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Lubrication theory is adapted to incorporate the large normal stresses that occur
for order-one Deborah numbers, De, the ratio of the relaxation time to the
residence time. Comparing with the pressure drop for a Newtonian viscous fluid
with a viscosity equal to that of an Oldroyd-B fluid in steady simple shear, we
find numerically a reduced pressure drop through a contraction and an increased
pressure drop through an expansion, both changing linearly with De at high De.
For a constriction there is a smaller pressure drop that plateaus at high De. For
a contraction much of the change in pressure drop occurs in the stress relaxation
in a long exit channel.
An asymptotic analysis for high De, based on the idea that normal stresses

are stretched by an accelerating flow in proportion to the square of the velocity,
reveals that the large linear changes in pressure drop are due to higher normal
stresses pulling the fluid through the narrowest gap. A secondary cause of the
reduction is that the elastic shear stresses do not have time to build up to their
steady state equilibrium value while they accelerate through a contraction. We
find for a contraction or expansion that the high De analysis works well for
De > 0.4.

1. Introduction

In the natural world, in industry and in laboratory experiments, there are always
junctions between pipes of different diameters, i.e. contractions or expansions
or constrictions. In this paper we consider the two-dimensional planar versions,
which are kinder numerically and easier to analyse theoretically. The junctions are
normally abrupt with sharp corners. Sharp corners are particularly problematic
for numerical studies of viscoelastic fluids, so sometimes the corners are rounded.
We consider instead a slowly varying geometry, which is even kinder numerically,
and which permits considerable theoretical progress.
The principal concern for viscoelastic fluids flowing through a contraction

is the formation of long recirculating eddies upstream of the contraction, see
Boger (1987). In these eddies, fluid might continue a chemical reaction or might
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change temperature. Should there then be a fluctuation in the driving pressure,
fluid might be expelled from these eddies, producing an undesirable non-uniform
output from the contraction. Due to our slowly varying geometry, we have not
seen any recirculating eddies in all the cases that we have studied.
Instead of recirculating upstream eddies, our principal concern will be the

pressure drop driving the fluid through the contraction. Because viscoelastic
stresses can be slow to relax downstream of the contraction, it is necessary to
consider an extended geometry of the contraction with sufficiently long entrance
and exit sections. The effect of the contraction is then measured by a so-called
“Couette correction”, which is the pressure drop over the extended geometry
minus the pressure drop of a Newtonian viscous fluid over the entrance and
exit sections, using a Newtonian fluid with the viscosity equal to that of the
viscoelastic fluid at zero shear-rate, all suitably non-dimensionalised.
For the choice of viscoelastic fluid, we consider the Oldroyd-B model fluid. It is

the simplest combination of a viscous stress and an elastic stress. There are many
other possibilities. Before investigating those more complicated possibilities, it is
useful to find the response of the simplest model. More than finding the response,
we seek to understand why the model responds in the way that it does. One can
then contemplate what is needed from the more complicated alternative models.
The pressure drop of a viscoelastic fluid flowing through a contraction has been

studied before, in experiments with polymer solutions and in numerical solutions
for the Oldroyd-B and other model fluids. Studying experimentally the flow of
Boger and Newtonian fluids with the same shear viscosity through axisymmetric
and planar orifices (large contractions with no exit channel), Binding & Walters
(1988) found in their figure 16 that the pressure drop increased linearly with
the flow rate up to a critical flow, beyond which the Boger fluid required higher
pressures.
In a pair of experimental papers, Cartalos & Piau (1992a,b) studied the

flow through an axisymmetric constriction of moderately dilute solutions of
polyacrylamide and of polyethylene oxide dissolved in viscous solvents. Figure 6 of
the first paper shows the pressure drop increasing linearly with the flow rate, then
increasing more rapidly before increasing linearly again. In figures 7b and 8b of
the second paper, the pressure drop divided by the value for a purely viscous fluid
is shown to increase by an order of magnitude. There is an interesting discussion
after equation (23) in Cartalos & Piau (1992a) of an advantage of the constriction
geometry that, because the normal stresses relax downstream to their upstream
values, there is no difference between the pressure difference and the difference
of the full stress including pressure, viscous and elastic stresses. We shall return
to this issue in §3.5.
In another pair of experimental papers, Rothstein & McKinley (1999, 2001)

used a polystyrene Boger fluid in an axisymmetric 4:1:4 constriction. In figure 7
of the first paper, the pressure drop divided by the value for a purely viscous
fluid is shown to increase by a factor of 3 by a Deborah number De = 6 and then
level off. A similar increase was found in figure 4 of the second paper for different
constriction ratios of 2 and 8.
In finite-element simulations of an Oldroyd-B fluid with rather coarse meshes

for an abrupt planar 4:1 contraction, Keunings & Crochet (1984) find in their
figure 12 that the Couette correction decreases in 0 ⩽ De ⩽ 0.5. These simulations
were extended to De = 20 in figure 4 of Debbaut et al. (1988) with a fairly linear
decrease in the Couette correction. Before their figure 4, the authors note that a
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long downstream section of some 250 radii in length is required to calculate the
Couette correction reliably to De = 30. We shall take up this problem in §4 on the
exit channel. Alves et al. (2003) made some particularly accurate simulations of
a planar 4:1 contraction with a clear linear decrease of the Couette correction in
their figure 5 up to De = 5. Finally Binding et al. (2006) found in their figure 7
that the normalised excess pressure drop decreased linearly for a contraction,
decreased linearly although less for a constriction and increased linearly just a
little for an expansion, all with rounded corners and De < 1. There are many
other numerical works, with planar and axisymmetric geometries, and for other
rheological equations of state.

Our own numerical and theoretical results in this paper find the same behaviour
of a decrease in the pressure drop for an Oldroyd-B fluid flowing through a
contraction. Thus the experiments with polymer solutions find an increase in
the pressure drop while numerical solutions for the Oldroyd-B fluid find a de-
crease. This contradiction has lead to a good number of numerical studies with
alternative model fluids, ones with more dissipation. We comment on this issue
in our Conclusions, §7. It is our theoretical results, particularly those for high
Deborah numbers, that allow us to understand the cause of the behaviour, and
so suggest suitable refinements of the Oldroyd-B model.

There have been many applications of lubrication theory to non-Newtonian
flows. Tichy & Modest (1980) studied a squeeze-film geometry using part of the
constitutive equation for a second-order fluid. They also made an expansion in a
small Deborah number De ≪ 1, so that the tension in the streamlines appeared
only as a correction. Ro & Homsy (1996) studied Hele-Shaw and dip-coating
flows using an Oldroyd-B fluid. They also made an expansion in a small Deborah
number We/Ca1/3 ≪ 1. Going to the first correction, they only explored the
second-order fluid behaviour. Zhang et al. (2002) studied surfactant spreading
on a thin film using an Oldroyd-B fluid. They solved their lubrication equations
(24–32), again by an expansion in a small Deborah number We ≪ 1, going to
the first correction. Ahmed & Biancofiore (2021) studied a slider bearing using
an Oldroyd-B fluid. They solved their lubrication equations (3) numerically and
found the first correction in an expansion in a small Deborah number ϵWi ≪ 1.
Boyko & Stone (2022) studied a slowly varying contraction using an Oldroyd-
B fluid. They solved numerically the full governing equations, before making
the lubrication approximation, for two narrow geometries. They also made an
expansion in a small Deborah number, finding the first and second corrections
for the flow, and using a reciprocal theorem the third correction for the pressure
drop. In this paper, we shall solve numerically and asymptotically the lubrication
equations for an Oldroyd-B fluid at large Deborah numbers, in a regime where the
non-Newtonian behaviour is not a small correction. Large non-Newtonian effects
within lubrication theory have been consider previously, by Sykes & Rallison
(1997b,a). They studied a suspension of fibres in a slowly varying channel and in
a journal bearing.
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2. Governing equations

2.1. Oldroyd-B

The Oldroyd-B model fluid is the simplest viscoelastic fluid, combining a simple
viscous stress and a simple elastic stress

σ = −pI+ 2µ0e+GA,

where µ0 is a viscosity, e the strain-rate of the flow, G an elastic modulus, and A
the deformation of the microstructure. The viscosity µ0 will be called the “solvent
viscosity”, as it occurs in the bead-and-spring model of dilute polymer solutions.
The microstructure deforms due to velocity differences in the flow as represented
by the velocity gradient ∇u, and simultaneously relaxes to the isotropic state on
a relaxation time τ

DA

Dt
= A ·∇u+∇uT ·A− 1

τ
(A− I) .

The left-hand side and first two terms of the right-hand side are the so-called

upper-convective time derivative
▽
A of the Oldroyd-B equation, appropriate for

fibrous microstructures. A modified right-hand side −A · ∇uT − ∇u · A corre-

sponds to the lower-convective time derivative
△
A which produces the Oldroyd-A

equation, appropriate to disk-like microstructures.
The simple fluid model has just three parameters µ0, G and τ to be fitted

to experimental data. It represents fairly well many aspects, but not all, of the
flow behaviour of some polymer solutions, such as Boger fluids. For these two
reasons, the Oldroyd-B equation is a sensible choice for numerical calculations
of flows. Finally, the elastic-dumbbell model of polymer solutions is governed by
the Oldroyd-B equation.
In a uniform steady simple shear flow u = (γy, 0, 0), the Oldroyd-B fluid has

viscous-like shear stresses

σxy = σyx = (µ0 +Gτ)γ.

In the steady state, the microstructural deformation Axy = γτ should be thought
of as the deformation rate γ multiplied the time τ of how long the material
can remember being deformed before it relaxes. With the steady deformation
proportional to the shear-rate, γ, both the elastic and viscous shear stresses are
proportional to γ, with the combination described by an effective viscosity µ∗ =
µ0 + Gτ . We will call this effective viscosity the steady shear viscosity of the
Oldroyd-B fluid.
In addition to shear stresses, there are so-called normal stresses

σxx = −p+ 2G(γτ)2, σyy = σzz = −p.

The difference σxx − σyy = 2G(γτ)2 corresponds to an elastic tension in the
streamlines. In order for this tension in the streamlines to play a role in the
lubrication dynamics, it is necessary for the normal stresses to be much larger
than the shear stresses. We see that this is possible if the Weissenberg number
We = γτ is very large. We shall need We to be as large as the ratio of the length
to the width of the contraction. There is a question of whether the common
experimental Boger fluids keep a quadratic variation in shear-rate of the normal
stresses at the high shear-rates we consider theoretically.
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To help understand the response of the Oldroyd-B fluid as it flows through a
contraction, it is useful to consider the start up and the shut down of a simple
shear flow u = (γ(t)y, 0, 0) with

γ(t) =


0 for t < 0,

γ1 for 0 ⩽ t < t1,

0 for t1 ⩽ t,

with the duration of the shear much longer than the relaxation time t1 ≫ τ . The
shear stress response is

σxy(t) =


0 for t < 0,

µ0γ1 +Gγ1τ
(
1− e−t/τ

)
for 0 ⩽ t < t1,

Gγ1τe
−(t−t1)/τ for t1 ⩽ t.

We see that when the shearing is switched on, there is an immediate viscous
stress µ0γ1. As the microstructure begins to deform, an elastic component of the
stress builds up. After a few relaxation times t≫ τ , the deformation reaches the
equilibrium value of γ1τ , which is the deformation rate γ1 times the memory time
τ , and the shear stress takes a steady value (µ0 + Gτ)γ1. When the shearing is
switched off at t1, the viscous component µ0γ1 immediately drops out, while the
elastic component relaxes over several relaxation times.
The system of stresses in a simple shear flow can be understood by considering

the deformation of a microstructure composed of fibres that deform like material
line-elements. A fibre parallel to the flow δℓ = (δℓ, 0, 0) will move with the flow
without change in size or orientation. A fibre perpendicular to the flow δℓ =
(0, δℓ, 0) will shear to (δℓγt, δℓ, 0), i.e. the component perpendicular to the flow
remains unchanged, while a component parallel to the flow grows linearly in time.
The microstructure in an Oldroyd-B fluid is described by a second-order ten-

sor A. We think of this tensor as the tensor product of two vector fibres. Thus
Axx = 1 corresponds to two fibres of unit length parallel to the flow, which are
unchanged in the simple shear flow, so Axx = 1 remains constant. On the other
hand, Ayy = 1 corresponds to two fibres perpendicular to the flow, each of which
will develop in the simple shear components parallel to the flow, Axy = Ayx = γt,
while leaving the component perpendicular to the flow Ayy = 1 unchanged.
Finally these shear components Axy and Ayx correspond to one fibre parallel
and one fibre perpendicular. Through the shear, the perpendicular fibres develop
components parallel to the flow, so producing Axx = 1 + 2(γt)2.
The above discussion is for a uniform steady simple shear. While the flow

through a contraction flow is a shearing flow with one layer of fluid sliding over
another, it is not steady in the Lagrangian view moving with the fluid. As the
flow accelerates, a fibre in the direction of the flow will stretch proportional to the
increase in velocity. (In a steady flow, a material line element evolves according
to u · ∇δℓ = δℓ · ∇u. If the fibre δℓ starts parallel to u, then the solution is
δℓ ∝ u.) Thus we can expect the component of A in the direction of the flow,
corresponding to two fibres parallel to the flow, to increase in proportion to the
square of the velocity. As fibres parallel to the flow stretch, fibres perpendicular
to the flow must compress by the same proportion in order to conserve mass
in a planar flow. (Axisymmetric flows would differ at this point.) Thus we can
expect the component of A perpendicular to the flow to decrease proportional to
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the square of the velocity, while the shearing components of A, corresponding to
one fibre parallel and one fibre perpendicular should be unchanged as the flow
accelerates. Note this discussion of the deformation of the microstructure has
ignored its relaxation.
The previous paragraph gives the basis of the high-De analysis in §3.4.
The idea that the microstructure stretches like a material line-element in

regions where the relaxation is negligible was suggested by Rallison & Hinch
(1989) in §5.2 when considering how dumbbells behave in rapid sink flows. This
stretching was expressed by Hinch (1993) at the beginning of §3 as A = f(ψ)uu,
where f is constant along a streamline, when considering flow around a sharp
corner. Keiller (1993a) added in his equation (18) the shear components, when
improving a numerical method for entry flows. Finally Renardy (1994) in his
equation (3) gave a decomposition of the deformation for steady planar flows
into three components, parallel, shear and perpendicular to the flow. We shall
return to this decomposition much later, in §6.3.

2.2. Lubrication equations

We consider a flow in the x-direction through a planar contraction starting at
x = 0 and finishing at x = ℓ. The width of the channel is 2h(x), with a straight
centre-line y = 0 and rigid boundaries at y = ±h(x). There is a short inlet section
in x < 0 with a constant width 2h(0), and a long outlet section in x > ℓ with a
constant width 2h(ℓ). For the channel to be slowly varying, the width is taken to
be much smaller than the length,

ϵ = h(0)/ℓ≪ 1.

We shall work only to leading order in this slowly-varying parameter ϵ and
not exhibit where any correction terms can occur. A second non-dimensional
parameter of the geometry is the contraction ratio

H = h(0)/h(ℓ).

In our numerical studies, we shall take H = 21/2, 2, 23/2 and 4. Between each
case in this sequence, the shear-rate doubles and the normal stresses quadruple.
In the standard lubrication scalings, we non-dimensionalise the distance x along

the channel by the length ℓ of the contraction, the distance y across the channel
as well as the width h(x) by the width of the inlet h0 = h(0). With a volume
flux 2Q, we non-dimensionalise the component u of the flow along the channel by
Q/h0, and the much smaller component of the flow across the channel by Q/ℓ.
Time t is non-dimensionalised by the residence time in the contraction ℓh0/Q,
and pressure p by the pressure drop of a Newtonian viscous fluid with the solvent
viscosity µ0 by µ0Qℓ/h

3
0.

With these scalings, a non-dimensional parameter arises which measures the
elasticity,

c = Gτ/µ0.

In the bead-and-spring model of dilute polymer solutions, this c would be the
concentration of the polymers. For most of the numerical studies, we shall take
c = 1, which would not qualify as dilute.
We shall ignore inertia. This means taking the appropriate reduced Reynolds

number to be negligibly small,

Re = ρQh0/µ0ℓ≪ 1,
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where ρ is the density of the fluid.
A final non-dimensional parameter is needed to measure the relaxation time τ

in the constitutive equation. In most flows, there is no difference between a
Weissenberg number and a Deborah number. An exception is in lubrication flows.
The Weissenberg We = Qτ/h2

0 number measures the relaxation time compared
with the local shear-rate, which we shall not use. As discussed in the previous
section §2.1, we need the Weissenberg number to be as large as the inverse of the
slowly-varying parameter, ϵ−1, in order to bring the tension in the streamlines
into the leading-order dynamics. For this reason, we use the Deborah number

De = ϵWe = Qτ/ℓh0.

This Deborah number is the ratio of the relaxation time to the residence time in
the contraction.
In order to promote the non-Newtonian tension in the streamlines to a leading-

order role, we scale differently the different components of the deformation of the
microstructure, Ayy by ϵ0, Axy by ϵ−1, and Axx by ϵ−2.
With these non-dimensionalisations, the governing equations become the fol-

lowing. The conservation of mass is

∂u

∂x
+
∂v

∂y
= 0.

As in all thin-film flows, the y-component of the momentum equation gives at
leading order that the pressure is constant across the flow, i.e. p = p(x, t). The
conservation of momentum in the x-direction is then

0 = −dp
dx

+
∂2u

∂y2
+

c

De

(
∂Axx

∂x
+
∂Axy

∂y

)
.

Finally the Oldroyd-B equations are(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
Axx − 2eAxx −2γ1Axy = − 1

De
Axx,(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
Axy − γ2Axx −γ1Ayy = − 1

De
Axy,(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
Ayy − 2γ2Axy +2eAyy = − 1

De
(Ayy − 1),

where shear-rates and extension-rate are

γ1 =
∂u

∂y
, γ2 =

∂v

∂x
, e =

∂u

∂x
= −∂v

∂y
.

These governing equations are equivalent to those written down before in the
papers cited at the end of the introduction, §1. Compared with those earlier
works, we have not included negligibly small terms in the small ϵ, and have used
a microstructural representation of the Oldroyd-B rheology. Note that the scaled
Axx relaxes to ϵ2 which is neglected in the first of the Oldroyd-B equations. Note
that in lubrication approximations the hoop-stress is neglected, and so there can
be no purely-elastic instability due to curved streamlines.
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2.3. Curvilinear coordinates

For numerical calculations, it is convenient to map the geometry of the contraction
on to a unit square

0 ⩽ x ⩽ 1, 0 ⩽ η =
y

h(x)
⩽ 1.

The coordinate lines x = const. and η = const. are not orthogonal in the xy-
plane, due to the slope h′(x). Transforming partial differential equations is much
easier with orthogonal curvilinear coordinates. Because the slope of the boundary
is O(ϵ) small in the slowly-varying geometry, only a small displacement in the x
direction is necessary to create an orthogonal system

x(ξ, η) = ξ + ϵ2 1
4
(h2(ξ))′(1− η2) +O(ϵ4), y(ξ, η) = h(ξ)η.

In the previous subsection, we used u for the downstream x-component of
velocity and v for the cross-stream y-component. Henceforth we change to use u
for the velocity in the downstream ξ-direction, and v for the flow in the cross-
stream η-direction. There is a negligible O(ϵ2) difference between the flow u in
the ξ- and x-directions. However the flow in the y-direction is greater by uh′ than
the flow v in the η-direction, because the small slope h′ is multiplied by a large
downstream velocity u. In a similar way, we shall use A11, A12 and A22 for the
components of the microstructure in the ξξ-, ξη- and ηη-directions. As with the
velocity, there is a negligible O(ϵ2) difference between A11 and Axx, and O(1)
differences between the other curvilinear and Cartesian components.
In these curvilinear coordinates, the governing equations become for mass and

momentum
1

h

∂(hu)

∂x
+

1

h

∂v

∂η
= 0, (2.1)

0 = −dp
dx

+
1

h2

∂2u

∂η2
+

c

De

(
1

h

∂(hA11)

∂x
+

1

h

∂A12

∂η

)
, (2.2)

and for Oldroyd-B(
∂

∂t
+ u

∂

∂x
+
v

h

∂

∂η

)
A11 − 2eA11 −2γ1A12 = − 1

De
A11, (2.3a)(

∂

∂t
+ u

∂

∂x
+
v

h

∂

∂η

)
A12 − γ2A11 −γ1A22 = − 1

De
A12, (2.3b)(

∂

∂t
+ u

∂

∂x
+
v

h

∂

∂η

)
A22 − 2γ2A12 +2eA22 = − 1

De
(A22 − 1), (2.3c)

with shear-rates and extension-rate

γ1 =
1

h

∂u

∂η
, γ2 = h

∂

∂x

(v
h

)
, e =

∂u

∂x
= −1

h

∂v

∂η
− uh′

h
. (2.4)

There are boundary and inlet conditions. On the velocity, we impose no slip
on the upper rigid boundary

u = v = 0 on η = 1, (2.5)

and symmetry across the centre-line

∂u

∂η
= v = 0 on η = 0. (2.6)
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The constitutive equation is hyperbolic and requires knowledge of the microstruc-
tural state at the entry. We assume a Poiseuille flow in the straight entry channel
and the microstructure is in the steady state of the simple shear there

u =
3

2h
(1− η2), A22 = 1, A12 = −3Deη/h2, A11 = 18De2η2/h4, (2.7)

with h = 1 at the entry. The factor 3/2 in the velocity ensures that the volume
flux is 1 in the half-width of the channel 0 ⩽ η ⩽ 1.
The vanishing of the cross-stream velocity v on the centre-line and upper

boundary means that the downstream volume flux is constant along the con-
traction, and we have chosen to normalise this flux to be unity,

h

∫ 1

0

u dη = 1, independent of x.

Maintaining the flux to be constant sets the local value of the pressure gradi-
ent. The last expression can be twice integrated by parts. Using the boundary
conditions (2.5) and (2.6), we have

−h
∫ 1

0

1
2
(1− η2)

∂2u

∂η2
dη = 1.

Substituting the expression for ∂2u/∂η2 from the momentum equation (2.2) and
performing a couple of integrals, we find an expression for the pressure gradient

dp

dx
= − 3

h3
+

c

hDe

∫ 1

0

(
3
2
(1− η2)

∂(hA11)

∂x
+ 3ηA12

)
dη. (2.8)

An important advantage of the lubrication approximation is that the pressure is
determined locally with no need to solve a numerically expensive Poisson problem.

2.4. Numerical method

The contraction runs from x = 0 to x = 1 in the non-dimensionalisation. A
short entry channel and a long exit channel, both of constant width, are added
to the contraction. There is no upstream influence in the governing physics,
equations (2.1) to (2.3), so theoretically no entry channel is required. However,
it is convenient for coding the numerical method and for controlling the effects
of a small numerical diffusion to have a short entry. On the other hand, the exit
channel must be long to allow the elastic stresses to relax to their steady values.
We will discuss in §4.1 how long the exit channel must be, but typical values
range from x∞ = 5 to 20. A single simple shape is used for the contraction. To
allow second-order numerical accuracy, a smooth shape is used with vanishing
slope at the start and end

h(x) =


1 −0.5 < x < 0,

1− (1−H−1)x2(2− x)2 0 < x < 1,

H−1 1 < x < x∞.

(2.9)

Here H is the contraction ratio, the ratio of the entry to exit widths. This shape
is shown in figure 3 for H = 2.
The numerical approach is at each instant to solve for the flow (u, v) given the

instantaneous values of the elastic stress A11, A12 and A22, and then to use this
flow to time-step the elastic stresses until they reach a steady state.
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Given the elastic stresses and the pressure gradient from equation (2.8), the
momentum equation (2.2) is integrated with respect to η, starting at the centre-
line η = 0 where ∂u/∂η = 0, to find the shear-rate ∂u/∂η. This shear-rate is then
integrated with respect to η, starting at the upper boundary η = 1 where u = 0,
to find the velocity u. Note that these integrations at each downstream section
are independent of one another. Finally with u(x, η) known, the cross-stream
velocity v is found by integrating the mass conservation (2.1) with respect to η,
starting at the centre-line where v = 0.
Given the flow u(x, η) and v(x, η), the Oldroyd equations (2.3) are time-

stepped to find the microstructure A11, A12 and A22 at the next time-step. For
initial conditions of the microstructure, we take the expressions in equation (2.7)
corresponding to a steady uniform Poiseuille flow in a channel of width h(x).
Equi-spaced finite differences are used. Second-order spatial central differenc-

ing is used, except for the u-advection, which is first-order upwinded because
downstream advection is important at high Deborah numbers. Upwinding is not
used for the small v-advection. When calculating some fluxes, a second-order
correction is applied to produce a fourth-order result for the flux. The time-
stepping is made by first-order forward differencing. Typical values of the grid
size and time step are δx = 0.0208, δη = 0.0333 and δt = 10−3. Random spot
checks are made to confirm an accuracy of around 3 figures. Run times are around
15 seconds on a laptop, considerably faster than solving the full non-lubrication
equations by finite elements. At high Deborah numbers, a numerical instability
occurred, which could be delayed by decreasing δη while keeping δx fixed, as
suggested by Keiller (1992b). Also for stability, a smaller δt was needed at very
small Deborah numbers De. The time to come to a steady state was typically
t = 5, shorter for small Deborah numbers, longer for high Deborah numbers with
long exit channels.

3. Results for contraction

3.1. Pressure drop

First we study the pressure drop across the contraction, from x = 0 to x = 1.
Recall that the pressure drop has been non-dimensionalised by µ0Qℓ/h

3
0. In

the following section, we shall consider the important pressure drop in the exit
channel after the contraction. In subsequent sections we will study an expansion
and a constriction.
In lubrication theory, the pressure is constant at leading order across the flow.

Hence the pressure drop across the contraction is simply

∆p = p(x = 0)− p(x = 1). (3.1)

In our theoretical and numerical calculations, the pressure drop is therefore
unambiguous. It is less clear however what experiments measure. One can use
flush-mounted wall pressure transducers, which would measure the above pressure
drop. If flowing between two large baths, one might think that the pressure drop
between the two baths is the difference between the stress averaged across the
section [

−p+ c

De

∫ 1

0

A11 dη

]x=1

x=0

.

Alternatively, one might note the greater out-flux of elastic energy, and then

Rapids articles must not exceed this page length
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Contraction ratio

H : 1 ∆p1 ∆p2 ∆p3

21/2 : 1 5.446 3.608 2.153

2 : 1 10.668 4.336 4.272

23/2 : 1 22.191 5.207 6.483

4 : 1 48.225 6.248 8.896

Expansion ratio

1 : 1/H

1 : 21/2 1.799 2.493

1 : 2 1.173 2.071

1 : 23/2 0.821 1.719

1 : 4 0.608 1.427

Table 1: The pressure drops (non-dimensionalised by µ0Qℓ/h3
0) ∆p1 and ∆p2

defined by equations (3.2) and (3.6) across the contraction section for various
contraction ratios H > 1, and across an expansion with expansion ratios
1/H > 1. The pressue drop ∆p3 defined by (6.2) is across a constriction.

subtract this to obtain the dissipative part of the pressure drop[
−p− c

De

∫ 1

0

3
2
(1− η2) 1

2
A11 dη

]x=1

x=0

.

We shall return to the question of which pressure drop in §3.5.
The pressure drop across the contraction for a Newtonian fluid with unit

viscosity is

∆p1 =

∫ 1

0

3

h3(x)
dx. (3.2)

Table 1 gives the numerical values for ∆p1 for the four contraction ratios H and
the geometry (2.9) used in this paper. At H = 1, ∆p1 = 3. At high contraction
ratios, ∆p1 ∼ (9π

√
2/32)H5/2. For H = 4, this expression gives 40.0 in place of

the 48.2 in the table.
At low Deborah numbers, the Oldroyd-B fluid has a Newtonian behaviour with

a viscosity (1 + c), and hence will have a pressure drop at De = 0 of (1 + c)∆p1.
In figure 1, we plot ∆p the pressure drop (3.1), relative to this value at De = 0.
The numerical results of the lubrication theory of this paper have been tested in
figure 1 against full two-dimensional finite-element calculations using the code of
Boyko & Stone (2022) for contraction ratios of 2 and 23/2 and a small value of the
slowly varying parameter ϵ = 0.02. We note that the pressure drop is typically
30% less for the Oldroyd-B fluid.

3.2. Low Deborah numbers

Boyko & Stone (2022) have given an asymptotic analysis for small De. At O(De),
the Oldroyd-B fluid has a second-order fluid behaviour, and so the flow remains
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Figure 1: Pressure drop ∆p across the contraction section divided by its
Newtonian value (1 + c)∆p1, as a function of the Deborah number De, for

c = 1.0. The four curves are for different contraction ratios, H = 21/2, 2, 23/2

and 4. The points are results from two-dimensional finite-element calculations
for H = 2 and 23/2 with ϵ = 0.02.

unchanged by the theorem of Tanner & Pipkin (1969),

u =
3

2h(x)
(1− η2) +O(De2), v = O(De2).

Solving the microstructure equations (2.3) iteratively for De≪ 1, we have

A22 ∼1 − De2e,

A12 ∼ Deγ1 + De2(−2eγ1 − uγ′
1),

A11 ∼ De22γ2
1 ,

with the shear-rates and extension-rate (2.4) becoming

γ1 =
1

h

∂u

∂η
= −3η

h2
, e =

∂u

∂x
= −h

′

h
u, γ′

1 = −2
h′

h
γ1.

Evaluating the momentum equation (2.2),

dp

dx
∼ −3(1 + c)

h3
− cDe

18h′

h5
.

Note that there is no variation in η in this expression for the pressure gradient,
as required by the theorem of Tanner & Pipkin (1969). Integrating, we obtain



13

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(∆
p
−

2
(1

+
c)
∆
p
1
)/
(H

4
−

1
)

DeH

H = 21/2

2

23/2

4

Figure 2: The difference between the pressure drop ∆p and its Newtonian value
(1 + c)∆p1, divided by (H4 − 1), as a function of the Deborah number De, for

c = 1.0. The four curves are for the contraction ratios H = 21/2, 2, 23/2 and 4.
The black line is the low De asymptotic result − 9

2
cDe.

the estimate of the pressure drop at low Deborah numbers,

∆p ∼ (1 + c)∆p1 − 9
2
cDe

(
H4 − 1

)
. (3.3)

In figure 2, we replot the data in figure 1 now as the reduction in the pressure
drop divided by the geometric factor (H4 − 1) in order to test this asymptotic
result (3.3). We see good agreement for De < 0.1, and significant deviation
by De = 0.2. There is some hint of a linear decrease at De > 0.4. Boyko &
Stone (2022) give in their equations (4.11) and (4.14) two further terms in the
asymptotic expansion for the pressure drop. These two extra terms double the
range of good agreement, but offer no suggestion of the important linear regime at
higher De. We gain confidence in the numerical code for the lubrication approach
from this agreement with the low Deborah number asymptotics, along with the
early agreement with results from full two-dimensional finite-element calculations
in figure 1.

3.3. Streamwise development

To probe deeper what lies behind the changes in pressure drop, we first look at
the velocity profiles along the channel. In figure 3, the velocity u(x, η) is plotted
horizontally as a function of y = h(x)η vertically, at a series of downstream
positions x in the extended range −0.1667 < x < 2.0, with the contraction in
0 < x < 1. For comparison, the parabolic profiles with the same flux are also
plotted. In the entrance section, x < 0, the velocity is exactly parabolic. In the
exit section, x > 1, the velocity rapidly becomes parabolic, being only 0.5%



14

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

y

x

u
parabola

h(x)

Figure 3: Velocity profiles along the flow, for c = 1.0, De = 0.5 and H = 2.
Recall that x and y were non-dimensionalised differently, by ℓ and h(0)

respectively.

different at x = 1, for the contraction ratio H = 2. In the contraction section, the
velocity deviates from parabolic by at most 5.7%. While the theorem of Tanner
& Pipkin (1969) gives no change in the velocity profile at O(De), the Deborah
number of figure 3 is De = 0.5, which is some way beyond the linear regime
De < 0.1.
The velocity is slightly faster near the upper boundary, and slightly slower

near the centre-line. The speedup near the boundary is caused by the tension in
the streamlines. The tension vanishes on the centre-line and increases towards
the boundary. The tension also increases as the channel narrows. It is the larger
tension at the end of the contraction which pulls the fluid to be faster next to the
boundary. With the flux fixed, the velocity near the centre-line has to be slower
to compensate.
A consequence of the velocity profiles being nearly parabolic is that the lines

η = const. are nearly the streamlines. In figure 4, we plot the variations along
lines of constant η, which should be a good approximation to variations along
a streamline. The exit channel has been extended to x = 11. In purple, we plot
as a function of downstream position x the velocity relative to its value at the
entrance, i.e. u(x, η)/u(0, η). This ratio starts at 1 at the entrance, increases in
the contraction section 0 < x < 1, and takes the value 2 in the exit channel.
Because the velocity profiles are very nearly parabolic, there is little variation
between the lines of constant η.
In green and in blue, we plot in the same way the elastic normal stress A11

and the elastic shear stress A12 relative to their values at the entrance, i.e. plot
A∗∗(x, η)/A∗∗(0, η). For the contraction ratio ofH = 2, the velocity should double,



15

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

x

u
NS
SS

Figure 4: Streamwise variations on constant η = 0.1(0.1)0.9 of velocity u, elastic
normal stress NS, and elastic contribution to the shear stress SS; all scaled by

their entry values, for H = 2, De = 0.5, c = 1.0.

the shear stress quadruple and the normal stress increase by a factor of 16, when
they relax to the steady state downstream in the exit channel. The highest curves
in the figure correspond to streamlines near to the upper boundary, the lowest
curves near to the centre-line. Near to the boundary, the flow is slow, so that
fluid travels a shorter distance during the relaxation time. Near the centre-line,
the fluid needs to travel a distance of roughly ∆x = 8 in the exit channel before
attaining 95% of the steady state.
The need for a long exit channel for stress relaxation means that there is little

relaxation in the contraction section for this Deborah number De = 0.5. This
observation is the key to the high De asymptotics below.
By the end of the contraction at x = 1, the velocity has doubled, the shear

stress has not changed from its entry value (at least away from the boundary),
and the normal stress has quadrupled. Much of the increase in the stresses to their
eventual steady values occurs in the long exit channel. We need to examine the
stresses at the end of the contraction, at x = 1, and the extent to which they are
suppressed relative to their eventual relaxed values far downstream, (2.7) with
h = 1/H.
We plot in figure 5a the normal stress A11 at x = 1 divided by its value given

by (2.7) with h = 1/H as a function of y across the flow for five different Deborah
numbers. In the centre of the flow, 0 ⩽ y < 0.35, the normal stresses are a quarter
of their eventual values, independent of the Deborah number for De > 0.3. For
the contraction ratio considered, H = 2, the normal stresses eventually increase
by a factor of 16 from their value at the start of the contraction. Being suppressed
by a quarter means that they have increased by a factor of four from the start.
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Figure 5: Cross-stream variations of normal stress at end of the contraction at
x = 1. Normal stresses at the end of the contraction, divided by eventual
relaxed value far downstream in exit channel, (a) for the full width as a

function of y and (b) for the boundary layer as a function of (y − 0.5)De, for
De = 0.1(0.1)0.5, contraction ratio H = 2 and c = 1.0. The solid black lines

are H−2 = 0.25.
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Figure 6: Streamwise variations on constant η = 0.1(0.1)0.5 of velocity u, elastic
normal stress NS, and normal stress divided by the square of the velocity
NS/u2; all scaled by their entry values; for H = 2, De = 0.5 and c = 1.0.

Four is the square of the contraction ratio H = 2. Similar figures, not shown, for
contraction ratios H = 21/2 and 23/2 find that the normal stresses increase by
factors of 2 and 8, respectively, within the contraction, i.e. by a factor of H2 in
all cases.

Near the upper boundary, the flow is slow, so that the normal stresses have
longer during their transit through the contraction to approach their fully relaxed
values. They are therefore less suppressed compared with the core of the flow,
and not suppressed at all on the boundary where the velocity vanishes. Figure 5b
replots the data multiplying the distance from the boundary by the Deborah
number. We see a universal boundary layer once De > 0.1. The thickness of the
boundary layer is δy = 0.04/De. The boundary layer will give small corrections
to our estimate of the pressure drop.

Returning to the increase of the normal stresses by the factor of only H2 by
the end of the contraction, we recall the discussion at the end of §2.1, which
suggested that the tension in the streamlines should increase with the square
of an accelerating velocity if relaxation was ignored. We test this in figure 6 by
plotting A11(x, η)/u

2(x, η) divided by its value at the entrance A11(0, η)/u
2(0, η)

as a function of x the distance along the flow, for the central half of the flow
0 < η < 0.5. To a good approximation, we see A11 ∝ u2. The slight drop in the
curves in figure 6 of the normal stress divided by u2 is because η = const. is only
approximately the streamline.
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3.4. High Deborah numbers

Figure 4 showed that at De = 0.5 the stress mostly relaxed in the exit chan-
nel, i.e. there was little relaxation in the contraction itself. Moreover with no
relaxation, the elastic shear stress A12(x, η) remained equal on the streamlines
to its value at the entrance −3Deη. Figure 6 showed that at De = 0.5 the
elastic normal stress A11(x, η) increases along the streamlines from its value at
the entrance 18De2η2 in proportion to the square of the increase in the velocity,
i.e. ∝ h−2(x), at least away from the boundary. These results were anticipated at
the end of section 2.1. We thus have for sufficiently high Deborah numbers, such
as De > 0.3,

A12 = −3Deη and A11 =
18De2η2

h2(x)
. (3.4)

Substituting these into the expression (2.8) for the pressure gradient,

dp

dx
= − 3

h3
− 3c

h
− 18cDeh′

5h3
.

The three terms on the right-hand side come, respectively, from the solvent
viscosity, the elastic shear stresses and the elastic normal stresses. Integrating

∆p = ∆p1 + c∆p2 −
9cDe

5

(
H2 − 1

)
. (3.5)

Here ∆p1 was defined in (3.2) and tabulated in table 1. The second term is

∆p2 =

∫ 1

0

3

h(x)
dx, (3.6)

and is also tabulated in table 1. At H = 1, ∆p2 = 3. At high contraction ratios,
∆p2 ∼ (3π

√
2/4)H1/2. For H = 4, this expression gives 6.664 in place of the 6.249

in the table.
At low Deborah number, the elastic shear stresses make a contribution c∆p1.

At high Deborah number, their contribution is reduced to c∆p2, because the
the residence time in the contraction is insufficient for the stress to attain its
eventual steady state. The final term from the normal stresses gives a decrease in
the pressure drop which is linear in the Deborah number. The stronger tension in
the streamlines at the end of the contraction pull the flow through the contraction,
so reducing the need for pressure to push the flow through.
The expressions for the elastic stresses (3.4) are applicable in the central fast

part of the flow and not near the boundary. In a boundary layer, the stresses are
larger, A11 = O(De2H4) and A12 = O(DeH2). The thickness of the boundary
layer was found in figure 5b to be O(1/De). The contributions of the two stresses
to the integral (2.8) will therefore be O(H4/De) and O(H2/De), which are both
small compared with terms in (3.5).
We test the prediction (3.5) for the pressure drop at high Deborah number by

plotting in figure 7 the pressure drop ∆p minus the contributions ∆p1+ c∆p2, all
divided by the geometry factor (H2 − 1), as a function of the Deborah number
De. Results for the different contraction ratios collapse onto the same curve,
decreasing linearly for high Deborah numbers De > 0.5. The slope of the line is
not quite the − 9

5
c predicted. The cause of the discrepancy has been identified as

due to the small change in the flow from the parabolic profile that occurs when
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Figure 7: A test of the high-De asymptotic result (3.5). The pressure drop ∆p

minus ∆p1 + c∆p2 divided by (H2 − 1), for c = 1.0 and H = 21/2, 2, 23/2 and 4.
The solid black line is − 9

5
cDe.

c = 1.0. Figure 8 shows that as the concentration c is decreased from 1.0 the
asymptote approaches − 9

5
De.

3.5. Energy fluxes and dissipation

We postponed discussion of which pressure drop might be measured in different
experiments. There is also a paradox to be resolved that the work done by the
reduced pressure drop produces an efflux of elastic energy while the viscous
dissipation would seem to remain unchanged if the velocity profile continued
to be parabolic.
We form the mechanical energy equation by multiplying the lubrication approx-

imation of the momentum equation (2.2) by the velocity u and integrating over
a control volume of the contraction 0 ⩽ x ⩽ 1 and 0 ⩽ η ⩽ 1. After integrating
some terms by parts, we obtain

0 = p(0)− p(1)−
∫ 1

0

∫ 1

0

(
1

h

∂u

∂η

)2

hdηdx

+
c

De

([∫ 1

0

uA11hdη

]1
x=0

−
∫ 1

0

∫ 1

0

(
∂u

∂x
A11 +

1

h

∂u

∂η
A12

)
hdηdx

)
.

The two pressure terms are in effect multiplied by the unity volume flux, so are
the rate of working by the pressure forces against the flow. The first integral is
the rate of dissipation by the shear flow for the solvent viscosity. The next term
is the rate of working of the normal stresses against the flow at the entrance and
exit. The final integral is the rate of working against the two elastic stresses in
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the interior. Now these terms describing the working against the elastic stresses
occur, doubled, as the last two terms on the left-hand side of the Oldroyd-B
equation (2.3a) for A11. Hence integrating (2.3a) over the control volume, using
the conservation of mass (2.1) and integrating by part, we have

∫ 1

0

∫ 1

0

∂

∂t

(
1
2
A11

)
hdηdx+

[∫ 1

0

u 1
2
A11hdη

]1
x=0

−
∫ 1

0

∫ 1

0

(
∂u

∂x
A11 +

1

h

∂u

∂η
A12

)
hdηdx = −

∫ 1

0

∫ 1

0

1

De
1
2
A11hdηdx.

Here 1
2
A11 is the local elastic energy density when multiplied by c/De in our non-

dimensionalised lubrication approximation. The four terms in the above equation
say that (i) the elastic energy in the contraction changes in time due to (ii) an
influx of elastic energy at the entrance and exit, (iii) working by the flow against
the elastic stresses, and (iv) dissipation through stress relaxation. Combining the
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mechanical energy equation with the above elastic energy equation, we have

p(0)− p(1) +
c

De

[∫ 1

0

uA11hdη

]1
x=0

=
c

De

[∫ 1

0

u 1
2
A11hdη

]1
x=0

+
c

De

∫ 1

0

∫ 1

0

∂

∂t

(
1
2
A11

)
hdηdx

+

∫ 1

0

∫ 1

0

(
1

h

∂u

∂η

)2

hdηdx+
c

De

∫ 1

0

∫ 1

0

1

De
1
2
A11hdηdx. (3.7)

The left-hand side represents the rate of working against the pressure and the
normal stresses at the entrance and exit of the channel. This input of energy
can go to an out-flux of elastic energy or an increase in locally stored elastic
energy in the first two terms on the right-hand side. The final two terms on the
right-hand side represent the dissipation of mechanical energy by the shear flow
for the solvent viscosity and the dissipation of elastic energy by stress relaxation.
It should be noted that, while the dissipation by the shear flow for the solvent
viscosity will change little if the velocity profile changes little, the dissipation by
stress relaxation can change significantly as the elastic stresses change. It should
be noted that the rate of working against the normal stresses is twice the out-flux
of elastic energy.
In the low Deborah limit, the working against the normal stresses at the

entrance and exit is 18
5
cDe(H4 − 1), while the out-flux of elastic energy is half

this. The dissipation by the shear flow for the solvent viscosity is ∆p1, while the
dissipation of the elastic energy by stress relaxing is c∆p1. Corrections O(De) to
these leading-order estimates of the dissipation are required to estimate correctly
the pressure drop (3.3).
In the high Deborah number limit, the working against the normal stresses

at the entrance and exit is 18
5
cDe(H2 − 1), while the out-flux of elastic energy

is half this. The dissipation for the solvent viscosity remains ∆p1, while the
dissipation from stress relaxation becomes c∆p2. Combining these estimates gives
the pressure drop (3.5).

4. Exit channel for contraction

4.1. Stress relaxation

Figure 4 in §3.3 shows that most of the relaxation of the stress occurs in the exit
channel, and takes a long distance. We study stress relaxation in this section.
Debbaut et al. (1988) noted in some finite-element calculations that a long
downstream section of some 250 radii in length was required to calculate the
Couette correction reliably at De = 30. Keiller (1993b) examined the spatial
decay of steady perturbations of plane Poiseuille flow for the Oldroyd-B equation,
finding continuous spectra of eigenvalues. Far downstream, the stress relaxed
exponentially on a length scale of the maximum velocity multiplied by the
relaxation time.
In figure 9 we plot the decay of the difference between the pressure gradient

dp/dx and its eventual steady value −3(1 + c)H3 as a function of distance
downstream for various contraction ratios and Deborah numbers. The log-linear
plot shows an exponential approach to the steady value. Scaling the distance
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Figure 9: Relaxation of the pressure gradient in the exit channel. The difference
between the pressure gradient, dp/dx, and its final steady value, −3(1 + c)H3,

as a function of the distance downstream x divided by the local Deborah
number, HDe, for De = 0.3 with H = 21/2, 2, 23/2, and for De = 0.5 with

H = 2. The black line is 1000 exp(−2x/3HDe).

with the local Deborah number HDe brings the curves parallel, corresponding to
a decay on a length scale 3

2
HDe. This is the result above of Keiller (1993b). To

obtain better than 2-figure accuracy in the Couette correction, one must therefore
extend the exit channel to 7HDe. This estimate of the necessary length of the
exit channel of 210 for HDe = 30 is consistent with the 250 of Debbaut et al.
(1988).
Knowing that the pressure gradient approaches its steady value exponentially

with a known exponential rate, one can shorten the numerical length of the exit
channel and add a simple extrapolation to the Couette correction. This reduction
of the computation was not employed because the calculations took less than a
minute on a laptop.

4.2. Pressure drop

To calculate the pressure drop in the exit channel, we return to the expression
(2.8) for the pressure gradient. This expression can be integrated from the start of
the exit channel at x = 1 to some distance down the channel, to x = L. Because
the width of the channel, h(x) = 1/H, is constant in the exit section, it can be
taken outside the partial derivative, outside the integral, and then cancelled, to
yield

∆p =
3(L− 1)

h3
− c

De

∫ 1

0

3
2
(1− η2) [A11]

L

1 dη −
c

Deh

∫ 1

0

3η

(∫ L

1

A12 dx

)
dη.
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Thus we only need the starting and finishing values of A11 and the integral down
the channel of A12. Note we do not set h = 1/H in the first half of this subsection,
because we shall use the same analysis for the exit of the constriction where h = 1.
While the shear stress term A12 is O(De) smaller than the normal stress A11,

its relaxation takes place over a long O(De) distance, so its contribution to the
pressure drop is of a similar magnitude. We need the Oldroyd-B equations for
how A12 relaxes down the channel.
At this stage we make an approximation that the velocity has the same

constant parabolic profile all the way down the exit channel, see figure 3. This
approximation is asymptotically correct in the low concentration limit c≪ 1.
With u independent of x, the cross-flow component of velocity vanishes, v = 0.

The Oldroyd-B equations needed (2.3c and 2.3b) are then

u
∂A22

∂x
= − 1

De
(A22 − 1) ,

u
∂A12

∂x
=

1

h

∂u

∂η
A22 −

1

De
A12.

While these are simple to solve, we do not need the evolution of the relaxation,
we just need an integral. Integrating down the flow, using u and so ∂u/∂η are
constants along the flow,

u
[
A22

]L
1
= − 1

De

∫ L

1

(A22 − 1) dx,

u
[
A12

]L
1
=

1

h

∂u

∂η

(
L− 1 +

∫ L

1

(A22 − 1) dx

)
− 1

De

∫ L

1

A12 dx.

Hence the required integral of A12 is∫ L

1

A12 dx = −Deu
[
A12

]L
1
+

1

h

∂u

∂η

(
De(L− 1)−De2u

[
A22

]L
1

)
.

Substituting the expressions for the flow u and the shear-rate ∂u/∂η, we have an
expression for the pressure drop in the exit channel

∆p =
3(1 + c)(L− 1)

h3
− c

De

∫ 1

0

3
2
(1− η2) [A11]

L

1 dη

+
c

h2

∫ 1

0

9
2
η(1− η2) [A12]

L

1 dη −
cDe

h4

∫ 1

0

27
2
η2(1− η2) [A22]

L

1 dη. (4.1)

This result is valid for all De. It assumes that the velocity profile takes a constant
parabolic form.
At the far end of the exit channel we have the steady Poiseuille values for all De

A11 =
18De2

h4(L)
η2, A12 = − 3De

h2(L)
η, A22 = 1.

In the low De limit, §3.2 gives

[A22]
L
1 = O(De2), [A12]

L
1 = O(De3) and [A11]

L
1 = O(De4),

using our smooth geometry h(x) with zero slope at the end of the contraction,
h′(1) = 0. Hence the pressure drop is little changed from the steady Poiseuille
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value

∆p = 3(1 + c)(L− 1)H3 +O(De3).

In the large De limit, we have (3.4) at the start of the exit channel,

A11 =
18De2

h2(1)
η2, A12 = −3Deη, A22 = h2(1).

and so

∆p = 3(1 + c)(L− 1)H3 − 36

5
cDe

(
H4 −H2

)
. (4.2)

There are equal contributions of 18/5 from the normal and elastic shear stresses.
The normal stresses are stronger far downstream compared with the entry to the
exit channel. These normal stresses pull the fluid along, so requiring less pressure
to drive the flow. The shear stress is below the steady Poiseuille value, so exerts
less resistance until relaxed, again requiring less pressure drop. The shear stress
contribution of 18/5 is made up of two equal parts, arising from A12 and A22. In
the contraction at high De, A12 remains constant while A22 is squashed by the
same factor of H2 that A11 is stretched.
At high De, the net rate of working against the normal stresses at the beginning

and end of the exit channel is 18
5
cDe(H4 − H2) and the net out-flux of elastic

energy is half this. Stress relaxation is however more complicated in the exit
channel, and contributes more to the pressure drop.
The expressions (3.4) used above are for the elastic stresses at high De in

the fast central part of the flow. Near to the boundary there is a layer of
thickness O(1/De) with larger normal and shear stresses. Examining the integrals
in equation (4.1), we see that the boundary layer will contribute only small
corrections O(cH4/De).
Combining the pressure drop across the contraction (3.5) with the extra pres-

sure drop from the stresses relaxing in the exit channel (4.2) at high De, we
predict the total extra pressure drop (non-dimensionalised by µ0Qℓ/h

3
0)

∆p = ∆p1 + c∆p2 −
9cDe

5

(
H2 − 1

)
(4H2 + 1). (4.3)

To test this prediction, we plot in figure 10 the numerically calculated pressure
drop across the contraction and exit channel minus the first two terms in equation
(4.3), and then rescaled by (H2 − 1)(4H2 + 1).
The curves in figure 10 for each of the four contraction ratios seem to be

straight lines with the predicted slope of − 9
5
c and with offsets varying between 0

and 0.2. Other than a possible small reduction in the slope in De < 0.1, the high
De prediction (4.3) seems to be applicable for all De. We note that at low De,
the exit channel contributes only an O(De3) correction, while the pressure drop
through the contraction (3.3) varies as −4.5cDe(H4 − 1). This low De variation
differs little from the −7.2cDe(H4 − H2) from the exit channel at high De. At
high De the exit channel contributes a greater reduction in the pressure drop
than the contraction itself, by a factor 4H2.
With the viscoelastic change in the pressure drop (4.3) decreasing linearly with

the Deborah number, there must be a worry of the total pressure drop becom-
ing negative above a critical Deborah number. That would yield a mechanical
instability. Fortunately the reduction 7.2cH4De only attains 90% of this value at
a distance 3.5HDe down the exit channel, over which distance the Newtonian
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Figure 10: The extra pressure drop through a contraction including the extra
from the exit channel minus the first two terms in (4.3), i.e. ∆p−∆p1 − c∆p2,

scaled by (H2 − 1)(4H2 + 1), for c = 1, H = 21/2, 2, 23/2 and 4. The black line
is the high De prediction − 9

5
cDe.

pressure drop is 10.5(1 + c)H4De. Hence the total pressure drop cannot become
negative.

5. Expansion

A distinguishing feature of viscoelastic liquids is the formation of recirculating
eddies upstream of an abrupt contraction, with only small corner eddies seen with
simple Newtonian viscous liquids. Expansions are different to contractions. A
Newtonian viscous liquid will form recirculating eddies downstream of an abrupt
expansion, an inertial effect at non-small Reynolds numbers. Beyond a Reynolds
number of order 100, the eddies become unstable and the flow loses its symmetry,
Fearn et al. (1990). Experimental studies of viscoelastic liquids have concentrated
on the change of these downstream eddies with Deborah and Reynolds numbers,
Townsend & Walters (1994). We have not seen any recirculation eddies in our
slowly varying geometry with inertialess dynamics.
Numerical studies have also concentrated on the downstream eddies. Some

papers have given a few results for the change in the pressure drop resulting
from viscoelasticity. Finite-element calculations for the upper-convected Maxwell
(UCM) fluid in a 1:4 abrupt expansion by Missirlis et al. (1998) show an increase
in the pressure drop from 14.4 in figure 9b for De = 0, to 34.9 in figure 10b
for De = 1.2, and to 59.2 in figure 11b for De = 3.0, all at a Reynolds number
Re = 0.1. Oliveira (2003) shows in figure 18 a higher Fanning friction factor for
a FENE-CR model fluid in a 1:3 expansion with moderate Reynolds numbers



26

−1

−0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(∆
p
−

∆
p
1
−

c∆
p
2
)/
(1

−
H

2
)(
4
H

2
+

1
)

De

= 2−1/2

2−1

2−3/2

2−2

Figure 11: The pressure drop through an expansion including the extra from
the exit channel minus the first two terms in (4.3), i.e. ∆p−∆p1 − c∆p2, scaled
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the high De prediction 9
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Re < 100. As described in the introduction, Binding et al. (2006) show in their
figure 7 that the relative pressure drop decreases for a 4:1 contraction, decreasing
less for a 4:1:4 constriction, and increasing a little for a 1:4 expansion, all linear
variations and all with De < 1, for an Oldroyd-B fluid. Finally Poole et al.
(2007) show in their figure 5 a normalised extra pressure drop increasing linearly
in De < 1.5 for an Oldroyd-B fluid flowing through an abrupt 1:3 expansion.
Our earlier expressions (3.3) for the pressure drop across a contraction at

low De, and (3.5) at high De, along with our result (4.2) for the pressure drop
in the exit channel following a contraction were all derived for contractions with
H > 1 but are equally valid for expansions with H < 1, where H = h(0)/h(1) is
the ratio of the width of the channel at the beginning of the section to that at the
end. Moreover the physical mechanisms behind those expressions are unchanged
between contractions and expansions.
But there are significant differences. First, all the terms multiplying the Debo-

rah numberDe change sign when changing fromH > 1 toH < 1. This means that
the linear decrease with De of the pressure drop through a contraction changes to
a linear increase of pressure drop through an expansion. Second, when 4H2 < 1,
the contribution to the change in the pressure drop from the exit channel is less
than that from the expansion section.
Table 1 gives values of ∆p1 and ∆p2 for expansion ratios H < 1. For large

expansion ratios, H ≪ 1, ∆p1 ∼ (9π
√
2/32)H1/2 and ∆p2 ∼ (3π

√
2/4)H1/2. For

H = 1
4
, these asymptotic formulae give 0.625 and 1.666 respectively, instead of

the numerical values 0.608 and 1.427 in the table.
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Figure 12: The pressure drop through a constriction, including the extra
contribution from the exit channel, relative to its Newtonian value, 2∆p1(1 + c),

as a function of the Deborah number, for c = 1, H = 21/2, 2, 23/2 and 4.

In figure 11 we test the prediction of (4.3). Other than an unpredicted offset of
0.5, the numerical results for the four expansion ratios follow the prediction well.
The main mechanism causing the increase in pressure drop is the higher tension

in the streamlines at the start of the expansion compared with far down the exit
channel. The tension at the entrance must be overcome, requiring higher pressures
to push the flow through the expansion. The elastic shear stresses are also higher
in the expansion compared with their relaxed values far down the exit channel,
and these higher shear stresses require a greater pressure.

6. Constriction

By constriction we mean a contraction followed by an expansion back to the
original entry width. It has sometimes been called a contraction–expansion.
The experiments by Cartalos & Piau (1992a,b) and by Rothstein & McKinley
(1999, 2001) described in the introduction all used a constriction. They found
an increase in the pressure drop. Pérez-Camacho et al. (2015) found in their
figure 9 little change in the pressure drop up to a critical Deborah number and an
increase thereafter, for a Boger fluid flowing through axisymmetric constrictions
with various ratios of constriction. Using Lagrangian finite elements for a 4:1:4
constriction with rounded corners Szabo et al. (1997) found in their figure 6
a decrease in the pressure drop for an Oldroyd-B fluid. As described in the
introduction, Binding et al. (2006) also found a decrease.
For our computations we use the smooth contraction of equation (2.9) from

x = 0 to x = 1 followed by a mirror-symmetric expansion from x = 1 to x = 2
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using the same middle formula in equation (2.9), with the width returning to
the original h = 1 in the long exit channel. The ratio of the widths is therefore
H : 1 : H. Figure 12 plots the pressure drop relative to the value at De = 0,
i.e. 2∆p1(1 + c). The extra contribution from relaxation in the exit channel is
included. The pressure drop decreases, typically by 20%, before levelling off to a
plateau at high Deborah number.

6.1. Low De

In equation (3.3), we gave an expression for the O(De) reduction in the pressure
drop at low De. It involves the difference between the width of the channel at the
beginning and end of the flow. This difference vanishes for a constriction, and so
there should be no change in the pressure drop at O(De). Boyko & Stone (2022)
gave two further terms in an expansion for small De in their equations (4.11)
and (4.14). The structure of these further terms suggest that the reduction in the
pressure drop across a constriction should be an even function of De, should be
proportional to (H4−1) where H is the constriction ratio, and should depend on
the effective Deborah number for the narrowest width, DeH. In figure 13 we plot
the reduction in the pressure drop with this scaling as a function of DeH. We
see the results for different constriction ratios follow the same quadratic variation
in DeH < 0.2. The pressure drops in figure 13 are for just the constriction, not
including the contribution from the exit channel, and they continue to decrease
at the higher De plotted. This should be contrasted with the levelling off of
the pressure drops when the contribution from the exit channel is included in
figure 12. This difference is clearest in the case of H = 21/2.

6.2. Problems at high De

Our theory for high De worked well in the contraction and the expansion, giving
good predictions for De > 0.3. The constriction is not so kind, possibly requiring
De > 20 for good predictions.
The high-De theory above was based on the observation in figure 6 that there

was little relaxation in the contraction. Without relaxation, the microstruc-
ture A11 varies along the accelerating streamlines in proportion to the square
of the velocity, while A22 varies with the inverse of the square of the velocity,
and A12 remains constant along the streamline. Applying those variations to a
constriction, one would predict that

(i) the normal stresses are symmetric about the minimum gap and so con-
tribute nothing to the pressure drop,
(ii) the elastic shear stresses contribute as in the contraction and in the expan-

sion,
(iii) from (i) and (ii), the total pressure drop should be 2(∆p1 + c∆p2),
(iv) at the end of the constriction all the stresses return to their values at the

start, and so the exit channel contributes nothing.
However, we have already seen from comparing figures 12 and 13 that the exit
channel does contribute significantly.
In figure 14 we revisit the streamwise variations of the microstructure in figure 6

now plotted through the constriction from x = 0 to x = 2. Only the streamlines
in the central core 0 ⩽ η ⩽ 0.6 are included. In the first contraction part from
x = 0 to x = 1, the normal stresses increase by a factor of just over H2 = 4
corresponding roughly to the square of the increase in the velocity, the elastic
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Figure 13: The low Deborah number behaviour through a constriction. The
scaled reduction in the pressure drop through just the constriction,

(∆p− 2(1 + c)∆p1)/(H
4 − 1), as a function of the effective Deborah number at

the narrowest point, DeH, for c = 1, H = 21/2, 2, 23/2 and 4.

shear stress start roughly constant but are beginning to increase by x = 1, and
A22 drops to only 0.5 at x = 1 rather than the inverse of the square of the velocity
0.25. In the second expansion part from x = 1 to x = 2, there are clear signs of
relaxation. The normal stresses do not return to their entry values but end at
least 50% higher, while the elastic shear stresses and A22 end at twice their entry
values.
It should be noted that the Deborah number was defined to be the ratio of

the residence time from x = 0 to x = 1 to the relaxation time. Now that the
constriction extends to x = 2 the effective Deborah number has been halved,
from De = 0.5 to De = 0.25 in figure 14, so that it should not be unexpected
that relaxation can no longer be neglected.
The higher normal stresses at the end of the constriction compared with the en-

try reduce the pressure drop through the constriction. However those same higher
normal stresses at the end of the constriction compared with far downstream in
the exit channel lead to a compensating increase in the pressure drop through
the exit channel. On the other hand, the higher (higher in magnitude, they are
negative) elastic shear stresses at the end of the constriction increase the pressure
drop in both the constriction and the exit channel. Finally equation (4.1) shows
that A22 starting the exit channel with values exceeding those far downstream
also leads to an increase in the pressure drop. For De = 0.5 and independent
of the constriction ratio H = 2, 23/2, 4, roughly 60% of the extra pressure drop
in the exit channel comes from the normal stresses, 25% from the elastic shear
stresses and 15% from A22.
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There are two problems to constructing a theory to predict the behaviour at
high De in a constriction. First, the leading O(De) effect in the contraction
and expansion came from the normal stresses, and this effect vanishes in the
constriction. Therefore we are considering corrections to the leading-order theory,
and these are more subtle. Within the constriction, our high-De theory gives a
first correction from the elastic shear stress not having time to build up to the
higher values, predicting a pressure drop of 2(∆p1 + c∆p2) at high De compared
with 2(1 + c)∆p1 at low De. For De = 0.5 and H = 2, this predicts a 30%
reduction in the pressure drop, whereas our numerical calculations give only a
19% reduction. Clearly second and further corrections must be contributing at
the not-so-large De = 0.5. While the leading-order O(De) term from normal
stresses dominated, these correction terms lead to small offsets, as observed in
figures 10 and 11.
The second problem comes from A22. So far it has made only an incidental

appearance in the calculation of the relaxation of stresses in the exit channel,
and we have not yet discussed its role, which was minor in the contraction
and expansion but becomes major in the constriction. The microstructure A22

corresponds to two fibres perpendicular to the flow. In an accelerating flow
without relaxation, each fibre is compressed as the streamlines come together, and
so A22 varies with the inverse of the square of the velocity. But in a constriction
relaxation cannot be ignored. A shearing of the microstructure A22 produces the
shear component A12. Thus the larger than expected values of A22 at the end of
the constriction produce larger shear stresses, and hence a larger pressure drop
in the exit channel.
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6.3. An asymptotic theory for high Deborah numbers

The high-De theory presented so far was based on physical insights. Such an
approach is sufficient for the leading-order terms. For the correction terms, we
need a more organised asymptotic approach.
Progress can be made in the low-c limit, where the velocity profile remains

parabolic with a local magnitude proportional to 1/h(x). In our curvilinear
coordinates, the cross-stream component of the velocity then vanishes. This
removes several terms in the Oldroyd-B equations. The flow, shear-rate and
extension-rate become

u(x, η) =
F (η)

h(x)
, γ(x, η) =

f(η)

h2(x)
, and e(x, η) = −h

′F (η)

h2(x)
,

with

F (η) = 3
2
(1− η2) and f(η) = −3η.

Using the known leading-order behaviour, we make a multiplicative substitution

A11 = 2De2f2h−2b11, A12 = Defb12, A22 = h2b22.

The Oldroyd-B equations (2.3) then become

F
∂b11
∂x

=− h

De
(b11 − b12), with b11(0)= 1,

F
∂b12
∂x

=− h

De
(b12 − b22), with b12(0)= 1,

F
∂b22
∂x

=− h

De
(b22 −

1

h2
), with b22(0)= 1, (6.1)

similar to those given by Renardy (1994). These are valid for arbitrary De. For
De ≫ 1 and in the central core of the flow where F (η) ≫ 1/De, we solve
iteratively for

b22 =1 +
1

DeF
I1−

1

(DeF )2
I2 +

1

(DeF )3
I3 +O((DeF )−4),

b12 =1 +
1

(DeF )2
I2 −

1

(DeF )3
I3 +O((DeF )−4),

b11 =1 +
1

(DeF )3
I3 +O((DeF )−4),

where

I1 =

∫ x

0

1− h2(x′)

h(x′)
dx′, I2 =

∫ x

0

h(x′)

∫ x′

0

1− h2(x′′)

h(x′′)
dx′′dx′,

and I3 =

∫ x

0

h(x′)

∫ x′

0

h(x′′)

∫ x′′

0

1− h2(x′′′)

h(x′′′)
dx′′′dx′′dx′.

Using these expressions in equation (2.8) for the pressure gradient in the con-
striction from x = 0 to x = 2, we find the pressure drop through the constriction
itself is

∆p = 2(∆p1 + c∆p2) +O(De−1).
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The correction comes from the boundary layer next to the wall, η = 1−O(De−1).
Using the expressions evaluated at x = 2 in equation (4.1) for the extra pressure
drop from relaxation in the exit channel, we find

∆p = c∆p3 +O(De−1)

with again the correction coming the boundary layer next to the wall. Here

∆p3 = 3

∫ 2

0

1− h2(x)

h(x)
dx, (6.2)

whose values are given in table 1. Note that while A22 differs from its equilibrium
value far down stream by only O(1/De), the long O(De) relaxation distance
produces an O(1) effect in the pressure drop. Hence the pressure drop across
the constriction, plus the extra contribution from relaxtion in the exit channel is
predicted to be

2∆p1 + 2c∆p2 + c∆p3. (6.3)

In figure 15, we plot, as a function of the Deborah number, the pressure drop
including the extra contribution from the exit channel minus the above predicted
result, all scaled by H3/2. The scaling is arbitrary, chosen to bring the curves
together. If our predictions were correct, the curves should plateau to zero at
high De. They seem to plateau, but not to zero. For a constriction ratio H = 2,
the pressure drop reduces by 13% from De = 0 to De = 0.5, see figure 12,
whereas we predict a 20% reduction; and for the larger constriction ratio H = 4,
the pressure drop reduces by 28%, whereas we predict 39%. We cannot explain
this discrepancy. It may be that De = 0.5 is not sufficiently high. It may be that
c = 1 is not small, and the velocity profile changes significantly.
As an initial investigation into the discrepancy, we have examined the contribu-

tion of the relaxation of A22 to the pressure drop in the exit channel. We calculate
A22(x, η) at x = 2 by integrating numerically the low-c Oldroyd-B equation (6.1)
along the flow from x = 0 to x = 2 at fixed η. Then integrating across the
flow, we evaluate the last integral in expression (4.1) for the pressure drop in the
exit channel. The results are plotted in figure 16 as a function of 1/De for four
different constriction ratios. We see all curves tend as 1/De→ 0 to the predicted
values of ∆p3 given in table 1. However a large value of De = 20 is required
to come within 10% of the high-De limit. At De = 0.5 the values are typically
only 15% of the limit values. Our numerical method for solving the lubrication
equations struggles beyond De = 1, so we are currently unable to access the high
De needed to study the constrictions further.

7. Conclusions

Using a lubrication approximation, we have examined the flow of an Oldroyd-
B fluid through three slowly varying geometries. We found numerically that for
contractions the pressure drop is lower than for a Newtonian viscous fluid with
the same steady-state viscosity (figure 1), while for expansions the pressure drop
is higher (figure 11). In both cases the change tended to a linear increase with
Deborah number. For constrictions, the pressure drop reduced to a plateau value
(figure 12). These behaviours were first found by finite-element calculations for
abrupt versions of the three geometries, respectively by Keunings & Crochet
(1984), Missirlis et al. (1998) and Szabo et al. (1997), and later confirmed
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Figure 15: The high Deborah number behaviour through a constriction. The
scaled pressure drop, including the extra drop from the exit channel,

(∆p− 2(∆p1 + c∆p2)− c∆p3)/H
3/2 as a function of De for c = 1, H = 21/2, 2,

23/2 and 4.

by others. In particular, Binding et al. (2006) included results for all three
geometries.
The advantage of the slowly varying geometry is the possibility of making a

simple asymptotic analysis for high Deborah numbers, with the predictions (3.5)
for the contraction and the expansion, and (6.3) for the constriction. These
predictions seem to work well in De > 0.4. The analysis was based on the
neglect of stress relaxation, as seen in figure 4. The asymptotic approach exposed
the mechanism behind the response. Higher normal stresses, or tensions in the
streamlines, pull the flow in the direction of the narrowest point, thereby requiring
less pressure to push through a contraction and more pressure for an expansion.
This effect is linear in the Deborah number. In addition, the elastic shear stresses
take time to build up to their new steady values, which means they are lower
in a contraction and higher in an expansion. This effect in the contraction or
expansion is independent of the Deborah number, and has the same sign as the
normal stress effect. However the relaxation of the shear stresses in the exit
channel takes place over a long O(De) distance, which increases the magnitude
of the effect to be linear in De.
Experiments find a different behaviour to that of the numerical studies, both the

finite-element calculations and our lubrication results. Binding & Walters (1988)
found a greater pressure was needed for Boger fluids to flow through an orifice (a
large contraction with no exit channel). Cartalos & Piau (1992a,b) and Rothstein
& McKinley (1999, 2001) all found higher pressure drops for Boger fluids flowing
through constrictions (with long exit channels). All the experimental geometries
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Figure 16: The contribution of A22 to the extra pressure drop in the exit channel
following a constriction as a function of 1/De, for constriction ratios H = 21/2,

2, 23/2 and 4. The horizontal lines are the limiting values ∆p3 given in table 1.

had abrupt changes in diameter, and the flows had upstream recirculating eddies.
There have been no experiments with the slowly varying geometry of our study.
It seems likely that the Oldroyd-B fluid model does not represent well the

flow of Boger fluids through contractions, expansions and constrictions. Note to
the contrary that Keiller (1992a) was able to predict well four experiments with
extensional flows of the M1 fluid using an Oldroyd-B equation with parameters
µ0, G and τ fitted to shear data. There is, however, limited extension in the
contractions, expansions and constrictions. These flows are dominated by shear
flow with a small extensional component. A modification that includes some form
of extra dissipative stress may be necessary. The two mechanisms, of larger normal
stresses pulling the fluid through the narrowest gap and the elastic shear stresses
needing time to achieve their steady values, are however robust and would come
with most constitutive equations for an elastic liquid.
A number of alternative constitutive equations which include extra dissipation

have already been studied. We discuss two possibilities which have a microstruc-
tural basis. Szabo et al. (1997) investigated a finite-extensible-nonlinear-elastic
(FENE) model fluid in an abrupt 4:1:4 constriction, finding in their figure 6
that the pressure drop reduced with the Deborah number to a minimum and
then began to increase, becoming greater than the Newtonian viscous value at
De = 9 for the limit of extensibility L = 5. This unrealistic combination of
large Deborah number and small extensibility is because the maximum stretch
available in an abrupt constriction is small and to achieve the maximum one
must start stretching well before the narrowest point. More realistic values are
however possible in our slowly varying geometry. The high shear rate, rather then
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the extensional component, will stretch to the finite extensibility limit when the
Weissenberg number is large, O(L). If this is to occur when the Deborah number
is O(1), one needs the finite extensibility to be comparable to the inverse of the
geometry’s slowly-varying parameter, i.e. L = O(1/ϵ). The effect of the finite
extensibility in a shear flow is to change the normal stresses from increasing
quadratically with the Deborah number to increasing linearly as

√
2ϵLDe|γ|.

Ignoring extensional aspects of the flow in a contraction, this would have make
the pressure drop reduce to a plateau when De = O(ϵL), rather than decrease
linearly in the Deborah number. However, the extensional part of flow probably
plays a significant dissipative role, because the fully stretched microstructure
could behave like a rigid-rod suspension with a high O(cL2) extensional viscosity.
For a rigid-rod suspension flowing through an orifice, Mongruel & Cloitre (1995)
found in their figure 3 that the pressure drop increased with the concentration of
the rods.
In the startup of an extensional flow, the FENE-model fluid predicts a growing

elastic stress which suddenly switches to a plateau dissipative stress as the
extensibility limit is reached. Experimental fluids seem to have a more gradual
transition. Using a “kinks model” to study how a random polymer chain gradually
unfolds in an extensional flow, Hinch (1994) found in figure 12 the build up of
fully stretched internal segments. This lead to the suggestion, in the final equation
of the paper, of a modified form of the stress, with an elastic stress not multiplied
by the nonlinear spring strength, and with a dissipative stress 2µ2(A : E)A
proportional to the instantaneous strain-rate. It would be interesting to explore
the flow of the FENE-model and this modification through a slowly varying
contraction. Two other issues to explore in the future are the axisymmetric
version of our two-dimensional planar study, and a calculation of the change
of the velocity profile from the low-c parabolic form.
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Pérez-Camacho, M., López-Aguilar, J.E., Calderas, F., Manero, O. & Webster,
M.F. 2015 Pressure-drop and kinematics of viscoelastic flow through an axisymmetric
contraction–expansion geometry with various contraction-ratios. J. Non-Newtonian Fluid
Mech. 222, 260–271.

Poole, R.J., Alves, M.A., Oliveira, P.J. & Pinho, F.T. 2007 A finite volume approach
in the simulation of viscoelastic expansion flows. J. Non-Newtonian Fluid Mech. 146,
79–91.

Rallison, J.M. & Hinch, E.J. 1989 Do we understand the physics in the constitutive equation.
J. Non-Newtonian Fluid Mech. 29, 37–55.

Renardy, M. 1994 How to integrate the upper convected Maxwell (UCM) stresses near a
singularity (and may be elsewhere). J. Non-Newtonian Fluid Mech. 52, 91–95.

Ro, J.S. & Homsy, G.M. 1996 Viscoelastic free surface flows: thin film hydrodynamics of
Hele-Shaw and dip coating flows. J. Non-Newtonian Fluid Mech. 57, 203–225.

Rothstein, J. P. & McKinley, G. H. 1999 Extensional flow of a polystyrene Boger fluid
through a 4 : 1 : 4 axisymmetric contraction/expansion. J. Non-Newtonian Fluid Mech.
86, 61–88.

Rothstein, J. P. & McKinley, G. H. 2001 The axisymmetric contraction–expansion: the role
of extensional rheology on vortex growth dynamics and the enhanced pressure drop. J.
Non-Newtonian Fluid Mech. 98, 33–63.

Sykes, P. & Rallison, J.M. 1997a Lubrication theory for a fibre suspension. Part 1: pressure-
driven flow in a planar channel having slowly varying cross-section. J. Non-Newtonian
Fluid Mech. 71, 109–136.



37

Sykes, P. & Rallison, J.M. 1997b Lubrication theory for a fibre suspension. Part 2: flow in
a journal bearing. J. Non-Newtonian Fluid Mech. 71, 137–161.

Szabo, P., Rallison, J.M. & Hinch, E.J. 1997 Start-up of flow of a FENE-fluid through a
4:1:4 constriction in a tube. J. Non-Newtonian Fluid Mech. 72, 73–86.

Tanner, R.I. & Pipkin, A.C. 1969 Intrinsic errors in pressure-hole measurements. Trans. Soc.
Rheol. 13, 471–484.

Tichy, J. A. & Modest, M. F. 1980 A simple low Deborah number model for unsteady
hydrodynamic lubrication. J. Rheology 24, 829–845.

Townsend, P. & Walters, K. 1994 Expansion flows of non-Newtonian liquids. Chem. Eng.
Sci 49, 749–763.

Zhang, Y. L., Matar, O. K. & Craster, R. V. 2002 Surfactant spreading on a thin weakly
viscoelastic film. J. Non-Newtonian Fluid Mech. 195, 53–78.


