

the mean trait value of a community weighted by the
species cover, abundance, or biomass. In the case of
the sPlotOpen dataset the weighting is done by species
cover or abundance.

the mean trait value at the top-of-canopy weighted by
the cover of the species that constitute the dominant
PFT of a plot.

grid cells with low trait variability, either occupied by
a single LCT or several LCTs with similar trait values.
grid cells with high trait variability, occupied by more
than one dominant PFT with notable differences in
mean trait values of the dominant PFTs.

Land cover type (LCT)

Community weighted mean
(CWM)

Top-of-canopy weighted
mean (TWM)
Homogeneous grid cells

Heterogeneous grid cells

Remote Sensing of Environment 311 (2024) 114276

Table 2
Overview of the upscaling approaches and the corresponding maps. Note that
PFT use also implies use of land cover type products.

Lead Year Traits PFT Reso- Vegetation Reference
author use lution' Considered
Bodegom 2014  SLA no 0.5° Natural van Bodegom
et al. (2014)
Butler 2017  SLA, yes 0.5° Natural Butler et al.
N, P (2017)
Madani 2018 SLA yes 0.05° All Madani et al.
(2018)
Moreno 2018  SLA, yes 0.008° Natural” Moreno-
N, P Martinez
et al. (2018)
Boonman 2020 SLA, no 0.5° Natural Boonman
N, P et al. (2020)
Vallicrosa 2021 N, P yes 0.008° Woody Vallicrosa
et al. (2022)
Schiller 2021 SLA, no 0.5° Natural Schiller et al.
N (2021)

f The resolutions 0.5°, 0.05°, and 0.008° correspond to square grid cell sizes of
about 50 km, 5 km and 1 km at the equator.

 No crop traits in training data but predictions for cropland areas, corre-
sponding to potential natural vegetation.

" No crop traits in training data and no predictions for cropland areas.

2.3. Upscaling approaches

All approaches derived gridded global trait maps from globally
distributed leaf-level in-situ observations (Fig. S1) and can be charac-
terized by two steps of upscaling: (1) leaf-to-grid scaling, i.e. the scaling
of in-situ leaf-level data to the respective cells of a spatial grid, and (2)
spatialization, i.e., increasing the spatial coverage from the limited
number of grid cells with in-situ data to the global land surface (Fig. 1).
All approaches except Schiller applied step (1) before step (2) (Fig. 1)
and applied regression-based spatialization that first established trait-
environment relationships for the reference grid cells and then applied
them to the global vegetated land surface to obtain global maps. Schiller,
however, switched the order of the two upscaling steps and first esti-
mated trait values for a large number of iNaturalist photographs of in-
dividual plants distributed globally and aggregated these trait values to
grid-cell-level in the second step.

There were important differences between the upscaling approaches
in essentially all aspects of the upscaling processing chain (Fig. 1). The
approaches differed in their motivations, input data and its processing,
leaf-to-grid scaling methods, and spatialization, including both the
choice of predictor variables and regression algorithms (Fig. 1, Text S1
in the supplementary material). The only study that calculated local
community mean trait values from the in-situ data before grid-cell level
aggregation was Boonman, the other studies averaged all available in-
situ observations within a grid cell either pooled (van Bodegom) or
separately per PFT (Madani, Moreno, Vallicrosa). The environmental
predictors used in the upscaling approaches were mainly related to
temperature, solar radiation, water availability and soil characteristics
(Table S1) and came from a variety of climate and soil products (Table
S2). Importantly, there were differences whether and how PFT and
remote sensing derived LCT information was used for upscaling (Fig. 1).
Moreno was the only approach that directly used optical reflectance
satellite remote sensing data as predictors in the spatialization (Table
S1).

2.3.1. Categorization of upscaling strategies

All maps used environmental predictor information (‘Env’) in the
spatialization step, but only some used PFT information. Therefore, we
use the shorthand notation of ‘PFT + Env’ vs. ‘Env’ maps to more
generally distinguish the upscaling approaches that used PFT informa-
tion from those that did not. Note that there are considerable differences
in the way PFT information was used in the PFT + Env approaches, e.g.
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Boonman Schiller

biodiversity
characterisation

Fig. 1. Schematic overview of the upscaling approaches. Each upscaling approach is shown in a separate color. Special emphasis is put on the use of plant functional
type (PFT) and land cover type (LCT) information shown in dark gray color. The explanatory column on the left hand side applies to all approaches except Schiller for
which the corresponding column on the right hand side applies. ‘TTT’ refers to the Tundra Trait Team database, ‘literature’ to data based on individual publications.
The regression algorithms include multiple linear regression (MR), Bayesian hierarchical regression (BHR), generalized additive models (GAM), generalized linear
models (GLM), generalized boosted models (GBM), random forests (RF), neural networks (NN), convolutional neural networks (CNN).

Moreno used PFTs only in the first step of the upscaling, while Butler
only used it at the end of the second step (Fig. 1). Also, the Schiller map
is categorized as ‘Env’ upscaling approach for the sake of convenience
(Fig. 1), although information from ground-based RGB images was used
in addition to environmental drivers.

2.3.2. Additional versions of the Butler and Moreno maps

To quantify the relative contributions of different types of predictor
information to the upscaled trait maps, we also analyzed versions of the
Butler and Moreno trait maps that differed only in the predictor vari-
ables used. Note that the PFT'maps only using fixed trait values per LCT
are referred to as categorical maps in Butler et al. (2017). We also make
use of this term (categorical) in the text to avoid potential confusion of
PFT trait maps with maps of PFT cover that would correspond to LCT
maps. We adjusted the mean trait values per LCT of the categorical
Butler maps to better capture the trait patters of the PFT + Env upscaled
Butler maps (Fig. S2).

2.4. Data processing

2.4.1. Global foliar trait maps

We used global trait maps provided by the map developers (the
leading authors of the relevant publications) to ensure that we had the
most up-to-date and correct versions of the upscaling products. Links to
access the maps are provided in the supplementary material (Table S3).
We only used maps representing the present and recent past and did not
consider maps of future change predictions such as Madani et al. (2018).
We aggregated the higher resolution maps (Madani, Moreno, Vallicrosa)
to the common resolution of 0.5° using the Bodegom map as reference
regarding the projection and coordinate origin. For this, we used the
aggregate function of the raster package in R (Hijmans, 2022) and aver-
aged over all available high resolution grid cells within a coarse grid cell
ignoring missing-data and zero values. Non-vegetated grid cells such as
bare soil, ice/snow etc. were excluded by selecting grid cells with a
minimum vegetation cover of of 5% based on the LCT map used by
Butler. Madani was the only data set to provide estimates for croplands,
so prior to aggregating to 0.5°, we masked out the cropland grid cells at
the original resolution of 0.05° based on the land cover map used by
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Madani. We did not mask out cropland-dominated grid cells at 0.5° to
include the trait variation of (potential) natural vegetation in cropland
regions.

2.4.2. Separation of land cover - driven and environmentally driven trait
variation and stratification by PFT

Our initial analyses revealed that LCT-driven trait variation domi-
nated the global spatial trait patterns of the PFT + Env maps. As one
objective of the upscaling approaches was estimating trait variation
within PFTs, it is important to disentang,le the dominant LCT-driven
trait variation that is related to between-PFT trait variation from the
variation within PFTs. The common approach to quantify variations
within LCTs is to select only homogeneous grid cells by applying a
threshold on the cover fractions of LCTs. However, this approach has an
important limitation: the land cover threshold only considers the ho-
mogeneity in land cover but not the variation of foliar traits, which we
aim to quantify. Therefore, we estimated the trait heterogeneity based
on fractional LCT using PFT mean trait values. We found that the rela-
tionship between land cover homogeneity and trait homogeneity can be
complex, partly showing even a strong negative relationship (Figs. 2,
S3).

This implies that in addition to a threshold on the cover fraction of
LCTs, a second threshold on the homogeneity in traits is needed. This
double threshold approach (‘trait heterogeneity filtering’), resulted in a
reasonable number of homogeneous grid cells for three of the six LCTs,
but for the remaining three LCTs not enough grid cells remain (Figs.
S2c). Therefore, we developed a complementary second approach to
unmix LCTs in heterogeneous grid cells (Text S2, Figs. S3, S4). For an-
alyses at the level of PFTs/LCTs we combined the two approaches to
obtain sufficient data for all LCTs. Both approaches are described in
detail in supplementary Text S2. Deciduous needleleaf forest (DNF) was
excluded from further analyses due to the sparseness of in-situ reference
data and the limited geographic extent of the distribution compared to
the other LCTs: evergreen broadleaf forest (EBF), evergreen needleleaf
forest (ENF), deciduous broadleaf forest (DBF), shrubland (SHR) and
grassland (GRA).

2.4.3. Evaluation against sPlotOpen

To evaluate the upscaled maps against data not directly used in the
upscaling, we used the sPlotOpen database (Sabatini et al., 2021).
sPlotOpen is an open-access collection of 95,104 vegetation plots
sampled in the field, spanning 114 countries. It consists of a stratified
random selection of vegetation plots derived from sPlot - The Global
Vegetation plot database (Bruelheide et al., 2019). Plots vary widely in
size, ranging between 0.03 and 40,000 m?. For each plot, sPlotOpen
reports the list of vascular plant species, together with a measure of their
relative abundance. Species mean trait values, as extracted from the TRY
database (Kattge et al., 2020, 2011), were combined with species
abundance data to calculate plot-level community weighted mean
(CWM) trait values. To evaluate the impact of vertical variations of foliar

ENF DNF EBF
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traits due to species composition, we calculated top-of-canopy weight
mean (TWM) trait estimates per plot, in addition to the standard CWM
trait estimates, which integrate traits from all vegetation layers. This
was done by first determining the dominant PFT of each plot using
thresholds on the species cover of a given PFT (Table S4) and then
calculating the weighted mean over all species of the dominant PFT of
the plot. One motivation for conducting the CWM vs. TWM comparison
was the differences in upscaling approaches regarding the scaling from
the leaf to the grid cell. To compare sPlotOpen and upscaled maps at the
level of individual PFTs, we stratified both CWM and TWM by PFT by
using the dominant PFT of the plot. We used the six PFT categories
defined above (ENF, DNF, EBF, DBF, SHR, GRA) and matched the spe-
cies in sPlotOpen to these categories using plant growth form, leaf type
and leaf phenology type from the TRY database and literature.

We compared characteristics of the upscaled maps with sPlotOpen at
two levels: using plot-level sPlotOpen data and grid-cell-level sPlotOpen
data.

Using grid-cell-level sPlotOpen data enables a more direct comparison
to upscaled maps than using plot-level data, but for this the sPlotOpen
plot data has to be scaled to the grid cell given the fact that sPlotOpen
plots are much smaller than the typical grid cell size (50 x 50 km) of
global upscaled trait maps. This scaling was done as follows to ensure
direct comparability to the upscaled maps. For the comparison to Env
upscaled maps, we aggregated the plot-level CWMs to the 0.5° grid cells
without any weighting. For the comparison to PFT + Env upscaled maps,
for each PFT, we first aggregated the plot-level TWM data to the 0.5°
grid cells without weighting and then combined the six sPlotOpen PFT
maps per trait by applying a weighted average based on the fractional
land cover for each 0.5° grid cell. Data filtering was applied to ensure
that sufficient data from sPlotOpen was available to be reasonably
representative of a grid cell by applying a 99% threshold on the cumu-
lated land cover. The high threshold is necessary as small fractions of
missing coverage can considerably impact the result if the missing PFT
has a very different trait value compared to the other PFTs that are
represented, e.g. ENF (Fig. 2). Also, outliers in the sPlotOpen data were
removed by applying a 90th percentile threshold for each trait. For the
comparison of between- and within-PFT trait variation we used un-
weighted grid-cell averages of all relevant plots per PFT.

2.5. Statistical analyses

Principal component analysis (PCA) was used to visualize the
grouping and relative correlation of different trait maps. Variables were
centered and scaled to unit variance for PCA using the prcomp function
in base R. Pearson correlation (R) was used to quantify the similarity
between two given maps. Apart from the ‘normal’ correlation based on
all selected grid cells, we also quantified the degree of ‘local correlation’
by calculating correlations in a moving window of 3 x 3 grid cells to
quantify the similarity in spatial patterns at smaller scales using the
corLocal function of the raster package (Hijmans, 2022). For each pair of

DBF SHR GRA

© | ] 15
= \

o .

o

0.7-cvV

T

0.5 1 0.5 1 0 0.5

o

.i

0 05 1 0

Land cover fraction

Fig. 2. Relationships between land cover homogeneityand foliar trait homogeneity for the example of specific leaf area (SLA). The within-grid cell coefficient of
variation (CV) of SLA is shown as indicator of trait heterogeneity. The CV was estimated from land cover fractions and plant functional type (PFT)-specific trait
values. The relationship between fcov and 0.7-CV as indicator of trait homogeneity is shown per land cover type (ENF: evergreen needleleaf forest; DNF: deciduous
needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous broadleaf forest; SHR: shrubland; GRA: grassland).
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maps, the local correlation produces a correlation map and to summa-
rize that map, the median was calculated.

All analyses and image processing were conducted using R version
4.0.2 (R Core Team, 2012), primarily with the raster package (Hijmans,
2022).

3. Results
3.1. Intercomparison of global maps and attribution of differences

3.1.1. Grouping of maps according to spatial patterns

A visual comparison of the different maps for SLA, N and P indicated
striking differences between the maps for each trait but no obvious
grouping or similarities at first sight (Fig. S6). However, we found that
the maps of SLA and N both clustered according to the use of PFT in-
formation for the upscaling of in-situ trait information: approaches using
this additional information (‘PFT + Env’) were similar among each other
and different from the other approaches that mostly used only envi-
ronmental predictors (‘Env’) (Fig. 3a). The first two axes of the PCA
explained 65% and 56% of the variance for SLA and N, respectively. The
patterns in the PCA biplots were confirmed by pairwise correlation an-
alyses showing a higher degree of within-group correlations for the
approaches that used PFT information (Fig. 3b). The local correlations
were moderately strong for the PFT + Env category but were zero for the
Env category. High local correlations between maps from the PFT + Env
group coincided with grid cells of high within-cell trait heterogeneity
(Fig. S7b). For N, the PCA results were generally similar as for SLA
(Fig. 3a) although one of the two Env maps did not fall into either group
and showed low correlations to all other maps. The first two axes of the
PCA explained 50%-60% of the variance. For P, only maps based on the
use of PFT and environmental information were available. They showed
similar global pairwise correlations as for SLA, but higher values for the
homogeneous grid cells and slightly lower local correlation when all or
the heterogeneous grid cells were selected (Fig. 3b).

3.1.2. Spatial patterns: between and within-group differences
We grouped the maps according to their use of PFT information and
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calculated the trait averages over all maps within a given category as
well as the coefficient of variation (CV) for each grid cell as a metric for
dissimilarity (Fig. 4). These ‘synthesis maps‘and corresponding CV maps
of SLA and N differed strongly between the PFT + Env and Env groups
(Fig. 4). On average, the CV values within the PFT + Env group were
lower than in the Env group. Despite the higher level of similarity of the
PFT + Env maps compared to the Env maps (Figs. 3b, 4, S8), there were
notable differences between individual PFT + Env maps of all three
traits such as the much higher trait values of the Butler maps at high
latitudes (Fig. S6, Fig. S8).

Across traits the average PFT + Env maps showed a close corre-
spondence between spatial patterns of traits and land cover, whereas the
average Env maps did not (Fig. 4, 5a). For SLA, the PFT + Env mean map
had high values in regions dominated by GRA, and SHR PFTs and a
distinct band of low values for ENF (Figs. 4, 5a). The Env mean map, in
contrast, showed - overall low values in the Southern Hemisphere and a
band of higher values in parts of the Northern Hemisphere dominated by
GRA and ENF (Figs. 4, 5a). For N, the PFT + Env mean map showed
somewhat similar patterns with a band of low values in the ENF domi-
nated areas, while the Env mean map had overall high values with little
contrast between the Northern and Southern Hemispheres. Also when
looking at Europe in more detail (Fig. 4), the PFT + Env maps for SLA
and N showed spatial patterns corresponding to dominant LCTs while
the Env maps showed little contrast between dominant LCTs. For P, the
mean PFT + Env map showed the lowest values in EBF-dominated re-
gions and clearly lower values in the Southern than the Northern
Hemisphere. P had somewhat lower values in the ENF-dominated region
compared to the surrounding areas but the contrast was smaller than for
SLA and N.

3.2. Evaluation of upscaled global trait maps with sPlotOpen

While it is instructive to compare the trait distributions of upscaled
maps to those of plot-level sPlotOpen data (Fig. S9, S10), the interpre-
tation is somewhat complex (Discussion 4.4.2). Therefore, we focus on
the comparison of upscaled maps to sPlotOpen data scaled to the grid
cells in the following results description.
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Fig. 3. Overview of principal component analyses and pairwise correlation of upscaled maps or specific leaf area (SLA), leaf nitrogen (N) and phosphorus (P)
concentration. In the principal component biplots with the first two axes a) and the pairwise correlation plots b), colors correspond to the use of predictor variables
(‘Env’ stands for environmental variables, while ‘PFT’ stands for plant functional type and land cover type information). Pearson correlation is shown either for all
selected grid cells (‘global’) or as median value of the local spatial correlation map in 3 x 3 pixel windows (‘local’). In b) the gray boxplots contain all possible pairs of
PFT + Env maps and the Env maps; for the PFT + Env maps, the same symbols are used for the cases ‘x vs. 3’ and ‘x vs. 4°, as 3 is only available for SLA and 4 only for
N and P; note that the symbols for P and the case ‘1 vs. 2’ and ‘2 vs. 4’ are so close that they are hard to distinguish visually.
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Fig. 4. Overview of spatial patterns of specific leaf area (SLA, mm?/mg), leaf nitrogen (N, mg/g) and phosphorus (P, mg/g) for different upscaled maps. For each
trait, the the upper row shows the average and the lower row shows the coefficient of variation (CV) between the maps of each upscaling category: those that used
both plant functional type and environmental information (PFT + Env) and those that use mostly only environmental predictors (Env). The average trait maps for
Europe are shown besides the global maps and have the same color scales as the corresponding global maps. The global and European maps of dominant land cover
type are shown for reference (ENF: evergreen needleleaf forest; DNF: deciduous needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous broadleaf forest;

SHR: shrubland; GRA: grassland).

3.2.1. With PFT stratification

We found large differences between upscaled maps regarding both
the spread of trait values between PFTs and the absolute values (Fig. 5b).
A general tendency was that the PFT + Env maps showed larger spread
between PFTs than the Env maps. This larger spread of the PFT + Env
maps was more consistent with grid-level sPlotOpen data for SLA and N
than for the Env maps even when considering the difference between
TWM vs. CWM. While CWM showed smaller between-PFT differences
than TWM, they were still clearly visible and had mostly similar patterns
between PFTs (Fig. 5b). The description of results focuses on mean PFT
trait values for the sake of simplicity, but the differences in spread be-
tween PFTs can also be observed across latitudinal gradients (Figs. S11,
S12).

For SLA, only the Butler map had a similar level of spread between
PFTs as sPlotOpen TWM and was the only map that came close to
matching the low values for ENF (Fig. 5b). However, the Butler map had
much higher values for SHR than sPlotOpen and EBF was also

considerably higher but these discrepancies were due to specific lat-
itudinal ranges and agreement in others was considerably better (Fig.
S12). The other two PFT + Env maps (Moreno, Madani) were more
consistent with sPlotOpen in terms of the order of PFTs, but had
considerably smaller between-PFT differences (even smaller than for
CWM). While the Env maps differed somewhat in the absolute values,
they generally tended to have the highest values for ENF and the lowest
values for SHR and GRA, which was opposed to the patterns in sPlo-
tOpen CWM (Fig. 5b).

For N, the difference in values for ENF among the PFT + Env maps
was smaller than for SLA, but the differences in spread between PFTs
and the order of PFTs were still considerable (Fig. 5b). Similar to SLA,
Butler showed higher values for SHR and EBF than sPlotOpen TWM and
showed more similar values for DBF and GRA. As for SLA, Moreno
showed a similar order of PFTs as sPlotOpen but even smaller spread
than CWM. The Vallicrosa maps showed large differences between ENF
and DBF but very similar values for the other PFTs. The two Env maps
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Fig. 5. Latitudinal patterns of upscaled trait maps and differences between plant functional types (PFTs). a) Median latitudinal trait values of fractional PFT cover
(fcov) and median latitudinal trait values of specific leaf area (SLA), leaf nitrogen (N) and phosphorus contents (P) averaged over the two upscaling groups (PFT +
Env vs. Env). The shading around the mean values indicates one standard deviation in cases where there were at least three maps. b) Comparison of mean PFT (fcov
>0.5) trait values per upscaling approach with colors indicating each PFT (ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous
broadleaf forest; SHR: shrubland; GRA: grassland). TWM indicates top-of-canopy weighted mean, and CWM includes all vertical layers (see Table 1).

overall had much smaller spread between PFTs than the other upscaled
maps and sPlotOpen.

For P, the Butler and Vallicrosa maps showed larger differences be-
tween PFTs than sPlotOpen, while the Moreno map had a more similar
level of differences (Fig. 5b). There was little similarity in the absolute
values between sPlotOpen and the upscaled maps except for EBF which
consistently had the lowest values for the upscaled maps and sPlotOpen.
The difference between TWM and CWM was considerably smaller for P
than for SLA and N.

We found considerable differences between upscaled maps regarding
their agreement with sPlotOpen in terms of the within-PFT trait varia-
tion. Moreover, different maps showed the best agreement with sPlo-
tOpen for any given trait and PFT with none of the maps clearly showing
the overall best performance (Fig. S12).

We found rather low grid-cell to grid-cell correlations of the upscaled
maps vs. sPlotOpen at the level of individual PFTs/LCTs. Moderate to
strong correlations only emerged when pooling data from all PFTs/LCTs
(Fig. S13). In particular, the Butler maps showed high correlations with
the difference to the Moreno map mostly being its lower SLA and N
values for ENF. The improved Butler categorical maps showed a similar
level of correlation as the PFT + Env map confirming that the correlation
in the results with pooled data is strongly driven by between-PFT trait
differences.

3.2.2. Without PFT stratification
Overall, we found that the upscaled maps showed moderate

correlations (R up to 0.6) to sPlotOpen when matching the leaf-to-grid
scaling strategy (unweighted average vs. average weighted by frac-
tional land cover) of sPlotOpen to that of the upscaled maps (Fig. 6a for
PFT + Env maps, Fig. 6b for Env maps). When comparing upscaled maps
to sPlotOpen scaled to the grid cell with a different approach than was
used in the upscaling approaches (Fig. 6b for PFT + Env maps, Fig. 6a for
Env maps), the correlations to sPlotOpen were considerably lower for
SLA and N (R = 0.2-0.4). For P, however, there were large differences
between the scaling options for the PFT + Env maps but they did not
follow the same pattern as for SLA and N except for the Butler Env map.
In particular, the highest correlation of PFT + Env maps (Moreno) to
sPlotOpen was to CWM without land cover weighting.

Even when only considering consistent leaf-to-grid scaling of sPlo-
tOpen and the upscaled maps, there were notable differences between
individual maps of the upscaling categories (Fig. 6). In the group of PFT
+ Env maps, the Butler map agreed best with sPlotOpen cover-weighted
TWM and the (optimized) categorical map (PFT) showed similar per-
formance as the full upscaled map. The Moreno map showed similar
agreement to sPlotOpen cover-weighted TWM as Butler for SLA, but
lower correlation for N and higher correlation for P (Fig. 6a). However,
the Moreno map tended to agree better with sPlotOpen unweighted (at
grid cell level) CWM, with considerable differences for SLA and P and
similar correlation for N (Fig. 6b). Among the Env maps, the Schiller
map showed consistently better agreement to sPlotOpen unweighted
CWM data than the other maps, especially for N (Fig. 6b).

We found a tendency of stronger univariate trait-environment
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the. The middle column b) shows the correlation between upscaled maps and community weighted mean (CWM) sPlotOpen data scaled to the grid without
weighting. Colors refer to the group of maps relying predominantly on environmental drivers (Env) or additionally also plant functional type and land cover in-
formation (PFT + Env). The blue colored bars indicate the highest correlation of sPlotOpen to a single environmental variable (among those used by Butler et al.,
2017) per trait and sPlotOpen data processing case. The right column c¢) shows principal component biplots (first two axes) of upscaled maps, sPlotOpen data, and the
climate variable (Clim) with the strongest relationships to Env maps (total annual solar radiation for SLA and N, mean annual temperature for P). In a) and b), the
mean over the two upscaling groups excludes the different versions of Butler (only PFT, only Env) and the climate cases. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

relationships for the unweighted CWM grid cell mean sPlotOpen trait
values compared to the land cover weighted TWM (Fig. 6b, ¢). This was
most pronounced for SLA and P where a single environmental predictor
showed similar levels of correlation to sPlotOpen data aggregated to grid
cells without weighting as the ‘best” upscaled Env maps.

4. Discussion

Overall, our findings indicate that users of upscaled foliar trait maps
should carefully consider which approaches are suitable for their
application given the fundamental differences between maps using PFT
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and land cover information compared to those that did not (Figs. 3, S6).
Even within those two categories, there are considerable differences and
the average of the respective maps did not outperform individual maps
in the evaluation (Fig. 6). This suggests, that comparing downstream
results based on different individual maps is preferable to using the
averages of maps from one of the two upscaling categories.

4.1. Upscaling with or without PFT and land cover information?

Both the PFT + Env and the Env upscaling approaches have practical
advantages and limitations which partly depend on the characteristics of

PFT + Env

A
L
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the in-situ data. We found that the Env-based maps do not capture the
between-PFT trait differences (Fig. 5b) and tend to show stronger sim-
ilarity to key environmental drivers (Figs. 6, 7c, Figs. S14, S15), while
they apparently reasonably capture environmentally driven within-PFT
variations (Fig. S12). This is directly opposed to the categorical maps
that only rely on PFT information to represent between-PFT differences
while, by design, lacking information on within-PFT trait variation
(Fig. 7c, Table S5). PFT + Env approaches can combine the two to
capture both between- and within-PFT trait variation (Figs. 5b, 7, S9,
S12). The benefits of including PFT information depend on the level of
between-PFT differences of the targeted trait, with SLA and N showing
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mean (TWM) data by Butler et al. (2017): the full upscaling model (‘PFT + Env’) using environmental predictors, plant functional type (PFT) and land cover in-
formation, the simplified categorical map (‘PFT’) only relying on land cover fractions and mean PFT trait values for 14 PFT categories, and the maps only relying on
environmental predictors (‘Env’). The color scales are optimized to maximize contrast for each map. b) the latitudinal distributions corresponding to the maps. c) the
relationships between annual mean daily total solar radiation and the SLA values of the maps shown in a) stratified by land cover type (ENF: evergreen needleleaf
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larger differences between PFTs than P (Fig. 5b). Our results show that
although including PFT information appears necessary to capture
between-PFT trait differences in the upscaling approaches we examined,
it is not sufficient to guarantee good performance (Figs. 5a, S9, Table
S5).

4.1.1. Motivation and limitations of upscaling using PFTs

Motivations for using PFT information in trait upscaling can be by
the refinement of oversimplified representations in PFT-based land
surface models or aspects more directly related to the upscaling itself.
Regarding the latter, we identified four main aspects:

(1) PFTs as tool to account for the lack of representativeness of in-situ
observations (leaf-to-grid scaling). In-situ trait observations in
trait databases such as TRY (Kattge et al., 2020, 2011) were not
designed to be representative of large (1 km or 50 km) grid cells
but to characterize plant species, which are grouped to PFTs. To
account for this lack of geographic representativeness, two stra-
tegies can be applied. First, averaging traits per PFT within each
grid cell and then weighting by PFT cover fraction using land
cover products before applying the spatialization (Moreno). Such
approaches have also been applied for scaling canopy structure-
related in-situ trait observations to larger grid cells in heteroge-
neous landscapes (Hufkens et al., 2008; Shi et al., 2015). Second,
separately upscaling per PFT before combining them in a final
step using LCT data (Butler, Madani, Vallicrosa). The basis for
both strategies is that the within-grid cell trait variability is
considerably reduced when stratifying by PFT, reaching a
reduction of about 50% for SLA TWMs (Fig. 8b) which is
consistent across a wide range of spatial scales (Fig. S16). As this
reduction corresponds to between-PFT trait differences (Fig. 5b),
similar results are expected for N but a smaller reduction for P.

(2) PFT as useful categorical predictor (spatialization). As trait-
environment relationships can differ between PFTs (Fyllas
et al., 2020; e.g. Wright et al., 2005), including PFT information
can considerably improve their predictive performance (Kam-
bach et al., 2023; e.g. Reich et al., 2007).

(3) Land cover as additional spatial constraint (spatialization). In
addition to more robust within-PFT trait models, separately
upscaling per PFT (Butler, Madani, Vallicrosa) effectively results
in an additional spatial constraint on possible trait values in re-
gions with sparse or no in-situ observations but reliable land
cover information as the trait variation within a PFT tends to be
smaller than across all PFTs. This can help reduce uncertainties in
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areas where environmental-based trait models tend to
extrapolate.

(4) Fractional land cover as tool to better represent traits in homogeneous
grid cells (spatialization). Grid cells for which in-situ trait data are
available are disproportionally heterogeneous in terms of land
cover (Fig. 8a) (and hence also traits). This leads to narrower and
more unimodal trait distributions in the grid cell- level training
data than the plot-level in-situ data (Fig. S17a) and tends to
propagate in upscaling approaches that do not explicitly use land
cover weighting in the spatialization, i.e. Env approaches and the
Moreno approach. However, the PFT + Env approaches with
separate upscaling per PFT such as Butler are not affected by this
as they effectively model homogeneous grid cells regarding land
cover. Thus, they can “recover” the latitudinal trait distributions
from in-situ data by better characterization of homogeneous grid
cells in the spatialization step of the upscaling (Figs. 7b, S9).

Limitations of using PFT and land cover information. The PFT cate-
gories we used are based on the categorical traits growth form, leaf type
and leaf phenology. They are useful in practice as they show clear dif-
ferences in foliar traits (Fig. 5b, S11, also (Kattge et al., 2011)), can be
reasonably well mapped from remote sensing, and — following the global
spectrum of plant form and function (Diaz et al., 2016) - represent an
optimal decomposition of trait distributions at this level. However, for
some PFTs such as shrubs and grasslands, trait distributions are wide
and show considerable overlap, which is not ideal. To better decompose
trait variation, finer PFT categories could be used by e.g. separating
shrubs into similar types as forest, distinguishing C3 and C4 grass and/or
including additional phylogenetic characteristics (Anderegg et al.,
2022). For upscaling there is a trade-off, however, as such finer PFT
categories are harder to robustly capture at the global scale using
currently available remote sensing information.

By definition, the LCT categories of the remote sensing-based LCT
maps used in the upscaling only have a minimum cover threshold
(Loveland and Belward, 1997) and therefore do not quantify the actual
canopy cover which would be needed although progress in this direction
is being made (Discussion 4.5). Also, the land cover maps can have
considerable uncertainties even when considering only the original land
cover class definitions (Congalton et al., 2014). Given these un-
certainties and dominant impacts of the land cover information at both
the global and local scales (e.g. Figs. 3b, Fig. S18), the differences be-
tween the PFT + Env maps could therefore be partly explained by dis-
crepancies between the land cover products used by the different
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Fig. 8. Land cover heterogeneity at the grid-cell level and reduction of its impacts on trait heterogeneity by using plant functional type (PFTs). a) distribution of 0.5°
grid cells regarding the maximum land cover fraction irrespective of the land cover type: sPlotOpen (all plots, N ~ 5000), TRY data selected by Butler et al. (2017)(N
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and all available trait data (bar showing median over the global-scale distribution) or stratified per PFT (boxplot summarizing the global medians of the individual

plant functional types, i.e., PFTs).
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upscaling approaches (Table S2).

4.1.2. Motivation and limitations of upscaling without PFTs

Due to the limitations of PFT categories and LCT products, upscaling
without them can seem preferable conceptually. Upscaling approaches
without using PFT information could be used for estimating future
changes in foliar traits (e.g. Boonman et al., 2022) without the need for
future land cover predictions which likely have higher uncertainties
than the corresponding climate predictions from Earth System Models.
Upscaling approaches that do not rely on PFT information, however,
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face important practical limitations.

Limitations in leaf-to-grid scaling. In the leaf-to-grid scaling, the un-
weighted averaging over available in-situ data effectively assumes either
that these data are representative of the grid cells or that there might be
biases at smaller scales that average out when looking at global scale
trait patterns. The assumption of representativeness is not well justified
as laid out in 4.1.1 (aspect 1) above. Simply increasing the number of
observations without a dedicated sampling design does not decrease the
level of land cover heterogeneity (Fig. 8a). This reasoning also applies to
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Fig. 9. Impacts of unweighted scaling to grid cells on latitudinal trait distributions across a range of spatial resolutions. a) example of the impacts of unweighted
averaging on sPlotOpen top-of-canopy weighted mean (TWM) and community weighted mean (CWM) trait distributions in the latitudinal range of 45°-60° north
either including all data (‘All’ in top row) or stratified by PFT for evergreen needleleaf forest (ENF) and deciduous broadleaf forest (DBF). Plot data are shown for
reference and three different grid cell sizes with their corresponding size at the equator are given. b) global latitudinal trait distributions for sPlotOpen TWM (top
row) and CWM (bottom row). The gray arrow in the top-left panel indicates the distribution corresponding to the latitudinal range in a). The colored purple and
orange boxes highlight similar distribution patterns between TWM and CWM cases. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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upscaling approaches that first spatialized and then scaled a much
higher number of trait estimates to the grid cell (Schiller and Wolf et al.,
2022) as the additional data is not based on sampling grid cells with
homogeneous land cover. Increasing the spatial resolution of grid cells
also does not necessarily result in lower land cover heterogeneity which
is high even for the 1 km grid cells used by Moreno and Vallicrosa (Yu
et al., 2018).

The impacts of the lack of representativeness of in-situ observations
on upscaled maps are not limited to small spatial scales such as neigh-
borhoods of a few 0.5° grid cells but are visible at the global scale. This is
most conspicuous in the boreal forest region dominated by ENF (Figs. 4,
5) where unweighted leaf(or plot)-to-grid scaling averages out the large
differences in SLA and N between ENF (low trait values) and other LCTs
such as DBF and SHR (high trait values) (Figs. 9a, S19). This effect of
suppression of the low trait values for ENF in upscaled maps without PFT
information (Bodegom, Boonman, Schiller) can also be seen in the Env
versions of the Butler and Moreno upscaled maps (Figs. S14x, S19x)
demonstrating that this effect is indeed caused by the unweighted
averaging within grid cells and not by other factors. Importantly, the
impacts of unweighted scaling from leaf (or plot) level to grid cells show
a strong dependence on grid cell size (Figs. 9a, S19xb). Although land
cover-weighted aggregation to grid cells shows similar impacts on trait
distributions as unweighted aggregation at first sight (Fig. S17a), the
weighted aggregation is largely independent of grid cell size as sub-grid
information is accounted for by the fractional land cover maps. This is
supported by the finding that the Butler and Moreno maps showed the
highest levels of correlations between upscaled maps (Fig. 3b) despite
their large difference in original grid cell size (50 km for Butler vs. 1 km
for Moreno).

Limitations in the spatialization. Only using environmental informa-
tion in the spatialization implies using universal trait-environment re-
lationships across all vegetation types (Figs. 7c, S16), which results in
limitations to capture trait differences between PFTs (Kambach et al.,
2023; e.g. Reich et al., 2007). In principle, this limitation could be
overcome by using additional predictors that contain information on
PFTs/LCTs such as the satellite-based reflectance time series used by
Moreno. However, we found that adding such predictors in the spati-
alization step still results in unrealistically small between-LCT differ-
ences unless between-PFT differences are also accounted for in the leaf-
to-grid scaling, (Figs. S14a, S18a,b).

Another relevant aspect is that only using environmental predictors
results in patterns that better represent potential vegetation that could
grow in a certain place given the environmental conditions rather than
the vegetation that is actually growing there (Table S5). Thus, a version
of the Moreno maps that used PFT in the leaf-to-grid scaling but not the
spatialization captured the between-PFT trait differences better but does
not well reflect the actual land cover (Figs. S14, 18). Using remote
sensing predictors in the spatialization as done by Moreno can overcome
such limitations as direct information on surface characteristics is
included (Table S5, Fig. S18), which is consistent with an analogous
situation for species distribution modeling (Bonannella et al., 2022).

4.2. Vertical variation of traits within the canopy: upscaling CWMs or
TWMs?

4.2.1. Conceptual role of CWM/TWM and impacts on spatial trait
variations

Apart from the horizontal scaling aspects related to the use of PFTs
and land cover, the differences in the upscaling approaches regarding
the way vertical trait variation was accounted for is an important aspect
to consider. Conceptually, CWM and TWM correspond to an interme-
diate step in the leaf-to-grid scaling and either combine all vegetation
layers (CWM) or only the top-of-canopy layer (TWM) of a plant com-
munity. (Note that this may not account for different light environments
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as underlying trait data are typically based on sunlit leaves.) In the case
of plot data such as sPlotOpen, CWM and TWM are approaches to scale
leaf-level trait observations to the plot level before scaling plot-level
traits to the grid cell level. While this separation of leaf-to-grid scaling
into two steps is straightforward for sPlotOpen, it is more challenging to
apply with TRY data, which is generally based on individual plants
rather than vegetation plots. Boonman is the only upscaling approach
that explicitly applied a (local) community mean (unweighted) on data
from TRY by selecting datasets that well represent local plant commu-
nities before scaling to the grid cell. The PFT + Env approaches applied
an unweighted mean per PFT, which resembles TWMs conceptually. The
Env approaches Bodegom and Schiller and the Env versions of Butler
and Moreno more closely resemble CWMs as all trait data in grid cells is
averaged no matter to what vegetation layer it corresponds to. There-
fore, in contrast to sPlotOpen data, it is challenging to apply an Env +
PFT upscaling approach based on CWM when using TRY data. With the
exception of Boonman, the correspondence of TRY-based upscaling ap-
proaches to sPlotOpen TWM and CWM seems to be a consequence of
using PFT information or not rather than a conscious choice for one or
the other trait metric.

Given the challenges of quantifying the impacts of CWM vs. TWM
based on the existing upscaled maps, we used the sPlotOpen data for this
purpose in an approach that corresponds to the first step of the upscaling
(Fig. 1). We found that the use of CWMs versus TWMs has notably
smaller impacts on spatial trait patterns than the scaling to the grid cells
with PFTs and LCTs or unweighted aggregation, especially for N and P
(Figs. S17xb). However, the impacts of CWM on plot-level latitudinal
trait distributions are considerable for SLA (Fig. 9a) and closely
resemble those of unweighted aggregation of TWM to 50 km grid cells
(Fig. 9b), i.e. CWMs have narrower and more unimodal trait distribu-
tions with smaller differences between PFTs than TWM (Figs. 4b, 9, S9).
The latitudinal patterns of CWM aggregated to 50 km resemble those of
TWM at 500 km (Fig. 9b) with a less complex latitudinal pattern of
overall increasing SLA with latitude. These findings indicate that the
impacts of combining vertical vegetation layers in CWMs are similar to
those of unweighted aggregation to large grid cells, as traits from
different PFTs are combined in both cases.

4.2.2. Motivations for using CWM or TWM

CWNMs are the standard metric for many ecological analyses based on
community trait data (Anderegg, 2023; Bruelheide et al., 2018; Guerin
et al., 2022) but there are large differences depending on the weighting
factor used. In practice, the weighting of traits is commonly done by the
basal area, biomass, or leaf area (Anderegg, 2023). For sPlotOpen,
however, fractional species cover or abundance is used (Sabatini et al.,
2021) as weighting factors more closely related to total leaf area are not
available. The resulting CWM values based on such weighting not
infrequently give comparable weight to overstory trees and understory
in forest plots, despite the large differences in biomass. Therefore, for
forests top-of-canopy-weighted means (TWMs), which neglect under-
story contributions, can be considered a pragmatic approximation of
(leaf) biomass-weighted CWMs.

Apart from an approximation of biomass-weighted CWMs, upscaling
TWDMs can also have other motivations. First, from the perspective of
terrestrial biosphere modeling, the higher levels of a canopy tend to
dominate processes of vegetation-atmosphere interactions due to the
dominance of leaf area and light availability of top-of-canopy vegetation
(Musavi et al., 2015). Second, TWMs are a useful metric when aiming to
link upscaled maps to maps more directly based on remote sensing ap-
proaches that tend to focus on the top of the canopy. Thus, upscaled
plant height maps based on TWM show a considerably higher level of
similarity to satellite-based canopy height maps using lidar information
(Lang et al., 2022; Potapov et al., 2021; Simard et al., 2011; Wang et al.,
2016) than CWM upscaled maps (Fig. S20). Importantly, the TWM and
CWM upscaled maps differ not only considerably regarding their abso-
lute values as expected but also show large differences in their spatial
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patterns (Fig. S20). This is consistent with reports of impacts of different
weighting approaches on the spatial patterns of upscaled foliar trait
maps (Wang et al., 2016).

4.3. Other factors contributing to differences between upscaled maps

Although less important than using PFT and land cover information
and the CWM vs. TWM distinction, other differences between upscaling
approaches (Fig. 1) might be relevant. Thus, even when staying within
one of the two upscaling categories (PFT + Env or Env), the differences
in in-situ trait datasets and the selected predictor variables is expected to
make a difference in the upscaled maps. Given the confounding factors,
however, a dedicated sensitivity analysis would be needed to quantify
these impacts, which goes beyond the scope of our study. Two studies
(Boonman, Moreno) compared the impacts of using different regression
algorithms in the spatialization step while keeping all other aspects of
the upscaling stable. These studies found overall comparable perfor-
mance of the different regression algorithms with twos exceptions (re-
ported by Moreno) that were, however, not used by any of the other
studies indicating overall small impacts of the choice of algorithm on the
differences between the upscaled maps we compared.

4.4. Evaluation of maps

4.4.1. Internal performance metrics

Overall, there was a clear pattern of considerably higher cross-
validation performance for PFT + Env approaches compared to Env
approaches (R2 about 0.6 or higher for PFT + Env compared to 0.4 or
lower for Env), with larger differences for N compared to SLA. However,
these findings should be interpreted carefully given the limitations of
random cross-validation approaches to evaluate mapping performance
(Meyer and Pebesma, 2021; Ploton et al., 2020) as well as the dominant
impacts of land cover on the PFT + Env maps. Some of the upscaling
products also provided estimates of the uncertainty of the mean (stan-
dard error) trait values per grid cell but this was based on different
methodology and should be interpreted with caution. Overall, we found
no indications that the uncertainty or variability estimates corresponded
to the observed discrepancies between maps, even within the PFT + Env
and the Env groups (Figs. 4, S21x).

4.4.2. External reference data (sPlotOpen)

As the upscaling approaches differ in the way horizontal (within-
grid-cell) and vertical (within canopy) trait variation was taken into
account, there is no way to process sPlotOpen data such that it could be
used as the universal benchmark for all upscaling approaches. Rather,
sPlotOpen can be used as a basis for evaluating the differences in per-
formance within a given upscaling framework/strategy regarding the
leaf-to-grid scaling (unweighted aggregation vs. land cover fraction
weighting) and the site or plot level trait metric, i.e. CWM or TWM.

Regarding the evaluation of PFT + Env maps with grid-cell-level
sPlotOpen data, our results indicate that a comparison stratified per
PFT (Figs. 5b, S11- S1) is more meaningful than at the level of the final
maps. First, when using the final maps after applying the land cover-
weighted averages, highly simplified categorical trait maps, which
were the motivation for improvement using PFT + Env upscaling, can
achieve a similar level of agreement with sPlotOpen reference data
(Fig. 6a). To facilitate such evaluations at the level of individual PFTs,
future upscaling products should be provided both as final global trait
maps and its underlying PFT component maps. While we showed that
the final maps can, in principle, be separated into PFT components (Text
S2, Fig. S4), this approach introduces unnecessary additional un-
certainties which can be avoided by using the direct outputs from the
upscaling.

Comparing sPlotOpen plot-level data to upscaled maps can be useful
to gain insights independent from the scaling from plots to grid cells but
some aspects of the interpretation are challenging. Using plot-level

14

Remote Sensing of Environment 311 (2024) 114276

sPlotOpen data can make better use of the considerably larger amount of
plots compared to the number of grid cells that are covered and avoids
the need to apply scaling to the grid cell, i.e. it allows only distinguishing
between CWM and TWM. Meaningful comparisons between upscaled
maps and sPlotOpen plot-level data can still be conducted by quanti-
fying characteristics of the respective trait distributions such as lat-
itudinal patterns (Figs. S9, S10). Despite the presence of mixed grid cells
in the upscaled maps, the trait distributions prominently contain the
signal of homogeneous grid cells (Figs. 7b, S9) such that a trait or land
cover heterogeneity filtering of the maps is not necessary. While the
interpretation of plot-level TWM sPlotOpen data to PFT + Env upscaled
maps is rather straightforward, it is more complex for Env maps. The
reason is that the plot-level CWM data show rather similar latitudinal
trait distributions as those of TWM aggregated to 0.5° grid cells without
weighting (Fig. 9b).

While sPlotOpen takes into account the species composition, it does
not account for intra-specific trait variation. This might be a reasonable
approach for large parts of the global vegetated land surface, but there
could still be notable impacts in (dominant) species with wide
geographic distributions. The large discrepancies between the high SLA
and P values in the Butler maps and sPlotOpen seem to be partly caused
by the large intraspecific variation in the in-situ data used in the Butler
maps (Fig. S22), which raises the question to what degree including
intraspecific trait variation would affect sPlotOpen-based trait
estimates.

4.5. Future opportunities for foliar trait mapping using remote sensing
data

Future upscaling efforts will benefit from advances in both the leaf-
to-grid and spatialization steps (Fig. 1) with important contributions
from remote sensing.

Advances have been ongoing to improve different aspects of
remotely-sensed land cover. First, there is now a global, long-term
product of 30 m land cover with a fine LCT classification system that
includes the different forest types we have used (Zhang et al., 2024).
This product can be used to generate fractional land cover at interme-
diate resolutions in an approach similar to that used by Moreno-Marti-
nez et al. (2018) but without the need to downscale the much coarser
MODIS 500 m or 1 km products. Second, given the increase in the
availability of satellite imagery with both high spatial and temporal
resolution (e.g. Houborg and McCabe, 2018), there is potential for and
progress in improving land cover maps to better approximate actual PFT
cover fractions (Harper et al., 2023; Macander et al., 2022; Wang et al.,
2022a). Harper et al. (2023) used high-resolution (30 m) tree cover and
canopy height maps to refine global, long-term land cover products in an
attempt to better approximate actual PFT canopy cover. Wang et al.
(2022b) applied a somewhat similar approach using only tree cover to
Canada and Alaska. Macander et al. (2022) generated long-term, high
resolution (30 m) top cover for seven PFTs across Alaska and parts of
Canada. Also, individual tree crowns can now be detected at large scales
(e.g. Mugabowindekwe et al., 2022; Wang et al., 2023) and could be
further classified into PFTs e.g. in approaches similar to Harper et al.
(2023). All these efforts could help reduce uncertainties in upscaled
maps that use PFT information which also include approaches based on
eco-evolutionary optimality theory (Dong et al., 2023) and process-
based modeling (Goll et al., 2017; Thum et al., 2019; Zaehle and
Friend, 2010).

Apart from improvements in land cover products, there are remote
sensing-based approaches that more directly address uncertainties from
the leaf-to-grid and spatialization steps using multi- and hyperspectral
reflectance imagery.

To reduce uncertainties related to the leaf-to-grid scaling step,
increasingly available high-resolution multispectral spaceborne imagery
can be used to directly link it to in-situ ground reference data. For plot-
level ground data, this can be done either in a single step using
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sufficiently high-resolution imagery (Wan et al., 2024) or in two steps
using multi-scale approaches based on satellite products with a trade-off
in spatio-temporal resolutions (Xu et al., 2022). Even for ground mea-
surements on individual tree canopies, multispectral satellite imagery
and environmental predictors can be used to generate large-scale trait
maps (Aguirre-Gutiérrez et al., 2021). Aguirre-Gutierrez et al. have
already used this approach to generate foliar trait maps for the entire
area covered by tropical evergreen broadleaf forests (under review).
Potentially, such approaches could be extended to other forest ecosys-
tems, potentially even without the need to incorporate explicit land
cover maps given that imagery time series are used (Liu et al., 2024).
While multispectral satellite imagery has advantages in terms of
spatio-temporal resolution and can be used to estimate foliar traits with
strong absorption features such as chlorophyll content (Croft et al.,
2020; Wan et al., 2024; Xu et al., 2022), hyperspectral reflectance data
include information that is more directly linked to foliar traits such as
SLA, N, pigment contents and phenolics (Féret et al., 2017; Jacquemoud
et al., 1996; Kokaly, 2001; Kokaly and Skidmore, 2015). As the links
between hyperspectral imagery and foliar trait is based on physical
signals related to light absorption of foliar chemical components, the
relatively weak environmental predictors might become unnecessary at
least for estimating certain traits such as SLA and N. Also, alternatives to
data-driven upscaling methods such as inversion of radiative transfer
models can be applied to hyperspectral data to estimate key foliar traits
(Tagliabue et al., 2019; Verrelst et al., 2015; Wan et al., 2024).
Hyperspectral-based trait estimation approaches can be used in
different ways depending on the data availability. While the 30 m
hyperspectral imagery available from the operational (PRISMA, EnMAP)
and future (SBG and CHIME) missions cannot be directly linked to in-
dividual tree crowns, it can be directly linked to dedicated vegetation
plots. Therefore, a global-scale network of sufficiently large vegetation
plots needs to be established with intensive foliar trait sampling, also
including the temporal dimension to capture sub-seasonal and interan-
nual trait variations that impacts hyperspectral reflectance (Chlus and
Townsend, 2022). While these efforts are ongoing, airborne high-
resolution hyperspectral imaging can be used in a multi-scale, hybrid
approach. This involves first bridging the scales between in-situ mea-
surements on individual tree crowns or smaller plots and coarser grid
cells to upscale to larger areas using multispectral satellite imagery and/
or environmental predictors. Such approaches have been applied to
generate foliar trait maps for Peru (Asner et al., 2016) and parts of the
US (Liu et al., 2024) with maps for the entire CONUS currently in
preparation (Liu et al., in prep.). Interestingly, the approach by Liu et al.
(2024) neither requires environmental predictors nor LCT maps.

4.6. Implications for the interpretation of remotely sensed plant trait maps

While the focus of this study was on the comparison of upscaled
foliar trait maps, our findings have important implications for the
interpretation of currently available e.g. (Croft et al., 2020; Xu et al.,
2022) and future plant trait maps more directly derived from remote
sensing data (see 4.5 above). The challenge in the interpretation of such
maps is that the dominant impact of land cover on plant trait maps can
mask underlying ecological aspects of interest, e.g. regarding analyses of
trait-environment relationships or climate change impacts. Therefore,
combining remotely sensed plant trait maps with robust fractional land
cover products is crucial.

The importance of land cover for the ecological interpretation of
remotely sensed foliar trait maps may be relatively obvious but our
study highlights an important aspect regarding details of their use that
appears less widely recognized. First, due to the high levels of land cover
heterogeneity even at higher spatial resolutions (1 km) (Yu et al., 2018),
fractional land cover maps are needed. Second, to well extract trait
variations within LCTs without “contamination” from land cover effects,
setting high thresholds on land cover fractions is generally not sufficient
as co-occurring LCTs can have strongly different trait values such as ENF
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and DBF for SLA and N (Figs. 2, S2). This makes it more challenging to
conduct large-scale analyses of within LCT trait variations as “pure” grid
cells covered by a single one of these LCTs only account for low fractions
(at 1 km, the pure grid cell fractions of DNF, ENF and DBF are only about
15% according to Yu et al. (2018)). Combining thresholds on land cover
fractions with thresholds on estimated trait variability as we did in case
of the upscaled maps (Methods 2.4.2) does not lead to much higher
fractions of retained grid cells at 0.5° resolution (Fig. S2), especially for
ENF and DNF, so unmixing approaches as we applied might have to be
used despite their limitations. When considering that many boreal forest
ecosystems may not have a fully closed tree canopy, impacts of under-
story vegetation with very different trait values on remote sensing-based
maps could be relevant despite apparently 100% coverage of e.g. ENF
based on current land cover products that do not quantify canopy cover
fractions. Therefore, airborne imaging spectroscopy campaigns such as
NASA BOREAS (Sellers et al., 1997) and ABoVE (Miller et al., 2019) will
remain an important tool to help interpret satellite-based foliar trait
maps that do not have high enough resolution to resolve individual tree
canopies.

5. Conclusions and recommendations

Despite differences in many aspects of the upscaling methodology,
the use of PFT and land cover information was the dominant factor
explaining the differences between the resulting maps, effectively
dividing them into two different map categories with strongly differing
spatial patterns. Differences in accounting for vertical trait variation
(top-of-canopy versus community mean) were also relevant but had
smaller impacts on the spatial patterns of foliar traits than the use of PFT
and land cover data. Maps that used PFT and land cover information
showed larger trait differences between PFTs and agreed better with
sPlotOpen data than the maps mostly relying only on environmental
predictor information. Not accounting for within-grid-cell trait variation
tends to suppress extremes of the trait distributions, which effectively
reduces trait differences between PFTs and leads to more unimodal trait
distributions with larger impacts on top-of-canopy trait values. Impor-
tantly, these effects also show a strong dependence on grid cell size with
greater impacts at larger grid cell sizes. While the use of PFT and land
cover information can partly counteract these effects, the land cover
information introduces other uncertainties and has dominant impacts on
the global spatial patterns of trait variation. Our findings also have
important implications for the ecological interpretation of foliar trait
maps derived from more direct remote sensing approaches.

Based on the insights from our study, we identified five recommen-
dations that are relevant for future efforts in generating and evaluating
upscaled maps as well as interpreting foliar trait maps more directly
based on remote sensing data:

1. Upscaling products should clearly specify the category of trait map
provided, which is determined by the metric used at the site or plot
level, the type of scaling to the grid cell level and the type of pre-
dictor information used. Upscaling products based on PFT informa-
tion should provide the original maps for each PFT separately in
addition to the overall product.

2. In the evaluation of maps with reference data such as sPlotOpen,
comparable scaling as for the upscaled maps needs to be applied to
the reference data if the grid cell size is much coarser than the plot
size. Furthermore, comparisons of the distributions of plot-level
reference data with those of upscaled maps can provide valuable
additional insights. For maps using PFT and land cover information,
an evaluation at the level of separately upscaled maps per PFT is
recommended to directly quantify the agreement of between- and
within-PFT trait variation independently of the impacts of land cover
that dominate the final maps per trait.

3. Future upscaling efforts should aim at reducing the scale mismatch
between in-situ observations and predictor data by increased efforts
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to sample traits in sufficiently large plots and by using higher reso-
lution predictor data, ideally with a stronger link to foliar traits than
environmental variables such as hyperspectral imagery.

4. Future trait sampling efforts should consider the aspect of within grid
cell trait variation due to land cover heterogeneity as well as repre-
sentativeness at the global scale regarding geographic aspects and
the relevant predictor information.

5. For ecological analyses of remote sensing-based foliar trait maps,
quantifying trait variations within land cover types should be done
by taking into account trait variability due to land cover, not only the
heterogeneity of the land cover itself as the relationship between the
two can be complex.
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