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Pressure-driven flows of viscoelastic fluids in narrow non-uniform geometries are common9
in physiological flows and various industrial applications. For such flows, one of the main10
interests is understanding the relationship between the flow rate 𝑞 and the pressure drop Δ𝑝,11
which, to date, is studied primarily using numerical simulations. We analyze the flow of12
the Oldroyd-B fluid in slowly varying arbitrarily shaped, contracting channels and present a13
theoretical framework for calculating the 𝑞 − Δ𝑝 relation. We apply lubrication theory and14
consider the ultra-dilute limit, in which the velocity profile remains parabolic and Newtonian,15
resulting in a one-way coupling between the velocity and polymer conformation tensor.16
This one-way coupling enables us to derive closed-form expressions for the conformation17
tensor and the flow rate–pressure drop relation for arbitrary values of the Deborah number18
(𝐷𝑒). Furthermore, we provide analytical expressions for the conformation tensor and the19
𝑞−Δ𝑝 relation in the high-Deborah-number limit, complementing our previous low-Deborah-20
number lubrication analysis. We reveal that the pressure drop in the contraction monotonically21
decreases with 𝐷𝑒, having linear scaling at high Deborah numbers, and identify the physical22
mechanisms governing the pressure drop reduction. We further elucidate the spatial relaxation23
of elastic stresses and pressure gradient in the exit channel following the contraction and show24
that the downstream distance required for such relaxation scales linearly with 𝐷𝑒.25

1. Introduction26

Viscoelastic fluid flows in non-uniform geometries consisting of contractions or expansions27
occur in physiological flows, e.g., arterial flows that may have such shape changes due to28
thrombus formation (Westein et al. 2013), and in various industrial applications (Pearson29
1985). For such flows, one of the key interests is to understand the dependence of the pressure30
drop Δ𝑝 on the flow rate 𝑞. It is well known that adding even small amounts of polymer31
molecules in a Newtonian solvent may drastically change the hydrodynamic features of the32
flow of the solution due to polymer stretching, which generates elastic stresses in addition to33
viscous stresses (Bird et al. 1987; Steinberg 2021; Alves et al. 2021; Datta et al. 2022).34

Pressure-driven flows of viscoelastic fluids and the corresponding flow rate–pressure drop35
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relation have been studied extensively in various geometries, mainly through numerical36
simulations (Szabo et al. 1997; Alves et al. 2003; Binding et al. 2006; Alves & Poole 2007;37
Zografos et al. 2020; Varchanis et al. 2022) and experimental measurements (Rothstein &38
McKinley 1999, 2001; Sousa et al. 2009; Ober et al. 2013; James & Roos 2021). We refer39
the reader to overviews given recently by Boyko & Stone (2022) and Hinch et al. (2023).40

In particular, the abrupt contraction and contraction–expansion channels have received41
much attention (Rothstein & McKinley 1999; Alves et al. 2003; Binding et al. 2006; Ferrás42
et al. 2020), and 4 : 1 two-dimensional (2-D) and axisymmetric contraction flows have43
become benchmark flow problems in computational non-Newtonian fluid mechanics (Alves44
et al. 2021). Numerical simulations of viscoelastic fluid flow in these and other non-uniform45
geometries include a long downstream (exit) section to allow the stresses to reach their46
fully relaxed values (see, e.g., Debbaut et al. 1988; Alves et al. 2003). This is because once47
perturbed from their fully relaxed values, the elastic stresses require a long distance for spatial48
relaxation to enable stable and converged numerical solutions. For higher Deborah (𝐷𝑒) or49
Weissenberg (𝑊𝑖) numbers (see definitions in § 2.1), a longer downstream section is required50
(Keiller 1993).51

Therefore, understanding the spatial relaxation of elastic stresses, velocity, and pressure is52
of both fundamental and practical importance, as that determines the size of the computational53
domain (Alves et al. 2003). However, despite extensive study of viscoelastic channel flows,54
the spatial relaxation of stresses and pressure in these geometries is not well understood. As a55
result, the length of the exit channel is currently set somewhat arbitrarily, thus motivating the56
development of theory. Furthermore, in many applications, it is necessary to determine the57
total pressure drop over the configuration for a given flow rate, thus requiring us to account58
for the pressure drop in the entry and exit channels. However, most studies to date focused59
on the non-uniform region or close vicinity of the abrupt contraction and reported a suitably60
non-dimensionalized so-called Couette correction (or excess pressure drop), rather than the61
total non-dimensional pressure drop in the entire configuration (see, e.g., Alves et al. 2003;62
Rothstein & McKinley 1999; Binding et al. 2006), presumably due to the arbitrariness of the63
exit channel length in simulations.64

One widely used approach to obtaining theoretical results in different viscoelastic fluid65
flow problems relies on considering the weakly viscoelastic limit by applying a perturbation66
expansion in powers of the Deborah or Weissenberg number, which are assumed to be67
small (see, e.g., Datt et al. 2017, 2018; Datt & Elfring 2019; Gkormpatsis et al. 2020;68
Housiadas et al. 2021; Dandekar & Ardekani 2021; Su et al. 2022). In particular, there69
have been many applications of such an expansion in conjunction with lubrication theory70
in studying thin films and tribology problems (Ro & Homsy 1995; Tichy 1996; Sawyer &71
Tichy 1998; Zhang et al. 2002; Saprykin et al. 2007; Ahmed & Biancofiore 2021; Gamaniel72
et al. 2021; Ahmed & Biancofiore 2023). Recently, we have applied lubrication theory and73
such an expansion in powers of 𝐷𝑒, developing a reduced-order model for the steady flow74
of an Oldroyd-B fluid in a slowly varying, arbitrarily shaped 2-D channel (Boyko & Stone75
2022). We provided analytical expressions for the velocity and stress fields and the flow76
rate–pressure drop relation in the non-uniform region up to 𝑂 (𝐷𝑒2). We further exploited77
the reciprocal theorem (Boyko & Stone 2021, 2022) to obtain the flow rate–pressure drop78
relation at the next order, 𝑂 (𝐷𝑒3). Housiadas & Beris (2023) extended the low-Deborah-79
number lubrication analysis of Boyko & Stone (2022) to much higher asymptotic orders and80
provided analytical expressions for the pressure drop up to 𝑂 (𝐷𝑒8).81

However, the low-Deborah-number analysis cannot accurately capture the behavior at high82
𝐷𝑒 numbers where there are significant elastic stresses. Another approach to simplifying the83
governing equations while capturing the underlying physics at non-small Deborah numbers84
is to consider the ultra-dilute limit (Remmelgas et al. 1999; Moore & Shelley 2012; Li et al.85
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2019; Mokhtari et al. 2022), 𝛽 = 𝜇𝑝/𝜇0 ≪ 1, where 𝜇𝑝 is the polymer contribution to the86
total zero-shear-rate viscosity 𝜇0 of the polymer solution. Physically, the ultra-dilute limit87
corresponds to a low concentration of polymer molecules in a Newtonian solvent, such that88
the viscosity of the polymer solution, 𝜇0, is only slightly larger than the solvent viscosity,89
𝜇𝑠 (Remmelgas et al. 1999; Mokhtari et al. 2022). Furthermore, the limit 𝛽 = 𝜇𝑝/𝜇0 ≪ 190
is closely related to the diluteness criterion of a constant shear-viscosity viscoelastic Boger91
fluid (Moore & Shelley 2012). In the ultra-dilute limit, the flow field approximated as92
Newtonian creates elastic stresses that are not coupled back to change the flow. These elastic93
stresses can then be used to find the correction to the velocity and pressure fields due to94
fluid viscoelasticity, even at high Deborah numbers. Previous studies used this approach to95
determine the structure of the stress distribution in the flow around a cylinder (Renardy 2000),96
a sphere (Moore & Shelley 2012), and arrays of cylinders (Mokhtari et al. 2022), as well as97
in the stagnation (Becherer et al. 2009; Van Gorder et al. 2009) and cross-slot (Remmelgas98
et al. 1999) flows.99

In this work, we continue our theoretical studies (Boyko & Stone 2022; Hinch et al. 2023)100
of the pressure-driven flow of the Oldroyd-B fluid in slowly varying, arbitrarily shaped,101
narrow channels. In contrast to Boyko & Stone (2022), who focused only on the flow through102
a non-uniform channel in the low-Deborah-number limit, and Hinch et al. (2023), who103
studied numerically the flow through a contraction, expansion, and constriction for order-one104
Deborah numbers, and also provided an asymptotic description at high Deborah numbers,105
the current work examines the ultra-dilute limit and arbitrary values of the Deborah number.106
Specifically, we analyze the flow of the Oldroyd-B fluid in a contracting geometry and the107
relaxation of the elastic stresses and pressure in the exit channel. We apply the lubrication108
approximation and use a one-way coupling between the velocity and polymer stresses to109
derive semi-analytical expressions for the conformation tensor in the contraction and the exit110
channel for arbitrary values of the Deborah number in the ultra-dilute limit. These semi-111
analytical expressions allow us to calculate the pressure drop and elucidate the relaxation112
of the elastic stresses and pressure in the exit channel for all 𝐷𝑒. We provide analytical113
expressions for the conformation tensor and the pressure drop in the high-Deborah-number114
limit, which are consistent with recent results of Hinch et al. (2023), thus complementing our115
previous low-Deborah-number lubrication analysis (Boyko & Stone 2022). Furthermore, we116
analyze the viscoelastic boundary layer near the walls at high Deborah numbers and derive the117
boundary-layer asymptotic solutions. Given the well-known lack of accuracy and convergence118
difficulties associated with the high-Weissenberg-number problem in numerical simulations119
(Owens & Phillips 2002; Alves et al. 2021), our analytical and semi-analytical results for the120
ultra-dilute limit, valid at high Deborah numbers, are of fundamental importance as they may121
serve to validate simulation predictions or be compared with experimental measurements to122
understand more about the applicability of model constitutive equations.123

2. Problem formulation and governing equations124

We analyze the incompressible steady flow of a viscoelastic fluid in a slowly varying and125
symmetric two-dimensional contraction of height 2ℎ(𝑧) and length ℓ, where ℎ(𝑧) ≪ ℓ, as126
illustrated in figure 1. Upstream of the contraction inlet (𝑧 = 0) there is an entry channel of127
height 2ℎ0 and length ℓ0, and downstream of the contraction outlet (𝑧 = ℓ) there is an exit128
channel of height 2ℎℓ and length ℓℓ . The fluid flow has velocity 𝒖 and pressure distribution129
𝑝, which are induced by an imposed flow rate 𝑞 (per unit depth). Our primary interest is130
to determine the pressure drop Δ𝑝 over the contraction region and the spatial relaxation131
of pressure and elastic stresses in the exit channel. For our analysis, we shall employ two132
different systems of coordinates. The first is Cartesian coordinates (𝑧, 𝑦) and (𝑧ℓ , 𝑦), where133
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Figure 1. Schematic illustration of the two-dimensional configuration consisting of a slowly varying and
symmetric contraction of height 2ℎ(𝑧) and length ℓ (ℎ ≪ ℓ). The contraction is connected to two long
straight channels of height 2ℎ0 and 2ℎℓ , respectively, up- and downstream and contains a viscoelastic fluid
steadily driven by the imposed flow rate 𝑞.

the 𝑧 and 𝑧ℓ = 𝑧−ℓ axes lie along the symmetry midplane of the channel (dashed-dotted line)134
and 𝑦 is in the direction of the shortest dimension. The second one is orthogonal curvilinear135
coordinates (𝜉, 𝜂) defined in § 2.3.136

We consider low-Reynolds-number flows so that the fluid motion is governed by the
continuity equation and Cauchy momentum equations in the absence of inertia

∇ · 𝒖 = 0, ∇ · 𝝈 = 0. (2.1𝑎, 𝑏)

To describe the viscoelastic behavior of the fluid, we use the Oldroyd-B constitutive137
model (Oldroyd 1950), which represents the most simple combination of viscous and elastic138
stresses and is used widely to describe the flow of viscoelastic Boger fluids, characterized by a139
constant shear viscosity. The Oldroyd-B equation can be derived from microscopic principles140
by modeling polymer molecules as elastic dumbbells, which follow a linear Hooke’s law for141
the restoring force as they are advected and stretched by the flow. The corresponding stress142
tensor 𝝈 is143

𝝈 = −𝑝I + 2𝜇𝑠E + 𝝉𝑝, (2.2)144

where the first term on the right-hand side of (2.2) is the pressure contribution, the second145
term is the viscous stress contribution of a Newtonian solvent with a constant viscosity 𝜇𝑠,146
where E = (∇𝒖 + (∇𝒖)T)/2 is the rate-of-strain tensor, and the last term, 𝝉𝑝, is the polymer147
contribution.148

For the Oldroyd-B model, the polymer contribution to the stress tensor 𝝉𝑝 can be expressed149
in terms of the (symmetric) conformation tensor (or the deformation of the microstructure)150
A as (Bird et al. 1987; Larson 1988; Morozov & Spagnolie 2015),151

𝝉𝑝 = 𝐺 (A − I) =
𝜇𝑝

𝜆
(A − I), (2.3)152

where 𝐺 is the elastic modulus, 𝜆 is the relaxation time, and 𝜇𝑝 = 𝐺𝜆 is the polymer153
contribution to the shear viscosity at zero shear rate. It is also convenient to introduce the154
total zero-shear-rate viscosity 𝜇0 = 𝜇𝑠 + 𝜇𝑝.155

The evolution equation for the deformation of the microstructure A of the Oldroyd-B156
model fluid is given at steady state as (Bird et al. 1987; Larson 1988; Morozov & Spagnolie157
2015)158

𝒖 · ∇A − (∇𝒖)T
· A − A · (∇𝒖) = −1

𝜆
(A − I). (2.4)159

2.1. Scaling analysis and non-dimensionalization160

We consider narrow configurations, in which ℎ(𝑧) ≪ ℓ, ℎ0 is the half-height at 𝑧 = 0, and161
𝑢𝑐 = 𝑞/2ℎ0 is the characteristic velocity scale set by the cross-sectionally averaged velocity.162

Focus on Fluids articles must not exceed this page length



Flow of an Oldroyd-B fluid in a slowly varying contraction 5

We introduce non-dimensional variables based on lubrication theory (Tichy 1996; Zhang163
et al. 2002; Saprykin et al. 2007; Ahmed & Biancofiore 2021; Boyko & Stone 2022),164

𝑍 =
𝑧

ℓ
, 𝑌 =

𝑦

ℎ0
, 𝑈𝑧 =

𝑢𝑧

𝑢𝑐
, 𝑈𝑦 =

𝑢𝑦

𝜖𝑢𝑐
, (2.5a)165

166

𝑃 =
𝑝

𝜇0𝑢𝑐ℓ/ℎ2
0
, Δ𝑃 =

Δ𝑝

𝜇0𝑢𝑐ℓ/ℎ2
0
, 𝐻 =

ℎ

ℎ0
, (2.5b)167

168

𝐴̃𝑧𝑧 = 𝜖2𝐴𝑧𝑧 , 𝐴̃𝑧𝑦 = 𝜖 𝐴𝑧𝑦 , 𝐴̃𝑦𝑦 = 𝐴𝑦𝑦 , (2.5c)169

where we have introduced the aspect ratio of the configuration, which is assumed to be small170

𝜖 =
ℎ0
ℓ

≪ 1, (2.6)171

the contraction ratio172

𝐻ℓ =
ℎℓ

ℎ0
, (2.7)173

the viscosity ratios174

𝛽 =
𝜇𝑝

𝜇𝑠 + 𝜇𝑝

=
𝜇𝑝

𝜇0
and 𝛽 = 1 − 𝛽 =

𝜇𝑠

𝜇0
, (2.8)175

and the Deborah and Weissenberg numbers176

𝐷𝑒 =
𝜆𝑢𝑐

ℓ
and 𝑊𝑖 =

𝜆𝑢𝑐

ℎ0
. (2.9)177

For lubrication flows through the narrow geometries that we consider, there is a difference178
between the Deborah and Weissenberg numbers because of the two distinct length scales.179
The Weissenberg number 𝑊𝑖 is the product of the relaxation time scale of the fluid, 𝜆, and180
the characteristic shear rate of the flow, 𝑢𝑐/ℎ0. On the other hand, the Deborah number 𝐷𝑒181
is the ratio of the relaxation time, 𝜆, to the residence time in the contraction region, ℓ/𝑢𝑐, or182
alternatively, the product of the relaxation time and the characteristic extensional rate of the183
flow (Tichy 1996; Zhang et al. 2002; Saprykin et al. 2007; Ahmed & Biancofiore 2021). The184
Deborah and Weissenberg numbers are related through 𝐷𝑒 = 𝜖𝑊𝑖, and for narrow geometries185
with 𝜖 ≪ 1, 𝐷𝑒 can be small while keeping 𝑊𝑖 = 𝑂 (1).186

Similar to our previous study (Boyko & Stone 2022), we non-dimensionalize the pressure187
using the total zero-shear-rate viscosity 𝜇0 = 𝜇𝑠 + 𝜇𝑝. However, for convenience, we non-188
dimensionalize the height based on the entry height rather than the exit height. In addition,189
unlike our previous study, we do not scale the deformation of the microstructure with 𝐷𝑒−1.190
Our current scaling is consistent with a fully developed unidirectional flow of an Oldroyd-B191
fluid in a straight channel, which yields 𝐴̃𝑧𝑧 = 𝑂 (𝐷𝑒2), 𝐴̃𝑧𝑦 = 𝑂 (𝐷𝑒), and 𝐴̃𝑦𝑦 = 𝑂 (1); see192
(2.10d)–(2.10f) and (2.16). This scaling is convenient when considering arbitrary and large193
values of the Deborah number.194

Note that, in both Hinch et al. (2023) and here, the channel height is 2ℎ, but the total flow195
rate per unit depth in the former is 2𝑞, whereas in this work it is 𝑞 as in Boyko & Stone196
(2022). All results are compatible because the variables used for the non-dimensionalization197
are the same, i.e., the expressions for the characteristic velocity, characteristic pressure, and198
the Deborah number are the same.199
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Figure 2. Schematic illustration of the orthogonal curvilinear coordinates (𝜉, 𝜂) for a slowly varying
geometry. The coordinate 𝜉 is constant along vertical grid lines, and 𝜂, defined in (2.11), is constant along
the curves going from left to right.

2.2. Dimensionless lubrication equations in Cartesian coordinates200

Using the non-dimensionalization (2.5)−(2.9), to the leading order in 𝜖 , the governing201
equations (2.1)−(2.4) take the form202

𝜕𝑈𝑧

𝜕𝑍
+
𝜕𝑈𝑦

𝜕𝑌
= 0, (2.10a)203

204

𝜕𝑃

𝜕𝑍
= (1 − 𝛽) 𝜕

2𝑈𝑧

𝜕𝑌2 + 𝛽

𝐷𝑒

(
𝜕 𝐴̃𝑧𝑧

𝜕𝑍
+
𝜕 𝐴̃𝑧𝑦

𝜕𝑌

)
, (2.10b)205

206
𝜕𝑃

𝜕𝑌
= 0, (2.10c)207

208

𝑈𝑧

𝜕 𝐴̃𝑧𝑧

𝜕𝑍
+𝑈𝑦

𝜕 𝐴̃𝑧𝑧

𝜕𝑌
− 2

𝜕𝑈𝑧

𝜕𝑍
𝐴̃𝑧𝑧 − 2

𝜕𝑈𝑧

𝜕𝑌
𝐴̃𝑧𝑦 = − 1

𝐷𝑒
𝐴̃𝑧𝑧 , (2.10d)209

210

𝑈𝑧

𝜕 𝐴̃𝑧𝑦

𝜕𝑍
+𝑈𝑦

𝜕 𝐴̃𝑧𝑦

𝜕𝑌
−
𝜕𝑈𝑦

𝜕𝑍
𝐴̃𝑧𝑧 −

𝜕𝑈𝑧

𝜕𝑌
𝐴̃𝑦𝑦 = − 1

𝐷𝑒
𝐴̃𝑧𝑦 , (2.10e)211

212

𝑈𝑧

𝜕 𝐴̃𝑦𝑦

𝜕𝑍
+𝑈𝑦

𝜕 𝐴̃𝑦𝑦

𝜕𝑌
− 2

𝜕𝑈𝑦

𝜕𝑍
𝐴̃𝑧𝑦 − 2

𝜕𝑈𝑦

𝜕𝑌
𝐴̃𝑦𝑦 = − 1

𝐷𝑒
( 𝐴̃𝑦𝑦 − 1). (2.10f )213

From (2.10c), it follows that 𝑃 = 𝑃(𝑍), i.e., the pressure is independent of 𝑌 up to 𝑂 (𝜖2),214
consistent with the classical lubrication approximation. We note that the scaled 𝐴̃𝑧𝑧 on the215
right-hand side of (2.10d) relaxes to 𝜖2, which is neglected at the leading order in 𝜖 .216

2.3. Orthogonal curvilinear coordinates for a slowly varying geometry217

For our theoretical analysis, it is convenient to transform the geometry of the contraction from218
the Cartesian coordinates (𝑍,𝑌 ) to curvilinear coordinates (𝜉, 𝜂), as illustrated in figure 2,219
with the mapping (Hinch et al. 2023)220

𝜉 = 𝑍 − 1
2
𝜖2 𝐻

′ (𝑍)
𝐻 (𝑍) (𝐻 (𝑍)2 − 𝑌2) +𝑂 (𝜖4), 𝜂 =

𝑌

𝐻 (𝑍) . (2.11)221

As shown in Appendix A, the curvilinear coordinates (𝜉, 𝜂) are orthogonal with a relative222
error of 𝑂 (𝜖4), i.e., ∇𝜉 · ∇𝜂 = 𝑂 (𝜖4).223

Hereafter, we use 𝒖 = 𝑢e𝜉 + 𝑣e𝜂 and A = 𝐴11e𝜉 e𝜉 + 𝐴12(e𝜉 e𝜂 + e𝜂e𝜉 ) + 𝐴22e𝜂e𝜂 to224
denote, respectively, the components of velocity and deformation of the microstructure in225
curvilinear coordinates (𝜉, 𝜂). The corresponding non-dimensional velocity components in226
different coordinates are related through (see Appendix A)227

𝑈𝑧 = 𝑈 − 𝜖2𝜂𝐻′ (𝜉)𝑉, 𝑈𝑦 = 𝜂𝐻′ (𝜉)𝑈 +𝑉. (2.12)228
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Similarly, the scaled conformation tensor components in different coordinates are related229
through (see Appendix A)230

𝐴̃𝑧𝑧 = 𝐴̃11 +𝑂 (𝜖2), (2.13a)231232
𝐴̃𝑧𝑦 = 𝐴̃12 + 𝜂𝐻′ (𝜉) 𝐴̃11 +𝑂 (𝜖2), (2.13b)233

234

𝐴̃𝑦𝑦 = 𝐴̃22 + 2𝜂𝐻′ (𝜉) 𝐴̃12 + 𝜂2(𝐻′ (𝜉))2 𝐴̃11 +𝑂 (𝜖2). (2.13c)235

Finally, we note that, since there is only a 𝑂 (𝜖2) difference between the 𝜉- and 𝑧-directions,236
for convenience, we continue to use 𝑍 rather than 𝜉 in curvilinear coordinates.237

2.4. Dimensionless lubrication equations in orthogonal curvilinear coordinates238

Using the mapping (2.11), the governing equations (2.10) take the form in curvilinear239
coordinates (Hinch et al. 2023)240

𝜕 (𝐻𝑈)
𝜕𝑍

+ 𝜕𝑉

𝜕𝜂
= 0, (2.14a)241

242
d𝑃
d𝑍

= (1 − 𝛽) 1
𝐻2

𝜕2𝑈

𝜕𝜂2 + 𝛽

𝐷𝑒

(
1
𝐻

𝜕 (𝐻𝐴̃11)
𝜕𝑍

+ 1
𝐻

𝜕𝐴̃12
𝜕𝜂

)
, (2.14b)243

244

𝑈
𝜕𝐴̃11
𝜕𝑍

+ 𝑉

𝐻

𝜕𝐴̃11
𝜕𝜂

− 2
𝜕𝑈

𝜕𝑍
𝐴̃11 −

2
𝐻

𝜕𝑈

𝜕𝜂
𝐴̃12 = − 1

𝐷𝑒
𝐴̃11, (2.14c)245

246

𝑈
𝜕𝐴̃12
𝜕𝑍

+ 𝑉

𝐻

𝜕𝐴̃12
𝜕𝜂

− 𝐻
𝜕

𝜕𝑍

(
𝑉

𝐻

)
𝐴̃11 −

1
𝐻

𝜕𝑈

𝜕𝜂
𝐴̃22 = − 1

𝐷𝑒
𝐴̃12, (2.14d)247

248

𝑈
𝜕𝐴̃22
𝜕𝑍

+ 𝑉

𝐻

𝜕𝐴̃22
𝜕𝜂

− 2𝐻
𝜕

𝜕𝑍

(
𝑉

𝐻

)
𝐴̃12 + 2

𝜕𝑈

𝜕𝑍
𝐴̃22 = − 1

𝐷𝑒
( 𝐴̃22 − 1). (2.14e)249

The corresponding boundary conditions on the velocity are

𝑈 (𝑍, 1) = 0, 𝑉 (𝑍, 1) = 0,
𝜕𝑈

𝜕𝜂
(𝑍, 0) = 0, 𝐻 (𝑍)

∫ 1

0
𝑈 (𝑍, 𝜂)d𝜂 = 1, (2.15𝑎 − 𝑑)

which represent, respectively, the no-slip and no-penetration boundary conditions along the
channel walls, the symmetry boundary condition at the centerline, and the integral mass
conservation along the channel. In addition, we assume a fully developed unidirectional
Poiseuille flow in the straight entry channel and the corresponding deformation of the
microstructure

𝐴̃11 =
18𝐷𝑒2

𝐻4 𝜂2, 𝐴̃12 = −3𝐷𝑒

𝐻2 𝜂, 𝐴̃22 = 1, (2.16𝑎 − 𝑐)

with 𝐻 ≡ 1 at the entrance. We also assume that, far downstream in the exit channel, the250
deformation of the microstructure attains a fully relaxed value, given by (2.16) with 𝐻 ≡ 𝐻ℓ .251

2.5. Pressure drop across the non-uniform region in the lubrication limit252

In this subsection, we show that one can calculate the pressure drop without solving directly253
for the velocity field. To this end, we first integrate by parts the integral constraint (2.15𝑑),254
repeatedly, using (2.15𝑎) and (2.15𝑐), e.g., (Hinch et al. 2023),255

1
𝐻 (𝑍) =

∫ 1

0
𝑈d𝜂 = 𝜂𝑈 |10︸︷︷︸

0

−
∫ 1

0
𝜂
𝜕𝑈

𝜕𝜂
d𝜂 =

1
2
(1 − 𝜂2) 𝜕𝑈

𝜕𝜂

����1
0︸              ︷︷              ︸

0

− 1
2

∫ 1

0
(1−𝜂2) 𝜕

2𝑈

𝜕𝜂2 d𝜂. (2.17)256
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Substituting the expression for 𝜕2𝑈/𝜕𝜂2 from (2.14b) into (2.17), we obtain257

− 1 − 𝛽

𝐻 (𝑍)3 =
1
2

∫ 1

0
(1 − 𝜂2)

[
d𝑃
d𝑍

− 𝛽

𝐷𝑒

(
1
𝐻

𝜕 (𝐻𝐴̃11)
𝜕𝑍

+ 1
𝐻

𝜕𝐴̃12
𝜕𝜂

)]
d𝜂, (2.18)258

which can be rearranged to yield the pressure gradient259

d𝑃
d𝑍

= −3(1 − 𝛽)
𝐻 (𝑍)3 + 3𝛽

2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
1

𝐻 (𝑍)
𝜕 (𝐻 (𝑍) 𝐴̃11)

𝜕𝑍
+ 1
𝐻 (𝑍)

𝜕 𝐴̃12
𝜕𝜂

]
d𝜂. (2.19)260

Integrating (2.19) with respect to 𝑍 from 0 to 1 provides the pressure drop Δ𝑃 = 𝑃(0) −𝑃(1)261
across the non-uniform region262

Δ𝑃 = 3(1 − 𝛽)
∫ 1

0

d𝑍
𝐻 (𝑍)3263

− 3𝛽
2𝐷𝑒

∫ 1

0

∫ 1

0
(1 − 𝜂2)

[
1

𝐻 (𝑍)
𝜕 (𝐻 (𝑍) 𝐴̃11)

𝜕𝑍
+ 1
𝐻 (𝑍)

𝜕 𝐴̃12
𝜕𝜂

]
d𝜂d𝑍. (2.20)264

Using integration by parts, (2.20) can be expressed as265

Δ𝑃 = 3(1 − 𝛽)
∫ 1

0

d𝑍
𝐻 (𝑍)3 + 3𝛽

2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
𝐴̃11(0, 𝜂) − 𝐴̃11(1, 𝜂)

]
d𝜂266

− 3𝛽
2𝐷𝑒

∫ 1

0

[
𝐻′ (𝑍)
𝐻 (𝑍)

(∫ 1

0
(1 − 𝜂2) 𝐴̃11d𝜂

)]
d𝑍 − 3𝛽

𝐷𝑒

∫ 1

0

[
1

𝐻 (𝑍)

∫ 1

0
𝜂𝐴̃12d𝜂

]
d𝑍,(2.21)267

where prime indicates a derivative with respect to 𝑍 .268
Equation (2.21) resembles the result of an application of the reciprocal theorem previously269

derived for the pressure drop of the flow of an Oldroyd-B fluid in a slowly varying270
channel (Boyko & Stone 2021, 2022). The first term on the right-hand side of (2.21)271
represents the viscous contribution of the Newtonian solvent to the pressure drop. The272
second term represents the contribution of the elastic normal stress difference at the inlet273
and outlet of the non-uniform channel. The third term represents the contribution of the274
elastic normal stresses that arise due to the spatial variations in the channel shape, which is275
a contribution that is absent in a straight channel. Finally, the last term represents the elastic276
contribution due to shear stresses within the fluid domain of the non-uniform channel. It277
should be noted that we do not assume a priori the particular shape of the channel 𝐻 (𝑍) but278
rather consider a flow in a slowly varying channel of arbitrary shape 𝐻 (𝑍).279

3. Low-𝛽 lubrication analysis in a slowly varying region280

In the previous section, we obtained the dimensionless equations (2.14), which are governed281
by the two non-dimensional parameters, 𝛽 and 𝐷𝑒, in the lubrication limit (𝜖 ≪ 1). In282
this section, we derive analytical expressions for the velocity, conformation tensor, and the283
𝑞 − Δ𝑝 relation for the pressure-driven flow of a very dilute viscoelastic Oldroyd-B fluid,284
𝛽 = 𝜇𝑝/𝜇0 ≪ 1 in a slowly varying channel of arbitrary shape 𝐻 (𝑍).285

In contrast to our previous study that employed a low-Deborah-number lubrication286
analysis (Boyko & Stone 2022), in this work, we assume 𝐷𝑒 = 𝑂 (1) and consider the287
ultra-dilute limit, 𝛽 ≪ 1 (see Remmelgas et al. 1999; Moore & Shelley 2012; Li et al. 2019;288



Flow of an Oldroyd-B fluid in a slowly varying contraction 9

Mokhtari et al. 2022). To this end, we seek solutions of the form289

©­­­­­­­«

𝑈

𝑉

𝑃

𝐴̃11
𝐴̃12
𝐴̃22

ª®®®®®®®¬
=

©­­­­­­­«

𝑈0
𝑉0
𝑃0
𝐴̃11,0
𝐴̃12,0
𝐴̃22,0

ª®®®®®®®¬
+ 𝛽

©­­­­­­­«

𝑈1
𝑉1
𝑃1
𝐴̃11,1
𝐴̃12,1
𝐴̃22,1

ª®®®®®®®¬
+𝑂 (𝜖2, 𝛽2). (3.1)290

The ultra-dilute limit represents a one-way coupling between the velocity and pressure291
fields and the deformation of the microstructure (polymer stresses or conformation tensor).292
At leading order, the velocity and pressure are Newtonian, and the deformation of the293
microstructure (i.e., polymer stresses) arises from this Newtonian flow. Accordingly, the294
velocity and pressure at 𝑂 (𝛽) arise due to leading-order polymer stresses. In the next295
subsections, we provide closed-form asymptotic expressions for the velocity field and296
conformation tensor components at 𝑂 (𝛽0) and the pressure drop up to 𝑂 (𝛽).297

We note that the viscosity ratio 𝛽 = 𝜇𝑝/𝜇0 is related to the so-called concentration of the298
polymers 𝑐 = 𝜇𝑝/𝜇𝑠 through 𝛽 = 𝑐/(𝑐 + 1). Thus, at the leading order, the limits 𝛽 ≪ 1 and299
𝑐 ≪ 1 are identical.300

3.1. Velocity, conformation, and pressure drop at the leading order in 𝛽301

Substituting (3.1) into (2.14a)–(2.14b) and considering the leading order in 𝛽, the continuity
and momentum equations take the form

𝜕 (𝐻𝑈0)
𝜕𝑍

+ 𝜕𝑉0
𝜕𝜂

= 0 and
d𝑃0
d𝑍

=
1
𝐻2

𝜕2𝑈0

𝜕𝜂2 , (3.2𝑎, 𝑏)

subject to the boundary conditions

𝑈0(𝑍, 1) = 0, 𝑉0(𝑍, 1) = 0,
𝜕𝑈0
𝜕𝜂

(𝑍, 0) = 0, 𝐻 (𝑍)
∫ 1

0
𝑈0(𝑍, 𝜂)d𝜂 = 1. (3.3𝑎 − 𝑑)

The solutions for the axial velocity 𝑈0 and the pressure drop Δ𝑃0 at the leading order are
well known (see, e.g., Boyko & Stone 2022)

𝑈0 =
3
2

1
𝐻 (𝑍) (1 − 𝜂2) and Δ𝑃0 = 3

∫ 1

0

d𝑍
𝐻 (𝑍)3 . (3.4𝑎, 𝑏)

Substituting (3.4𝑎) into the continuity equation (3.2𝑎) and using (3.3𝑏), yields302

𝑉0 ≡ 0. (3.5)303

From (3.5), it follows that, in orthogonal curvilinear coordinates, the velocity in the 𝜂-304
direction is identically zero at 𝑂 (𝛽0), in contrast to the Cartesian coordinates where 𝑈𝑦,0 =305
(3/2)𝐻′ (𝑍)𝑌 (𝐻 (𝑍)2 − 𝑌2)/𝐻 (𝑍)4. As we shall see, this fact significantly simplifies the306
theoretical analysis and allows us to derive closed-form expressions for the components of307
the conformation tensor.308

Using (3.5), at leading order in 𝛽, the equations for the conformation tensor components,309
(2.14c)−(2.14e), simplify to310

𝑈0
𝜕 𝐴̃22,0

𝜕𝑍
+ 2

𝜕𝑈0
𝜕𝑍

𝐴̃22,0 = − 1
𝐷𝑒

( 𝐴̃22,0 − 1), (3.6a)311
312

𝑈0
𝜕 𝐴̃12,0

𝜕𝑍
− 1
𝐻

𝜕𝑈0
𝜕𝜂

𝐴̃22,0 = − 1
𝐷𝑒

𝐴̃12,0, (3.6b)313
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𝑈0
𝜕 𝐴̃11,0

𝜕𝑍
− 2

𝜕𝑈0
𝜕𝑍

𝐴̃11,0 −
2
𝐻

𝜕𝑈0
𝜕𝜂

𝐴̃12,0 = − 1
𝐷𝑒

𝐴̃11,0, (3.6c)314

subject to the boundary conditions

𝐴̃11,0(0, 𝜂) = 18𝐷𝑒2𝜂2, 𝐴̃12,0(0, 𝜂) = −3𝐷𝑒𝜂, 𝐴̃22,0(0, 𝜂) = 1. (3.7𝑎 − 𝑐)
Equations (3.6) represent a set of one-way coupled first-order semi-linear partial differential315
equations that can be solved first for 𝐴̃22,0, followed by 𝐴̃12,0, and then for 𝐴̃11,0.316

Solving (3.6) together with (3.7), we obtain closed-form expressions for 𝐴̃22,0, 𝐴̃12,0, and317
𝐴̃11,0 for arbitrary values of 𝐷𝑒 and the shape function 𝐻 (𝑍)318

𝐴̃22,0

𝐻 (𝑍)2 = e 𝑓 (𝐷𝑒𝑈0 (𝑍,𝜂) )
[
1 +

∫ 𝑍

0
e− 𝑓 (𝐷𝑒𝑈0 (𝑍̃ ,𝜂) ) 1

𝐷𝑒𝑈0(𝑍̃ , 𝜂)𝐻 (𝑍̃)2
d𝑍̃

]
, (3.8)319

320
𝐴̃12,0

(−3𝐷𝑒𝜂) = e 𝑓 (𝐷𝑒𝑈0 (𝑍,𝜂) )
[
1 +

∫ 𝑍

0
e− 𝑓 (𝐷𝑒𝑈0 (𝑍̃ ,𝜂) ) 𝐴̃22,0(𝑍̃ , 𝜂)

𝐷𝑒𝑈0(𝑍̃ , 𝜂)𝐻 (𝑍̃)2
d𝑍̃

]
, (3.9)321

322
𝐴̃11,0

18𝐷𝑒2𝜂2/𝐻 (𝑍)2 = e 𝑓 (𝐷𝑒𝑈0 (𝑍,𝜂) )
[
1 +

∫ 𝑍

0
e− 𝑓 (𝐷𝑒𝑈0 (𝑍̃ ,𝜂) ) 𝐴̃12,0(𝑍̃ , 𝜂)

(−3𝜂𝐷𝑒)𝐷𝑒𝑈0(𝑍̃ , 𝜂)
d𝑍̃

]
,

(3.10)323
where 𝑓 (𝐷𝑒𝑈0(𝑍, 𝜂)) is defined as324

𝑓 (𝐷𝑒𝑈0(𝑍, 𝜂)) = −
∫ 𝑍

0

1
𝐷𝑒𝑈0(𝑍̃ , 𝜂)

d𝑍̃ = −
∫ 𝑍

0

2𝐻 (𝑍̃)
3𝐷𝑒(1 − 𝜂2)

d𝑍̃ . (3.11)325

It is worth noting that the right-hand sides of (3.8)–(3.10) depend on the product 𝐷𝑒𝑈0(𝑍, 𝜂)326
and are not functions of 𝐷𝑒 and 𝜂 separately. Furthermore, (3.8)–(3.10) clearly show that,327
while the distribution of 𝐴̃22,0 is set solely by the value at the beginning of the non-uniform328
region, the distribution of elastic shear and normal stresses, 𝐴̃12,0 and 𝐴̃11,0, are coupled to329
the transverse normal stress 𝐴̃22,0. In fact, the elastic normal stress 𝐴̃11,0 depends both on330
𝐴̃12,0 and 𝐴̃22,0.331

From (3.8)–(3.10), one might think that the conformation tensor components diverge at332
the wall (𝜂 = ±1). However, using (3.6) and noting that 𝑈0 = 𝜕𝑈0/𝜕𝑍 = 0 at 𝜂 = ±1, it333
follows that, at the walls of the non-uniform channel,334

𝐴̃wall
22,0 = 1, 𝐴̃wall

12,0 = ∓ 3𝐷𝑒

𝐻 (𝑍)2 , 𝐴̃wall
11,0 =

18𝐷𝑒2

𝐻 (𝑍)4 for all 𝐷𝑒. (3.12)335

In §§ 3.1.1 and 3.1.2, we provide explicit expressions for the conformation tensor components336
in the low- and high-𝐷𝑒 limits. We also note that the results shown in our figure 4(𝑎, 𝑐) and337
the work of Hinch et al. (2023) suggest the existence of a viscoelastic boundary layer near338
the walls in the high-𝐷𝑒 limit, which we analyze in § 3.1.3.339

3.1.1. Conformation tensor in the low-𝐷𝑒 limit340

For 𝐷𝑒 ≪ 1, we solve the equations iteratively for the conformation tensor components (3.6)341
to obtain342

𝐴̃22,0 = 1 + 3𝐷𝑒𝐻′

𝐻2 (1 − 𝜂2) + 9𝐷𝑒2 [4𝐻′2 − 𝐻𝐻′′]
2𝐻4 (1 − 𝜂2)2343

+ 27𝐷𝑒3 [24𝐻′3 − 13𝐻𝐻′𝐻′′ + 𝐻2𝐻′′′]
4𝐻6 (1 − 𝜂2)3, (3.13a)344

345

𝐴̃12,0 = −3𝐷𝑒

𝐻2 𝜂 − 18𝐷𝑒2𝐻′

𝐻4 𝜂(1 − 𝜂2) − 81𝐷𝑒3 [4𝐻′2 − 𝐻𝐻′′]
2𝐻6 𝜂(1 − 𝜂2)2, (3.13b)346

Rapids articles must not exceed this page length
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𝐴̃11,0 =
18𝐷𝑒2

𝐻4 𝜂2 + 162𝐷𝑒3𝐻′

𝐻6 𝜂2(1 − 𝜂2) + 486𝐷𝑒4 [4𝐻′2 − 𝐻𝐻′′]
𝐻8 𝜂2(1 − 𝜂2)2. (3.13c)347

We note that the low-𝐷𝑒 results (3.13) are consistent with our previous work (Boyko &348
Stone 2022), in which we provided explicit expressions for 𝐴̃𝑧𝑧 , 𝐴̃𝑧𝑦 , and 𝐴̃𝑦𝑦 up to 𝑂 (𝐷𝑒2)349
in Cartesian coordinates. For example, using (2.13c) and (3.13), 𝐴̃𝑦𝑦 can be expressed as350
𝐴̃𝑦𝑦 = 1 + 3𝐷𝑒𝐻′ (𝑍) (𝐻 (𝑍)2 − 3𝑌2)/𝐻 (𝑍)4 +𝑂 (𝐷𝑒2), in agreement with (3.9𝑎) in Boyko351
& Stone (2022).352

3.1.2. Conformation tensor in the high-𝐷𝑒 limit353

We here provide the closed-form expressions for the conformation tensor components in the354
high-𝐷𝑒 limit. We begin with the expression for 𝐴̃22,0 and consider the core flow region.355

For 𝐷𝑒 ≫ 1, except close to the wall, (3.6a) reduces to356

𝑈0
𝜕 𝐴̃22,0

𝜕𝑍
+ 2

𝜕𝑈0
𝜕𝑍

𝐴̃22,0 = 0, (3.14)357

whose solution subject to (3.7𝑐) is358

𝐴̃22,0(𝑍, 𝜂) = 𝐴̃22,0(0, 𝜂)
𝑈0(0, 𝜂)2

𝑈0(𝑍, 𝜂)2 = 𝐻 (𝑍)2. (3.15)359

Next, since 𝐴̃12,0 scales as 𝑂 (𝐷𝑒) while 𝐴̃22,0 is 𝑂 (1), within the core flow region in the360
high-𝐷𝑒 limit we obtain that the first term in (3.6b) dominates over all the remaining terms361

𝑈0
𝜕 𝐴̃12,0

𝜕𝑍
= 0, (3.16)362

so that elastic shear stresses preserve their value from the entry channel through the non-363
uniform region364

𝐴̃12,0(𝑍, 𝜂) = 𝐴̃12,0(0, 𝜂) = −3𝐷𝑒𝜂. (3.17)365

Finally, to determine 𝐴̃11,0, we note that the third and fourth terms in (3.6c) scale as 𝑂 (𝐷𝑒),366
while the first and second terms are 𝑂 (𝐷𝑒2). Thus, for 𝐷𝑒 ≫ 1, we expect the first and367
second terms to balance each other while the remaining terms are negligible, so that368

𝑈0
𝜕 𝐴̃11,0

𝜕𝑍
− 2

𝜕𝑈0
𝜕𝑍

𝐴̃11,0 = 0. (3.18)369

Solving (3.18) subject to (3.7𝑎) yields370

𝐴̃11,0(𝑍, 𝜂) = 𝐴̃11,0(0, 𝜂)
𝑈0(𝑍, 𝜂)2

𝑈0(0, 𝜂)2 =
18𝐷𝑒2𝜂2

𝐻 (𝑍)2 . (3.19)371

In fact, for 𝐷𝑒 ≫ 1, there is a purely passive response of the microstructure, similar to a372
material line element, transported and deformed by the flow without relaxing.373

The high-𝐷𝑒 results (3.15), (3.17), and (3.19) can be also directly obtained from the374
closed-form solutions (3.8)–(3.10) by noting that, for 𝐷𝑒 ≫ 1, e± 𝑓 (𝐷𝑒𝑈0 (𝑍,𝜂) ) ≈ 1, and375
neglecting the 𝑂 (𝐷𝑒−1) terms.376

3.1.3. Boundary-layer analysis in the high-𝐷𝑒 limit377

In the previous section, we obtained analytical expressions for the components of the378
conformation tensor in the high-𝐷𝑒 limit within the core flow region. However, these379
expressions do not hold near the walls, where a viscoelastic boundary layer of 𝑂 (𝐷𝑒−1)380
thickness exists (Hinch et al. 2023). In this section, we analyze this boundary-layer region381
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and provide boundary-layer equations and their closed-form solutions. To this end, we focus382
on the region 𝜂 ∈ [0, 1], and introduce the rescaled inner-region coordinate383

𝜁 = 𝐷𝑒(1 − 𝜂) = 𝐷𝑒𝜂 for 𝜂 ≪ 1, (3.20)384

so that 𝐷𝑒(1 − 𝜂2) = 𝜁 (2 − 𝜂) ≈ 2𝜁 . Noting that, in the boundary layer, 𝐴̃22,0 = 𝑂 (1),385
𝐴̃12,0 = 𝑂 (𝐷𝑒), and 𝐴̃11,0 = 𝑂 (𝐷𝑒2) (see (3.12)), to eliminate the dependence on 𝐷𝑒 in386
the governing equations and boundary conditions (3.7), we rescale 𝐴̃22,0, 𝐴̃12,0, and 𝐴̃11,0,387
which are functions of 𝑍 and 𝜁 , as388

A22 =
𝐴̃22,0

𝐻 (𝑍)2 , A12 =
𝐴̃12,0

(−3𝜂𝐷𝑒) , A11 =
𝐴̃11,0

18𝜂2𝐷𝑒2/𝐻 (𝑍)2 . (3.21)389

Substituting (3.20) and (3.21) into (3.6) and using (3.4𝑎), we obtain the boundary-layer390
equations in the high-𝐷𝑒 limit391

3𝜁
𝐻 (𝑍)

𝜕A22
𝜕𝑍

= −
(
A22 −

1
𝐻 (𝑍)2

)
, (3.22a)392

393
3𝜁

𝐻 (𝑍)
𝜕A12
𝜕𝑍

= −(A12 − A22), (3.22b)394
395

3𝜁
𝐻 (𝑍)

𝜕A11
𝜕𝑍

= −(A11 − A12), (3.22c)396

subject to the inlet conditions

A11(0, 𝜁) = 1, A12(0, 𝜁) = 1, A22(0, 𝜁) = 1. (3.23𝑎 − 𝑐)

Solving (3.22) together with (3.23), we obtain closed-form expressions for A22, A12, and397
A11 in the boundary-layer region398

A22 = eF(𝑍,𝜁 )
[
1 +

∫ 𝑍

0
e−F(𝑍̃ ,𝜁 ) 1

3𝜁𝐻 (𝑍̃)
d𝑍̃

]
, (3.24a)399

400

A12 = eF(𝑍,𝜁 )
[
1 +

∫ 𝑍

0
e−F(𝑍̃ ,𝜁 ) A22(𝑍̃ , 𝜁)𝐻 (𝑍̃)

3𝜁
d𝑍̃

]
, (3.24b)401

402

A11 = eF(𝑍,𝜁 )
[
1 +

∫ 𝑍

0
e−F(𝑍̃ ,𝜁 ) A12(𝑍̃ , 𝜁)𝐻 (𝑍̃)

3𝜁
d𝑍̃

]
, (3.24c)403

where F (𝑍, 𝜁) is defined as404

F (𝑍, 𝜁) = − 1
3𝜁

∫ 𝑍

0
𝐻 (𝑍̃)d𝑍̃ . (3.25)405

We note that solutions (3.24) satisfy the matching conditions between the inner406

and outer regions. Specifically, A22 |𝜁→∞ =

[
𝐴̃core

22,0/𝐻 (𝑍)2
]
𝜂=1

= 1, A12 |𝜁→∞ =407 [
𝐴̃core

12,0/(−3𝜂𝐷𝑒)
]
𝜂=1

= 1, and A11 |𝜁→∞ =

[
𝐴̃core

11,0/(18𝜂2𝐷𝑒2/𝐻 (𝑍)2)
]
𝜂=1

= 1.408

3.2. Pressure drop at the first order in 𝛽409

Equation (2.20) shows that the pressure drop depends on the elastic normal and shear stresses410
𝐴̃11 and 𝐴̃12, and thus, generally, requires the solution of the nonlinear viscoelastic problem.411
However, in the ultra-dilute limit, corresponding to 𝛽 = 𝜇𝑝/𝜇0 ≪ 1, we can determine the412
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pressure drop at 𝑂 (𝛽) for arbitrary values of 𝐷𝑒 only with the knowledge of the velocity413
field and conformation tensor components at𝑂 (1). Specifically, substituting (3.1) into (2.20)414
yields at 𝑂 (𝛽) the pressure drop Δ𝑃1,415

Δ𝑃1 = −3
∫ 1

0

d𝑍
𝐻 (𝑍)3416

− 3
2𝐷𝑒

∫ 1

0

∫ 1

0
(1 − 𝜂2)

[
1

𝐻 (𝑍)
𝜕 (𝐻 (𝑍) 𝐴̃11,0)

𝜕𝑍
+ 1
𝐻 (𝑍)

𝜕 𝐴̃12,0

𝜕𝜂

]
d𝜂d𝑍, (3.26)417

or alternatively,418

Δ𝑃1 = −3
∫ 1

0

d𝑍
𝐻 (𝑍)3 + 3

2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
𝐴̃11,0(0, 𝜂) − 𝐴̃11,0(1, 𝜂)

]
d𝜂419

− 3
2𝐷𝑒

∫ 1

0

[
𝐻′ (𝑍)
𝐻 (𝑍)

(∫ 1

0
(1 − 𝜂2) 𝐴̃11,0d𝜂

)]
d𝑍 − 3

𝐷𝑒

∫ 1

0

[
1

𝐻 (𝑍)

∫ 1

0
𝜂𝐴̃12,0d𝜂

]
d𝑍.(3.27)420

Thus, for a given flow rate 𝑞, the dimensionless pressure drop Δ𝑃 = Δ𝑝/(𝜇0𝑞ℓ/2ℎ3
0), as a421

function of the shape function 𝐻 (𝑍), the Deborah number 𝐷𝑒, and the viscosity ratio 𝛽 ≪ 1,422
up to 𝑂 (𝛽), is given by423

Δ𝑃 = Δ𝑃0(𝐻 (𝑍)) + 𝛽Δ𝑃1(𝐷𝑒, 𝐻 (𝑍)) +𝑂 (𝜖2, 𝛽2), (3.28)424

where the expressions for Δ𝑃0 and Δ𝑃1 are given in (3.4𝑏) and (3.27), respectively.425
Notably, in contrast to our previous results for the pressure drop obtained in the weakly426

viscoelastic and lubrication limits with 𝐷𝑒 ≪ 1 and 𝛽 ∈ [0, 1] (Boyko & Stone 2022), the427
current result (3.28) applies to the limit of 𝛽 ≪ 1, while allowing 𝐷𝑒 = 𝑂 (1).428

3.2.1. Pressure drop at 𝑂 (𝛽) in the low-𝐷𝑒 limit429

To calculate the pressure drop Δ𝑃1 at low Deborah numbers in the non-uniform shape region,430
we use (3.13b)–(3.13c) and (3.27). The elastic normal stress (NS) contribution to the pressure431
drop at 𝑂 (𝛽) is432

Δ𝑃NS
1 =

3
2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
𝐴̃11,0

]𝑍=0
𝑍=1 d𝜂 − 3

2𝐷𝑒

∫ 1

0

[
𝐻′ (𝑍)
𝐻 (𝑍)

(∫ 1

0
(1 − 𝜂2) 𝐴̃11,0d𝜂

)]
d𝑍433

=
27
10

𝐷𝑒(1 − 𝐻−4
ℓ ) for 𝐷𝑒 ≪ 1, (3.29)434

where
[
𝐴̃11,0

]𝑍=0
𝑍=1 = 𝐴̃11,0(0, 𝜂) − 𝐴̃11,0(1, 𝜂).435

The elastic shear stress (SS) contribution to the pressure drop at 𝑂 (𝛽) is436

Δ𝑃SS
1 = − 3

𝐷𝑒

∫ 1

0

[
1

𝐻 (𝑍)

∫ 1

0
𝜂𝐴̃12,0d𝜂

]
d𝑍437

= 3
∫ 1

0

d𝑍
𝐻 (𝑍)3 + 18

10
𝐷𝑒(1 − 𝐻−4

ℓ ) for 𝐷𝑒 ≪ 1. (3.30)438

Substituting (3.29) and (3.30) into (3.27) provides the pressure drop at 𝑂 (𝛽) in the low-𝐷𝑒439
limit up to 𝑂 (𝐷𝑒),440

Δ𝑃1 =
9
2
𝐷𝑒(1 − 𝐻−4

ℓ ) +𝑂 (𝐷𝑒2) for 𝐷𝑒 ≪ 1, (3.31)441

so that the total pressure drop across the non-uniform channel in the low-𝐷𝑒 limit, accounting442



14 E. Boyko, E.J. Hinch and H.A. Stone

for the leading-order effect of viscoelasticity, is443

Δ𝑃 = 3(1 − 𝛽)
∫ 1

0

d𝑍
𝐻 (𝑍)3︸                    ︷︷                    ︸

Solvent stress

+ 3𝛽
∫ 1

0

d𝑍
𝐻 (𝑍)3 + 18

10
𝛽𝐷𝑒(1 − 𝐻−4

ℓ )︸                                         ︷︷                                         ︸
Elastic shear stress

+ 27
10

𝛽𝐷𝑒(1 − 𝐻−4
ℓ )︸                 ︷︷                 ︸

Elastic normal stress

444

= 3
∫ 1

0

d𝑍
𝐻 (𝑍)3 + 9

2
𝛽𝐷𝑒(1 − 𝐻−4

ℓ ) +𝑂 (𝐷𝑒2) for 𝐷𝑒 ≪ 1, (3.32)445

in agreement with the results of our previous work (Boyko & Stone 2022). The three terms on446
the right-hand side of (3.32) represent, respectively, the Newtonian solvent stress contribution,447
the elastic shear stress contribution, and the elastic normal stress contribution to the pressure448
drop.449

3.2.2. Pressure drop at 𝑂 (𝛽) in the high-𝐷𝑒 limit450

To calculate the pressure drop Δ𝑃1 at high Deborah numbers in the non-uniform region,
we use (3.17), (3.19), and (3.27). The elastic normal and shear stress contributions to the
pressure drop at 𝑂 (𝛽) are

Δ𝑃NS
1 =

9
5
𝐷𝑒(1 − 𝐻−2

ℓ ) and Δ𝑃SS
1 = 3

∫ 1

0

d𝑍
𝐻 (𝑍) for 𝐷𝑒 ≫ 1. (3.33𝑎, 𝑏)

Substituting (3.33) into (3.27) yields the pressure drop at 𝑂 (𝛽) in the high-𝐷𝑒 limit451

Δ𝑃1 = −3
∫ 1

0

d𝑍
𝐻 (𝑍)3 + 3

∫ 1

0

d𝑍
𝐻 (𝑍) +

9
5
𝐷𝑒(1 − 𝐻−2

ℓ ) for 𝐷𝑒 ≫ 1, (3.34)452

so that the total pressure drop across the non-uniform channel in the high-𝐷𝑒 limit is453

Δ𝑃 = 3(1 − 𝛽)
∫ 1

0

d𝑍
𝐻 (𝑍)3︸                    ︷︷                    ︸

Solvent stress

+ 3𝛽
∫ 1

0

d𝑍
𝐻 (𝑍)︸           ︷︷           ︸

Elastic shear stress

+ 9
5
𝛽𝐷𝑒(1 − 𝐻−2

ℓ )︸               ︷︷               ︸
Elastic normal stress

for 𝐷𝑒 ≫ 1. (3.35)454

Similar to the low-𝐷𝑒 limit, for the contraction geometry, the last term, corresponding to the455
elastic normal stress contribution, leads to a decrease in the pressure drop, which is linear in456
the Deborah number. As noted by Hinch et al. (2023), the tension in the streamlines at the end457
of the contraction pulls the flow through the contraction, thus requiring less pressure to push.458
Furthermore, at high Deborah numbers, the elastic shear stresses are lower than the fully459
relaxed value 𝐴̃12 = −3𝐷𝑒𝜂/𝐻2

ℓ
due to insufficient time (distance) to approach their fully460

relaxed value in the contraction. Thus, the elastic shear stress contribution to the pressure461

drop, 3𝛽
∫ 1
0 𝐻 (𝑍)−1d𝑍 , is smaller than the steady Poiseuille value of 3𝛽

∫ 1
0 𝐻 (𝑍)−3d𝑍 ,462

further reducing the pressure drop. Finally, we note that the result (3.35) also holds for the463
expansion geometry 𝐻ℓ > 1, in which the two physical mechanisms mentioned above lead464
to an increase in the pressure drop.465

4. Low-𝛽 lubrication analysis in the exit channel466

In this section, we analyze the spatial relaxation of the elastic stresses and the pressure drop in467
the uniform exit channel. From examining the expressions (3.8)–(3.10) for the conformation468
tensor, when there are no longer shape changes, we expect the elastic stresses and the469
pressure in the exit channel to relax exponentially, with a strong dependence on 𝐷𝑒−1. Thus,470
for higher Deborah numbers, a longer downstream section is required (Keiller 1993) for471



Flow of an Oldroyd-B fluid in a slowly varying contraction 15

Contracting channel Exit channel
Deformation of the microstructure:
Semi-analytical solution (3.8)–(3.10) (B 3)–(B 5)
Low-𝐷𝑒 asymptotic solution (3.13) (B 7)
High-𝐷𝑒 asymptotic solution (3.15), (3.17), (3.19) (B 9)
Pressure drop:
Semi-analytical solution (3.28) (4.1)
Low-𝐷𝑒 asymptotic solution (3.32) (4.3)
High-𝐷𝑒 asymptotic solution (3.35) (4.4)

Table 1. A summary of the semi-analytical solutions and low- and high-𝐷𝑒 asymptotic expressions for the
deformation of the microstructure and the pressure drop of the Oldroyd-B fluid in a contraction and exit
channel in the ultra-dilute limit.

polymer relaxation, consistent with previous numerical simulations using the Oldroyd-B472
model (Debbaut et al. 1988; Alves et al. 2003).473

Following similar steps as in the previous section, in Appendix B, we derive closed-form474
expressions for the conformation tensor and the pressure drop in the uniform exit channel for475
arbitrary values of the Deborah number. Furthermore, we provide analytical expressions for476
the conformation tensor and the pressure drop in the low- and high-𝐷𝑒 limits. We summarize477
in table 1 the semi-analytical solutions and low- and high-𝐷𝑒 asymptotic expressions for478
the deformation of the microstructure and the pressure drop of the Oldroyd-B fluid in a479
contraction and exit channel in the ultra-dilute limit derived in this work.480

In particular, we show that the total pressure drop in the exit channel can be expressed as481

Δ𝑃ℓ = (1 − 𝛽) 3𝐿
𝐻3
ℓ︸       ︷︷       ︸

Solvent stress

+ 3𝛽
2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
𝐴̃11,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂︸                                      ︷︷                                      ︸
Elastic normal stress

+ 3𝛽
𝐷𝑒𝐻ℓ

∫ 1

0
𝜂

[∫ 0

𝐿

𝐴̃12,0d𝑍ℓ
]

d𝜂︸                                    ︷︷                                    ︸
Elastic shear stress

,

(4.1)482
where 𝐿 = ℓℓ/ℓ is the dimensionless length, 𝐻ℓ = 𝐻 (𝑍 = 1) = ℎℓ/ℎ0 is the dimensionless483
height of the exit channel, 𝑍ℓ = 𝑍 − 1, 𝐴̃11,0 and 𝐴̃12,0 are given in (B 4) and (B 5), and484 [
𝐴̃11,0

]𝑍ℓ=0
𝑍ℓ=𝐿

= 𝐴̃11,0(𝑍ℓ = 0, 𝜂) − 𝐴̃11,0(𝑍ℓ = 𝐿, 𝜂).485

It should be noted that we can express the first-order contribution Δ𝑃ℓ,1 in terms of the486
difference between the conformation tensor components at the beginning and end of the exit487
channel (see Appendix B and Hinch et al. (2023))488

Δ𝑃ℓ,1 =
3

2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
𝐴̃11,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂 − 9
2𝐻2

ℓ

∫ 1

0
𝜂(1 − 𝜂2)

[
𝐴̃12,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂489

+ 27𝐷𝑒

2𝐻4
ℓ

∫ 1

0
𝜂2(1 − 𝜂2)

[
𝐴̃22,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂. (4.2)490

Hereafter, we assume that the length of the exit channel, 𝐿, is such that the elastic stresses reach491
their fully relaxed values by the end of the exit channel, given by (2.16) with 𝐻 ≡ 𝐻ℓ . Under492
this assumption, (4.2) clearly shows that the first-order contributionΔ𝑃ℓ,1 is independent of 𝐿493
since the steady-state values of 𝐴̃11,0, 𝐴̃12,0, and 𝐴̃22,0 depend solely on the 𝜂 coordinate. Note,494
however, that the total pressure in the exit channel depends on 𝐿 via Δ𝑃ℓ = 3𝐿/𝐻3

ℓ
+ 𝛽Δ𝑃ℓ,1.495

In addition, we show in Appendix B that the total pressure drop in the exit channel in the496
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low- and high-𝐷𝑒 limits is497

Δ𝑃ℓ =
3𝐿
𝐻3
ℓ

− 1728𝛽𝐷𝑒3𝐻′′ (1)
35𝐻7

ℓ

for 𝐷𝑒 ≪ 1, (4.3)498

499

Δ𝑃ℓ =
3𝐿
𝐻3
ℓ

+ 36
5
𝛽𝐷𝑒(𝐻−2

ℓ − 𝐻−4
ℓ ) for 𝐷𝑒 ≫ 1. (4.4)500

From (4.3) and (4.4), it follows that, similar to the contraction, the pressure drop in the501
exit channel decreases with 𝐷𝑒. Furthermore, the physical mechanisms responsible for the502
pressure drop reduction are the same in both the contraction and the exit channels.503

The asymptotic result (4.4) is obtained using expressions (B 9a)−(B 9c), which hold in the504
high-𝐷𝑒 limit within the core flow region. As discussed above, near the walls, there exists505
a viscoelastic boundary layer of thickness 𝑂 (𝐷𝑒−1). Nevertheless, this boundary layer will506
contribute only a small 𝑂 (𝛽𝐷𝑒−1) correction to the pressure drop in the exit channel for507
𝐷𝑒 ≫ 1, as noted by Hinch et al. (2023).508

5. Results509

In this section, we present the theoretical results for the pressure drop and conformation510
tensor distribution of the Oldroyd-B fluid in the ultra-dilute limit developed in §§ 3 and 4.511
As an illustrative example, we specifically consider the case of a smooth contraction of the512
form513

𝐻 (𝑍) = 1 − (1 − 𝐻ℓ)𝑍2(2 − 𝑍)2 0 ⩽ 𝑍 ⩽ 1, (5.1)514

where 𝐻ℓ = 𝐻 (1)/𝐻 (0) = ℎℓ/ℎ0 is the ratio of the exit to entry heights; for the contracting515
geometry we have 𝐻ℓ < 1. This contraction shape function is illustrated in figure 2 and516
satisfies 𝐻′ (0) = 𝐻′′′ (0) = 0 and 𝐻′ (1) = 𝐻′′′ (1) = 0.517

In this work, we present the results for 𝐻ℓ = 0.5 and 𝛽 = 0.05. While the current study518
focuses only on one contraction ratio, in our previous work, we considered four contraction519
ratios, in which the elastic normal stresses vary by almost two decades (Hinch et al. 2023).520
In addition, figure 8 of our previous paper shows a 0.1 % difference between 𝑐 = 0.1 and521
𝑐 = 0.05 for the pressure drop in the contraction at 𝐷𝑒 = 0.8. Nevertheless, our current522
analysis allows us to analyze slowly varying arbitrarily shaped channels provided 𝜖 ≪ 1523
and 𝛽 ≪ 1. To obtain the semi-analytical solutions for given values of 𝐷𝑒 and 𝐻ℓ , we first524
used MATLAB’s routine cumtrapz to find the conformation tensor components, given in525
(3.8)–(3.10) and (B 3)–(B 5), for a contraction and exit channel. Typical values of the grid526
size were Δ𝑍 = 10−4 and Δ𝜂 = 0.005. We then used MATLAB’s routine trapz to calculate527
the pressure drop, (3.28) and (4.1), for a contraction and exit channel, respectively.528

5.1. Streamwise variation of elastic stresses in the contraction and exit channel529

We present in figure 3 the streamwise variation of the leading-order elastic stresses, scaled530
by their entry values, on 𝜂 = 0.5 in contraction and exit channels for 𝐷𝑒 = 0.01 (𝑎, 𝑑),531
𝐷𝑒 = 0.1 (𝑏, 𝑒), and 𝐷𝑒 = 1 (𝑐, 𝑓 ). As expected, for a small Deborah number of 𝐷𝑒 = 0.01,532
the elastic stresses achieve their downstream fully relaxed values by the end of contraction533
(figure 3(𝑎)), and thus we observe very little variation in the relaxation along the exit channel534
(figure 3(𝑑)). Consistent with the low-𝐷𝑒 asymptotic solutions (3.13), represented by cyan535
dotted lines, for 𝐻ℓ = 0.5, the elastic shear and axial normal stresses increase by a factor of536
4 and 16, respectively, while the transverse normal stress preserves its entry value.537

For the case of 𝐷𝑒 = 0.1, shown in figure 3(𝑏, 𝑒), the elastic stresses do not have enough538
residence time to attain their downstream steady-state values in the contraction. Therefore,539
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Figure 3. The streamwise variation of leading-order elastic stresses on 𝜂 = 0.5 in a smooth contraction
and exit channel in the ultra-dilute limit. (𝑎–𝑐) Scaled elastic stresses 𝐴̃11,0/(18𝐷𝑒2𝜂2), 𝐴̃12,0/(−3𝐷𝑒𝜂),
and 𝐴̃22,0 in the contraction as a function of 𝑍 for (𝑎) 𝐷𝑒 = 0.01, (𝑏) 𝐷𝑒 = 0.1, and (𝑐) 𝐷𝑒 = 1. (𝑑–𝑒)
Scaled elastic stresses in the exit channel 𝐴̃11,0/(18𝐷𝑒2𝜂2), 𝐴̃12,0/(−3𝐷𝑒𝜂), and 𝐴̃22,0 as a function of
𝑍ℓ for (𝑑) 𝐷𝑒 = 0.01, (𝑒) 𝐷𝑒 = 0.1, and ( 𝑓 ) 𝐷𝑒 = 1. Solid lines represent the semi-analytical solutions
(3.8)–(3.10) (contraction) and (B 3)–(B 5) (exit channel). Cyan dotted lines represent the low-𝐷𝑒 asymptotic
solutions (3.13) (contraction) and (B 7) (exit channel). Red dashed lines represent the high-𝐷𝑒 asymptotic
solutions (3.15), (3.17), and (3.19) (contraction) and (B 9) (exit channel). All calculations were performed
using 𝐻ℓ = 0.5.

there is a significant spatial relaxation in the exit channel. Interestingly, although the relaxation540

in the exit channel is governed mainly by e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ] (see (B 3)−(B 5)), the elastic541
stresses relax over slightly different length scales, with the shortest relaxation distance542
required for 𝐴̃22,0 and the longest for 𝐴̃11,0. The latter behavior is associated with the nature543
of the coupling between the elastic stresses so that 𝐴̃11,0 depends both on 𝐴̃12,0 on 𝐴̃22,0,544
while 𝐴̃12,0 depends only on 𝐴̃22,0 (see (B 3)−(B 5)).545

When 𝐷𝑒 = 1, it is evident from figure 3(𝑐) that, at the end of the contraction, the axial546
normal stress increases by a factor of 1/𝐻2

ℓ
= 4, the transverse normal stress is squashed by a547

factor of 𝐻2
ℓ
= 1/4, and the elastic shear stress preserves its entry value. Figure 3( 𝑓 ) presents548

the spatial relaxation of the elastic stresses in the exit channel for 𝐷𝑒 = 1, clearly showing549
that a very long exit channel is required to attain the downstream fully relaxed values of550
all stresses (𝐿 > 16 for 𝜂 = 0.5). Furthermore, we observe excellent agreement between551
the semi-analytical results (solid lines) and the high-𝐷𝑒 asymptotic solutions (3.15), (3.17),552
(3.19), and (B 9) (dashed red lines). Such an agreement for 𝐷𝑒 = 1 is consistent with recent553
results of Hinch et al. (2023), who found that the high-𝐷𝑒 analysis works well for 𝐷𝑒 > 0.4.554

The closed-form solutions for the conformation tensor components, (B 3)−(B 5), clearly555
show that the spatial relaxation of the elastic stresses in the exit channel strongly depends556
on the stresses at the end of the contraction (𝑍 = 1). Therefore, it is of particular interest to557
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Figure 4. The cross-stream variation of leading-order elastic shear and normal stresses at the end
of the contraction in the ultra-dilute limit. (𝑎, 𝑐) Scaled elastic shear and normal stresses at the end
of the contraction, (𝑎) 𝐴̃12,0 (𝑍 = 1, 𝜂)/(−3𝐷𝑒𝜂/𝐻2

ℓ
) and (𝑐) 𝐴̃11,0 (𝑍 = 1, 𝜂)/(18𝐷𝑒2𝜂2/𝐻4

ℓ
), as a

function of 𝜂 for 𝐷𝑒 = 0.01, 0.1, 1, and 10, respectively. (𝑏) 𝐴̃12,0 (𝑍 = 1, 𝜂)/(−3𝐷𝑒𝜂/𝐻2
ℓ
) and (𝑑)

𝐴̃11,0 (𝑍 = 1, 𝜂)/(18𝐷𝑒2𝜂2/𝐻4
ℓ
) as a function of the rescaled coordinate 𝜁 = 𝐷𝑒(1−𝜂) for 𝐷𝑒 = 0.1, 1, and

10. Solid lines represent the semi-analytical solutions (3.9)–(3.10). Cyan dotted lines represent the low-𝐷𝑒

asymptotic solutions (3.13b)–(3.13c). Red dashed lines represent the high-𝐷𝑒 asymptotic solutions (3.17)
and (3.19). Green dashed lines represent the boundary-layer solutions (3.24b)–(3.24c). All calculations were
performed using 𝐻ℓ = 0.5.

elucidate the behavior of the elastic stresses at the end of the contraction and the extent to558
which they are perturbed relative to their downstream fully relaxed values.559

The solid lines in figure 4(𝑎, 𝑐) present the elastic shear (𝑎) and axial normal stresses560
(𝑐) at the end of the contraction as a function of 𝜂 = 𝑦/𝐻ℓ for 𝐷𝑒 = 0.01, 0.1, 1, and 10,561
scaled by their downstream fully relaxed values. For a small Deborah number of 𝐷𝑒 = 0.01,562
𝐴̃12,0(𝑍 = 1, 𝜂)/(−3𝐷𝑒𝜂/𝐻2

ℓ
) and 𝐴̃11,0(𝑍 = 1, 𝜂)/(18𝐷𝑒2𝜂2/𝐻4

ℓ
) only slightly differ from563

their downstream values, and this behavior is well captured by the low-𝐷𝑒 asymptotic564
solutions (3.13b)–(3.13c), represented by cyan dotted lines. As 𝐷𝑒 increases, the elastic565
stresses become considerably suppressed within the core flow region relative to their eventual566
relaxed values far downstream, and for 𝐷𝑒 = 1 and 𝐷𝑒 = 10, the elastic shear and axial567
normal stresses approach the high-𝐷𝑒 asymptote of 𝐻2

ℓ
= 1/4, represented by red dashed568

lines. Furthermore, in the high-𝐷𝑒 limit, we observe the presence of a viscoelastic boundary569
layer close to the walls, where the elastic stresses reach their downstream fully relaxed values.570

To provide insight into this viscoelastic boundary layer, we replot in figure 4(𝑏, 𝑑) the571
elastic shear (𝑏) and axial normal stresses (𝑑) at the end of the contraction as a function of572
the rescaled coordinate 𝜁 = 𝐷𝑒(1 − 𝜂) for 𝐷𝑒 = 0.1, 1, and 10 (see § 3.1.3). It is evident573
from figures 4(𝑏) and 4(𝑑) that this rescaling collapses the results for the different Deborah574
numbers onto the same curves, which are the boundary-layer asymptotic solutions (3.24b)575
and (3.24c) (green dashed lines). Clearly, for 𝐷𝑒 = 1 and 𝐷𝑒 = 10, which are graphically576
almost indistinguishable, there is excellent agreement between the semi-analytical results577
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Figure 5. (𝑎, 𝑏) Scaled elastic shear and normal stresses at the end of the contraction, (𝑎)
𝐴̃12,0 (𝑍 = 1, 𝜂)/(−3𝐷𝑒𝜂/𝐻2

ℓ
) and (𝑏) 𝐴̃11,0 (𝑍 = 1, 𝜂)/(18𝐷𝑒2𝜂2/𝐻4

ℓ
) minus 𝐻2

ℓ
, divided by the factor

1 − 𝐻2
ℓ
, as a function of 𝐷𝑒𝑈0 (𝑍 = 1, 𝜂) for 𝐷𝑒 = 0.5, 1 and 𝐻ℓ = 0.125, 0.25, and 0.5. This rescaling

leads to an approximate collapse of the results on the single uniform curve for different Deborah numbers
and contraction ratios.

and the boundary-layer asymptotic solutions, thus confirming the thickness of a boundary578
layer as 𝑂 (𝐷𝑒−1).579

Furthermore, examining (3.8)–(3.10), we infer that their right-hand sides are not a function580
of 𝐷𝑒 and 𝜂 separately but depend on the product 𝐷𝑒𝑈0(𝑍, 𝜂). To test this prediction, we581
show in figure 5(𝑎, 𝑏) the scaled elastic shear (𝑎) and axial normal stresses (𝑏) at the end of582
the contraction, (𝑎) 𝐴̃12,0(𝑍 = 1, 𝜂)/(−3𝐷𝑒𝜂/𝐻2

ℓ
) and (𝑏) 𝐴̃11,0(𝑍 = 1, 𝜂)/(18𝐷𝑒2𝜂2/𝐻4

ℓ
)583

minus 𝐻2
ℓ
, divided by the factor 1 − 𝐻2

ℓ
, as a function of 𝐷𝑒𝑈0(𝑍 = 1, 𝜂) for 𝐷𝑒 = 0.5, 1584

and 𝐻ℓ = 0.125, 0.25, 0.5. We observe that the results for two different values of 𝐷𝑒585
approximately collapse onto the same curve across three contraction ratios.586

5.2. Pressure gradient relaxation in the exit channel587

It follows from figure 3(𝑑– 𝑓 ) in the previous subsection that, as 𝐷𝑒 increases, there is588
a significant relaxation of the elastic stresses in the exit channel, which occurs over a589
long distance. Specifically, the elastic stresses relax exponentially over a distance which590
is proportional to the centerline velocity (3/2𝐻ℓ) multiplied by the Deborah number 𝐷𝑒 (see591
(B 3)−(B 5)). For this reason, a longer downstream section is required at higher 𝐷𝑒.592

In this subsection, we study the relaxation of the pressure gradient in the downstream593
section. Substituting 𝐻 (𝑍) = 𝐻ℓ into (2.19) yields the pressure gradient in the exit channel594

d𝑃
d𝑍

= −3(1 − 𝛽)
𝐻3
ℓ

+ 3𝛽
2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

𝜕 𝐴̃11,0

𝜕𝑍
d𝜂 + 3𝛽

𝐻ℓ𝐷𝑒

∫ 1

0
𝜂𝐴̃12,0d𝜂 +𝑂 (𝛽2). (5.2)595

Noting that in the exit channel 𝑈0 = (3/2𝐻ℓ) (1 − 𝜂2) and d𝑈0/d𝜂 = −(3/𝐻ℓ)𝜂, and using596
the expression for 𝑈0𝜕 𝐴̃11,0/𝜕𝑍 from (B 2c), (5.2) can be written as597 (

d𝑃
d𝑍

+ 3
𝐻3
ℓ

)
1
𝛽
=

3
𝐻3
ℓ

− 𝐻ℓ

𝐷𝑒2

∫ 1

0
𝐴̃11,0d𝜂 − 3

𝐻ℓ𝐷𝑒

∫ 1

0
𝜂𝐴̃12,0d𝜂, (5.3)598

where the right-hand side is independent of 𝛽.599
We present in figure 6(𝑎) the relaxation of the scaled pressure gradient (d𝑃/d𝑍 +3/𝐻3

ℓ
)/𝛽600

as a function of the downstream distance 𝑍ℓ for 𝐷𝑒 = 0.02, 0.2, 1, and 2. Similar to elastic601
stresses, the scaled pressure gradient relaxes exponentially over the downstream distance,602
which significantly increases with 𝐷𝑒. Furthermore, we observe a good agreement between603
the low- and high-𝐷𝑒 asymptotic solutions (cyan dotted and red dashed lines) and the604
semi-analytical results (solid lines).605
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Figure 6. The spatial relaxation of the pressure gradient for the Oldroyd-B fluid in the uniform exit channel
of a contraction in the ultra-dilute limit. (𝑎) Scaled pressure gradient (d𝑃/d𝑍 + 3/𝐻3

ℓ
)/𝛽 as a function of

the downstream distance 𝑍ℓ for 𝐷𝑒 = 0.02, 0.2, 1, and 2. (𝑏) Scaled pressure gradient (d𝑃/d𝑍 + 3/𝐻3
ℓ
)/𝛽

as a function of the rescaled downstream distance 2𝐻ℓ𝑍ℓ/3𝐷𝑒 in a log−linear plot. Solid lines represent
the semi-analytical solutions obtained from (5.3) using (B 3)−(B 5). Cyan dotted lines represent the low-𝐷𝑒

asymptotic solutions obtained from (5.3) using (B 7). Red dashed lines represent the high-𝐷𝑒 asymptotic
solutions obtained from (5.3) using (B 9). The green dashed line is 100e−2𝐻ℓ𝑍ℓ/3𝐷𝑒. All calculations were
performed using 𝐻ℓ = 0.5.

Recalling that the elastic stresses relax exponentially over a distance proportional to606
(3𝐷𝑒/2𝐻ℓ), we replot in figure 6(𝑏) the scaled pressure gradient, (5.3), as a function of the607
rescaled downstream distance 2𝐻ℓ𝑍ℓ/3𝐷𝑒 in a log−linear plot. As a result, all curves become608
parallel to the green dashed line 100e−2𝐻ℓ𝑍ℓ/3𝐷𝑒, thus confirming that the pressure gradient609
relaxes over a length scale ∼(3𝐷𝑒/2𝐻ℓ), similar to the elastic stresses. More specifically, it610
follows from figure 6(𝑏) that the downstream distance over which the scaled pressure gradient611
(PG) decays to 1 % of its maximum value, 𝐿PG

1 %, is approximately612

𝐿PG
1 % ≈ (5.3 ± 0.5) × 3𝐷𝑒

2𝐻ℓ

, (5.4)613

where we obtain that the prefactor 5.3 ± 0.5 is weakly dependent on 𝐷𝑒 throughout the614
investigated range of Deborah numbers. Equation (5.4) and the scaling 3𝐷𝑒/2𝐻ℓ indicate615
that, in the exit channel, the appropriate Deborah number is based on the exit height, i.e.,616
𝐷𝑒exit = 𝜆𝑞/2ℎℓℓ = 𝐷𝑒/𝐻ℓ .617

We note that our estimate of the length of the downstream section, (5.4), is consistent with618
previous numerical studies on the viscoelastic flows in 2-D abrupt contractions (Debbaut et al.619
1988; Alves et al. 2003). Specifically, (5.4) predicts 𝐿PG

1 % ≈ 239±23 for𝐷𝑒exit = 𝐷𝑒/𝐻ℓ = 30,620
which should be contrasted with 250 of Debbaut et al. (1988), who studied numerically the621
flow through the planar 4 :1 contraction.622

5.3. Pressure drop in the contraction and exit channel623

In this subsection, we study the pressure drop across the contraction and the exit channel.624
First, in figure 7(𝑎) we present the non-dimensional pressure drop Δ𝑃 = Δ𝑝/(𝜇0𝑞ℓ/2ℎ3

0)625

in the contraction as a function of 𝐷𝑒 = 𝜆𝑞/(2ℓℎ0) for 𝐻ℓ = 0.5 and 𝛽 = 0.05. For626
further clarification, figure 7(𝑏) shows the first-order contribution Δ𝑃1 = Δ𝑝1/(𝜇0𝑞ℓ/2ℎ3

0)627

as a function of 𝐷𝑒 = 𝜆𝑞/(2ℓℎ0), which is independent of 𝛽. Black dots represent the628
semi-analytical solution (3.28), cyan dotted lines represent the low-𝐷𝑒 asymptotic solution629
(3.32), and red dashed lines represent the high-𝐷𝑒 asymptotic solution (3.35). Clearly, there630
is excellent agreement between our low- and high-𝐷𝑒 asymptotic solutions and the semi-631
analytical results. We also validate the predictions of our semi-analytical and asymptotic632
results against the 2-D finite-element simulations with 𝐻ℓ = 0.5, 𝛽 = 0.05, and 𝜖 = 0.02633
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Figure 7. Non-dimensional pressure drop for the Oldroyd-B fluid in a contracting channel in the ultra-dilute
limit. (𝑎) Dimensionless pressure dropΔ𝑃 = Δ𝑝/(𝜇0𝑞ℓ/2ℎ3

0) as a function of 𝐷𝑒 = 𝜆𝑞/(2ℓℎ0) for 𝛽 = 0.05.
(𝑏) First-order contribution Δ𝑃1 = Δ𝑝1/(𝜇0𝑞ℓ/2ℎ3

0) to the dimensionless pressure drop as a function of
𝐷𝑒 = 𝜆𝑞/(2ℓℎ0). Gray triangles in (𝑎) represent the results of the finite-element simulation. Black dots
represent the semi-analytical solution (3.28). Cyan dotted lines represent the low-𝐷𝑒 asymptotic solution
(3.32). Red dashed lines represent the high-𝐷𝑒 asymptotic solution (3.35). All calculations were performed
using 𝐻ℓ = 0.5.

(gray triangles), showing very good agreement. The details of the numerical implementation634
in the finite-element software COMSOL Multiphysics are provided in Boyko & Stone (2022).635

It is evident that the semi-analytical solution for the pressure drop in the contraction636
approaches the high-𝐷𝑒 asymptotic solution for 𝐷𝑒 ≳ 0.4 and linearly decreases with the637
Deborah number. First, such an agreement for 𝐷𝑒 4 1 is consistent with our results for the638
elastic stresses, shown in figure 3, and recent results of Hinch et al. (2023). Second, and639
more importantly, from the excellent agreement between the semi-analytical results and the640
high-𝐷𝑒 asymptotic solution, based on the components of the conformation tensor within641
the core flow region, we conclude that the viscoelastic boundary layer near the walls makes642
a negligible contribution to the pressure drop in the contracting channel.643

Next, in figure 8(𝑎) we present the non-dimensional pressure drop Δ𝑃ℓ in the exit channel644
as a function of 𝐷𝑒 for 𝐻ℓ = 0.5, 𝛽 = 0.05, and 𝐿 = 50. For 𝐷𝑒 = 2, a long exit channel of645
𝐿 ≳ 30 is required to reach the full relaxation of the elastic stresses and pressure gradient,646
consistent with (5.4). Figure 8(𝑏) shows the first-order contribution Δ𝑃ℓ,1 as a function of647
𝐷𝑒, which is independent of 𝛽. In contrast to the total pressure drop Δ𝑃ℓ , the first-order648
contribution Δ𝑃ℓ,1 does not depend on 𝐿, as shown in (4.2), provided that 𝐿 is sufficiently649
long so that by the end of the exit channel the elastic stresses have achieved their fully relaxed650
values (2.16) with 𝐻 ≡ 𝐻ℓ .651

The inset in figure 8(𝑎) shows a comparison of our semi-analytical predictions (black652
dots) and finite-element simulation results (gray triangles) for Δ𝑃ℓ − Δ𝑃ℓ,0 = 𝛽Δ𝑃ℓ,1 as a653
function of 𝐷𝑒 for 𝐻ℓ = 0.5, 𝛽 = 0.05, and 𝐿 = 5. We observe excellent agreement between654
the semi-analytical and numerical results. In addition, the low-𝐷𝑒 asymptotic solution (cyan655
dotted curve) accurately captures the numerical results for 𝐷𝑒 < 0.05 and indicates that the656
pressure drop in the exit channel scales as 𝐷𝑒3 for 𝐷𝑒 ≪ 1.657

Similar to the contraction, the pressure drop in the exit channel linearly decreases with 𝐷𝑒658
for 𝐷𝑒 ≳ 0.3, as shown in figure 8. While our semi-analytical solution linearly diminishes659
with the slope of −36/5, as predicted by the high-𝐷𝑒 asymptotic solution (red dashed lines),660
there is an offset between the two results for 𝛽Δ𝑃ℓ,1. In particular, for 𝐷𝑒 = 0.4, we have661
a non-negligible relative error of approximately 30 %. However, the inset in figure 8(𝑏)662
shows that as 𝐷𝑒 increases, the agreement between our semi-analytical solution and the663
high-𝐷𝑒 asymptotic prediction significantly improves, resulting in relative errors of only664
approximately 5 % and 1 % for 𝐷𝑒 = 2 and 𝐷𝑒 = 10, respectively.665
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Figure 8. Non-dimensional pressure drop for the Oldroyd-B fluid in the exit channel of a contraction
in the ultra-dilute limit. (𝑎) Dimensionless pressure drop Δ𝑃ℓ = Δ𝑝ℓ/(𝜇0𝑞ℓ/2ℎ3

0) as a function of
𝐷𝑒 = 𝜆𝑞/(2ℓℎ0) for 𝛽 = 0.05 and 𝐿 = 50. (𝑏) First-order contribution Δ𝑃ℓ,1 = Δ𝑝ℓ,1/(𝜇0𝑞ℓ/2ℎ3

0) to the
dimensionless pressure drop as a function of 𝐷𝑒 = 𝜆𝑞/(2ℓℎ0). Black dots represent the semi-analytical
solutions (4.1) (Δ𝑃ℓ in (𝑎)) and (4.2) (Δ𝑃ℓ,1 in (𝑏)). The cyan dotted curve represents the low-𝐷𝑒 asymptotic
solution (4.3). Red dashed lines represent the high-𝐷𝑒 asymptotic solution (4.4). The inset in (𝑎) shows a
comparison of semi-analytical predictions (black dots) and finite-element simulation results (gray triangles)
for Δ𝑃ℓ − Δ𝑃ℓ,0 = 𝛽Δ𝑃ℓ,1 as a function of 𝐷𝑒 for 𝛽 = 0.05 and 𝐿 = 5. The inset in (𝑏) shows
Δ𝑃ℓ − Δ𝑃ℓ,0 = 𝛽Δ𝑃ℓ,1 as a function of 𝐷𝑒 for 𝛽 = 0.05 in range of 1 ⩽ 𝐷𝑒 ⩽ 10. All calculations
were performed using 𝐻ℓ = 0.5. Δ𝑃ℓ = 2Δ𝑝ℓℎ3

0/𝜇0𝑞ℓ and Δ𝑃ℓ,1 = 2Δ𝑝ℓ,1ℎ3
0/𝜇0𝑞ℓ.

We note that our theoretical approach, based on the ultra-dilute limit, allows us to study666
the behavior of the elastic stresses and pressure drop at arbitrary values of 𝐷𝑒. In particular,667
we can predict the behavior in the high-Deborah-number regime, for example, 𝐷𝑒 = 2 and668
even 𝐷𝑒 = 10, which we are currently unable to access via finite-element simulations. Note,669
however, that we have assumed steady flows, so further investigation would be required to670
assess whether there might be flow instabilities at higher 𝐷𝑒.671

5.4. Different contributions to the pressure drop in the contraction and exit channel672

In the previous subsection, we observed a monotonic reduction in the dimensionless pressure673
drop with increasing 𝐷𝑒 for an Oldroyd-B fluid flowing through the contraction and exit674
channel (figures 7 and 8). To understand the source of such pressure drop reduction, we675
elucidate the relative importance of elastic contributions to the pressure drop.676

The elastic contributions to the non-dimensional pressure drop across the contraction and677
exit channel, scaled by 𝛽, as a function of 𝐷𝑒 are shown in figures 9(𝑎) and 9(𝑏), respectively.678
Black circles and gray dots represent the elastic shear and normal stress contributions obtained679
from the semi-analytical solutions (3.28) and (4.1). Cyan dotted and purple curves represent680
the elastic shear and normal stress contributions obtained from the low-𝐷𝑒 asymptotic681
solutions (3.32) and (4.3). Red and black dashed lines represent the elastic shear and normal682
stress contributions obtained from the high-𝐷𝑒 asymptotic solutions (3.35) and (4.4). As683
expected based on our previous results, we observe excellent agreement between our low-684
and high-𝐷𝑒 asymptotic solutions and the semi-analytical predictions.685

The first main source for the pressure drop reduction is the elastic normal stress contribu-686
tion, which linearly decreases with 𝐷𝑒 in the contraction and exit channel at low and high687
Deborah numbers. As noted by Hinch et al. (2023), this is because the elastic normal stresses,688
which correspond to the tension in the streamlines, are higher at the end of the contraction689
(exit channel) compared with the beginning of the contraction (exit channel). These higher690
elastic normal stresses pull the fluid along and thus require less pressure to push.691

The second main source for the pressure drop reduction is the decrease of elastic shear692
stress contribution with 𝐷𝑒 due to the long time (or long distance) required for the elastic693
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Figure 9. Elastic contributions to the non-dimensional pressure drop of the Oldroyd-B fluid, scaled by 𝛽,
in (𝑎) the contraction and (𝑏) the exit channel in the ultra-dilute limit. Black circles and gray dots represent
the semi-analytical solutions (3.28) (contraction) and (4.1) (exit channel) for elastic shear and normal stress
contributions. Cyan dotted and purple curves represent the low-𝐷𝑒 asymptotic solutions (3.32) (contraction)
and (4.3) (exit channel) for elastic shear and normal stress contributions. Red and black dashed lines represent
the high-𝐷𝑒 asymptotic solutions (3.35) (contraction) and (4.4) (exit channel) for elastic shear and normal
stress contributions. All calculations were performed using 𝐻ℓ = 0.5 and 𝐿 = 50.

shear stresses to approach their eventual relaxed values far downstream. As a result, the694
elastic shear stresses are lower than the fully relaxed value 𝐴̃12 = −3𝐷𝑒𝜂/𝐻2

ℓ
(see figure 3),695

and their contribution to the pressure drop is smaller than the steady Poiseuille value of696

3𝛽
∫ 1
0 𝐻 (𝑍)−3d𝑍 (contraction) and 3𝛽𝐿/𝐻3

ℓ
(exit channel), thus reducing the pressure drop.697

At low Deborah numbers, such a decrease scales as 𝐷𝑒 and 𝐷𝑒3 for a smooth contraction698
and exit channel, respectively. However, at high Deborah numbers, it approaches a constant699

asymptotic value of 3𝛽
∫ 1
0 𝐻 (𝑍)−1d𝑍 for the contraction. For the exit channel, Δ𝑃SS

ℓ,1 linearly700
depends on the Deborah number since the relaxation of the elastic shear stresses occurs over701
the distance 𝐿, which scales linearly with 𝐷𝑒, as shown in (5.4).702

6. Concluding remarks703

In this work, we applied the lubrication approximation and considered the ultra-dilute limit to704
study the flow of an Oldroyd-B fluid in arbitrarily shaped contracting channels. Specifically,705
we exploited the one-way coupling between the parabolic velocity and polymer conformation706
tensor in the ultra-dilute limit to derive closed-form expressions for the microstructure707
deformation and the flow rate–pressure drop relation for arbitrary values of the Deborah708
number. We provided analytical expressions for the conformation tensor and the 𝑞 − Δ𝑝709
relation in the low- and high-Deborah-number limits for the contraction and exit channels,710
complementing the asymptotic results of Boyko & Stone (2022) and the analysis of Hinch711
et al. (2023) at any concentration. We further analyzed the viscoelastic boundary layer712
of thickness 𝑂 (𝐷𝑒−1), existing near the walls at high Deborah numbers, and derived the713
boundary-layer asymptotic solutions. We validated our semi-analytical and asymptotic results714
for the pressure drop in the smooth contraction and exit channels with 2-D finite-element715
numerical simulations and found excellent agreement.716

For both contraction and exit channels, the pressure drop of an Oldroyd-B fluid monoton-717
ically decreases with increasing 𝐷𝑒 and scales linearly with 𝐷𝑒 at high Deborah numbers,718
as shown in figures 7 and 8. We identified two mechanisms for such pressure drop reduction719
(see figure 9). The first is higher elastic normal stresses at the end of the contraction and exit720
channels, relative to the corresponding entry values, that pull the fluid along and thus require721
less pressure to push. The second source for the pressure drop reduction is because, once722
perturbed from their upstream values, the elastic shear stresses require a long distance to723
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approach their new downstream fully relaxed values, as shown in figure 3, so again reducing724
the pressure drop.725

Our theoretical approach, which relies on lubrication theory and the ultra-dilute limit,726
allows us to study the behavior of the elastic stresses and pressure drop of an Oldroyd-B fluid727
at arbitrary values of 𝐷𝑒. Our theory is not restricted to the case of 2-D contracting channels728
and can be utilized to study different slowly varying geometries, such as expansions and729
constrictions. The approach can also be extended to axisymmetric geometries. Furthermore,730
the theoretical framework we presented enables us to access sufficiently high Deborah731
numbers, which are difficult and sometimes impossible to study via numerical simulations732
due to the high-Weissenberg-number problem (Owens & Phillips 2002; Alves et al. 2021).733
We, therefore, believe that our analytical and semi-analytical results for the ultra-dilute limit734
are of fundamental importance as they may serve for simulation validation.735

Finally, we note that our theoretical predictions for the pressure drop reduction of an736
Oldroyd-B fluid in a contraction are consistent with the previous numerical reports on 2-D737
abruptly contracting geometries (Aboubacar et al. 2002; Alves et al. 2003; Binding et al. 2006;738
Aguayo et al. 2008). However, these predictions are opposite to the experiments showing a739
nonlinear increase in the pressure drop with 𝐷𝑒 for the flow of a Boger fluid through abrupt740
axisymmetric contraction–expansion and contraction geometries (Rothstein & McKinley741
1999, 2001; Nigen & Walters 2002; Sousa et al. 2009). As noted by Alves et al. (2003) and742
Hinch et al. (2023), this discrepancy might be attributed to the lack of dissipative effects743
in the Oldroyd-B model. Thus, as a future research direction, it is interesting to study more744
complex constitutive equations, such as a finitely extensible nonlinear elastic (FENE) model745
introduced by Chilcott & Rallison (1988) (FENE-CR) and a finitely extensible nonlinear746
elastic model with the Peterlin approximation (FENE-P), that incorporate dissipation and747
additional microscopic features of polymer solutions and understand how these features748
affect the pressure drop. We anticipate that even for a more complex constitutive model, the749
theoretical framework presented here will enable the development of a simplified, reduced-750
order theory, allowing us to study the behavior at non-small Deborah numbers.751
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Appendix A. Orthogonal curvilinear coordinates for a slowly varying geometry760

In this appendix, we provide additional details for orthogonal curvilinear coordinates for761
a slowly varying geometry used in our theoretical analysis. We consider a slowly spatially762
varying channel with a given shape ℎ that varies on the length scale ℓ, so that ℎ = ℎ(𝑧/ℓ) =763
ℎ0𝐻 (𝑍). We transform the Cartesian coordinates (𝑍,𝑌 ) to curvilinear coordinates (𝜉, 𝜂) with764
the mapping765

𝜉 = 𝑍 + 𝜖2𝑄(𝑍,𝑌 ), 𝜂 =
𝑌

𝐻 (𝑍) , (A 1)766

where 𝑍 = 𝑧/ℓ, 𝑌 = 𝑦/ℎ0, and 𝑄 is an unknown function yet to be determined. Note that, in767
the lubrication limit, the orthogonal coordinate 𝜉 (scaled by ℓ) is nearly in the 𝑧-direction.768

We find 𝑄(𝑍,𝑌 ) by requiring that the curvilinear coordinates (𝜉, 𝜂) are orthogonal, i.e.,769
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∇𝜉 · ∇𝜂 = 0. Using the relations770

∇𝜉 =

[
𝜖
𝜕𝜉

𝜕𝑍
,
𝜕𝜉

𝜕𝑌

]
=

[
𝜖

(
1 + 𝜖2 𝜕𝑄

𝜕𝑍

)
, 𝜖2 𝜕𝑄

𝜕𝑌

]
, (A 2a)771

772

∇𝜂 =

[
𝜖
𝜕𝜂

𝜕𝑍
,
𝜕𝜂

𝜕𝑌

]
=

[
−𝜖 𝑌𝐻

′ (𝑍)
𝐻 (𝑍)2 ,

1
𝐻 (𝑍)

]
, (A 2b)773

we obtain774

∇𝜉 · ∇𝜂 =
𝜖2

𝐻 (𝑍)

[
−

(
1 + 𝜖2 𝜕𝑄

𝜕𝑍

)
𝑌𝐻′ (𝑍)
𝐻 (𝑍) + 𝜕𝑄

𝜕𝑌

]
. (A 3)775

Therefore, ∇𝜉 · ∇𝜂 = 𝑂 (𝜖4) provided we set776

𝜕𝑄

𝜕𝑌
=
𝑌𝐻′ (𝑍)
𝐻 (𝑍) ⇒ 𝑄(𝑍,𝑌 ) = −1

2
𝐻′ (𝑍)
𝐻 (𝑍) (𝐻 (𝑍)2 − 𝑌2), (A 4)777

where without loss of generality, we choose 𝑄 ≡ 0 on 𝑌 = 𝐻 (𝑍). Hence, the orthogonal778
curvilinear coordinates (𝜉, 𝜂) are779

𝜉 = 𝑍 − 1
2
𝜖2 𝐻

′ (𝑍)
𝐻 (𝑍) (𝐻 (𝑍)2 − 𝑌2) +𝑂 (𝜖4), 𝜂 =

𝑌

𝐻 (𝑍) . (A 5)780

Using (A 5), the inverse transformation is (see also Hinch et al. 2023)781

𝑍 = 𝜉 + 1
2
𝜖2𝐻′ (𝜉)𝐻 (𝜉) (1 − 𝜂2) +𝑂 (𝜖4) = 𝜉 + 1

4
(𝐻 (𝜉)2)′ (1 − 𝜂2) +𝑂 (𝜖4), (A 6a)782

783
𝑌 (𝜉, 𝜂) = 𝜂𝐻 (𝜉), (A 6b)784

where evaluating 𝐻 (𝜉) rather than 𝐻 (𝑍) introduces a relative error of 𝑂 (𝜖2).785
In what follows, it is also convenient to use the dimensional form of the transformation786

(A 6), given as787

𝑧 = 𝜉 + 1
2
𝜖ℎ0

d𝐻 (𝜉)
d𝜉

𝐻 (𝜉) (1 − 𝜂2) +𝑂 (𝜖4), 𝑦 = 𝜂ℎ0𝐻 (𝜉), (A 7)788

where we have defined the dimensional coordinate 𝜉 = 𝜉ℓ.789

A.1. Curvilinear orthonormal basis vectors790

The expressions for the curvilinear orthonormal basis vectors e𝜉 and e𝜂 in terms of e𝑧 and791
e𝑦 are obtained from792

e𝜉 =
𝜕𝒙

𝜕𝜉

1��𝜕𝒙/𝜕𝜉�� , e𝜂 =
𝜕𝒙

𝜕𝜂

1
|𝜕𝒙/𝜕𝜂 | , (A 8)793

where using (A 7), we have794

𝜕𝒙

𝜕𝜉
=

(
𝜕𝑧

𝜕𝜉
,
𝜕𝑦

𝜕𝜉

)
=

(
1 +𝑂 (𝜖2), ℎ0

d𝐻 (𝜉)
d𝜉

𝜂

)
=

𝜉=ℓ 𝜉

(
1 +𝑂 (𝜖2), 𝜖 d𝐻 (𝜉)

d𝜉
𝜂

)
, (A 9a)795

796
𝜕𝒙

𝜕𝜂
=

(
𝜕𝑧

𝜕𝜂
,
𝜕𝑦

𝜕𝜂

)
=

(
−𝜖ℎ0

d𝐻 (𝜉)
d𝜉

𝐻 (𝜉)𝜂, ℎ0𝐻 (𝜉)
)
, (A 9b)797

and ℎ𝜉 =
��𝜕𝒙/𝜕𝜉�� ≈ 1 and ℎ𝜂 = |𝜕𝒙/𝜕𝜂 | ≈ ℎ0𝐻 (𝜉) = ℎ(𝜉/ℓ) are the metric coefficients (or798

scale factors) in the 𝜉- and 𝜂-directions, respectively, with small corrections of 𝑂 (𝜖2).799
Substituting (A 9) into (A 8), we obtain800

e𝜉 ≈ e𝑧 + 𝜖𝐻′ (𝜉)𝜂e𝑦 , e𝜂 ≈ −𝜖𝐻′ (𝜉)𝜂e𝑧 + e𝑦 . (A 10)801
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A.2. Velocity and conformation tensor in Cartesian and curvilinear coordinates802

The velocity field and the conformation tensor can be expressed either in Cartesian or803
curvilinear coordinates. Specifically, the velocity 𝒖 = 𝑢𝑧e𝑧 + 𝑢𝑦e𝑦 in Cartesian coordinates804
is related to the velocity 𝒖 = 𝑢e𝜉 + 𝑣e𝜂 in curvilinear coordinates through (Brand 1947)805 (

𝑢𝑧
𝑢𝑦

)
= M ·

(
𝑢

𝑣

)
, (A 11)806

where M is the coordinate transformation matrix obtained from (A 10) and given as807

M =

(
1 −𝜖𝐻′ (𝜉)𝜂

𝜖𝐻′ (𝜉)𝜂 1

)
. (A 12)808

We introduce non-dimensional velocity components in curvilinear coordinates, similar to809
the non-dimensionalization (2.5a),810

𝑈 =
𝑢

𝑢𝑐
, 𝑉 =

𝑣

𝜖𝑢𝑐
. (A 13)811

Using (A 11)–(A 13) provides the relations between non-dimensional velocity components812
in different coordinates813

𝑈𝑧 = 𝑈 − 𝜖2𝜂𝐻′ (𝜉)𝑉, 𝑈𝑦 = 𝜂𝐻′ (𝜉)𝑈 +𝑉. (A 14)814

While velocity in the 𝑧- and 𝜉-directions are the same, albeit to a 𝑂 (𝜖2) correction, the815
velocity in the 𝑦-direction is greater by 𝜂𝐻′ (𝜉)𝑈 than the velocity in the 𝜂-direction.816

Similarly, the conformation tensor A = 𝐴𝑧𝑧e𝑧e𝑧 +𝐴𝑧𝑦 (e𝑧e𝑦 +e𝑦e𝑧) +𝐴𝑦𝑦e𝑦e𝑦 in Cartesian817
coordinates is related to the conformation tensor A = 𝐴11e𝜉 e𝜉 +𝐴12(e𝜉 e𝜂+e𝜂e𝜉 )+𝐴22e𝜂e𝜂818
in curvilinear coordinates through (Brand 1947)819 (

𝐴𝑧𝑧 𝐴𝑧𝑦

𝐴𝑦𝑧 𝐴𝑦𝑦

)
= M ·

(
𝐴11 𝐴12
𝐴21 𝐴22

)
· MT. (A 15)820

Next, we define scaled 𝐴̃11, 𝐴̃12, and 𝐴̃22 in curvilinear coordinates, similar to the non-821
dimensionalization (2.5c),822

𝐴̃11 = 𝜖2𝐴11, 𝐴̃12 = 𝜖 𝐴12, 𝐴̃22 = 𝐴22. (A 16)823

Finally, using (A 12) and (A 15)–(A 16), we obtain the relations between conformation tensor824
components in different coordinates825

𝐴̃𝑧𝑧 = 𝐴̃11 +𝑂 (𝜖2), (A 17a)826
827

𝐴̃𝑧𝑦 = 𝐴̃12 + 𝜂𝐻′ (𝜉) 𝐴̃11 +𝑂 (𝜖2), (A 17b)828
829

𝐴̃𝑦𝑦 = 𝐴̃22 + 2𝜂𝐻′ (𝜉) 𝐴̃12 + 𝜂2(𝐻′ (𝜉))2 𝐴̃11 +𝑂 (𝜖2). (A 17c)830

Appendix B. Low-𝛽 lubrication analysis in the exit channel: detailed derivation831

We here provide details of the derivation of closed-form expressions for the conformation832
tensor and the pressure drop in the uniform exit channel for 𝛽 ≪ 1.833

B.1. Velocity, conformation, and pressure drop in the exit channel at the leading order in 𝛽834

The velocity field and pressure drop in the exit channel at the leading order in 𝛽 are

𝑈0 =
3
2

1
𝐻ℓ

(1 − 𝜂2), 𝑉0 ≡ 0, Δ𝑃ℓ,0 =
3𝐿
𝐻3
ℓ

. (𝐵 1𝑎 − 𝑐)
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As expected, (B 1) simply represents the solution for the velocity and pressure drop of835
a Newtonian fluid with a constant viscosity 𝜇0 flowing in a straight channel of (non-836
dimensional) height 𝐻ℓ and length 𝐿.837

Substituting (B 1𝑎) into (3.6), we obtain the governing equations for the conformation838
tensor components in the exit channel at the leading order in 𝛽,839

𝑈0
𝜕 𝐴̃22,0

𝜕𝑍
= − 1

𝐷𝑒
( 𝐴̃22,0 − 1), (B 2a)840

841

𝑈0
𝜕 𝐴̃12,0

𝜕𝑍
− 1
𝐻ℓ

d𝑈0
d𝜂

𝐴̃22,0 = − 1
𝐷𝑒

𝐴̃12,0, (B 2b)842
843

𝑈0
𝜕 𝐴̃11,0

𝜕𝑍
− 2
𝐻ℓ

d𝑈0
d𝜂

𝐴̃12,0 = − 1
𝐷𝑒

𝐴̃11,0. (B 2c)844

Equations (B 2), similar to (3.6), represent a set of one-way coupled first-order semi-linear845
partial differential equations that can be solved first for 𝐴̃22,0, followed by 𝐴̃12,0, and then for846
𝐴̃11,0. The solution of these equations is847

𝐴̃22,0 = 1 + ( 𝐴̃ref
22,0(𝜂) − 1)e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ] , (B 3)848

849

𝐴̃12,0 = −3𝐷𝑒

𝐻2
ℓ

𝜂 + e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ]

[
𝐴̃ref

12,0(𝜂) +
3𝐷𝑒

𝐻2
ℓ

𝜂 −
2𝜂( 𝐴̃ref

22,0(𝜂) − 1)𝑍ℓ
𝐻ℓ (1 − 𝜂2)

]
, (B 4)850

851

𝐴̃11,0 =
18𝐷𝑒2

𝐻4
ℓ

𝜂2 + e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ]

[
𝐴̃ref

11,0(𝜂) −
18𝐷𝑒2

𝐻4
ℓ

𝜂2852

+
4𝜂2( 𝐴̃ref

22,0(𝜂) − 1)𝑍2
ℓ

𝐻2
ℓ
(1 − 𝜂2)2

−
4𝜂𝑍ℓ [3𝐷𝑒𝜂 + 𝐻2

ℓ
𝐴̃ref

12,0(𝜂)]
𝐻3
ℓ
(1 − 𝜂2)

]
, (B 5)853

where 𝑍ℓ = 𝑍−1 and 𝐴̃ref
22,0(𝜂) = 𝐴̃22,0(𝑍 = 1, 𝜂), 𝐴̃ref

12,0(𝜂) = 𝐴̃12,0(𝑍 = 1, 𝜂), and 𝐴̃ref
11,0(𝜂) =854

𝐴̃11,0(𝑍 = 1, 𝜂) are the reference distributions of the conformation tensor components at the855
outlet (𝑍 = 1) of the non-uniform channel that can be obtained from (3.8), (3.9), and (3.10).856

We note that, under the assumption of a fully developed flow in the entire exit channel so that857
𝑈 (𝜂) = (3/2𝐻ℓ) (1 − 𝜂2), the governing equations for the conformation tensor components858
(B 2) and their solution (B 3)−(B 5) are valid not only at 𝑂 (𝛽0) but for arbitrary values of 𝛽.859

Finally, we note that the components of the conformation tensor at the walls of the exit860
channel (𝜂 = ±1) are given in (3.12), with 𝐻 (𝑍) ≡ 𝐻ℓ . Thus, the conformation tensor861
components at the walls of the exit channel attain their fully relaxed values without spatial862
development.863

B.1.1. Conformation tensor in the exit channel at low 𝐷𝑒 numbers864

At low Deborah numbers, we use (3.13) to obtain the reference distributions of the865
conformation tensor components at the beginning of the exit channel,866

𝐴̃ref
22,0(𝜂) = 1 − 9𝐷𝑒2𝐻′′ (1)

2𝐻3
ℓ

(1 − 𝜂2)2, (B 6a)867

868

𝐴̃ref
12,0(𝜂) = −3𝐷𝑒

𝐻2
ℓ

𝜂 + 81𝐷𝑒3𝐻′′ (1)
2𝐻5

ℓ

𝜂(1 − 𝜂2)2, (B 6b)869
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870

𝐴̃ref
11,0(𝜂) =

18𝐷𝑒2

𝐻4
ℓ

𝜂2 − 486𝐷𝑒4𝐻′′ (1)
𝐻7
ℓ

𝜂2(1 − 𝜂2)2, (B 6c)871

where, for a smooth geometry, we have assumed that 𝐻′ (1) = 𝐻′′′ (1) = 0.872
Substituting (B 6) into (B 3), we obtain explicit expressions for the spatial relaxation of the873

conformation tensor components in the exit channel for 𝐷𝑒 ≪ 1,874

𝐴̃22,0 = 1 − 9𝐷𝑒2𝐻′′ (1)
2𝐻3

ℓ

(1 − 𝜂2)2e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ] , (B 7a)875

876

𝐴̃12,0 = −3𝐷𝑒

𝐻2
ℓ

𝜂 + 9𝐷𝑒2𝐻′′ (1)
𝐻4
ℓ

𝜂(1− 𝜂2)e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ]
[
9𝐷𝑒

2𝐻ℓ

(1 − 𝜂2) + 𝑍ℓ

]
, (B 7b)877

878

𝐴̃11,0 =
18𝐷𝑒2

𝐻4
ℓ

𝜂2 − 18𝐷𝑒2𝐻′′ (1)
𝐻5
ℓ

𝜂2e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ]

[
27𝐷𝑒2

𝐻2
ℓ

(1 − 𝜂2)2879

+𝑍2
ℓ +

9𝐷𝑒

𝐻ℓ

𝑍ℓ (1 − 𝜂2)
]
. (B 7c)880

881

B.1.2. Conformation tensor in the exit channel at high 𝐷𝑒 numbers882

From (3.15), (3.17), and (3.19) it follows that the reference distributions of the conformation883
tensor components at the beginning of the exit channel within the core flow region in the884
high-𝐷𝑒 limit are885

𝐴̃ref
22,0(𝜂) = 𝐻2

ℓ , 𝐴̃ref
12,0(𝜂) = −3𝐷𝑒𝜂, 𝐴̃ref

11,0(𝜂) =
18𝐷𝑒2

𝐻2
ℓ

𝜂2. (B 8)886

Substituting (B 8) into (B 3) provides expressions for the spatial relaxation of the conforma-887
tion tensor components in the exit channel for 𝐷𝑒 ≫ 1,888

𝐴̃22,0 = 1 + (𝐻2
ℓ − 1)e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ] , (B 9a)889

890

𝐴̃12,0 = −3𝐷𝑒𝜂

𝐻2
ℓ

+ e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ]

[
−3𝐷𝑒𝜂 + 3𝐷𝑒𝜂

𝐻2
ℓ

+
2𝜂(1 − 𝐻2

ℓ
)𝑍ℓ

𝐻ℓ (1 − 𝜂2)

]
, (B 9b)891

892

𝐴̃11,0 =
18𝐷𝑒2𝜂2

𝐻4
ℓ

+ e−2𝐻ℓ𝑍ℓ/[3𝐷𝑒 (1−𝜂2 ) ]

[
18𝐷𝑒2𝜂2

𝐻2
ℓ

− 18𝐷𝑒2𝜂2

𝐻4
ℓ

893

+
4𝜂2(𝐻2

ℓ
− 1)𝑍2

ℓ

𝐻2
ℓ
(1 − 𝜂2)2

−
12𝐷𝑒𝜂2𝑍ℓ (1 − 𝐻2

ℓ
)

𝐻3
ℓ
(1 − 𝜂2)

]
. (B 9c)894

895

B.2. Pressure drop in the exit channel at the first order in 𝛽896

Using (2.21) and (3.27), the expressions for the pressure drop at 𝑂 (𝛽), Δ𝑃ℓ,1, and the total897
pressure drop in the exit channel up to 𝑂 (𝛽), Δ𝑃ℓ , are898

Δ𝑃ℓ,1 = −3𝐿
𝐻3
ℓ

+ 3
2𝐷𝑒

∫ 1

0
(1−𝜂2)

[
𝐴̃11,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂+ 3
𝐷𝑒𝐻ℓ

∫ 1

0
𝜂

[∫ 0

𝐿

𝐴̃12,0d𝑍ℓ
]

d𝜂, (B 10)899
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and900

Δ𝑃ℓ = (1 − 𝛽) 3𝐿
𝐻3
ℓ︸       ︷︷       ︸

Solvent stress

+ 3𝛽
2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
𝐴̃11,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂︸                                      ︷︷                                      ︸
Elastic normal stress

+ 3𝛽
𝐷𝑒𝐻ℓ

∫ 1

0
𝜂

[∫ 0

𝐿

𝐴̃12,0d𝑍ℓ
]

d𝜂︸                                    ︷︷                                    ︸
Elastic shear stress

,

(B 11)901

where 𝐴̃11,0 and 𝐴̃12,0 are given in (B 4) and (B 5) and
[
𝐴̃11,0

]𝑍ℓ=0
𝑍ℓ=𝐿

= 𝐴̃11,0(𝑍ℓ = 0, 𝜂) −902

𝐴̃11,0(𝑍ℓ = 𝐿, 𝜂). The three terms on the right-hand side of (B 11) represent, respectively, the903
Newtonian solvent stress contribution, the elastic normal stress contribution, and the elastic904
shear stress contribution to the pressure drop.905

It is possible to express the first-order contribution Δ𝑃ℓ,1 in terms of the difference906
between the conformation tensor components at the beginning and end of the exit channel.907
First, integrating (B 2a) and (B 2b) with respect to 𝑍ℓ from 𝐿 to 0, we obtain908

𝑈0
[
𝐴̃22,0

]𝑍ℓ=0
𝑍ℓ=𝐿

= − 1
𝐷𝑒

∫ 0

𝐿

( 𝐴̃22,0 − 1)d𝑍ℓ , (B 12)909

910

𝑈0
[
𝐴̃12,0

]𝑍ℓ=0
𝑍ℓ=𝐿

− 1
𝐻ℓ

d𝑈0
d𝜂

∫ 0

𝐿

𝐴̃22,0d𝑍ℓ = − 1
𝐷𝑒

∫ 0

𝐿

𝐴̃12,0d𝑍ℓ . (B 13)911

Substituting (B 12) into (B 13) yields912

𝑈0
[
𝐴̃12,0

]𝑍ℓ=0
𝑍ℓ=𝐿

+ 𝐷𝑒

𝐻ℓ

d𝑈0
d𝜂

𝑈0
[
𝐴̃22,0

]𝑍ℓ=0
𝑍ℓ=𝐿

+ 𝐿

𝐻ℓ

d𝑈0
d𝜂

= − 1
𝐷𝑒

∫ 0

𝐿

𝐴̃12,0d𝑍ℓ . (B 14)913

Thus, using (B 14), the last term on the right-hand side of (B 11) can be expressed as914

3
𝐷𝑒𝐻ℓ

∫ 1

0
𝜂

[∫ 0

𝐿

𝐴̃12,0d𝑍ℓ
]

d𝜂 = − 9
2𝐻2

ℓ

∫ 1

0
𝜂(1 − 𝜂2)

[
𝐴̃12,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂915

+ 27𝐷𝑒

2𝐻4
ℓ

∫ 1

0
𝜂2(1 − 𝜂2)

[
𝐴̃22,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂 + 3𝐿
𝐻3
ℓ

.(B 15)916

Substituting (B 15) into (B 11) provides the alternative expression for Δ𝑃ℓ,1,917

Δ𝑃ℓ,1 =
3

2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
𝐴̃11,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂 − 9
2𝐻2

ℓ

∫ 1

0
𝜂(1 − 𝜂2)

[
𝐴̃12,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂918

+ 27𝐷𝑒

2𝐻4
ℓ

∫ 1

0
𝜂2(1 − 𝜂2)

[
𝐴̃22,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂. (B 16)919

Under the assumption that 𝐿 is such that the elastic stresses reach their fully relaxed values by920
the end of the exit channel, (B 16) shows that the first-order contributionΔ𝑃ℓ,1 is independent921
of 𝐿 since the steady-state values of 𝐴̃11,0, 𝐴̃12,0, and 𝐴̃22,0 depend solely on the 𝜂 coordinate.922

B.2.1. Pressure drop in the exit channel at 𝑂 (𝛽) in the low-𝐷𝑒 limit923

To calculate the pressure drop Δ𝑃ℓ in the exit channel at low Deborah numbers, we use924
(B 7b)−(B 7c) and (B 10). The elastic normal stress contribution to Δ𝑃ℓ,1 is925

Δ𝑃NS
ℓ,1 =

3
2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
𝐴̃11,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂 = −1296𝐷𝑒3𝐻′′ (1)
35𝐻7

ℓ

for 𝐷𝑒 ≪ 1. (B 17)926
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The elastic shear stress contribution to the pressure drop at 𝑂 (𝛽) is927

Δ𝑃SS
ℓ,1 =

3
𝐷𝑒𝐻ℓ

∫ 1

0
𝜂

[∫ 0

𝐿

𝐴̃12,0dZℓ

]
d𝜂, (B 18)928

with the integral
∫ 0
𝐿
𝐴̃12,0d𝑍ℓ given as929 ∫ 0

𝐿

𝐴̃12,0d𝑍ℓ ≈
3𝐷𝑒𝐿

𝐻2
ℓ

𝜂 − 81𝐷𝑒4𝐻′′ (1)
𝐻6
ℓ

𝜂(1 − 𝜂2)3 for 𝐷𝑒 ≪ 1, (B 19)930

where we have neglected terms multiplying e−2𝐻ℓ𝐿/[3𝐷𝑒 (1−𝜂2 ) ] ≈ 0.931
Substituting (B 19) into (B 18), we obtain932

Δ𝑃SS
ℓ,1 =

3𝐿
𝐻3
ℓ

− 432𝐷𝑒3𝐻′′ (1)
35𝐻7

ℓ

for 𝐷𝑒 ≪ 1. (B 20)933

Combining the normal and shear stress contributions, (B 17) and (B 20), provides the934
expression for the pressure drop at 𝑂 (𝛽) in the low-𝐷𝑒 limit935

Δ𝑃ℓ,1 = −3𝐿
𝐻3
ℓ

+ Δ𝑃NS
ℓ,1 + Δ𝑃SS

ℓ,1 = −1728𝐷𝑒3𝐻′′ (1)
35𝐻7

ℓ

for 𝐷𝑒 ≪ 1. (B 21)936

Therefore, the total pressure drop in the exit channel in the low-𝐷𝑒 limit is937

Δ𝑃ℓ = (1 − 𝛽) 3𝐿
𝐻3
ℓ︸       ︷︷       ︸

Solvent stress

+ −1296𝛽𝐷𝑒3𝐻′′ (1)
35𝐻7

ℓ︸                   ︷︷                   ︸
Elastic normal stress

+ 3𝐿
𝐻3
ℓ

𝛽 − 432𝛽𝐷𝑒3𝐻′′ (1)
35𝐻7

ℓ︸                          ︷︷                          ︸
Elastic shear stress

938

=
3𝐿
𝐻3
ℓ

− 1728𝛽𝐷𝑒3𝐻′′ (1)
35𝐻7

ℓ

for 𝐷𝑒 ≪ 1. (B 22)939

Equation (B 22) shows that for a smooth contraction with 𝐻′ (1) = 𝐻′′′ (1) = 0, the first non-940
vanishing viscoelastic contribution to the pressure drop in the exit channel at low Deborah941
numbers is only at 𝑂 (𝐷𝑒3) as the 𝑂 (𝐷𝑒) and 𝑂 (𝐷𝑒2) contributions are identically zero.942

B.2.2. Pressure drop in the exit channel at 𝑂 (𝛽) in the high-𝐷𝑒 limit943

To calculate the pressure drop Δ𝑃ℓ in the exit channel at high Deborah numbers, we use944
(B 9b)−(B 9c) and (B 10). The elastic normal stress contribution to Δ𝑃ℓ,1 is945

Δ𝑃NS
ℓ,1 =

3
2𝐷𝑒

∫ 1

0
(1 − 𝜂2)

[
𝐴̃11,0

]𝑍ℓ=0
𝑍ℓ=𝐿

d𝜂 =
18
5
𝐷𝑒(𝐻−2

ℓ − 𝐻−4
ℓ ) for 𝐷𝑒 ≫ 1. (B 23)946

The elastic shear stress contribution to the pressure drop at 𝑂 (𝛽) is947

Δ𝑃SS
ℓ,1 =

3
𝐷𝑒𝐻ℓ

∫ 1

0
𝜂

[∫ 0

𝐿

𝐴̃12,0dZℓ

]
d𝜂 =

3𝐿
𝐻3
ℓ

+ 18
5
𝐷𝑒(𝐻−2

ℓ − 𝐻−4
ℓ ) for 𝐷𝑒 ≫ 1,

(B 24)948

where the integral
∫ 0
𝐿
𝐴̃12,0d𝑍ℓ , after neglecting terms multiplying e−2𝐻ℓ𝐿/[3𝐷𝑒 (1−𝜂2 ) ] ≈ 0,949

is given as950 ∫ 0

𝐿

𝐴̃12,0d𝑍ℓ ≈
3𝐷𝑒𝐿

𝐻2
ℓ

𝜂 +
9𝐷𝑒2(𝐻2

ℓ
− 1)

𝐻3
ℓ

𝜂(1 − 𝜂2) for 𝐷𝑒 ≫ 1. (B 25)951
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Combining the normal and shear stress contributions, (B 23) and (B 24), provides the952
expression for the pressure drop at 𝑂 (𝛽) in the high-𝐷𝑒 limit953

Δ𝑃ℓ,1 = −3𝐿
𝐻3
ℓ

+ Δ𝑃NS
ℓ,1 + Δ𝑃SS

ℓ,1 =
36
5
𝐷𝑒(𝐻−2

ℓ − 𝐻−4
ℓ ) for 𝐷𝑒 ≫ 1. (B 26)954

Therefore, the total pressure drop in the exit channel in the high-𝐷𝑒 limit is955

Δ𝑃ℓ = (1 − 𝛽) 3𝐿
𝐻3
ℓ︸       ︷︷       ︸

Solvent stress

+ 18
5
𝛽𝐷𝑒(𝐻−2

ℓ − 𝐻−4
ℓ )︸                     ︷︷                     ︸

Elastic normal stress

+ 3𝐿
𝐻3
ℓ

𝛽 + 18
5
𝛽𝐷𝑒(𝐻−2

ℓ − 𝐻−4
ℓ )︸                                ︷︷                                ︸

Elastic shear stress

956

=
3𝐿
𝐻3
ℓ

+ 36
5
𝛽𝐷𝑒(𝐻−2

ℓ − 𝐻−4
ℓ ) for 𝐷𝑒 ≫ 1. (B 27)957
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