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Abstract

Global forests are increasingly lost to climate change, disturbance, and human

management. Evaluating forests’ capacities to regenerate and colonize new

habitats has to start with the seed production of individual trees and how it

depends on nutrient access. Studies on the linkage between reproduction and

foliar nutrients are limited to a few locations and few species, due to the large

investment needed for field measurements on both variables. We synthesized

tree fecundity estimates from the Masting Inference and Forecasting (MASTIF)

network with foliar nutrient concentrations from hyperspectral remote sensing

at the National Ecological Observatory Network (NEON) across the contigu-

ous United States. We evaluated the relationships between seed production

and foliar nutrients for 56,544 tree-years from 26 species at individual and

community scales. We found a prevalent association between high foliar phos-

phorous (P) concentration and low individual seed production (ISP) across the

continent. Within-species coefficients to nitrogen (N), potassium (K), calcium

(Ca), and magnesium (Mg) are related to species differences in nutrient

demand, with distinct biogeographic patterns. Community seed production

(CSP) decreased four orders of magnitude from the lowest to the highest foliar

P. This first continental-scale study sheds light on the relationship between

seed production and foliar nutrients, highlighting the potential of using com-

bined Light Detection And Ranging (LiDAR) and hyperspectral remote sens-

ing to evaluate forest regeneration. The fact that both ISP and CSP decline in

the presence of high foliar P levels has immediate application in improving
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forest demographic and regeneration models by providing more realistic nutri-

ent effects at multiple scales.

KEYWORD S
foliar nutrients, forest regeneration, hyperspectral remote sensing, leaf spectroscopy, LiDAR,
NEON, seed production, tree fecundity, tree reproduction

INTRODUCTION

Understanding the regeneration potential of forests
recovering from disturbance, climate change, and harvest
(Curtis et al., 2018; Duane et al., 2021; McDowell
et al., 2020) is a goal of global change research (Clark
et al., 2021). Colonization capacity starts with the seed
production of individual trees by species, size, and habi-
tat conditions that vary across regions. Seed production is
often simplified and represented as a constant fraction of
net primary production (NPP) in the Dynamic Global
Vegetation Models (DGVMs) (Fisher et al., 2018;
Hanbury-Brown et al., 2022). This approximation, while
useful for large-scale modeling, overlooks the variations
in seed production driven by environmental factors and
species-specific traits. A first synthesis of species-level dif-
ferences in foliar nutrient and seed production at the
global scale showed large differences among species (Qiu
et al., 2022). The explanation for these species differences
and how they might inform landscape regeneration req-
uires knowledge of individual tree nutrient status across
gradients of climate and fertility. Even in a large plant
trait database like TRY (Kattge et al., 2020), less than 5%
of species have individual trait data for nitrogen (N) and
phosphorous (P). Information on important nutrients
such as potassium (K), calcium (Ca), and magnesium
(Mg) remains unavailable. Moreover, trait databases can-
not provide insight in which nutrient effects must be
combined with individual attributes, such as size,

competition, and local fertility gradients—these
individual-scale interactions require observations of all
variables from the same trees. The data coverage required
to span variation in seed production and
order-of-magnitude variation between individual trees
and within trees over time (Clark et al., 2004) has not
been available. For these reasons, studies of within-
species responses to fertility have been limited in biogeo-
graphic extent and species coverage (Bazzaz et al., 2000;
Fern�andez-Martínez et al., 2017). Here we provided a first
quantification of seed production and three primary
(N, P, and K) and two secondary (Ca and Mg) foliar mac-
ronutrients by synthesizing hyperspectral imagery from
the National Ecological Observatory Network (NEON)
with fecundity data from the Masting Inference and
Forecasting (MASTIF) network. We demonstrate a
continental-scale role for foliar P, which is associated
with low tree fecundity in a majority of species.
Responses to other foliar nutrients depend on species dif-
ferences in nutrient demand, with biogeographic gradi-
ents accounting for additional variation in seed
production. At the community level, seed production
decreased four orders of magnitude along the foliar P gra-
dient, but with additional sensitivity to other nutrients.

The literature on tree fecundity and nutrients con-
flates processes that engage different scales of variation
(Figure 1). If N–P–K treatment increases seed production
in the current or following year, should we expect seed
production to also increase along natural fertility

F I GURE 1 Four scales of variation in nutrient effects on fecundity and the processes they engage shown at the righthand side.
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gradients? Should we expect that species found only on
fertile sites will produce more seed than those restricted
to infertile sites? The dynamic relationships between
fecundity, tissue concentrations, and/or added nutrients
for an individual (scale A) provide evidence on how stor-
age and shifting allocation can contribute to masting
cycles (Berdanier & Clark, 2016; Davis et al., 2004; Ran
et al., 2008; Sala et al., 2012). Much of this evidence comes
from nutrient addition experiments (Davis et al., 2004;
Ran et al., 2008), but there are also several studies that
track internal concentrations across years of varying seed
production (Han et al., 2008; Sala et al., 2012). Variations
between individuals, either along natural fertility gradients
or receiving different nutrient treatments (scale B), provide
insight into a species’ response to fertility. Because alloca-
tion to fecundity can vary with site differences in nutrient
supply or ratios, individuals of a species can show a posi-
tive or negative association with fertility gradients
(Qiu et al., 2022). Differences between species in these
responses to nutrients (scale C) can help to explain com-
munity composition. For example, temperate deciduous
species (e.g., Acer and Quercus) tend to be more
nutrient-demanding than conifers (e.g., Abies, Pinus, and
Picea; Figure 2). Spatial variation in seed production by
the community (scale D) provides insight into global rela-
tionships between seed production and fertility. Landscape
variation in fecundity, or community seed productivity
(CSP), combines individual variation (scale B) with species

turnover (scale C). For example, there are 250-fold
changes in fecundity from dry taiga to wet tropics
(Journe et al., 2022). However, Qiu et al. (2022) did not
find the effects of fertility indices on CSP, potentially
because responses within species were neutralized by
species turnover. The responses at these different
scales engage different processes, from dynamic alloca-
tion (A) to acclimation and adaptation along natural
gradients (B) to species differences (C). The spatial var-
iation in CSP combines them (D).

There is scale dependence not only in processes, but
also in data. Qiu et al. (2022) disentangled the effects of
scales B, C, and D relative to fertility indices associated
with global maps. However, individual nutrient condi-
tions could diverge from the spatially coarse gridded
products. The individual condition depends not only on
broad-scale variation in parent material and drainage,
that is, the scales available to global gridded products,
but also on microtopography and the local competitive
environment (Clark et al., 2014). The association between
fecundity and nutrients at scales B through D remains
unknown.

A convergence of airborne sensing tools, foliar measure-
ments, and fecundity monitoring, allows us to evaluate the
individual-scale interactions that shape continental-scale
potential for regeneration. A comprehensive understand-
ing of nutrient effects on fecundity requires methods that
can be implemented remotely across broad areas, while

F I GURE 2 Mean and standard deviation of foliar nutrient concentrations (i.e., nitrogen and phosphorous) for the genera included in

this study. Data came from the authors and were supplemented with the TRY Plant Trait Database (Kattge et al., 2020). Values of foliar

phosphorous were multiplied by 10 so they could be plotted with foliar nitrogen.
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resolving individual variation. Field measurements and
laboratory analysis have been widely used to quantify foliar
nutrient concentration (Perez-Harguindeguy et al., 2013).
However, the large investments required for data collection
and analysis have limited application. By contrast, airborne
imaging spectroscopy (also known as hyperspectral remote
sensing) now offers an alternative approach to consistently
estimate crown nutrient concentrations regionally in a wide
range of forest types such as tropical (Asner et al., 2015),
temperate (Singh et al., 2015; Wang et al., 2020), and boreal
forests (Ollinger et al., 2008). Hyperspectral data from the
NEON Airborne Observation Platform (AOP) provides con-
sistent and open-access products with continental coverage
(Figure 3). In addition, recent models (Wang et al., 2020,
2022) have been developed with leaf spectral and laboratory
assays from 1,103 individuals and 236 species across the
NEON domains in the United States. The light detection
and ranging (LiDAR) instrument on the AOP can be used

for crown delineation (Dalponte & Coomes, 2016), enabling
the derivation of foliar estimates for individual trees
(Figure 4). Taken together, the combined LiDAR and
hyperspectral imaging from NEON AOP offers unprece-
dented opportunities to derive foliar nutrients at the indi-
vidual scale and to quantify their effects on fecundity for
the same trees across broad biogeographic regions.

Understanding the effects of foliar nutrients within
species requires estimates of seed production at the indi-
vidual scale across landscapes and regions. Nutrient addi-
tions to individual trees (Brown et al., 1995; Rosecrance
et al., 1998) show that applied nitrogen (Davis et al., 2004;
Ran et al., 2008), phosphorous (Ran et al., 2008), potas-
sium (Ran et al., 2008), and calcium (Halman et al., 2013)
can increase yield (scale A). Insights from orchard practice
add to the limited literature from natural settings (Han
et al., 2008; Ichie & Nakagawa, 2013; Miyazaki et al., 2014;
Sala et al., 2012). These controlled studies and monitoring

F I GURE 3 This study includes 13 sites from the National Ecological Observatory Network (NEON) that span the contiguous

United States. Site descriptions can be found in Table 1 in the main text. Point size scales with the number of tree-year observations for

reproduction estimation at each site. Sample size (i.e., plot, trees, and tree-years) can be found in Appendix S1: Table S1.
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of changes within a tree over time do not resolve the
respective roles of direct effects on reproduction from the
indirect effects that come from growth stimulation and,
thus, increased size (LaDeau & Clark, 2001; Qiu, Aravena,
et al., 2021). Moreover, the responses of individuals to
changes in nutrient status (nutrient addition) might not be
the same as the effects of natural fertility gradients on indi-
viduals subjected to one habitat throughout their lives. To
evaluate the role of variation between individuals subjected
to variation in fertility (scale B), we define the individual
seed production (ISP) relative to tree basal area:

ISPijs ¼
bf ijs × gs

basal areai
ð1Þ

For tree i at location j of species s, ISP depends on mass
per seed (gs) and number of seeds (bf ijs) per basal area

(Journe et al., 2022; Qiu et al., 2022). Our definition of
ISP incorporates year-to-year variation in fecundity and
its uncertainty (see Materials and methods); these ISP
values are combined with foliar nutrient status to evalu-
ate species differences and individuals within species.

We hypothesized that the association between individ-
ual nutrient status and seed production depends on
species-specific allocation to reproduction (scale B).
Horticultural research shows that fertilization, particularly
with primary macronutrients N, P, and K (i.e., scale A),
can stimulate reproduction (Marschner, 2011; Oosterhuis
et al., 2014; Warner et al., 2004) or growth at the expense
of reproduction, depending on the ratios (Faust, 1989;
Neilsen & Neilsen, 2002; Rubio Ames et al., 2020;
Weinbaum et al., 1992). Because the macronutrients Ca
and Mg can be low in acidic soils (Aggangan et al., 1996;
Han et al., 2019; Myers & Campbell, 1985) where many

F I GURE 4 Crown delineation in a deciduous-dominant large plot at Bartlett Experimental Forest (BART, panel a) and a

conifers-dominant small plot at Niwot Ridge (NIWO, panel b). The canopy height model is shown in the background, where green means a

high value and brown indicates a low value. Mature individuals with fecundity estimates (see Materials and methods) are colored by their

species. Fecundity at each tree crown is summarized in panels (c) and (d), where higher transparency indicates low fecundity and vice versa.

More examples of crown delineation can be found in the Appendix S1: Figure S2.
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conifers may dominate (Alfredsson et al., 1998; Iwashima
et al., 2012), these nutrients could affect fecundity differ-
ently for these species groups.

While estimates of ISP can inform how individual
reproduction is associated with nutrients, community
seed production (CSPj) at location j quantifies the bio-
mass of seed produced per area of forest and provides the
foundation to evaluate landscape-scale regeneration pot-
ential (scale D). CSP might exhibit limited sensitivity to
nutrient availability because species turnover along
fertility gradients could potentially compensate for
within-species responses (Qiu et al., 2022). It is also pos-
sible that variation in CSP could be controlled by
resource allocation trade-offs between growth and
reproduction, similar to that of the ISP. Again, individ-
ual fertility status could diverge from spatially gridded
products available in previous studies.

To determine the contribution of individual fertility
to fecundity, we synthesized ISP and CSP with foliar N,
P, K, Ca, and Mg concentrations from hyperspectral
imagery across the NEON domain. A large sample size is
required to estimate tree fecundity due to the low
signal-to-noise ratio in seed production data, where
tree-to-tree and year-to-year variation can vary by orders
of magnitude (Clark et al., 2021; Qiu et al., 2023). The
MASTIF network (Clark et al., 2019) provides an analyti-
cal framework that combines raw tree-year observations,
individual tree size (Qiu, Aravena, et al., 2021) and local
competition (Clark et al., 2004), temperature and moisture
deficit (Journe et al., 2022), and habitat conditions.
Generalized joint attribute modeling (GJAM) is used to
quantify species responses, allowing for their dependence in
response to nutrient availability; GJAM further

accommodates the dominance of zeros in the data. Both
MASTIF and GJAM are hierarchical Bayesian models and
quantify the uncertainties in the data, model, and
parameters.

MATERIALS AND METHODS

Our analysis involves three elements. We first quantified
seed production by synthesizing individual tree-year
observations and environmental covariates within a
MASTIF framework (Clark et al., 2019, 2021), which
accommodates dependence in seed production between
trees and within trees over time. We then derived nutri-
ents and their uncertainties for each individual tree
crown using combined LiDAR and hyperspectral imagery.
Finally, we estimated within-species coefficients of seed
production to crown nutrients using a GJAM. We also
quantified the effects of foliar nutrients on CSP using mul-
tiple linear regression. Our analysis included 13 NEON
sites across the contiguous United States (Table 1) where
both seed production and crown nutrients are available.
There are a total of 11,331 mature trees and 56,544
tree-years (Figure 3; Appendix S1: Table S1).

Fecundity data and modeling

The fecundity data from the 13 NEON sites are part of
the MASTIF network (Clark et al., 2019, 2021). MASTIF
includes two types of raw data, seed traps (ST) and crop
counts. ST data were the number of seeds from seed traps
that were associated with individual trees from the

TAB L E 1 National Ecological Observatory Network (NEON) sites used in this study, including their dominant vegetation types and the

selected year of imagery NEON Airborne Observation Platform (AOP) used to estimate foliar traits. Locations are shown in Figure 3.

Site code Site name Dominant vegetation type AOP year

BART Bartlett Experimental Forest Deciduous forest 2019

DSNY Disney Wilderness Preserve Evergreen forest, grassland, and wetland 2019

HARV Harvard Forest Deciduous and evergreen forest 2019

MLBS Mountain Lake Biological Station Deciduous forest 2017

NIWO Niwot Ridge Mountain Research Station Evergreen forest 2019

OSBS Ordway-Swisher Biological Station Evergreen forest 2019

SERC Smithsonian Environmental Research Center Deciduous forest 2017

SOAP Soaproot Saddle Evergreen and mixed forest 2017

TALL Talladega National Forest Deciduous and mixed forest 2017

UKFS The University of Kansas Field Station Deciduous forest and pasture 2018

UNDE Notre Dame Environmental Research Center Deciduous and mixed forest 2019

WREF Wind River Experimental Forest Evergreen forest 2018

YELL Yellowstone National Park Evergreen forest and grassland 2018

6 of 16 QIU ET AL.
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mapped stands at the 13 NEON sites. Seed-trap data
provide the most precise estimates for highly fecund spe-
cies with well-dispersed seeds. They provide estimates
even in dense stands where crop counts are difficult.
However, it is important to note that the estimates of fecun-
dity rely on seed transport, which is not well estimated for
species that produce large seeds, especially those that rely
on secondary dispersal by animals whose seeds rarely occur
in traps that are not directly under the tree crown. Further,
seed dispersal into and out of a given plot can influence
fecundity estimates (Muller-Landau et al., 2008). Crop counts
data provide complementary advantages to ST. The trees that
are hardest to estimate from ST (few, large seeds) are easiest
to count directly on trees. Crop counts data mainly came
from counts with binoculars, including the estimate of the
fraction of the observed crop. Data compilation, modeling,
and computation are open-access in the R package MASTIF,
with more details provided by Clark et al. (2019, 2021).

We estimate seed production with a hierarchical
Bayesian State-space model (Clark et al., 2019) that includes
individual tree attributes with environmental conditions to
estimate their effects on tree maturation and conditional
fecundity. For individual tree i of species s at stand j in
year t, the expected seed production equals the product
of maturation probability and conditional fecundity,

E f ijs,t
� �

¼bf ijs,t ¼ ρijs,tbψijs,t ð2Þ

Maturation probability ρijs,t determines whether an indi-
vidual tree is in the mature state. It is a one-way process,
where a tree is mature (ρijs,t ¼ 1) if it has been observed to
produce seed in the past (i.e., ρijr,t ¼ 1jρij,t− 1 ¼ 1

h i
¼ 1)

and immature (ρijs,t ¼ 0) if known to produce no seed
subsequently (i.e., ρijr,t ¼ 1jρij,t+1 ¼ 0

h i
¼ 0). The matura-

tion probability ρijs,t is estimated using a probit
hidden-Markov model,

ρijs,t �Bernoulli

× ρijs,t− 1 + 1− ρijs,t− 1

� �
ρijs,t+1Φ β ρð Þ

0 + β ρð Þ
1 dijs,t

� �� � ð3Þ

where Φ �ð Þ is the standard cumulative normal distribu-
tion, dijs,t is the diameter, β ρð Þ

0 and β ρð Þ
1 are the parameters

for the intercept and diameter, respectively. Conditional
fecundity is determined by a process model that is
log-normal and depends on environmental covariates,
random effects of individual and year, and error,

log bψijs,t

� �
¼ x0ijs,tβ

xð Þ + β wð Þ
ijs + γg ij½ �s,t + ϵijs,t ð4Þ

where xit is a design matrix holding diameter, shade, and
environmental conditions (see the next paragraph). The

coefficients for fixed and random effects are β xð Þ and β wð Þ
ijs ,

respectively. Year effects are γg ij½ �s,t, which are random
across groups g (i.e., species-ecoRegion) and fixed for year
t to accommodate interannual variations that are not
fully absorbed by the climate in the covariates. Gaussian
error is ϵijs,t .

Covariates for fecundity modeling are selected based
on their capability to explain important variations in seed
production. Covariates in Appendix S1: Table S2 includes
individual attributes of each tree (diameter and shade
class) and environmental conditions (i.e., climate and
soil). The quadratic term for the diameter is included to
accommodate fecundity response to tree size, especially at
a large size (Qiu, Aravena, et al., 2021). Shading class (1–5
where 1 means open space and 5 means fully shaded)
quantifies the self-competition and competition with
neighbors on seed production (Clark et al., 2004). Spring
temperature (T) and annual accumulative moisture defi-
cit (M) are included as site norms and year-to-year anom-
alies to account for the variations between sites and
within sites across years. Moisture deficit is evaluated as the
differences between potential evapotranspiration (PET) and
precipitation (P). Climate variables were extracted
from two gridded products, including Terraclimate
(Abatzoglou et al., 2018) and CHELSA (Karger et al.,
2017), and calibrated to sites that have local weather data.
We implemented variable selection based on the deviance
information criterion (DIC). Furthermore, climate vari-
ables with a limited range of variations are not included in
the model fitting.

Individual and community seed production

Evaluating the response of seed production to nutrient
availability requires both seed size and seed numbers
(Qiu et al., 2022). Because seed production varies with
tree size (Clark et al., 2014; Qiu, Aravena, et al., 2021),
tree-level seed production, that is, ISP, is defined relative
to the tree basal area (Journe et al., 2022; Qiu
et al., 2022). Calculation of ISP incorporates year-to-year
estimates and their uncertainty for tree i of species s in
stand j,

ISPijs ¼ms

bij
×

P
twijs,t

bf ijs,tP
twijs,t

ð5Þ

where ms is seed mass (in grams), bij is basal area (in
square meters), and weight wijs,t is the inverse of the coef-
ficient of variation (CV). We used CV instead of the pre-
dictive variance because the mean estimate tends to scale
with its variance such that CV emphasize high values of
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bf ijs,t, which are less noisy and more important than low
values. All quantification of ISP is time averages from
annual estimates. Therefore, ISP has units of gram per
square meter, with year−1 omitted from the dimensions.

The CSP (Journe et al., 2022; Qiu et al., 2022) can
help understand the collective effects of nutrient avail-
ability on seed production at a stand level. We calculated
CSP by extending seed production over all trees and spe-
cies within a mapped stand,

CSPj ¼ 1
Aj

X
is

ISPijs ð6Þ

where Aj is the plot area (in hectares) for each plot. The
CSP thus quantifies stand production, similar to NPP that
represents stand-level vegetative production.

Crown nutrients

We obtained the hyperspectral data as orthorectified surface
directional reflectance products provided by the NEON
AOP. The data products (product ID DP1.30006.001) were
organized by flightlines. The AOP imaging spectrometer
measures 426 bands between 380 and 2500 nm with a spec-
tral resolution of 5 nm and a spatial resolution of 1 m
(Kampe et al., 2010). Hyperspectral data were collected
around local solar noon time during the peak growing
season. NEON implemented a radiance calibration and
atmospheric correction to obtain the orthorectified
surface reflectance through the ATCOR-4 algorithm
(Karpowicz & Kampe, 2015). Although AOP could pro-
vide multiple-year hyperspectral data for a subset of
NEON sites, many of the flightlines were contaminated
by clouds and their shadows. For each flightline, AOP
flight crews evaluated the percentage of cloud cover (CC)
at three levels, including green (CC <10%), yellow
(10%< CC <50%), and red (CC >50%). We visually ins-
pected all green hyperspectral flightlines between 2017
and 2019 and selected the best quality imagery for each
NEON site (Table 1). Following Wang et al. (2020), we
applied the open-access Python module HyTools (https://
github.com/EnSpec/HyTools-sandbox/) (Chlus et al.,
2022) to implement the topographic correction and the
bidirectional reflectance distribution function (BRDF) cor-
rection (Appendix S1: Figure S2). We created the imagery
mosaic from the corrected flight lines and took the mean
values for overlapping regions at each NEON site.
We removed atmospheric absorption bands that were
noisy and kept spectral regions 418.59–1335.04 nm,
1460.23–1770.72 nm, and 1986.06–2396.71 nm. There are a
total of 354 bands on average across the NEON sites.

We generated wall-to-wall foliar nutrient maps by
applying the partial least squares regression (PLSR) coef-
ficients provided by Wang et al. (2020) to the hyper-
spectral surface reflectance data. The coefficients were
obtained through calibration and validation using a vari-
ety of NEON sites and were available at the Ecological
Spectral Model Library (https://ecosml.org/package/
github/EnSpec/NEON-Trait-Models). Following Wang
et al. (2020), uncertainties were defined as the standard
error from the 200 permutations of the PLSR model. Five
nutrients, including nitrogen (N), phosphorous (P), potas-
sium (K), magnesium (Mg), and calcium (Ca), were ana-
lyzed based on their important roles in plant reproduction
(Fern�andez-Martínez et al., 2017; Ran et al., 2008) and
their relatively high accuracies in the PLSR model (Wang
et al., 2020). The goal of our study is to leverage the full
capacity of the trained PLSR model by directly applying it
to the same training dataset. This strategy, known as
in-sample prediction, was chosen not with the intention of
forecasting performance on unseen data, but rather to
maximize the prediction accuracy of crown nutrients at
the same sites they were sampled. For crown nutrients N,
P, K, Mg, and Ca, the in-sample prediction coefficients of
determination (i.e., R2) were 0.92, 0.7, 0.72, 0.82, and 0.71,
respectively. The normalized root mean square error
(NRMSE), calculated as RMSE divided by the data range,
was 6.75%, 12.8%, 13.24%, 9.74%, and 10.81% for N, P, K,
Mg, and Ca, respectively.

For mapped and mature trees with ISP estimates, we
delineated their crowns using LiDAR data (Figure 4).
We obtained discrete return LiDAR point cloud data from
the NEON AOP (product ID DP1.30003.001), which pro-
vides three-dimensional coordinates of multiple return
points from vegetation and other surfaces. We generated
canopy height models (CHM) using the pit-free algorithm
in Khosravipour et al. (2014). This method effectively
reduces the artifacts typically associated with ground and
low-vegetation returns, offering a more accurate represen-
tation of canopy height across the forested landscape. We
then detected individual treetops using the local maximum
filter (LMF) in Popescu and Wynne (2004) on the CHM.
The LMF’s search window was adapted based on tree size,
ensuring that larger trees with correspondingly larger
crown diameters were accommodated with appropriately
sized windows. Once individual tree tops were identified,
we employed a crown segmentation algorithm from
Dalponte and Coomes (2016) to delineate the crowns of
mature trees for which seed production estimates were
available. Smaller, immature trees and those growing in
the understory (see previous section), which do not have
fecundity estimates, were excluded from the crown delin-
eation process to ensure our analysis focused on mature
individuals with measurable seed production.
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To accurately quantify crown nutrients, we calculated
the weighted mean nutrient concentration for each pixel
within a delineated tree crown. This method involves
assigning weights to each pixel based on the inverse of
the CV because the estimate of crown nutrients scales
with its standard deviation. This approach ensures that
pixels with lower variability (and thus higher reliability)
contribute more significantly to the overall nutrient esti-
mate. Sparsely vegetated or shadowed pixels were removed
using two criteria: normalized difference vegetation index
(NDVI) <0.6 or near-infrared (NIR) reflectance <0.06
(Wang et al., 2020).

Analyses

We used GJAM to quantify the within-species coefficients
of ISP to multiple crown nutrients. GJAM allows us to
jointly quantify multiple nutrient effects on all species
due to its allowance for different data types and the domi-
nance of zero values–many species are absent from most
observations (Clark et al., 2017). On the latent scale, the
observation wj at plot j holds the ISP (the averaged value
over conspecific individuals) for S species and is
represented by a length S vector:

wj˜MVN B0xj, Σ
� � ð7Þ

where B is the Q× S matrix of species coefficients, the
length-Q vector xj represents the covariates, including
the five crown nutrients (N, P, K, Ca, and Mg). Matrix Σ
measures the S× S residual covariance, which accounts
for the potential relationship between species. As a
Bayesian framework, GJAM focuses more on the estima-
tion of parameters and their uncertainty, rather than on
their statistical significance. The credible intervals for
each species in Appendix S1: Figure S2 summarize the
magnitude and direction of individual nutrient effects on
ISP. Because all species were modeled jointly, we did not
implement model selection for each individual species,
for example, removing crown nutrient predictors that
contain zero in their credible intervals.

Clusters of tree species that share similar responses to
crown nutrients can help to define forest communities.
We define communities based on within-species coeffi-
cient to crown nutrients and variations in the predictor:

E¼B0VB ð8Þ

where V is the covariance of predictors in the design
matrix. Related species could share similar or different
within-species coefficients to crown nutrients (i.e.,

columns in B). Those similarities and differences can be
further amplified by large spatial variances in the predic-
tors (the matrix V), leading to positive values in E for sim-
ilar groups, and negative values for different ones (Clark
et al., 2017). Therefore, matrix E can identify forest com-
munities that share similar responses to crown nutrients.
We implemented hierarchical clustering on the 26 species
included in the study using the R function “hclust” in the
stats package. We identified five distinct communities
and named them using two letters of genus and species
for the two most abundant species in each community.

To map the five forest communities across the conti-
nent, we used the Forest Inventory Analysis (FIA) data
from Qiu, Sharma, et al. (2021). To increase the
signal-to-noise ratio, we aggregated the 196,765 FIA plots
into approximately 13,000 one-hectare plots using a
K-means algorithm (Qiu, Sharma, et al., 2021). After that,
we identified the dominant species (the most abundant
ones) from the 26 species at each aggregated plot. We
then assigned the community label (from the five clusters
of the E matrix) to each plot.

Finally, we used multiple linear regression (MLR) to
examine the response of CSP to multiple foliar nutrients
at the stand level. Following the same procedure of
crown-level nutrients, we calculate the weighted mean
values of the foliar nutrients as the plot-level predictor in
the MLR. We include interactions between N, P, and K
because their combinations are widely used in horticul-
tural practices.

RESULTS

The association between ISP and the three primary
macronutrients N, P, and K varies widely between species
(scale B in Figure 1). ISP declines with foliar P in the
majority (70%) of species (brown shading in Figure 5a);
increases with foliar P are observed primarily in conifers.
The relationships with N and K vary between species to
a greater degree than P (Figure 5a). For the
nutrient-demanding genus Acer (Figure 2), foliar K is
associated with high seed production in A. rubrum but
low seed production in A. saccharum, A. pensylvanicum,
and A. circinatum. Foliar N is associated with high ISP
for most species in Acer (except A. pensylvanicum). Both
foliar N and K are associated with low ISP in the
nutrient-demanding Quercus (Figure 2). For conifers with
low nutrient requirements (Figure 2), the effects of crown
N and K show a biogeographic divide. Within-species
associations are negative in eastern species (e.g., Pinus
strobus and Tsuga canadensis), but positive in western
species (e.g., Picea rubens, Tsuga heterophylla, and
Pseudotsuga menziesii).
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The two secondary macronutrients (i.e., Ca and Mg)
show patterns that differ from primary macronutrients
(i.e., N, P, K). Foliar Ca is associated with high seed pro-
duction primarily in conifers, with exceptions being
Tsuga and Pinus strobus. As for deciduous species, associ-
ations are positive for Acer, but negative in Quercus.
Foliar Mg is associated with high reproduction in decidu-
ous (e.g., Quercus) and coniferous (e.g., Pinus) species. It
is worth noting that Betula papyrifera and Pinus cortata
exhibited a limited response to all five macronutrients.

Similarities in the within-species coefficients of ISP to
foliar nutrients (Figure 5a) define five communities in
Figure 5b. ISP of species in northeastern montane forests
PIST-TSCA share affinities for high foliar P and Mg
and low foliar N, K, and Ca. In eastern temperate
ACSA-QURU forests, low foliar N, P, and K and high foliar

Ca and Mg are associated with high fecundity. By contrast,
the eastern THOC-FRAM is associated with high foliar N
and K and low foliar P, Ca, and Mg. The western
TSHE-PSME contains species associated with high
foliar N, P, and K but low foliar Ca and Mg. The
ACRU-ABBA group is a heterogeneous collection of east-
ern and western species that associates with low foliar P
and high foliar Ca. Overall, within-species differences clus-
ter as clear assemblages (red blocks along the diagonal in
Figure 5b) with distinct biogeographic patterns in
Figure 6a. Species having fecundity associated with high
foliar P (i.e., purple points of TSHE-PSME) mainly occur
along the western coastlines.

Community seed production decreased by four orders
of magnitude from >50,000 g/ha at the lowest foliar P to
below 50 g/ha at the highest foliar P (Figure 7) (scale D

F I GURE 5 (a) Within-species coefficients of individual seed production (ISP, in grams per square meter tree basal area) to foliar

nutrients (N, P, K, Ca, and Mg) using the posterior median from the fitted model. (b) Coefficient matrix (E) is used to group species with

similar coefficients into five communities. Communities are separated by dashed lines. Communities are named using the first two letters of

genus and species from the two most fecund species. For example, an eastern temperate community (ACSA-QURU) is negatively associated

with N, P, K and positively associated with Ca and Mg. By contrast, western species in TSHE-PSME are positively associated with N, P, and

K but negatively with Ca and Mg. Species labels are colored by their communities in Figure 6.
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in Figure 1). The decline in CSP along the foliar P gradi-
ent is primarily driven by the negative within-species
coefficients in ISP (Figure 5a). By contrast, high foliar N

is associated with high CSP, especially at low foliar P
levels (Figure 7b). Foliar K, Ca, and Mg show weak asso-
ciations with CSP (Appendix S1: Table S3).

F I GURE 6 Map of species assemblages based on coefficients of seed production to crown nutrients. Each point is a plot from Forest

Inventory Analysis (FIA). Community name and color follows Figure 5.

F I GURE 7 The effects of foliar N and P on community seed production (CSP; in grams per hectare) from the model in Appendix S1:

Table S3 (i.e., positive main effects and negative interactions). The convex hull is constrained by the observations (red). Predictive standard

error can be found in Appendix S1: Figure S4.
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DISCUSSION

The pervasive association between high foliar P and low
ISP emerges from the direct comparisons of tree fecun-
dity and crown condition at the continental scale. This
association holds at the individual scale B (variation
within a species) (Figure 5) and across geographic space
that varies in stand canopy P (scale D) (Figure 7). The
hypothesized connections between seed production and
nutrient storage in the literature (Fern�andez-Martínez
et al., 2017; Han et al., 2008; Ichie & Nakagawa, 2013; Sala
et al., 2012) rely on empirical evidence that is
constrained, both geographically and taxonomically, due
to limited individual-scale data. The recent finding that
nutrient-demanding species, identified as those with high
foliar P, tend to have low seed production (Qiu
et al., 2022) (scale C) is consistent with this study that
brings in individual nutrient status. Thus, intraspecific
responses for most species (Figure 5a) (scale B) are
consistent with interspecific differences in the
fecundity-phosphorous relationship (Qiu et al., 2022)
(scale C). The finding that high crown P is associated
with low fecundity could result from growth stimula-
tion at high P at the expense of reproduction (Elser
et al., 2000; Weinbaum et al., 1992). However, the
explanations for such trade-offs would operate differ-
ently at each of the four scales (Figure 1).

Our findings are not necessarily at odds with nutrient
addition in horticultural practice, because they engage a
different scale. Added N (Callahan et al., 2008; Davis
et al., 2004; Ran et al., 2008) and K (Ran et al., 2008) can
stimulate crop yield (scale A) or not (Picea glauca in
Leeper et al. (2020), Quercus suber in Pérez-Ramos et al.
(2014)). We found that the effects of N and K on ISP are
associated with differing species’ nutrient demands
(Figure 5). In nutrient-demanding species, high seed pro-
duction is associated with lower N and K in Quercus, and
lower K in Acer. An increase in the availability of N
and K could enhance a plant’s growth and reduce seed
production, due to the trade-off between allocating
resources to biomass increase or to reproductive output
(Qiu et al., 2022). By contrast, nutrient-conservative coni-
fers exhibit a biogeographic divide, with positive relation-
ships occurring mainly in the west, including P. rubens,
T. heterophylla, and P. menziesii (Figure 5). This is consis-
tent with previous findings that optimal levels of N and K,
particularly for nutrient-conservative species, could stimu-
late reproduction (Ran et al., 2008).

Despite a tendency for conifers to occupy soils with
low pH, high fecundity was associated with Ca in many
species (e.g., all Abies, Picea engelmannii, P. palustris,
Taxus brevifolia, Thuja plicata). The positive association
in this study between crown Ca and fecundity within the

deciduous species Acer, Quercus, and Fagus (Figure 5)
complements previous findings of Ca stimulation in Acer
saccharum (Halman et al., 2013; Long et al., 2011). Ca is
a critical component of the cell wall, providing structural
stability to plant cells (Thor, 2019). In the context of seed
development, stronger cell walls can contribute to health-
ier seed coats, enhancing the viability of seed production.
Compared with N, P, K, and Ca, the effects of crown Mg
remain rarely studied. We found that high seed production
is associated with high crown Mg in the eastern deciduous
and coniferous species, including Pinus, Quercus, and Acer
(except A. rubrum) (Figure 5). This positive relationship
could be related to Mg’s role in carbohydrate allocation
from leaves to seeds (Geng et al., 2021).

Beyond introducing individual nutrient status, results
reported here reflect an extension in sample size (56,544
tree-years for 26 species while previous studies include
few species) and quantification of ISP (standardized by
tree size). Perhaps still most important is the use of indi-
vidual nutrient status rather than site values based on
soil concentrations. For example, the rates of nutrient
mineralization can diverge from soil concentrations,
and rates of N mineralization are not available in most
studies.

The fact that CSP (i.e., seed mass per forest floor area)
decreases by approximately four orders of magnitude
along the low-to-high foliar P gradient (Figure 7, scale D)
is consistent with the negative within-species response to
crown P for a given tree size (ISP) (Figure 5, scale B). By
contrast, there is a positive relationship between CSP and
foliar N (Figure 7), despite the fact that within-species
response to crown N is mixed (46% negative and 54% pos-
itive) (Figure 5). It is worth noting that the positive rela-
tionship only occurs at low foliar P levels due to the
positive main effects of N and the negative interaction
between N and P (Figure 7; Appendix S1: Table S3). In
addition, CSP does not respond to other nutrients
(Appendix S1: Table S3). The large differences between
the coefficients of individual-level and community-level
seed production to N, K, Ca, and Mg could be caused by
the neutralizing effects of divergent responses within spe-
cies (Figure 5). Moreover, species turnover can result in
CSP that is as high in low-nutrient as in high-nutrient
communities (Qiu et al., 2022).

Tree seed production can be geographically coherent
within species (Ascoli et al., 2017; LaMontagne
et al., 2020), while still varying widely between species
(Qiu et al., 2022) and even between individuals of the same
species (Figure 5). The results here add insights to previous
studies that focused on tree size (Clark et al., 2021; Qiu,
Aravena, et al., 2021), climate (Clark et al., 2021; Journe
et al., 2022), and soil fertility (Qiu et al., 2022), highlighting
the importance of tracking ISP across the landscape.
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Findings from this study could not have come from tradi-
tional measurements of crown nutrients that are
time-consuming and expensive (Perez-Harguindeguy
et al., 2013). Combined LiDAR and hyperspectral imag-
ery allows the quantification of multiple crown nutrients
at individual crowns (Figure 4), offering a direct connec-
tion to ISP.

The interannual variability in crown nutrient concen-
trations and its subsequent impact on seed production
(scale A) represents an important future research direc-
tion. Our analyses primarily focused on spatial variations
across trees (scale B, Figure 5) and communities (scale D,
Figure 7). If multiyear crown nutrients were available,
we might observe changes in nutrients following a seed
production year (Han et al., 2008; Sala et al., 2012).
However, our ability to test this hypothesis is constrained
by the quality of available AOP hyperspectral data. Cloud
cover and shadows, prevalent in many AOP flight lines,
have limited the consistency and reliability of multiyear
datasets. Future work that aims to mitigate the impact of
data quality issues could provide valuable insights into
the year-to-year variability in crown nutrients and their
relationship with reproduction. Additionally, studies sug-
gest that year-to-year seed production also responds to
variables that could not be incorporated into this analy-
sis, including disease and the historical context of forests
(Pearse et al., 2021). The integration of these factors into
our analysis was constrained by the availability and spa-
tial distribution of data across the NEON sites.

The NEON AOP hyperspectral data, while being
among the best available for ecological research, is not
without its limitations. The effectiveness of the ATCOR
atmospheric correction method depends heavily on the
precision with which atmospheric conditions are
modeled at the time of data acquisition. This dependency
can sometimes lead to uncertainties in the data products
(Richter & Schlapfer, 2011). Looking forward, advance-
ments in sensor technology, particularly those with
higher signal-to-noise ratios, alongside the evolution of
space-borne imaging spectroscopy, promise significant
enhancements in trait estimations. Space-borne sensors
can provide broader coverage and more consistent data
collection (Gholizadeh et al., 2022), but their relatively
coarse spatial resolution poses a challenge for detecting
fine-scale species composition variations that are essen-
tial for accurate trait analysis (Figure 4). This gap under-
scores the pressing need to either incorporate
high-resolution data that can capture these critical details
(Figure 4) or to develop new trait models based on the
next generation of space-borne data (Cawse-Nicholson
et al., 2021; Sousa & Small, 2023).

The structural complexity within canopies, including
the arrangement of branches and the density of foliage,
could influence the canopy’s optical reflectivity and thus

influence the estimation of foliar traits (Kamoske
et al., 2021). The focus of AOP data collection on the can-
opy top is not a methodological constraint. For most of
the species, we found seed production decreases from the
exposed outer crown to the shaded interior (Qiu,
Aravena, et al., 2021). Furthermore, it is crucial to recog-
nize that factors such as within-tree variation in leaves
and branches nutrients can also affect fecundity. These
factors, although not the primary focus of our current
analysis due to the data availability, represent important
dimensions for future research.

Understanding forest regeneration requires the quan-
tification of seed production. Fecundity is represented in
the DGVMs as a constant fraction of NPP (Fisher
et al., 2018; Hanbury-Brown et al., 2022). The fact that
both individual-level and community-level seed produc-
tion declines at high P (Figures 5 and 7), contrasts with
the positive nutrient impacts on NPP (Alvarez-Clare
et al., 2013; Menge et al., 2012) in models. The nutrient
relationship here, at individual, species, and landscape
scales has immediate application to forest regeneration in
models that operate on multiple scales.
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