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Pressure-driven flows of viscoelastic fluids in narrow non-uniform geometries are common
in physiological flows and various industrial applications. For such flows, one of the main
interests is understanding the relationship between the flow rate ¢ and the pressure drop Ap,
which, to date, is studied primarily using numerical simulations. We analyze the flow of
the Oldroyd-B fluid in slowly varying arbitrarily shaped, contracting channels and present a
theoretical framework for calculating the g — Ap relation. We apply lubrication theory and
consider the ultra-dilute limit, in which the velocity profile remains parabolic and Newtonian,
resulting in a one-way coupling between the velocity and polymer conformation tensor.
This one-way coupling enables us to derive closed-form expressions for the conformation
tensor and the flow rate—pressure drop relation for arbitrary values of the Deborah number
(De). Furthermore, we provide analytical expressions for the conformation tensor and the
g—Ap relation in the high-Deborah-number limit, complementing our previous low-Deborah-
number lubrication analysis. We reveal that the pressure drop in the contraction monotonically
decreases with De, having linear scaling at high Deborah numbers, and identify the physical
mechanisms governing the pressure drop reduction. We further elucidate the spatial relaxation
of elastic stresses and pressure gradient in the exit channel following the contraction and show
that the downstream distance required for such relaxation scales linearly with De.

1. Introduction

Viscoelastic fluid flows in non-uniform geometries consisting of contractions or expansions
occur in physiological flows, e.g., arterial flows that may have such shape changes due to
thrombus formation (Westein et al. 2013), and in various industrial applications (Pearson
1985). For such flows, one of the key interests is to understand the dependence of the pressure
drop Ap on the flow rate g. It is well known that adding even small amounts of polymer
molecules in a Newtonian solvent may drastically change the hydrodynamic features of the
flow of the solution due to polymer stretching, which generates elastic stresses in addition to
viscous stresses (Bird et al. 1987; Steinberg 2021; Alves et al. 2021; Datta et al. 2022).
Pressure-driven flows of viscoelastic fluids and the corresponding flow rate—pressure drop

+ Email address for correspondence: evgboyko@technion.ac.il

Abstract must not spill onto p.2



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
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relation have been studied extensively in various geometries, mainly through numerical
simulations (Szabo et al. 1997; Alves et al. 2003; Binding et al. 2006; Alves & Poole 2007;
Zografos et al. 2020; Varchanis et al. 2022) and experimental measurements (Rothstein &
McKinley 1999, 2001; Sousa et al. 2009; Ober et al. 2013; James & Roos 2021). We refer
the reader to overviews given recently by Boyko & Stone (2022) and Hinch et al. (2023).

In particular, the abrupt contraction and contraction—expansion channels have received
much attention (Rothstein & McKinley 1999; Alves et al. 2003; Binding et al. 2006; Ferras
et al. 2020), and 4 : 1 two-dimensional (2-D) and axisymmetric contraction flows have
become benchmark flow problems in computational non-Newtonian fluid mechanics (Alves
et al. 2021). Numerical simulations of viscoelastic fluid flow in these and other non-uniform
geometries include a long downstream (exit) section to allow the stresses to reach their
fully relaxed values (see, e.g., Debbaut et al. 1988; Alves et al. 2003). This is because once
perturbed from their fully relaxed values, the elastic stresses require a long distance for spatial
relaxation to enable stable and converged numerical solutions. For higher Deborah (De) or
Weissenberg (Wi) numbers (see definitions in § 2.1), a longer downstream section is required
(Keiller 1993).

Therefore, understanding the spatial relaxation of elastic stresses, velocity, and pressure is
of both fundamental and practical importance, as that determines the size of the computational
domain (Alves et al. 2003). However, despite extensive study of viscoelastic channel flows,
the spatial relaxation of stresses and pressure in these geometries is not well understood. As a
result, the length of the exit channel is currently set somewhat arbitrarily, thus motivating the
development of theory. Furthermore, in many applications, it is necessary to determine the
total pressure drop over the configuration for a given flow rate, thus requiring us to account
for the pressure drop in the entry and exit channels. However, most studies to date focused
on the non-uniform region or close vicinity of the abrupt contraction and reported a suitably
non-dimensionalized so-called Couette correction (or excess pressure drop), rather than the
total non-dimensional pressure drop in the entire configuration (see, e.g., Alves et al. 2003;
Rothstein & McKinley 1999; Binding et al. 2006), presumably due to the arbitrariness of the
exit channel length in simulations.

One widely used approach to obtaining theoretical results in different viscoelastic fluid
flow problems relies on considering the weakly viscoelastic limit by applying a perturbation
expansion in powers of the Deborah or Weissenberg number, which are assumed to be
small (see, e.g., Datt er al. 2017, 2018; Datt & Elfring 2019; Gkormpatsis et al. 2020;
Housiadas et al. 2021; Dandekar & Ardekani 2021; Su er al. 2022). In particular, there
have been many applications of such an expansion in conjunction with lubrication theory
in studying thin films and tribology problems (Ro & Homsy 1995; Tichy 1996; Sawyer &
Tichy 1998; Zhang et al. 2002; Saprykin et al. 2007; Ahmed & Biancofiore 2021; Gamaniel
et al. 2021; Ahmed & Biancofiore 2023). Recently, we have applied lubrication theory and
such an expansion in powers of De, developing a reduced-order model for the steady flow
of an Oldroyd-B fluid in a slowly varying, arbitrarily shaped 2-D channel (Boyko & Stone
2022). We provided analytical expressions for the velocity and stress fields and the flow
rate—pressure drop relation in the non-uniform region up to O(De?). We further exploited
the reciprocal theorem (Boyko & Stone 2021, 2022) to obtain the flow rate—pressure drop
relation at the next order, O(De?). Housiadas & Beris (2023) extended the low-Deborah-
number lubrication analysis of Boyko & Stone (2022) to much higher asymptotic orders and
provided analytical expressions for the pressure drop up to O(De?).

However, the low-Deborah-number analysis cannot accurately capture the behavior at high
De numbers where there are significant elastic stresses. Another approach to simplifying the
governing equations while capturing the underlying physics at non-small Deborah numbers
is to consider the ultra-dilute limit (Remmelgas et al. 1999; Moore & Shelley 2012; Li et al.
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Flow of an Oldroyd-B fluid in a slowly varying contraction 3

2019; Mokhtari et al. 2022), 8 = u p/Ho < 1, where u,, is the polymer contribution to the
total zero-shear-rate viscosity g of the polymer solution. Physically, the ultra-dilute limit
corresponds to a low concentration of polymer molecules in a Newtonian solvent, such that
the viscosity of the polymer solution, g, is only slightly larger than the solvent viscosity,
s (Remmelgas et al. 1999; Mokhtari et al. 2022). Furthermore, the limit 8 = p plio < 1
is closely related to the diluteness criterion of a constant shear-viscosity viscoelastic Boger
fluid (Moore & Shelley 2012). In the ultra-dilute limit, the flow field approximated as
Newtonian creates elastic stresses that are not coupled back to change the flow. These elastic
stresses can then be used to find the correction to the velocity and pressure fields due to
fluid viscoelasticity, even at high Deborah numbers. Previous studies used this approach to
determine the structure of the stress distribution in the flow around a cylinder (Renardy 2000),
a sphere (Moore & Shelley 2012), and arrays of cylinders (Mokhtari et al. 2022), as well as
in the stagnation (Becherer et al. 2009; Van Gorder et al. 2009) and cross-slot (Remmelgas
et al. 1999) flows.

In this work, we continue our theoretical studies (Boyko & Stone 2022; Hinch et al. 2023)
of the pressure-driven flow of the Oldroyd-B fluid in slowly varying, arbitrarily shaped,
narrow channels. In contrast to Boyko & Stone (2022), who focused only on the flow through
a non-uniform channel in the low-Deborah-number limit, and Hinch er al. (2023), who
studied numerically the flow through a contraction, expansion, and constriction for order-one
Deborah numbers, and also provided an asymptotic description at high Deborah numbers,
the current work examines the ultra-dilute limit and arbitrary values of the Deborah number.
Specifically, we analyze the flow of the Oldroyd-B fluid in a contracting geometry and the
relaxation of the elastic stresses and pressure in the exit channel. We apply the lubrication
approximation and use a one-way coupling between the velocity and polymer stresses to
derive semi-analytical expressions for the conformation tensor in the contraction and the exit
channel for arbitrary values of the Deborah number in the ultra-dilute limit. These semi-
analytical expressions allow us to calculate the pressure drop and elucidate the relaxation
of the elastic stresses and pressure in the exit channel for all De. We provide analytical
expressions for the conformation tensor and the pressure drop in the high-Deborah-number
limit, which are consistent with recent results of Hinch et al. (2023), thus complementing our
previous low-Deborah-number lubrication analysis (Boyko & Stone 2022). Furthermore, we
analyze the viscoelastic boundary layer near the walls at high Deborah numbers and derive the
boundary-layer asymptotic solutions. Given the well-known lack of accuracy and convergence
difficulties associated with the high-Weissenberg-number problem in numerical simulations
(Owens & Phillips 2002; Alves et al. 2021), our analytical and semi-analytical results for the
ultra-dilute limit, valid at high Deborah numbers, are of fundamental importance as they may
serve to validate simulation predictions or be compared with experimental measurements to
understand more about the applicability of model constitutive equations.

2. Problem formulation and governing equations

We analyze the incompressible steady flow of a viscoelastic fluid in a slowly varying and
symmetric two-dimensional contraction of height 2A(z) and length £, where h(z) < ¢, as
illustrated in figure 1. Upstream of the contraction inlet (z = 0) there is an entry channel of
height 24( and length £, and downstream of the contraction outlet (z = £) there is an exit
channel of height 2/, and length £,. The fluid flow has velocity u and pressure distribution
p, which are induced by an imposed flow rate g (per unit depth). Our primary interest is
to determine the pressure drop Ap over the contraction region and the spatial relaxation
of pressure and elastic stresses in the exit channel. For our analysis, we shall employ two
different systems of coordinates. The first is Cartesian coordinates (z, y) and (z¢, y), where



134
135
136

137
138
139
140
141
142
143

144

145
146
147
148
149
150
151

152

153
154
155
156
157
158

159

160

161
162

4 E. Boyko, E.J. Hinch and H.A. Stone
4y

Pressure drop AP over non-uniform region of length ¢ @

>
»<€ € >

Slow; Spat;; I
ly patlally Varyj, :
arymg con traction :

'

5%
9
=1
s
&
=]
=
53]

FiGure 1. Schematic illustration of the two-dimensional configuration consisting of a slowly varying and
symmetric contraction of height 2A(z) and length £ (h < ¢). The contraction is connected to two long
straight channels of height 2hg and 2h,, respectively, up- and downstream and contains a viscoelastic fluid
steadily driven by the imposed flow rate g.

the z and zp = z—{€ axes lie along the symmetry midplane of the channel (dashed-dotted line)
and y is in the direction of the shortest dimension. The second one is orthogonal curvilinear
coordinates (&, 7) defined in § 2.3.

We consider low-Reynolds-number flows so that the fluid motion is governed by the
continuity equation and Cauchy momentum equations in the absence of inertia

V-u=0, V.0=0. (2.1a, b)

To describe the viscoelastic behavior of the fluid, we use the Oldroyd-B constitutive
model (Oldroyd 1950), which represents the most simple combination of viscous and elastic
stresses and is used widely to describe the flow of viscoelastic Boger fluids, characterized by a
constant shear viscosity. The Oldroyd-B equation can be derived from microscopic principles
by modeling polymer molecules as elastic dumbbells, which follow a linear Hooke’s law for
the restoring force as they are advected and stretched by the flow. The corresponding stress
tensor o is
o=-pl+2uE+7), 2.2)
where the first term on the right-hand side of (2.2) is the pressure contribution, the second
term is the viscous stress contribution of a Newtonian solvent with a constant viscosity p,
where E = (Vu + (Vu)")/2 is the rate-of-strain tensor, and the last term, 7, is the polymer
contribution.
For the Oldroyd-B model, the polymer contribution to the stress tensor 7, can be expressed

in terms of the (symmetric) conformation tensor (or the deformation of the microstructure)
A as (Bird er al. 1987; Larson 1988; Morozov & Spagnolie 2015),

7,=G(A-1)= 'qu(A ), 2.3)

where G is the elastic modulus, A is the relaxation time, and ), = GA is the polymer
contribution to the shear viscosity at zero shear rate. It is also convenient to introduce the
total zero-shear-rate viscosity po = ps + pp.

The evolution equation for the deformation of the microstructure A of the Oldroyd-B
model fluid is given at steady state as (Bird et al. 1987; Larson 1988; Morozov & Spagnolie
2015)

u-VA—(Vu)T-A—A-(Vu):—/ll(A—I). (2.4)

2.1. Scaling analysis and non-dimensionalization

We consider narrow configurations, in which 4(z) < ¢, hg is the half-height at z = 0, and
uc. = q/2hg is the characteristic velocity scale set by the cross-sectionally averaged velocity.

Focus on Fluids articles must not exceed this page length
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Flow of an Oldroyd-B fluid in a slowly varying contraction 5

We introduce non-dimensional variables based on lubrication theory (Tichy 1996; Zhang
et al. 2002; Saprykin et al. 2007; Ahmed & Biancofiore 2021; Boyko & Stone 2022),

Z y Uz Uy
Z=-, Y=—, U,=—, U, = , 2.5
4 ho S U, Y eu, (2.5a)
A h
p=—L _ ap=—2TL __  p=_, (2.5b)
#Oucf/ho ,Uoucf/ho ho
A=Ay, Ay =€Ay, Ay = Ay, (2.5¢)
where we have introduced the aspect ratio of the configuration, which is assumed to be small
h
e=—2 <1, (2.6)
¢
the contraction ratio
he
Hpy=—, 2.7
‘= o (2.7)
the viscosity ratios
f=tr __Hroaq opo1-pg=ts (2.8)
Hs+Hp Mo 0
and the Deborah and Weissenberg numbers
A A
De="2¢ and Wi=22 2.9)
4 ho

For lubrication flows through the narrow geometries that we consider, there is a difference
between the Deborah and Weissenberg numbers because of the two distinct length scales.
The Weissenberg number Wi is the product of the relaxation time scale of the fluid, 4, and
the characteristic shear rate of the flow, u./hg. On the other hand, the Deborah number De
is the ratio of the relaxation time, A, to the residence time in the contraction region, £/u.., or
alternatively, the product of the relaxation time and the characteristic extensional rate of the
flow (Tichy 1996; Zhang et al. 2002; Saprykin et al. 2007; Ahmed & Biancofiore 2021). The
Deborah and Weissenberg numbers are related through De = eWi, and for narrow geometries
with € < 1, De can be small while keeping Wi = O(1).

Similar to our previous study (Boyko & Stone 2022), we non-dimensionalize the pressure
using the total zero-shear-rate viscosity po = ug + p,,. However, for convenience, we non-
dimensionalize the height based on the entry height rather than the exit height. In addition,
unlike our previous study, we do not scale the deformation of the microstructure with De™!.
Our current scaling is consistent with a fully developed unidirectional flow of an Oldroyd-B
fluid in a straight channel, which yields A,, = O(De?), Azy =0(De),and Ay, = O(1); see
(2.10d)—(2.10f) and (2.16). This scaling is convenient when considering arbitrary and large
values of the Deborah number.

Note that, in both Hinch et al. (2023) and here, the channel height is 2/, but the total flow
rate per unit depth in the former is 2¢q, whereas in this work it is ¢ as in Boyko & Stone
(2022). All results are compatible because the variables used for the non-dimensionalization
are the same, i.e., the expressions for the characteristic velocity, characteristic pressure, and
the Deborah number are the same.
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FiGure 2. Schematic illustration of the orthogonal curvilinear coordinates (£,7) for a slowly varying
geometry. The coordinate & is constant along vertical grid lines, and 7, defined in (2.11), is constant along
the curves going from left to right.

2.2. Dimensionless lubrication equations in Cartesian coordinates

Using the non-dimensionalization (2.5)—(2.9), to the leading order in €, the governing
equations (2.1)—(2.4) take the form

%l;z + % =0, (2.10a)

g—;:(l—ﬁ)iﬁz+§;(%+%), (2.10b)

Z—;J =0, (2.10¢)

U, 8(;*7222 +Uy 65; - 2‘2{; A, - 2%Azy = _iA“’ (2.10d)

U, 6;1; +Uy a(;&;y - ‘Zgy A - a(;;z Ay = —iA}y, (2.10e)
dAyy 0Ayy, U, . ou 1.

—2—2A —2—2A  =——(A,, - 1). 2.10
oz "y TPaz e Ty A=A D (-10f)

From (2.10c¢), it follows that P = P(Z), i.e., the pressure is independent of ¥ up to 0(€?),
consistent with the classical lubrication approximation. We note that the scaled A, on the
right-hand side of (2.10d) relaxes to €2, which is neglected at the leading order in €.

U,

2.3. Orthogonal curvilinear coordinates for a slowly varying geometry
For our theoretical analysis, it is convenient to transform the geometry of the contraction from
the Cartesian coordinates (Z,Y) to curvilinear coordinates (&, 7), as illustrated in figure 2,
with the mapping (Hinch et al. 2023)
1 ,H (2)
- —€
2 H(Z)

Y
_m.

&= (H(Z)*-Y)+0(eY), 1 (2.11)
As shown in Appendix A, the curvilinear coordinates (£, 7) are orthogonal with a relative
error of O(e*), i.e., V& Vi = O(€*).

Hereafter, we use u = ues +ve, and A = Ajjeces + Ajp(ege, +e,e:) + Axeye, to
denote, respectively, the components of velocity and deformation of the microstructure in
curvilinear coordinates (&, 7). The corresponding non-dimensional velocity components in

different coordinates are related through (see Appendix A)

U, =U—-€enH (&)V, Uy = nH' (&)U + V. (2.12)
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Flow of an Oldroyd-B fluid in a slowly varying contraction 7

Similarly, the scaled conformation tensor components in different coordinates are related
through (see Appendix A)

A=A +0(Y), (2.13a)
Ay = A +nH' (£)An +0(€2), (2.13b)
Ayy = Ay + 2H' (£) A1 + 0P (H'(6))2A11 + O(ED). 2.13¢)

Finally, we note that, since there is only a O (e?) difference between the - and z-directions,
for convenience, we continue to use Z rather than £ in curvilinear coordinates.

2.4. Dimensionless lubrication equations in orthogonal curvilinear coordinates

Using the mapping (2.11), the governing equations (2.10) take the form in curvilinear
coordinates (Hinch et al. 2023)

6((§IZU) an =0 (2.14a)

dP iz~ ¢ _B)I; a; zi (%WE“) +%3§7712 , (2.14D)
652“ 1‘;6;;;1 - (;_ZA“ - %%Alz = —iﬁu, (2.14¢)

agizlz . %6(;\7712 _ Haiz (K) A - %%Azz = —D%Alz, (2.14d)

a(;izzz + %8;4;2 _ zHaaZ (V) A+ zg—lZ]Azz = ——(A22 - 1). (2.14¢)

The corresponding boundary conditions on the velocity are
oU !
Uuiz,1)=0, Vv(Z,1)=0, (’)_(Z’ 0)=0, H(Z) UZ,ndn=1, (2.15a-4d)
n 0

which represent, respectively, the no-slip and no-penetration boundary conditions along the
channel walls, the symmetry boundary condition at the centerline, and the integral mass
conservation along the channel. In addition, we assume a fully developed unidirectional
Poiseuille flow in the straight entry channel and the corresponding deformation of the
microstructure

- 18De¢? . 3De _
All = H4 . ?n’ A22 = 1’ (216a - C)

with H = 1 at the entrance. We also assume that, far downstream in the exit channel, the
deformation of the microstructure attains a fully relaxed value, given by (2.16) with H = H,.

n, AIZ__

2.5. Pressure drop across the non-uniform region in the lubrication limit

In this subsection, we show that one can calculate the pressure drop without solving directly
for the velocity field. To this end, we first integrate by parts the integral constraint (2.15d),
repeatedly, using (2.15a) and (2.15¢), e.g., (Hinch et al. 2023),

1 ! L aUu 1
—— = [ Udyp= Ul—/ —dp=-(1-n*)—
HZ) /O n = nUl, gy 2(

——
—/_z
0
0

——/ (1- 2)—dn (2.17)
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8 E. Boyko, E.J. Hinch and H.A. Stone
Substituting the expression for 3°U/dn? from (2.14b) into (2.17), we obtain

2 N 1 a(HAll) 1 81@12
H(Z)3_ /( - )[dZ De ( 5z T H on )]dn, (2.18)

which can be rearranged to yield the pressure gradient

AP 3(1-H) 38 ' L | 1 aHDA) 1 0An
az —+_/(1_’7)[H(Z) 9z T H(Z) on

Z =" HE) ]dn. (2.19)

Integrating (2.19) with respect to Z from 0 to 1 provides the pressure drop AP = P(0) — P(1)
across the non-uniform region

AP = 3(1—/3)/ Tz

) 1 A(H(Z)A) 1 dAp,
2D6/ /( )[H(Z) 57 +H(Z) . ]dndZ. (2.20)

Using integration by parts, (2.20) can be expressed as

2 1
ap=30-p [ L 3—ﬂ/<1—n2>[An<o,n>—Au(1,n>]dn

L, 38 R
2De/ [H(Z) (/ (1- 2)A11d77)} dZ_De 5 [M/o 77A12d77] dz,2.21)

where prime indicates a derivative with respect to Z.

Equation (2.21) resembles the result of an application of the reciprocal theorem previously
derived for the pressure drop of the flow of an Oldroyd-B fluid in a slowly varying
channel (Boyko & Stone 2021, 2022). The first term on the right-hand side of (2.21)
represents the viscous contribution of the Newtonian solvent to the pressure drop. The
second term represents the contribution of the elastic normal stress difference at the inlet
and outlet of the non-uniform channel. The third term represents the contribution of the
elastic normal stresses that arise due to the spatial variations in the channel shape, which is
a contribution that is absent in a straight channel. Finally, the last term represents the elastic
contribution due to shear stresses within the fluid domain of the non-uniform channel. It
should be noted that we do not assume a priori the particular shape of the channel H(Z) but
rather consider a flow in a slowly varying channel of arbitrary shape H(Z).

3. Low-f lubrication analysis in a slowly varying region

In the previous section, we obtained the dimensionless equations (2.14), which are governed
by the two non-dimensional parameters, 3 and De, in the lubrication limit (¢ < 1). In
this section, we derive analytical expressions for the velocity, conformation tensor, and the

— Ap relation for the pressure-driven flow of a very dilute viscoelastic Oldroyd-B fluid,
B = up/po < 1in aslowly varying channel of arbitrary shape H(Z).

In contrast to our previous study that employed a low-Deborah-number lubrication
analysis (Boyko & Stone 2022), in this work, we assume De = O(1) and consider the
ultra-dilute limit, ﬁ < 1 (see Remmelgas et al. 1999; Moore & Shelley 2012; Li ez al. 2019;
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Flow of an Oldroyd-B fluid in a slowly varying contraction 9
Mokhtari et al. 2022). To this end, we seek solutions of the form

U U U,

Vv Vo Vi

P Py | P 2 =

L I R 0(E. ). 3.1
An A1,0 th A1, TO(LF) G-
A1z A1 A

Ax Any A,

The ultra-dilute limit represents a one-way coupling between the velocity and pressure
fields and the deformation of the microstructure (polymer stresses or conformation tensor).
At leading order, the velocity and pressure are Newtonian, and the deformation of the
microstructure (i.e., polymer stresses) arises from this Newtonian flow. Accordingly, the
velocity and pressure at O(f) arise due to leading-order polymer stresses. In the next
subsections, we provide closed-form asymptotic expressions for the velocity field and
conformation tensor components at O (%) and the pressure drop up to O(5).

We note that the viscosity ratio § = u p/Ho is related to the so-called concentration of the
polymers ¢ = p, /g through 8 = ¢/(c + 1). Thus, at the leading order, the limits § < 1 and
¢ < 1 are identical.

3.1. Velocity, conformation, and pressure drop at the leading order in 3

Substituting (3.1) into (2.14a)—(2.14b) and considering the leading order in ﬁ the continuity
and momentum equations take the form

0(HUy) oV dPy 1 92 0°Uy
— =0 d — , 3.2a,b
oz " on an Z " H o (3.2a,5)
subject to the boundary conditions
aUj !
UO(Z’ 1) = O, VO(Za 1) = O’ _(Z O) 7 H(Z) UO(Z7 U)dﬂ = L. (33Cl - d)
0

The solutions for the axial velocity Uo and the pressure drop APy at the leading order are
well known (see, e.g., Boyko & Stone 2022)

3 I az
U= =—— d APy =3 . 34a,b
=3 H(Z)( r) "7 HZ)7 (da.b)
Substituting (3.4a) into the continuity equation (3.2a) and using (3.30), yields
Vo =0. (3.5)

From (3.5), it follows that, in orthogonal curvilinear coordinates, the velocity in the n-
direction is identically zero at O(°), in contrast to the Cartesian coordinates where U v,0 =
(3/2)H’(Z)Y(H(Z)?> - Y?)/H(Z)*. As we shall see, this fact significantly simplifies the
theoretical analysis and allows us to derive closed-form expressions for the components of
the conformation tensor.

Using (3.5), at leading order in 3, the equations for the conformation tensor components,
(2.14¢)—(2.14¢), simplity to

0Ano _OUy -
~ 42— A =——(A -1 .
Uop 37 57 (2.0 = ( 20— 1), (3.6a)
A 1 Uy - 1
12— =0 A0 = —— A0, (3.6b)

0z H on De
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3A~11 0 oy -~ 2 90Uy - 1
A0 008 0= 280K = —— A :
Uy 37 37 A0 H on 12,0 Do Ao (3.6¢)

subject to the boundary conditions
A11,0(0,7) = 18D, A120(0,n) = =3Den, Apo(0,m)=1. (3.7a-c)

Equations (3.6) represent a set of one-way coupled first-order semi-linear partial differential
equations that can be solved first for Azz,o, followed by Alz,o, and then for Au,o'

Solving (3.6) together with (3.7), we obtain closed-form expressions for Azz,o, Alz’o, and
Ay o for arbitrary values of De and the shape function H(Z)

A z .
A0 _ rwetsza) |1 4 / o f(DeUs(Z.)
0

H(Z)?

(3.8)

Der(Z,n)H<Z)2dZ] ’

- 7 - -
4120 _ of(DeUn(Z.1)) [1 +/ e~ f(Dely(Z.m)) Azzf)(z, ) _ dZ} , (3.9)
0 DeUy(Z,n)H(Z)?

Al of (DeUo(Z)) 1+/Ze—f<Der<Z,n>> A0(Z,n) dz]
18D JH(Z)? 0 (=3nDe)DeUy(Z,n) |’
(3.10)
where f(DeUy(Z,n)) is defined as
zZ zZ 4
f(DeUy(Z,7)) :—/ ;dz?/ 22 ;. (3.11)
o DelUy(Z,1n) 0 3De(1-1?)

It is worth noting that the right-hand sides of (3.8)—(3.10) depend on the product DeUy(Z, 17)
and are not functions of De and 7 separately. Furthermore, (3.8)—(3.10) clearly show that,
while the distribution of /122 o is set solely by the value at the beginning of the non-uniform
region, the distribution of elastic shear and normal stresses, Alz o and A11 0, are coupled to
the transverse normal stress Ay .- In fact, the elastic normal stress A .0 depends both on
Ajz,0and Ay p.

From (3.8)—(3.10), one might think that the conformation tensor components diverge at
the wall (n = +£1). However, using (3.6) and noting that Uy = dUy/dZ = 0 at n = 1, it
follows that, at the walls of the non-uniform channel,

. - 3De . 18De?

Aph=1, AWy = *HR AV = HZ? for all De. 3.12)
In§§3.1.1and 3.1.2, we provide explicit expressions for the conformation tensor components
in the low- and high-De limits. We also note that the results shown in our figure 4(a, ¢) and
the work of Hinch er al. (2023) suggest the existence of a viscoelastic boundary layer near
the walls in the high-De limit, which we analyze in § 3.1.3.

3.1.1. Conformation tensor in the low-De limit

For De < 1, we solve the equations iteratively for the conformation tensor components (3.6)
to obtain

- 3DeH’ 5. 9De*[4H? — HH"] "
Apo=1+———10-n)+ 70 (1-mn7)
27De3[24H” — 13HH'H"” + H*H""
» Pl T La—np, (3.13a)

. 3De  18De’H’ 81De’[4H"> — HH"'|
A12,0 == 2 n- 4 6
H H 2H

Rapids articles must not exceed this page length

n(1-n?) - n(1-n%)?%  (3.13b)
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2 3y 4 72 77
Ko = 18£e o+ 16225 H (1 —n?) + 486De [4}1_—118 HH"]
We note that the low-De results (3.13) are consistent with our previous work (Boyko &
Stone 2022), in which we provided explicit expressions for A,_, A 2y and Ayy up to O(De?)
in Cartesian coordinates. For example, using (2.13¢) and (3.13), Ayy can be expressed as
Ayy = 1+3DeH'(Z)(H(Z)* - 3Y?)/H(Z)* + O(De?), in agreement with (3.9a) in Boyko
& Stone (2022).

2(1 =122 (3.13¢)

3.1.2. Conformation tensor in the high-De limit

We here provide the closed-form expressions for the conformation tensor components in the
high-De limit. We begin with the expression for Az ¢ and consider the core flow region.
For De > 1, except close to the wall, (3.6a) reduces to

dA .
20 204,00, (3.14)

Uo=57 a7z

whose solution subject to (3.7¢) is

Uo(0,1)?

A H(Z)%. (3.15)

A2 0(Z,m) = Ap(0,7)

Next, since Ay scales as O(De) while Asy o is O(1), within the core flow region in the

high-De limit we obtain that the first term in (3.60) dominates over all the remaining terms

A0
0z

so that elastic shear stresses preserve their value from the entry channel through the non-
uniform region

0 =0, (3.16)

A12.0(Z, 1) = A12,0(0,1) = =3Den. (3.17)

Finally, to determine All,o, we note that the third and fourth terms in (3.6¢) scale as O(De),
while the first and second terms are O(Dez). Thus, for De > 1, we expect the first and
second terms to balance each other while the remaining terms are negligible, so that

Ao . 0U -

=7 —26—ZA110—0 (3.18)

Solving (3.18) subject to (3.7a) yields

Uy

Uo(Z,m)* _ 18De’n?
Uo(0,m)> — H(Z)?

In fact, for De > 1, there is a purely passive response of the microstructure, similar to a
material line element, transported and deformed by the flow without relaxing.

The high-De results (3.15), (3.17), and (3.19) can be also directly obtained from the
closed-form solutions (3.8)—(3.10) by noting that, for De > 1, e*f(PeUo(Z:1)) ~ 1  and
neglecting the O(De~!) terms.

A110(Z,m) = A11,0(0,7) (3.19)

3.1.3. Boundary-layer analysis in the high-De limit

In the previous section, we obtained analytical expressions for the components of the
conformation tensor in the high-De limit within the core flow region. However, these
expressions do not hold near the walls, where a viscoelastic boundary layer of O(De™")
thickness exists (Hinch e al. 2023). In this section, we analyze this boundary-layer region
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12 E. Boyko, E.J. Hinch and H.A. Stone

and provide boundary-layer equations and their closed-form solutions. To this end, we focus
on the region 5 € [0, 1], and introduce the rescaled inner-region coordinate

{=De(l-n)=Deii for #ij< 1, (3.20)

so that De(1 — %) = {(2-1) ~ 2{. Noting that, in the boundary layer, Apo = O(1),
A12 0o = O(De), and A11 0 = O(De?) (see (3.12)), to eliminate the ‘dependence on De in
the governing equations and boundary conditions (3.7), we rescale Azz,o, Alz,o, and A11,0,
which are functions of Z and £, as

Axpo Ao Ao
ﬂ = — ﬂ = —” ﬂ = —"
2 12 C3nDe) 11 1872De2 | H(Z)?

Substituting (3.20) and (3.21) into (3.6) and using (3.4a), we obtain the boundary-layer
equations in the high-De limit

(3.21)

3 0Axp 1
— =— -— 22
H(Z) 0z ( ” H<Z>2)’ (220
3 0A
=5 =_ - 22
HZ) 9z (A — Ax), (3.22b)
3 0A
- _ _ 22
H(Z) 9z (A — Ar), (3.22¢)
subject to the inlet conditions
?{11(0, g) =1, ﬂlz((), é') =1, ﬂgz(o, g“) =1. (3.2361 - C)

Solving (3.22) together with (3.23), we obtain closed-form expressions for Ay, Aj;, and
Ajj in the boundary-layer region

z
~ 1 -
Ay =120 1+/ e_¢(z’§)—~d2], (3.24a)
0 3(H(Z)
z . Z,0)H(Z) -
ﬂlz:ef(l,é) 1+/ e—T(Z,é)Mdz}, (3.24b)
0 3¢
z > Z,0)H(Z) -
Ay =T %0 1+/ eﬂz’?)%?()dz}, (3.24¢)
0
where F(Z, ) is defined as
|
F(Z,0) = —— / H(Z)dZ. (3.25)
3¢ Jo

We note that solutions (3.24) satisfy the matching conditions between the inner

and outer regions. Specifically, Axnl; o = [A;gr%/H(Zﬂ] L= I, Aplfse
¢ e

[Asgs/-3mpe)] = toand Al = [A5/G8DE | <1,

3.2. Pressure drop at the first order in 8

Equation (2.20) shows that the pressure drop depends on the elastic normal and shear stresses
Ay and A, and thus, generally, requires the solution of the nonlinear viscoelastic problem.
However, in the ultra-dilute limit, corresponding to 8 = u p/Ho < 1, we can determine the
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pressure drop at O(f3) for arbitrary values of De only with the knowledge of the velocity
field and conformation tensor components at O(1). Specifically, substituting (3.1) into (2.20)
yields at O () the pressure drop APy,

1
APy = -3 _4z
o H(Z)?
3 bt 1 8(H(Z)A110) 1 0Any
—— -7 — + ~| dndz, (3.26
2De/0 /0( ”)[H(Z) oz H(Z) o1 ] ndz. (3.26)
or alternatively,
1 1
dz 3 ~ -
AP =-3 [ ——+— 1-n%) [A11,0(0,7) = An1o(1,m)] d
1 y H(Z)? 2De‘/0( 77)[ 11,000, 17) 11,0( 77)] n
3 Y H(Z) (! " 3 01 L.
- 1-n9)A0dn)|dZ - — —_— A odn|dZ(3.27
2D€/0 [H(Z) /0 (1 =n")A11,0dn De J, H(Z)/O nAn,0dn | dZ(3.27)
Thus, for a given flow rate ¢, the dimensionless pressure drop AP = Ap/(uoqt/ 2h(3)), as a

function of the shape function H(Z), the Deborah number De, and the viscosity ratio B <1,
up to O (), is given by
AP = APy(H(Z)) + BAP1(De, H(Z)) + O(€%, %), (3.28)
where the expressions for APy and AP, are given in (3.4b) and (3.27), respectively.
Notably, in contrast to our previous results for the pressure drop obtained in the weakly

viscoelastic and lubrication limits with De <1 and B € [0,1] (Boyko & Stone 2022), the
current result (3.28) applies to the limit of 8 <« 1, while allowing De = O(1).

3.2.1. Pressure drop at O(p) in the low-De limit

To calculate the pressure drop AP at low Deborah numbers in the non-uniform shape region,
we use (3.135)—(3.13¢) and (3.27). The elastic normal stress (NS) contribution to the pressure
drop at O(p) is

3 | ) _ 3 1 H/ Z 1 ~
s E/O S [AM’O];:? an - ZDe/O [H((Z)) (/O (1 —,72)A11,od77)] dz

27
:EDe(l—Hg4) for De <1, (3.29)

~ Z=0 - ~
where [A110],_, = A11,0(0,17) = A11,0(1,7).
The elastic shear stress (SS) contribution to the pressure drop at O(g) is

3 001 L.
AP = —— —/ Apa0dn|dz
! De Jy [H(Z) 0 10t
1
dz 18 4
=3[ ———+—De(l-H for De < 1. 3.30
; H(Z)3+10 e( ;) for e < (3.30)

Substituting (3.29) and (3.30) into (3.27) provides the pressure drop at O(/3) in the low-De
limit up to O(De),

APlnge(l—H;4)+0(De2) for De < 1, (3.31)

so that the total pressure drop across the non-uniform channel in the low-De limit, accounting
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14 E. Boyko, E.J. Hinch and H.A. Stone

for the leading-order effect of viscoelasticity, is

8 27 -
AP = 3(1—,8)/ Gy ,3/ YTEAE 1—031)@(1_11;4)4,%31)41—11;4)

Solvent stress Elastic shear stress Elastic normal stress

1
dz H4 2
=3 ; H(Z)3 + ﬁDe(l— ;)+0(De”) for De <1, (3.32)
in agreement with the results of our previous work (Boyko & Stone 2022). The three terms on
the right-hand side of (3.32) represent, respectively, the Newtonian solvent stress contribution,
the elastic shear stress contribution, and the elastic normal stress contribution to the pressure
drop.

3.2.2. Pressure drop at O(p) in the high-De limit

To calculate the pressure drop AP; at high Deborah numbers in the non-uniform region,
we use (3.17), (3.19), and (3.27). The elastic normal and shear stress contributions to the
pressure drop at O(f3) are

1
y4
APYS = —D (1-H;%)  and AP]SS:3/ % for De>1. (3.33a,b)
0

Substituting (3.33) into (3.27) yields the pressure drop at O(/3) in the high-De limit

1 1
dz dz 9 H-?

—+ + = D 1- fi De > 1, 3.34

o HZ)? ")y HZ) (1=H7) for De 539

so that the total pressure drop across the non-uniform channel in the high-De limit is

APy = -3

AP =3(1 - +—BDe(1-H;?) for De>1. (3.35
- [ s wap [ s JBDe = H?) o De 1. (33)
__\,___-/
Solvent stress Elastic shear stress Elastic normal stress

Similar to the low-De limit, for the contraction geometry, the last term, corresponding to the
elastic normal stress contribution, leads to a decrease in the pressure drop, which is linear in
the Deborah number. As noted by Hinch et al. (2023), the tension in the streamlines at the end
of the contraction pulls the flow through the contraction, thus requiring less pressure to push.
Furthermore, at high Deborah numbers, the elastic shear stresses are lower than the fully
relaxed value A, = —3Den/ H2 due to insufficient time (distance) to approach their fully
relaxed value in the contractlon Thus, the elastic shear stress contribution to the pressure

drop, 38 /0 H(Z)~'dZ, is smaller than the steady Poiseuille value of 33 fo H(Z)3dz,
further reducing the pressure drop. Finally, we note that the result (3.35) also holds for the
expansion geometry H, > 1, in which the two physical mechanisms mentioned above lead
to an increase in the pressure drop.

4. Low-p lubrication analysis in the exit channel

In this section, we analyze the spatial relaxation of the elastic stresses and the pressure drop in
the uniform exit channel. From examining the expressions (3.8)—(3.10) for the conformation
tensor, when there are no longer shape changes, we expect the elastic stresses and the
pressure in the exit channel to relax exponentially, with a strong dependence on De~'. Thus,
for higher Deborah numbers, a longer downstream section is required (Keiller 1993) for
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Contracting channel Exit channel
Deformation of the microstructure:

Semi-analytical solution (3.8)—(3.10) (B3)-(B5)
Low-De asymptotic solution (3.13) B7)
High-De asymptotic solution (3.15), (3.17), (3.19) (B9)
Pressure drop:

Semi-analytical solution (3.28) “4.1
Low-De asymptotic solution (3.32) 4.3)
High-De asymptotic solution (3.35) 4.4)

TaBLE 1. A summary of the semi-analytical solutions and low- and high-De asymptotic expressions for the
deformation of the microstructure and the pressure drop of the Oldroyd-B fluid in a contraction and exit
channel in the ultra-dilute limit.

polymer relaxation, consistent with previous numerical simulations using the Oldroyd-B
model (Debbaut er al. 1988; Alves et al. 2003).

Following similar steps as in the previous section, in Appendix B, we derive closed-form
expressions for the conformation tensor and the pressure drop in the uniform exit channel for
arbitrary values of the Deborah number. Furthermore, we provide analytical expressions for
the conformation tensor and the pressure drop in the low- and high-De limits. We summarize
in table 1 the semi-analytical solutions and low- and high-De asymptotic expressions for
the deformation of the microstructure and the pressure drop of the Oldroyd-B fluid in a
contraction and exit channel in the ultra-dilute limit derived in this work.

In particular, we show that the total pressure drop in the exit channel can be expressed as

3ﬁ~ 1 0 5
AP, =(1- 1-7 A Ajp0dZs| dn,
= ( /( “O]z +DeHg/0 T][A 12,0 e} n

E/—/
Solvent stress

Elastic normal stress Elastic shear stress
4.1)

where L = {;/{ is the dimensionless length, Hy = H(Z = 1) = hg¢/hg is the dimensionless
height of the exit channel, Z, = Z — 1, A~11,0 and A12,0 are given in (B4) and (B5), and
[Ain, 0] =Ano(Ze =0,n) - Au,o(Zz? =L,n).

It should be noted that we can express the first-order contribution AP, ; in terms of the
difference between the conformation tensor components at the beginning and end of the exit
channel (see Appendix B and Hinch et al. (2023))

9 Z )

AP[I—_/( —U)[Allo]z Ldn 2/ (1—77)[A120] .
¢= 2H

27De

4

2H?

2 N[ & Z=0
/0 (1 =n%) [An] 75—, dn. 4.2)

Hereafter, we assume that the length of the exit channel, L, is such that the elastic stresses reach
their fully relaxed values by the end of the exit channel, given by (2.16) with H = H,. Under
this assumption, (4.2) clearly shows that the first-order contribution APy ; is independent of L
since the steady-state values of Ay 1.0 A 12,0, and Azz,o depend solely on the 17 coordinate. Note,
however, that the total pressure in the exit channel depends on L via APy = 3L/H ; +BAP; ;.

In addition, we show in Appendix B that the total pressure drop in the exit channel in the



497

498

499

500

501
502
503
504
505
506
507
508

509

510
511
512
513

514

515
516
517
518
519
520

522
523
524
525
526
527
528

529

530
531
532
533
534
535
536
537
538
539

16 E. Boyko, E.J. Hinch and H.A. Stone
low- and high-De limits is

_ 3L 17283De*H” (1)

APy = — for De <1, 4.3
T H 35H] @
3L 36 .
APp=—o+ ?BDe(H{?Z —-H;*) for De> 1. (4.4)
14

From (4.3) and (4.4), it follows that, similar to the contraction, the pressure drop in the
exit channel decreases with De. Furthermore, the physical mechanisms responsible for the
pressure drop reduction are the same in both the contraction and the exit channels.

The asymptotic result (4.4) is obtained using expressions (B 9a)—(B 9c¢), which hold in the
high-De limit within the core flow region. As discussed above, near the walls, there exists
a viscoelastic boundary layer of thickness O (De!). Nevertheless, this boundary layer will
contribute only a small O(3De~") correction to the pressure drop in the exit channel for
De > 1, as noted by Hinch et al. (2023).

5. Results

In this section, we present the theoretical results for the pressure drop and conformation
tensor distribution of the Oldroyd-B fluid in the ultra-dilute limit developed in §§ 3 and 4.
As an illustrative example, we specifically consider the case of a smooth contraction of the
form

H(Z)=1-(1-H)Z*2-2)* 0<Z<]I, (5.1
where Hy = H(1)/H(0) = he/hg is the ratio of the exit to entry heights; for the contracting
geometry we have Hy < 1. This contraction shape function is illustrated in figure 2 and
satisfies H'(0) = H"”’(0) =0and H’(1) = H"”(1) = 0.

In this work, we present the results for H, = 0.5 and 3 = 0.05. While the current study
focuses only on one contraction ratio, in our previous work, we considered four contraction
ratios, in which the elastic normal stresses vary by almost two decades (Hinch ef al. 2023).
In addition, figure 8 of our previous paper shows a 0.1 % difference between ¢ = 0.1 and
¢ = 0.05 for the pressure drop in the contraction at De = 0.8. Nevertheless, our current
analysis allows us to analyze slowly varying arbitrarily shaped channels provided € <« 1
and 3 < 1. To obtain the semi-analytical solutions for given values of De and H,, we first
used MATLAB'’s routine cumtrapz to find the conformation tensor components, given in
(3.8)—(3.10) and (B 3)—~(B 5), for a contraction and exit channel. Typical values of the grid
size were AZ = 10™* and Ay = 0.005. We then used MATLAB’s routine trapz to calculate
the pressure drop, (3.28) and (4.1), for a contraction and exit channel, respectively.

5.1. Streamwise variation of elastic stresses in the contraction and exit channel

We present in figure 3 the streamwise variation of the leading-order elastic stresses, scaled
by their entry values, on 7 = 0.5 in contraction and exit channels for De = 0.01 (a, d),
De =0.1(b,e),and De =1 (c, ). As expected, for a small Deborah number of De = 0.01,
the elastic stresses achieve their downstream fully relaxed values by the end of contraction
(figure 3(a)), and thus we observe very little variation in the relaxation along the exit channel
(figure 3(d)). Consistent with the low-De asymptotic solutions (3.13), represented by cyan
dotted lines, for Hy = 0.5, the elastic shear and axial normal stresses increase by a factor of
4 and 16, respectively, while the transverse normal stress preserves its entry value.

For the case of De = 0.1, shown in figure 3(b, e), the elastic stresses do not have enough
residence time to attain their downstream steady-state values in the contraction. Therefore,
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Contraction Exit channel
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Ficure 3. The streamwise variation of leading-order elastic stresses on 7 = 0.5 in a smooth contraction
and exit channel in the ultra-dilute limit. (a—c) Scaled elastic stresses All,o /(18De%n?), 1412’0 /(=3Den),
and Azz,o in the contraction as a function of Z for (a) De = 0.01, (b) De = 0.1, and (¢) De = 1. (d—e)

Scaled elastic stresses in the exit channel 511,0/(18Dezr}2), Alz’o/(—SDen), and Azz,o as a function of
Zp for (d) De = 0.01, (¢) De = 0.1, and (f) De = 1. Solid lines represent the semi-analytical solutions
(3.8)—(3.10) (contraction) and (B 3)—(B 5) (exit channel). Cyan dotted lines represent the low-De asymptotic
solutions (3.13) (contraction) and (B 7) (exit channel). Red dashed lines represent the high-De asymptotic
solutions (3.15), (3.17), and (3.19) (contraction) and (B 9) (exit channel). All calculations were performed
using Hy = 0.5.

there is a significant spatial relaxation in the exit channel. Interestingly, although the relaxation
in the exit channel is governed mainly by e~2HeZ¢[13De(1-1%)] (see (B 3)—(B5)), the elastic
stresses relax over slightly different length scales, with the shortest relaxation distance
required for A,y o and the longest for A1} o. The latter behavior is associated with the nature
of the coupling between the elastic stresses so that A“,o depends both on A~12,0 on 522,0,
while A~12,0 depends only on Azz,o (see (B3)-(BY)).

When De = 1, it is evident from figure 3(c) that, at the end of the contraction, the axial
normal stress increases by a factor of 1/ H? = 4, the transverse normal stress is squashed by a
factor of H? = 1/4, and the elastic shear stress preserves its entry value. Figure 3(f) presents
the spatial relaxation of the elastic stresses in the exit channel for De = 1, clearly showing
that a very long exit channel is required to attain the downstream fully relaxed values of
all stresses (L > 16 for n = 0.5). Furthermore, we observe excellent agreement between
the semi-analytical results (solid lines) and the high-De asymptotic solutions (3.15), (3.17),
(3.19), and (B 9) (dashed red lines). Such an agreement for De = 1 is consistent with recent
results of Hinch ez al. (2023), who found that the high-De analysis works well for De > 0.4.

The closed-form solutions for the conformation tensor components, (B 3)—(B 5), clearly
show that the spatial relaxation of the elastic stresses in the exit channel strongly depends
on the stresses at the end of the contraction (Z = 1). Therefore, it is of particular interest to
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Figure 4. The cross-stream variation of leading-order elastic shear and normal stresses at the end
of the contraction in the ultra-dilute limit. (a,c) Scaled elastic shear and normal stresses at the end
of the contraction, (a) Aj20(Z = l,n)/(—SDen/H{%) and (c) A1 0(Z = l,n)/(ISDeznz/H?,), as a
function of n for De = 0.01,0.1,1, and 10, respectively. (b) 512,0(2 = l,n)/(—SDen/H?) and (d)
Aq oZ=1m/( 18D32772/H?) as a function of the rescaled coordinate { = De(1—n) for De = 0.1, 1, and
10. Solid lines represent the semi-analytical solutions (3.9)—(3.10). Cyan dotted lines represent the low-De
asymptotic solutions (3.135)—(3.13¢). Red dashed lines represent the high-De asymptotic solutions (3.17)
and (3.19). Green dashed lines represent the boundary-layer solutions (3.245)—(3.24c¢). All calculations were
performed using Hy = 0.5.

elucidate the behavior of the elastic stresses at the end of the contraction and the extent to
which they are perturbed relative to their downstream fully relaxed values.

The solid lines in figure 4(a, ¢) present the elastic shear (a) and axial normal stresses
(c) at the end of the contraction as a function of n = y/H, for De = 0.01,0.1, 1, and 10,
scaled by their downstream fully relaxed values. For a small Deborah number of De = 0.01,
A20(Z = 1,7)/(=3Den/H}?) and A1 o(Z = 1,7)/(18De*n*/H}) only slightly differ from
their downstream values, and this behavior is well captured by the low-De asymptotic
solutions (3.135)—(3.13c), represented by cyan dotted lines. As De increases, the elastic
stresses become considerably suppressed within the core flow region relative to their eventual
relaxed values far downstream, and for De = 1 and De = 10, the elastic shear and axial
normal stresses approach the high-De asymptote of H? = 1/4, represented by red dashed
lines. Furthermore, in the high-De limit, we observe the presence of a viscoelastic boundary
layer close to the walls, where the elastic stresses reach their downstream fully relaxed values.

To provide insight into this viscoelastic boundary layer, we replot in figure 4(b, d) the
elastic shear (b) and axial normal stresses (d) at the end of the contraction as a function of
the rescaled coordinate ¢ = De(1 —n) for De = 0.1, 1, and 10 (see § 3.1.3). It is evident
from figures 4(b) and 4(d) that this rescaling collapses the results for the different Deborah
numbers onto the same curves, which are the boundary-layer asymptotic solutions (3.240)
and (3.24c) (green dashed lines). Clearly, for De = 1 and De = 10, which are graphically
almost indistinguishable, there is excellent agreement between the semi-analytical results
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Ficure 5. (a, b) Scaled elastic shear and normal stresses at the end of the contraction, (a)
A12,0(Z = 1,)/(-3Den/H?) and (b) Ay,0(Z = 1,7)/(18De*n? |H}) minus H3, divided by the factor

1- Hg, as a function of DeUy(Z = 1,7) for De = 0.5,1 and Hy = 0.125,0.25, and 0.5. This rescaling
leads to an approximate collapse of the results on the single uniform curve for different Deborah numbers
and contraction ratios.

and the boundary-layer asymptotic solutions, thus confirming the thickness of a boundary
layer as O(De™!).

Furthermore, examining (3.8)—(3.10), we infer that their right-hand sides are not a function
of De and 7 separately but depend on the product DeUy(Z,n). To test this prediction, we
show in figure 5(a, b) the scaled elastic shear (a) and axial normal stresses () at the end of
the contraction, (a) A12,0(Z = 1,n)/(=3Den/H?) and (b) A11,0(Z = 1,1)/(18De*n? /H})
minus Hf,, divided by the factor 1 — H?’ as a function of DeUy(Z = 1,n) for De = 0.5, 1
and Hy = 0.125,0.25,0.5. We observe that the results for two different values of De
approximately collapse onto the same curve across three contraction ratios.

5.2. Pressure gradient relaxation in the exit channel

It follows from figure 3(d—f) in the previous subsection that, as De increases, there is
a significant relaxation of the elastic stresses in the exit channel, which occurs over a
long distance. Specifically, the elastic stresses relax exponentially over a distance which
is proportional to the centerline velocity (3/2H,) multiplied by the Deborah number De (see
(B 3)—(B5)). For this reason, a longer downstream section is required at higher De.

In this subsection, we study the relaxation of the pressure gradient in the downstream
section. Substituting H(Z) = Hy into (2.19) yields the pressure gradient in the exit channel

~ ~ 1 e o] 1
dP _ 3(1-p) 3ﬁ/(1_n2)622,odn+ 3
0

- = + —
dz Hg 2De H¢De J,

nAnedn+0(B%). (5.2)

Noting that in the exit channel Uy = (3/2H,)(1 — n%) and dUy/dn = —(3/H,)7, and using
the expression for UgdA|1,0/0Z trom (B 2¢), (5.2) can be written as

ap 3\1 3 H, ['. 3 b
I A B S N S A odn, 5.3
(dz*Hz)ﬁ i e ), A g [, et 69

where the right-hand side is independent of 3.

We present in figure 6(a) the relaxation of the scaled pressure gradient (dP/dZ +3/H 2) /B
as a function of the downstream distance Z, for De = 0.02,0.2, 1, and 2. Similar to elastic
stresses, the scaled pressure gradient relaxes exponentially over the downstream distance,
which significantly increases with De. Furthermore, we observe a good agreement between
the low- and high-De asymptotic solutions (cyan dotted and red dashed lines) and the
semi-analytical results (solid lines).
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FiGure 6. The spatial relaxation of the pressure gradient for the Oldroyd-B fluid in the uniform exit channel
of a contraction in the ultra-dilute limit. (a) Scaled pressure gradient (dP/dZ + 3/H§)/ﬂ~ as a function of
the downstream distance Zy for De = 0.02,0.2, 1, and 2. (b) Scaled pressure gradient (dP/dZ + 3/H2)/ﬁ
as a function of the rescaled downstream distance 2H,Z,/3De in a log—linear plot. Solid lines represent
the semi-analytical solutions obtained from (5.3) using (B 3)—(B 5). Cyan dotted lines represent the low-De
asymptotic solutions obtained from (5.3) using (B 7). Red dashed lines represent the high-De asymptotic

solutions obtained from (5.3) using (B 9). The green dashed line is 100e~2HeZe/3De A1 calculations were
performed using Hy = 0.5.

Recalling that the elastic stresses relax exponentially over a distance proportional to
(3De/2Hy), we replot in figure 6(b) the scaled pressure gradient, (5.3), as a function of the
rescaled downstream distance 2H;Z, /3 De in alog—linear plot. As a result, all curves become
parallel to the green dashed line 100e~2H¢%¢/3P¢ "thus confirming that the pressure gradient
relaxes over a length scale ~(3De/2H/), similar to the elastic stresses. More specifically, it
follows from figure 6(b) that the downstream distance over which the scaled pressure gradient

(PG) decays to 1 % of its maximum value, L1 7. 1s approximately

3De
LPG
(5.3£0.5) x — H,

where we obtain that the prefactor 5.3 + 0.5 is weakly dependent on De throughout the
investigated range of Deborah numbers. Equation (5.4) and the scaling 3De/2H, indicate
that, in the exit channel, the appropriate Deborah number is based on the exit height, i.e.,
Deexit = Aq/2hel = De/Hp.

We note that our estimate of the length of the downstream section, (5.4), is consistent with
previous numerical studies on the viscoelastic flows in 2-D abrupt contractions (Debbaut et al.
1988; Alves et al. 2003). Specifically, (5.4) predicts LPG ~ 239+23 for Degyit = De/H, = 30,
which should be contrasted with 250 of Debbaut et al (1988), who studied numerically the
flow through the planar 4: 1 contraction.

54)

5.3. Pressure drop in the contraction and exit channel

In this subsection, we study the pressure drop across the contraction and the exit channel.
First, in figure 7(a) we present the non-dimensional pressure drop AP = Ap/(uog€ /2h )
in the contraction as a function of De = Aq/(2thg) for H, = 0.5 and 8 = 0.05. For
further clarification, figure 7(b) shows the first-order contribution AP; = Ap1/(uogqft/ 2h(3))
as a function of De = Aq/(2Chg), which is independent of . Black dots represent the
semi-analytical solution (3.28), cyan dotted lines represent the low-De asymptotic solution
(3.32), and red dashed lines represent the high-De asymptotic solution (3.35). Clearly, there
is excellent agreement between our low- and high-De asymptotic solutions and the semi-
analytical results. We also validate the predictions of our semi-analytical and asymptotic
results against the 2-D finite-element simulations with H, = 0.5, 8 = 0.05, and € = 0.02
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Ficure 7. Non-dimensional pressure drop for the Oldroyd-B fluid in a contracting channel in the ultra-dilute
limit. (a) Dimensionless pressure drop AP = Ap/(yoqt’/Zha) as afunction of De = q/(2€hg) for § = 0.05.
(b) First-order contribution APy = Apy/(uogt/ 2h(3)) to the dimensionless pressure drop as a function of
De = Aq/(2hg). Gray triangles in (a) represent the results of the finite-element simulation. Black dots
represent the semi-analytical solution (3.28). Cyan dotted lines represent the low-De asymptotic solution
(3.32). Red dashed lines represent the high-De asymptotic solution (3.35). All calculations were performed
using Hy = 0.5.

(gray triangles), showing very good agreement. The details of the numerical implementation
in the finite-element software COMSOL Multiphysics are provided in Boyko & Stone (2022).

It is evident that the semi-analytical solution for the pressure drop in the contraction
approaches the high-De asymptotic solution for De > 0.4 and linearly decreases with the
Deborah number. First, such an agreement for De > 1 is consistent with our results for the
elastic stresses, shown in figure 3, and recent results of Hinch e al. (2023). Second, and
more importantly, from the excellent agreement between the semi-analytical results and the
high-De asymptotic solution, based on the components of the conformation tensor within
the core flow region, we conclude that the viscoelastic boundary layer near the walls makes
a negligible contribution to the pressure drop in the contracting channel.

Next, in figure 8(a) we present the non-dimensional pressure drop APy in the exit channel
as a function of De for Hy = 0.5, ﬁ =0.05, and L = 50. For De = 2, a long exit channel of
L > 30 is required to reach the full relaxation of the elastic stresses and pressure gradient,
consistent with (5.4). Figure 8(b) shows the first-order contribution AP, | as a function of
De, which is independent of §. In contrast to the total pressure drop AP, the first-order
contribution AP, does not depend on L, as shown in (4.2), provided that L is sufficiently
long so that by the end of the exit channel the elastic stresses have achieved their fully relaxed
values (2.16) with H = Hp.

The inset in figure 8(a) shows a comparison of our semi-analytical predictions (black
dots) and finite-element simulation results (gray triangles) for AP, — APy = BAP¢ 1 as a
function of De for Hy = 0.5, E =0.05, and L = 5. We observe excellent agreement between
the semi-analytical and numerical results. In addition, the low-De asymptotic solution (cyan
dotted curve) accurately captures the numerical results for De < 0.05 and indicates that the
pressure drop in the exit channel scales as De> for De < 1.

Similar to the contraction, the pressure drop in the exit channel linearly decreases with De
for De > 0.3, as shown in figure 8. While our semi-analytical solution linearly diminishes
with the slope of —36/5, as predicted by the high-De asymptotic solution (red dashed lines),
there is an offset between the two results for ,[?AP“. In particular, for De = 0.4, we have
a non-negligible relative error of approximately 30 %. However, the inset in figure 8(b)
shows that as De increases, the agreement between our semi-analytical solution and the
high-De asymptotic prediction significantly improves, resulting in relative errors of only
approximately 5 % and 1 % for De = 2 and De = 10, respectively.
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Ficure 8. Non-dimensional pressure drop for the Oldroyd-B fluid in the exit channel of a contraction
in the ultra-dilute limit. (a¢) Dimensionless pressure drop APy = Ape/ (,uoq{’/Zhg) as a function of
De = Aq/(2Chg) for f = 0.05 and L = 50. (b) First-order contribution APp = Apg,l/(,uoqt’/2h3) to the
dimensionless pressure drop as a function of De = Aq/(2€hg). Black dots represent the semi-analytical
solutions (4.1) (AP in (a)) and (4.2) (AP 1 in (b)). The cyan dotted curve represents the low-De asymptotic
solution (4.3). Red dashed lines represent the high-De asymptotic solution (4.4). The inset in (a) shows a
comparison of semi-analytical predictions (black dots) and finite-element simulation results (gray triangles)
for APy — APy o = BAP¢y as a function of De for § = 0.05 and L = 5. The inset in (b) shows
APp — APp = ﬁAPg’ | as a function of De for § = 0.05 in range of 1 < De < 10. All calculations

were performed using Hy = 0.5. APp = 2Apgh(3)/,u0q€ and APgj = 2Apg,1h(3)/ﬂ0qé’.

We note that our theoretical approach, based on the ultra-dilute limit, allows us to study
the behavior of the elastic stresses and pressure drop at arbitrary values of De. In particular,
we can predict the behavior in the high-Deborah-number regime, for example, De = 2 and
even De = 10, which we are currently unable to access via finite-element simulations. Note,
however, that we have assumed steady flows, so further investigation would be required to
assess whether there might be flow instabilities at higher De.

5.4. Different contributions to the pressure drop in the contraction and exit channel

In the previous subsection, we observed a monotonic reduction in the dimensionless pressure
drop with increasing De for an Oldroyd-B fluid flowing through the contraction and exit
channel (figures 7 and 8). To understand the source of such pressure drop reduction, we
elucidate the relative importance of elastic contributions to the pressure drop.

The elastic contributions to the non-dimensional pressure drop across the contraction and
exit channel, scaled by 3, as a function of De are shown in figures 9(a) and 9(b), respectively.
Black circles and gray dots represent the elastic shear and normal stress contributions obtained
from the semi-analytical solutions (3.28) and (4.1). Cyan dotted and purple curves represent
the elastic shear and normal stress contributions obtained from the low-De asymptotic
solutions (3.32) and (4.3). Red and black dashed lines represent the elastic shear and normal
stress contributions obtained from the high-De asymptotic solutions (3.35) and (4.4). As
expected based on our previous results, we observe excellent agreement between our low-
and high-De asymptotic solutions and the semi-analytical predictions.

The first main source for the pressure drop reduction is the elastic normal stress contribu-
tion, which linearly decreases with De in the contraction and exit channel at low and high
Deborah numbers. As noted by Hinch ez al. (2023), this is because the elastic normal stresses,
which correspond to the tension in the streamlines, are higher at the end of the contraction
(exit channel) compared with the beginning of the contraction (exit channel). These higher
elastic normal stresses pull the fluid along and thus require less pressure to push.

The second main source for the pressure drop reduction is the decrease of elastic shear
stress contribution with De due to the long time (or long distance) required for the elastic
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FiGurEe 9. Elastic contributions to the non-dimensional pressure drop of the Oldroyd-B fluid, scaled by 5,
in (a) the contraction and (b) the exit channel in the ultra-dilute limit. Black circles and gray dots represent
the semi-analytical solutions (3.28) (contraction) and (4.1) (exit channel) for elastic shear and normal stress
contributions. Cyan dotted and purple curves represent the low-De asymptotic solutions (3.32) (contraction)
and (4.3) (exit channel) for elastic shear and normal stress contributions. Red and black dashed lines represent
the high-De asymptotic solutions (3.35) (contraction) and (4.4) (exit channel) for elastic shear and normal
stress contributions. All calculations were performed using Hy = 0.5 and L = 50.

shear stresses to approach their eventual relaxed values far downstream. As a result, the
elastic shear stresses are lower than the fully relaxed value A1, = —=3Den/ H? (see figure 3),
and their contribution to the pressure drop is smaller than the steady Poiseuille value of

33 /01 H(Z)~3dZ (contraction) and 35L/ Hg (exit channel), thus reducing the pressure drop.

At low Deborah numbers, such a decrease scales as De and De? for a smooth contraction
and exit channel, respectively. However, at high Deborah numbers, it approaches a constant

. ~ rl . . .
asymptotic value of 35 /0 H(Z)~'dZ for the contraction. For the exit channel, AP35 linearly
depends on the Deborah number since the relaxation of the elastic shear stresses occurs over
the distance L, which scales linearly with De, as shown in (5.4).

6. Concluding remarks

In this work, we applied the lubrication approximation and considered the ultra-dilute limit to
study the flow of an Oldroyd-B fluid in arbitrarily shaped contracting channels. Specifically,
we exploited the one-way coupling between the parabolic velocity and polymer conformation
tensor in the ultra-dilute limit to derive closed-form expressions for the microstructure
deformation and the flow rate—pressure drop relation for arbitrary values of the Deborah
number. We provided analytical expressions for the conformation tensor and the g — Ap
relation in the low- and high-Deborah-number limits for the contraction and exit channels,
complementing the asymptotic results of Boyko & Stone (2022) and the analysis of Hinch
et al. (2023) at any concentration. We further analyzed the viscoelastic boundary layer
of thickness O(De™1), existing near the walls at high Deborah numbers, and derived the
boundary-layer asymptotic solutions. We validated our semi-analytical and asymptotic results
for the pressure drop in the smooth contraction and exit channels with 2-D finite-element
numerical simulations and found excellent agreement.

For both contraction and exit channels, the pressure drop of an Oldroyd-B fluid monoton-
ically decreases with increasing De and scales linearly with De at high Deborah numbers,
as shown in figures 7 and 8. We identified two mechanisms for such pressure drop reduction
(see figure 9). The first is higher elastic normal stresses at the end of the contraction and exit
channels, relative to the corresponding entry values, that pull the fluid along and thus require
less pressure to push. The second source for the pressure drop reduction is because, once
perturbed from their upstream values, the elastic shear stresses require a long distance to
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approach their new downstream fully relaxed values, as shown in figure 3, so again reducing
the pressure drop.

Our theoretical approach, which relies on lubrication theory and the ultra-dilute limit,
allows us to study the behavior of the elastic stresses and pressure drop of an Oldroyd-B fluid
at arbitrary values of De. Our theory is not restricted to the case of 2-D contracting channels
and can be utilized to study different slowly varying geometries, such as expansions and
constrictions. The approach can also be extended to axisymmetric geometries. Furthermore,
the theoretical framework we presented enables us to access sufficiently high Deborah
numbers, which are difficult and sometimes impossible to study via numerical simulations
due to the high-Weissenberg-number problem (Owens & Phillips 2002; Alves et al. 2021).
We, therefore, believe that our analytical and semi-analytical results for the ultra-dilute limit
are of fundamental importance as they may serve for simulation validation.

Finally, we note that our theoretical predictions for the pressure drop reduction of an
Oldroyd-B fluid in a contraction are consistent with the previous numerical reports on 2-D
abruptly contracting geometries (Aboubacar et al. 2002; Alves et al. 2003; Binding et al. 2006;
Aguayo et al. 2008). However, these predictions are opposite to the experiments showing a
nonlinear increase in the pressure drop with De for the flow of a Boger fluid through abrupt
axisymmetric contraction—expansion and contraction geometries (Rothstein & McKinley
1999, 2001; Nigen & Walters 2002; Sousa et al. 2009). As noted by Alves et al. (2003) and
Hinch et al. (2023), this discrepancy might be attributed to the lack of dissipative effects
in the Oldroyd-B model. Thus, as a future research direction, it is interesting to study more
complex constitutive equations, such as a finitely extensible nonlinear elastic (FENE) model
introduced by Chilcott & Rallison (1988) (FENE-CR) and a finitely extensible nonlinear
elastic model with the Peterlin approximation (FENE-P), that incorporate dissipation and
additional microscopic features of polymer solutions and understand how these features
affect the pressure drop. We anticipate that even for a more complex constitutive model, the
theoretical framework presented here will enable the development of a simplified, reduced-
order theory, allowing us to study the behavior at non-small Deborah numbers.
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Appendix A. Orthogonal curvilinear coordinates for a slowly varying geometry

In this appendix, we provide additional details for orthogonal curvilinear coordinates for
a slowly varying geometry used in our theoretical analysis. We consider a slowly spatially
varying channel with a given shape % that varies on the length scale ¢, so that h = h(z/{) =
hoH (Z). We transform the Cartesian coordinates (Z, Y) to curvilinear coordinates (£, n7) with
the mapping

Y
H(Z)’
where Z = z/€,Y = y/hy, and Q is an unknown function yet to be determined. Note that, in
the lubrication limit, the orthogonal coordinate £ (scaled by ¢) is nearly in the z-direction.

We find Q(Z,Y) by requiring that the curvilinear coordinates (&, ) are orthogonal, i.e.,

E=Z+€0(Z,Y), n= (A1)
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V¢ - Vi = 0. Using the relations

_| 9§ o8¢ 26Q 200
vé= [682’6Y] [ ( ) ay} (A2a)
_|.9n an YH'(Z)
v [ a7’ aY] [ “Hz? ’H(Z)]’ (A20)
we obtain
G ,00\YH'(Z) 80
Therefore, V& - Vi = O(e*) provided we set
00 YH'(Z) _ 1H'(2) 5
o =@ =N =g H -1, (A4)
where without loss of generality, we choose Q = 0 on Y = H(Z). Hence, the orthogonal

curvilinear coordinates (f n) are

HD) oo oty net
- HAHD =T 40, n= g (AS)

Using (A 5), the inverse transformation is (see also Hinch et al. 2023)

f:

Z=£+ SR OHE( - 1) +0() =+ S (HE (1 -7) + 0(eh),  (A6a)

Y(&,m) =nH(é), (A 6b)

where evaluating H (¢) rather than H(Z) introduces a relative error of O (€?).
In what follows, it is also convenient to use the dimensional form of the transformation
(A 6), given as

H(&)

i=&+ eho HEA - +0(eh),  y=nhoH(&), (A7)

where we have defined the dimensional coordinate & = £¢.

A.1. Curvilinear orthonormal basis vectors

The expressions for the curvilinear orthonormal basis vectors es and e, in terms of e, and
e, are obtained from

ox 1 ox 1

ox 1 ox 1 AS
sExiod] ' onioxion Ao

e.f:

where using (A 7), we have

9x _(9z 9y) _ 2, AH(E) o dH(¢)
65_(35’65)—( +0(€7), ho B T]) = (1+0(e),e i n), (A 9a)

Ox [0z Oy dH (&)
o ((977 077) (€h aE H(f)n,hoH(f)) (A9b)

and hg = |0x/0&| ~ 1 and h,, = |0x/dn| ~ hoH (£) = h(£/{) are the metric coefficients (or
scale factors) in the &- and - dlrectlons, respectively, with small corrections of O (€?).
Substituting (A 9) into (A 8), we obtain

€s ez + EH/(f)’]ey’ €y = —€eH'(&)ne, + €y. (A 10)
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A.2. Velocity and conformation tensor in Cartesian and curvilinear coordinates

The velocity field and the conformation tensor can be expressed either in Cartesian or
curvilinear coordinates. Specifically, the velocity u = ue; + uye, in Cartesian coordinates
is related to the velocity u = ues + ve,; in curvilinear coordinates through (Brand 1947)

Uy _ u
o))

where M is the coordinate transformation matrix obtained from (A 10) and given as

_ 1 —eH'(é)n
M_( eH'(E)n | ) (A12)

We introduce non-dimensional velocity components in curvilinear coordinates, similar to
the non-dimensionalization (2.5a),

v=2, v=-_

Ue €U,

(A13)

Using (A 11)—(A 13) provides the relations between non-dimensional velocity components
in different coordinates

U, =U-€enH' (&)V, Uy =nH' (&)U + V. (A14)

While velocity in the z- and &-directions are the same, albeit to a O(e?) correction, the
velocity in the y-direction is greater by nH’(£)U than the velocity in the n-direction.

Similarly, the conformation tensor A = A .e.e.+A. (e e, +e,e;)+A, e e, in Cartesian
coordinates is related to the conformation tensor A = Ajjeces+Ap(eze, +e,es)+Axne e,
in curvilinear coordinates through (Brand 1947)

Az, Agy Ay Ap T
=M. M. Al5
( Ayz Ayy Ay Axn (A15)

Next, we define scaled A;;, Aj, and A,y in curvilinear coordinates, similar to the non-
dimensionalization (2.5¢),
Ay = Ay, App = €A, Ay = Ap. (A16)

Finally, using (A 12) and (A 15)—(A 16), we obtain the relations between conformation tensor
components in different coordinates

Ay = A1 +0(€Y), (A 17a)
Agy = Ap +nH' (£)A11 +0(€Y), (A 17b)
Ayy = Ay + 2qH' (£) A1 + 0P (H'())*A11 + O(ED). (A 17¢)

Appendix B. Low-£ lubrication analysis in the exit channel: detailed derivation

We here provide details of the derivation of closed-form expressions for the conformation
tensor and the pressure drop in the uniform exit channel for 8 < 1.

B.1. Velocity, conformation, and pressure drop in the exit channel at the leading order in f3
The velocity field and pressure drop in the exit channel at the leading order in 3 are

31 3L
Up==—(1-17), Vo=0, AP{,Ozﬁ-

Bla-
7 3 (Bla-c)
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835 As expected, (B 1) simply represents the solution for the velocity and pressure drop of
836 a Newtonian fluid with a constant viscosity y¢ flowing in a straight channel of (non-
837 dimensional) height H, and length L.

838 Substituting (B 1a) into (3.6), we obtain the governing equations for the conformation
839 tensor components in the exit channel at the leading order in §3,

dAn 1 -
840 U —=——(A -1), B2
U De( 20-1) (B 2a)
841
dAno 1 dU - 1 -
842 U — — ——Ano=—-———Ano B2b
0= H, dn 22,0 Do A12.0 (B2b)
843
dAo 2 dUy - 1 -
844 U — - — A =——A . B2
0= H, dn 12,0 Do A0 (B2c)

845 Equations (B 2), similar to (3.6), represent a set of one-way coupled first-order semi-linear
846 p~artial differential equations that can be solved first for A2, o, followed by A1, o, and then for
847 Ajp1,0. The solution of these equations is

848 1422,0 — 14+ (Arzezf’o(n) _ l)e—ZH(?Z(’/BDe(l—T]Z)], (B3)
849
~ 3De g |~ 3De ZU(ASO(U) -1z,
850 Appg=——n+e HeA/BLAT AR () + —n - ’ , (B4)
.1 : RO 2 He(1-17)
- 18De? _ o | - 18De?
852 11,0 = 3 )72 +e 2H;Z¢/[3De(1-17)] Alie]f,()(n) _ T )72
l l

. 4n* (A% (n) = 1)Z] _4nZ[3Den + H7AY ()] ®5)

H2(1-n?)? H(1-n?) ’

854 where Zy, = Z—1and A;‘;ﬁo(n) = Agz,o(Z =1, n),Aﬁ"’zf’O(n) = A~12,o(Z =1,n),and Aﬁﬁf,o(n) =

855 A“,O(Z = 1,n) are the reference distributions of the conformation tensor components at the
856 outlet (Z = 1) of the non-uniform channel that can be obtained from (3.8), (3.9), and (3.10).
857 We note that, under the assumption of a fully developed flow in the entire exit channel so that
858 U(n) = (3/2H,)(1 — %), the governing equations for the conformation tensor components
859 (B 2) and their solution (B 3)—(B 5) are valid not only at O(BO) but for arbitrary values of 3.
860 Finally, we note that the components of the conformation tensor at the walls of the exit
861 channel (7 = *1) are given in (3.12), with H(Z) = H,. Thus, the conformation tensor
862 components at the walls of the exit channel attain their fully relaxed values without spatial
863 development.

864 B.1.1. Conformation tensor in the exit channel at low De numbers
865 At low Deborah numbers, we use (3.13) to obtain the reference distributions of the
866 conformation tensor components at the beginning of the exit channel,

9De*H” (1)

(1-1%)%, (B 6a)
2H;

867 A ) =1

868

3De  81De*H”(1)
2t 5

H; 2H;

869 A o) = - n(1 -1, (B 6b)
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Aﬁf,o(n) =

18De* , 486De*H” (1) ,

n (1 -n%)?, (B 6¢)

n
4 7
Hy H,

where, for a smooth geometry, we have assumed that H' (1) = H”’(1) =0
Substituting (B 6) into (B 3), we obtain explicit expressions for the spatial relaxation of the
conformation tensor components in the exit channel for De < 1,

2y
AZZ’O =1- 9De H (1) (1 _ ]72)26—21-1[2[/[3De(]—r]2)]’ (B 7a)
2H;
. 3De 9De’H’ (1) _ 2 9De
Apo=-—n+ (1 —p?)e ez /3De=nT] a1+ 2. B7D)
Hé’ Hf
- 18De? 18De*H” (1) , _ 27De?
All,() — - 772 - ) 2 2H¢Z¢/[3De(1-n ) (1 _ )
H} H H?
9D
+22+ 2=27,(1 —nz)]. (B7¢)
H,

B.1.2. Conformation tensor in the exit channel at high De numbers

From (3.15), (3.17), and (3.19) it follows that the reference distributions of the conformation
tensor components at the beginning of the exit channel within the core flow region in the

high-De limit are

A~r2621i0(77) = H£2>s Arlezf,o(n) = —3Den,

18De? ,

A () = e (B8)
t

Substituting (B 8) into (B 3) provides expressions for the spatial relaxation of the conforma-
tion tensor components in the exit channel for De > 1,

Agpo = 1+ (H2 = 1)e 2HeZe/BDe(=0")] (B 9a)

i _3’3# + e 2HeZe/[3De(1-7)]

14

. 18De’n? + o 2HeZe/[3De(1-1)]

dn*(H; - 1)Z} ~

—3Den +

H7 (1 -n?)?

D 2n(1 - H)Z
3 N ’7( ")2 1, Bob)
H; He(1-1n°)
18De%np>  18De’n?
H; Hy
12Den*Z;(1 — H?)
; . £l. (B9c)
H[(l_n)

B.2. Pressure drop in the exit channel at the first order in 8

Using (2.21) and (3.27), the expressions for the pressure drop at O(f), AP; 1, and the total
pressure drop in the exit channel up to O(8), AP,, are

3L
AP¢ =——+—/ (1- U)[All()]zf dn+

DeHg

! 0
/ n [/ A12,OdZ€] dn, (B 10)
L
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and

3~ 1 0 5
AP&—(l—ﬁ) / (1-77 Auo] Dei]g/() 77[1 Alz,odzf] dn,

%,_/
Solvent stress

Elastic normal stress Elastic shear stress
B11)

where A“,O and A~12,0 are given in (B 4) and (B 5) and [All,o]giji = A~11,0(Z[ =0,n) -
A110(Z¢ = L, 7). The three terms on the right-hand side of (B 11) represent, respectively, the
Newtonian solvent stress contribution, the elastic normal stress contribution, and the elastic
shear stress contribution to the pressure drop.

It is possible to express the first-order contribution AP, ; in terms of the difference
between the conformation tensor components at the beginning and end of the exit channel.
First, integrating (B 2a) and (B 2b) with respect to Z, from L to 0, we obtain

- Z,=0 1 0
Uo [Anol7 ) = “De / (Ax,0 — 1)dZ,, (B 12)
eJr
© 12=0 1dU0/°~ 1 /0~
Uy |A - AxpodZy = —— Ay2.0dZ. B 13
ol 12,0]Z[=L Hy dn J, An0dZe=-pp | AnodZe (B 13)
Substituting (B 12) into (B 13) yields
: qz=0  DedlUy o 1z LdUy_ 1 [%.
Up A +——Up|A =—— Aqp0dZy. B 14
| 120]sz H, ol 220]2sz H, oy - De ), frodZe (B14)

Thus, using (B 14), the last term on the right-hand side of (B 11) can be expressed as

3 1 0~ 9 1 ~ 7,0
ApodZe|dnp = —— 1-7%) A ‘' d
DeHg/O U[/L 12,0 é’] n 2H§./o n(l-n) | 12,0]Z€:L n

27De 5 Ze=0 3L
+ 1- A pdn+ —.(BI5
21 /0 (1-n%) 220] HS( )
Substituting (B 15) into (B 11) provides the alternative expression for APy i,
APy = —— (1— [Ano]7 2, d R (1=7%) [A120] 27 d
1= 11,0 n 2H{% ) n n 12,0] 7z, 471
27De 2 2 ~ Z¢=0
* 2H /0 P (1 - 1) [Axno] 52, dn. (B 16)

Under the assumption that L is such that the elastic stresses reach their fully relaxed values by
the end of the exit channel, (B 16) shows that the first-order contribution APy ; is independent
of L since the steady-state values of A o, A12,0, and Az o depend solely on the 7 coordinate.

B.2.1. Pressure drop in the exit channel at O(f) in the low-De limit

To calculate the pressure drop AP, in the exit channel at low Deborah numbers, we use
(B7b)—(B7c) and (B 10). The elastic normal stress contribution to APy ; is

1296De3H” (1)

3 ! Z¢=0
NS
AP, = 2De/ (1—77)[,4“0] = ;dn=— S
¢

for De<1. (B17)
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The elastic shear stress contribution to the pressure drop at O () is

3 1 0 .
APSS = / / Ap.0dZs | dn, B18
1= De; Jo TI[ | ArodZe n (B 18)

with the integral fLO Alz,ong given as

0 41y
. 3DeL  81De*H’(1
/ A1p0dZ, ~ i n- ¢ - M n(1-n%)3 for De <1, (B 19)
L H, H,

where we have neglected terms multiplying e~2HeL/[3De(1-1)]
Substituting (B 19) into (B 18), we obtain
3L 432De*H(1
apss = 3L _ABRDCHT) p o, (B 20)
" H; 35H]
Combining the normal and shear stress contributions, (B 17) and (B 20), provides the
expression for the pressure drop at O () in the low-De limit

3L 1728De3H" (1
APy = —>= + APYS + APSS = —6—7() for De < 1. (B21)
H? : ’ 35H]

Therefore, the total pressure drop in the exit channel in the low-De limit is

3L _1296pDe’H” (1) 3L . 432BDe’H”(1)

AP, = (1-p)= + =
e=(=Py H? 35H] ' 35H]
————
Solvent stress Elastic normal stress Elastic shear stress
_ 3L 1728BDe*H” (1
PDeH™(D) ¢ De < 1. (B22)
H3 35H]

Equation (B 22) shows that for a smooth contraction with H’ (1) = H"”’(1) = 0, the first non-
vanishing viscoelastic contribution to the pressure drop in the exit channel at low Deborah
numbers is only at O(De?) as the O(De) and O(De?) contributions are identically zero.

B.2.2. Pressure drop in the exit channel at O(f3) in the high-De limit
To calculate the pressure drop AP, in the exit channel at high Deborah numbers, we use
(B 9b)—(B 9c¢) and (B 10). The elastic normal stress contribution to APy ; is
= 18
APYS = / (1-7?) [A 0]Z"’ iy = ?De(Hf ~H;% for De>1. (B23)

The elastic shear stress contribution to the pressure drop at O () is

SS
APy =

3L 18
/ [/ Alzong]dn——3+—D (H;> - H;*) for De> 1,
f

5
(B24)
—2H,L/[3De(1-17%)] 4

DeH[

where the integral fLO A12,0dZ;, after neglecting terms multiplying e
is given as

0 2012

~ 3DeL 9De“(H5 — 1

/ Ayp,0dZ, = i n+ (3{’) );7(1—772) for De > 1. (B25)
L Hj H,
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Combining the normal and shear stress contributions, (B23) and (B 24), provides the
expression for the pressure drop at O () in the high-De limit

3L 36
APp = ot AP} + APYS, = ?De(ng -H;*) for De> 1. (B 26)
t

Therefore, the total pressure drop in the exit channel in the high-De limit is

_ 3L 18- B . 3L. 18. _ _
APy = (1-B)—= + —BDe(H;*> - H;*) + =B+ —pDe(H,;> - H;*)

E/_/ .
Elastic normal stress .
Solvent stress Elastic shear stress
3L 36 . 2 4
ZE-F?ﬂDé(H[ —H( ) for De > 1. (B27)
4
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