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ABSTRACT
Biometric Facial Authentication has become a pervasive mode
of authentication in recent years. With this surge in popularity,
concerns over the security and privacy of biometrics-based sys-
tems have grown. Therefore, there is a need for a system that can
address security and privacy issues while remaining user-friendly
and practical. The BioCapsule scheme is a flexible solution that can
be embedded in existing biometrics systems in order to provide
robust security and privacy protections. While BioCapsules have
been evaluated for their static face authentication capabilities, this
paper extends the scheme to Active Authentication, where a user
is continuously authenticated throughout a session. We use the
MOBIO dataset, which contains video recordings of 150 individuals
using mobile devices over several sessions, in order to evaluate the
BioCapsule scheme within the domain of Active Authentication.
We find that the BioCapsule scheme not only performs comparably
to baseline, unsecured system performance, but in some cases ex-
ceeds baseline performance in terms of False Acceptance Rate, False
Rejection Rate, and Equal Error Rate. Through our experiments, we
demonstrate that the BioCapsule scheme is a powerful and prac-
tical addition to existing biometrics-based Active Authentication
systems to provide robust security and privacy protections.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; Data-
base and storage security; Domain-specific security and privacy ar-
chitectures.
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1 INTRODUCTION
In recent years, biometrics have proven to be a useful method of
authenticating users [8]. The reasons are three-fold. Sensors capa-
ble of sampling biometrics are now in the hands of many users as
mobile devices and come in the form of cameras, microphones, and
touch screens. Biometric-based authentication is also user-friendly,
as there is no burden on the user to remember a password or main-
tain a physical token on their person. And finally, the introduction
and proliferation of Deep Learning has greatly enhanced the per-
formance of biometric systems [22], [19], [4].

While the main hindrances to the use of biometrics have been
addressed, new limitations have taken their place in the form of
user privacy and revocability. As more user devices come with bio-
metric sensors and most notably face identification and recognition
software pre-installed, some users have begun to push back against
these systems due to fears of societal implications [2], [13]. Another
key issue is revocability. If biometric data is compromised, one can-
not simply change their biometrics as theymight in password-based
or physical token-based systems, as biometrics are drawn from
physiological and behavioral traits of an individual. This makes
some biometric authentication schemes extremely rigid and a risk
to implement as a primary authentication method [16]. These are
the issues that state-of-the-art biometric authentication systems
aim to resolve.

This paper aims to apply a privacy-preserving biometric authen-
tication scheme, called the BioCapsule (BC) scheme [14], [15], to
the domain of facial recognition and authentication. More specif-
ically, we measure the performance of the scheme in the context
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of Active Authentication (AA), or continuously authenticating the
user throughout the user’s active use of a resource during a ses-
sion. This category of authentication provides increased security in
comparison to single authentication at the beginning of a session,
helping to defend against post-login attacks. This paper also works
to identify how the BC scheme affects the feature embeddings of
extracted facial features during the authentication process.

2 RELATEDWORK
Much of the recent previous work done with regard to biometric au-
thentication focuses on the two concerns of privacy and revocability.
The main categories of state-of-the-art schemes that have emerged
to deal with these issues have been Biometric Cryptosystems (BCS)
and Cancelable Biometrics (CB). While these categories focus on
securing biometrics in a more general sense, some other schemes
have been developed that focus more specifically on AA.

2.1 Secure Biometric Schemes
BCS schemes generate keys from sampled biometrics [21], [12].
These generated keys can then be used to authenticate the user into
the system. CB schemes attempt to apply a set of transformations
to given biometric features in a secure manner [18]. However, BCS
schemes are brittle, as small changes in the input biometrics result
in large changes in the generated keys. This means BCS schemes
require a stabilizing mechanism to be usable [21], [9]. CB schemes
are susceptible to the same problems, while also often reducing
system performance [21], [9]. The BC scheme [14], [15] is a CB
method that has shown promise as it offers robust security and
privacy benefits while minimally impacting system performace.

2.2 Active Authentication
Several schemes have been developed to handle multi-modal bio-
metric authentication for AA. These systems may use a blend of
multiple biometrics, such as face and voice recognition, as well as
gyroscopic information or screen touch patterns [11], [3]. However,
these schemes can put excessive strain on the device’s battery due
to the processing power needed. The demand of these schemes can
be lessened by widening the time intervals between authentication
checks. However, this comes with the risk of allowing for an at-
tacker to access sensitive information in the event of a post-login
attack.

In 2023, Keykhaie and Pierre [10] propose a face-based AA sys-
tem using SIM/eSIM technology to protect biometric templates.
Their proposed system uses a combination of modern deep learning
face preprocessing and feature extraction models. To fit the biomet-
ric templates and authentication process onto the small footprint
of a SIM card, their system performs a process called quantization.
The preprocessing and feature extraction steps are done on the
mobile device, with the authentication decision happening on the
SIM card. However, quantizing the system’s deep learning models
has measurable negative effects on the performance of the system.

3 OVERVIEW OF BIOCAPSULE SCHEME
The BC scheme is designed to solve the issues of privacy and revo-
cability, while also maintaining a simplistic and easy to implement
structure that is provably secure [20], [14], [15]. The BC scheme

Figure 1: The BC generation process, fusing the biometrics of a user
and their RS.

is generic and can be embedded into existing facial authentication
system. BC generation is broken down into 3 main steps, performed
during enrollment and at authentication time: signature extraction,
key generation, and secure fusion (shown in Fig. 1).

First, a feature vector is reshaped and averaged to produce a
signature vector. Using this signature vector and a psuedo-random
number generator (PRNG), a new vector is produced, of the same
length as the original input feature vector. This new vector is bina-
rized, resulting in a key vector consisting of 1s and -1s. This same
process is applied to a selected Reference Subject (RS). The user’s
original feature vector is element-wise multiplied with the RS’s key
vector, and the user’s key vector is element-wise multiplied with
the RS’s original feature vector. Finally, the two resultant vectors
are element-wise added, generating a privacy-preserving BC. Later,
if the generated BCs are compromised, the authentication system
administrator can ’revoke’ the compromised BCs. The impacted
users’ BCs conceal the users’ true biometric traits from attackers.
Later the users can re-enroll in the system using a new RS.

4 THE ACTIVE AUTHENTICATION SYSTEM
The AA begins once an authenticated user begins their session of
device use. The system then captures an image from the device’s
camera. This image gets passed to the preprocessing step, which
finds any faces in the image and generates a cropped frame for each
detected face. If there are no detected faces, the process ends here
and the system revokes the user. If multiple faces are detected, the
center most face is selected. The cropped frame of the detected face
is then passed to the feature extractor, which generates a feature
vector representing the user’s facial traits in Euclidean space. The
next step is to generate a privacy-preserving BC if applicable, then
pass the generated BC to a binary classifier. If the BC scheme is not
used, then the unsecured feature vector is simply passed to a binary
classifier. The binary classifier predicts the probability of whether
the user should be authenticated and allowed continued access to
the system. If the probability is above a certain threshold, then the
authentication system waits idly for a set amount of time before
repeating the full authentication process. If the classifier’s predicted
probability is below a certain threshold, the user is revoked from the
system. Multiple authentication decisions during an open session
can be combined, where probability of the last 𝑛 authentication
decisions are stored to aggregated for an overall authentication
decision.

For enrollment, each subject is assigned a binary classifier that
is trained to recognize their biometric feature vectors (or BCs). A
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Figure 2: The Active Authentication system used for testing.

set of positive data is collected from the subject the classifier is
trained for, along with samples from other subjects to be used as
negative data. If the BC scheme is used, then a RS is passed through
the preprocessing and feature extraction steps to create its own
feature vector. With a subject’s feature vector and a RS’s feature
vector, the BC generation process can be completed. These privacy
preserving BCs are then used in place of unsecured feature vectors
for the binary classifier training.

Since authentication decisions are based on a threshold, the
enrollment process which trains the subjects’ classifiers also tunes
the threshold used for distinguishing between a true authentication
and a false authentication. A fraction of the training data is used
for threshold tuning, where the system aims to tune the threshold
to maximize or minimize a certain target metric.

For testing purposes, users are not revoked following unsuccess-
ful authentications. The probabilities and authentication decision
are recorded. Testing also does not capture from an actual camera,
and instead pulls from a preprocessed dataset for AA.

The following subsections describe the details of the AA sys-
tem’s preprocessing, feature extraction, BC generation, window
averaging, and wait time steps.

4.1 Preprocessing
The preprocessing step is the first step in the AA process. Here,
preprocessing refers to taking a raw input image and finding all
of the faces that are in the image. At this stage the system is not
concerned with the identity of the faces, only with finding all faces
within a given image. The preprocessing step also detects key points
with respect to all of the faces, finding both eyes, the nose, and the
left and right corners of the mouth. The model used to perform
preprocessing in the system is MTCNN [22]. The MTCNN github
repository can be found at [17].

Since MTCNN will generate cropped faces for each face found
in the image, we need to decide what to do when there’s multiple
faces or no faces at all. If there are no faces, the authentication
process ends and the user is revoked. If there are multiple faces,
the authentication system selects the center-most face, making
the assumption that the user of the device is the most likely to be
centered in the sampled image. A less strict system may wish to
allow the user continued device access if no faces are detected, and
a stricter system may wish to revoke the user if more than one face
is detected.

4.2 Feature Extraction
The feature extraction process is the second step in the AA process.
This step takes the input of the previous step, preprocessing, and
generates feature vectors from the input images. These features can
then be used for an authentication decision. The feature vectors
generated should denote important features from the cropped face
image given, with similar feature vectors generated for the same
face, but dissimilar feature vectors generated for different faces. The
feature extraction step uses one of two state-of-the-art face feature
extraction models: FaceNet [19] and ArcFace [4]. An implementa-
tion of FaceNet can be found at [17]. An ArcFace implementation
can be found at [7].

4.3 BioCapsule Generation
The next step in the process is to generate a BC, as described in
the Section 3. If using the underlying, unsecured system, this step
can be skipped. The feature vector generated from the feature
extraction step can be directly passed to the binary classifier for
either enrollment training or AA if the classifier is already trained.
If the BC scheme is used, then a RS is needed to generate resulting
BCs. As described in [20], [14], [15], a single RS can be used for all
enrolled users, or a unique RS can be selected for each user. During
testing, faces from the Labeled Faces in the Wild (LFW) [6] dataset
are used as RSs.

4.4 Binary Classifier
The binary classifier used to generate authentication decisions is
the next step in the process. During the enrollment process, the
classifier is trained on feature vectors from the feature extraction
process. If the BC scheme is used, then the classifier is trained
on the generated BCs instead. Each subject’s binary classifier is
trained with both positive and negative samples. Positive samples
refer to feature vectors or BCs generated for the positive subject.
Negative samples refer to feature vectors or BCs generated from all
other subject samples used in training, in a one-vs-all strategy. Also
during enrollment, a fraction of the samples are used for threshold
tuning. Threshold tuning determines a threshold that maximizes or
minimizes the system’s performance with respect to the samples
given, targeting a performance metric.

4.5 Authentication Decision
The final step in the AA process is the authentication decision,
using the tuned threshold. A trained binary classifier is given a
feature vector (or BC) corresponding to a user that must be authen-
ticated. The classifier outputs a probability that the user should be
authenticated. If the predicted probability is less than the thresh-
old value, the user is unsuccessfully authenticated and revoked.
If the probability is above the threshold, then the user has been
successfully authenticated and allowed continued access to the de-
vice. This process is repeated during the open session to confirm
the originally authenticated user is still the person accessing the
system. The overall AA authentication process goes unnoticed by
the user during their session unless they are revoked.
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Figure 3: Sample images of subjects from the MOBIO dataset [11].

5 EXPERIMENT
The following subsections describe our experiment details and the
results found during testing. The experiment aims to answer the
following questions: (1) does the underlying, unsecured system
perform reasonably during AA and (2) does the BC-embedded
system perform comparably during AA. Code for replicating this
experiment can be found at [5].

5.1 The MOBIO Dataset
The MOBIO dataset [11] is designed for AA experiments. The
dataset includes videos of 150 different subjects over a 2-year time
span. The videos were taken in 5 different countries and 6 different
locations in total. The devices used in this dataset for recording
were a 2008 MacBook and a Nokia phone. There were 12 sessions
recorded in total. The first session was recorded on both laptop and
phone. The remaining 11 sessions were recorded on phone only.
Each session has 21 videos, where a subject speaks directly into
the camera of the mobile device or laptop, reading from a prompt
given to the subject. The tests in this paper ignore the audio data
and focus solely on the videos.

We attempt to mimic the experimental setup in [10] which also
relies on the MOBIO dataset. The first session of each subject is
reserved for training each subject’s respective binary classifier.
The remaining sessions are used for testing. To run a test on a
single subject, the single subject’s sessions are regarded as positive
samples, while the remaining subjects’ sessions are used as negative
samples. Testing was done with two different settings with respect
to the MOBIO dataset: single platform and cross platform. Single
platform refers to training on samples extracted from the same
device as testing is run on. This simulates the scenario where the
classifier is trained using the same camera that is used during
AA. Cross platform refers to training on samples extracted using
a different camera during training than the camera used during
testing. This simulates the scenario where a user’s data is sampled
for training the system using a different camera than what the user
would normally use for AA.

Subjects f-210 and f-218 were removed due to an insufficient
number of sessions. The former has only the laptop session, while
the latter has all sessions but the laptop session.

5.2 Metrics
The metrics used for testing are False Acceptance Rate (FAR) (Eq. 1),
False Rejection Rate (FRR) (Eq. 2), and Equal Error Rate (EER). FAR
is a ratio measuring the number of false positives (a person passes
the authentication check who should not have) that were let in by
the system with respect to the total number of negative samples
tested. FRR is a ratio measuring the number of false negatives (a

Model
Type

BC RS Platform FAR (%) FRR (%) EER (Test) (%)

ArcFace

No BC N/A Single 0.419 0.873 0.010
Cross 0.527 0.865 0.020

BC
Single Single 0.440 0.892 0.021

Cross 0.361 0.920 0.031

Multi Single 0.458 0.854 0.007
Cross 0.587 0.862 0.013

FaceNet

No BC N/A Single 0.393 6.349 0.863
Cross 0.396 9.521 1.332

BC
Single Single 0.365 13.106 1.960

Cross 0.423 17.902 2.549

Multi Single 0.488 1.140 0.086
Cross 0.532 1.715 0.180

Table 1: The performance of the systemwith different settings, where
each score represents the mean performance of the system averaged
across all subjects in MOBIO.

person who does not pass the authentication check but should have)
that the system failed to let in with respect to the total number
of positive samples tested. The EER represents where these two
metrics are equal in a system. This can be found by generating the
probabilities for a set of data samples, then sliding the threshold to
where these two rates are equal.

𝐹𝐴𝑅(%) = (𝐹𝑃/(𝐹𝑃 +𝑇𝑁 )) ∗ 100 (1)

𝐹𝑅𝑅(%) = (𝐹𝑁 /(𝐹𝑁 +𝑇𝑃)) ∗ 100 (2)

5.3 Results
Table 1 shows the performance of the system with and without
the BC scheme applied, as well as with different feature extraction
models, RS settings, and single vs. cross platform training and test-
ing. Across the board, cross platform EER performance is worse
when compared to their single platform counterparts. This can be
attributed to the classifier fitting to the camera’s image quality on
one device during training, and then under-performing when being
showed samples from another camera’s images. When comparing
No BC settings to BC with Single RS, we see slight performance
degradation, although still comparable performance. The degrada-
tion can be attributed to the BC process losing some information
when the fusion process happens, as the BC scheme sacrifices some
underlying system performance in exchange for securing the sys-
tem. Additionally, with Single RS, the transformations applied to
the user’s features are the same for all users, resulting in lower
inter-class separation as the RS features are weighted equally with
each user’s [20]. Table 2 shows the performance of the system
when compared to the SIM card based systems (CA-MMOC & F-
MMOC) designed in [10], which once again validate the comparable
performance and solidness of the BC technique.

Surprisingly we see that the performance of systems set with
Multi RS outperform both Single RS systems and the No BC under-
lying systems. This, again, can be attributed to BC’s fusion process.
While using a Single RS has the effect of reducing inter-class vari-
ation by fusing every subject with the same RS, Multi RS has the
opposite affect as each new RS applies different transformations on
the user’s feature vector, increasing inter-class variation. In data
with initially low inter-class variation, the BC scheme can increase
inter-class variation by selecting diverse RSs for each user, as the
variation in RSs will be reflected in the output BC. Figure 4 demon-
strates this phenomenon with images of similar looking people
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Site Architecture BC Type Alg. Single Platform Cross Platform

BUT

CA-MMOC

No
BC

L-SVM 0.1 (0.4) 0.2 (0.4)
LDA 0.3 (0.4) 3.5 (3.1)
LR 0.1 (0.4) 0.2 (0.4)

F-MMOC
L1 0.1 (0.2) 0.1 (0.2)
L2 0.1 (0.1) 0.1 (0.1)

L_inf 0.8 (1.6) 0.9 (1.0)
D-CSLDA CSLDA 13.5 (4.2) 21.9 (5.2)

ArcFace Single RS-BC

LR

0.0 (0.0) 0.0 (0.0)
Multi RS-BC 0.0 (0.0) 0.0 (0.0)

FaceNet Single RS-BC 1.6 (1.4) 2.3 (2.3)
Multi RS-BC 0.1 (0.8) 0.2 (0.7)

IDIAP

CA-MMOC

No
BC

L-SVM 0.0 (0.0) 0.5 (0.8)
LDA 0.2 (0.2) 11.5 (12.3)
LR 0.0 (0.0) 0.3 (0.4)

F-MMOC
L1 0.1 (0.1) 2.6 (9.1)
L2 0.1 (0.1) 2.4 (8.9)

L_inf 0.2 (0.1) 2.8 (2.1)
D-CSLDA CSLDA 12.8 (6.2) 27.1 (10.2)

ArcFace Single RS-BC

LR

0.0 (0.0) 0.0 (0.0)
Multi RS-BC 0.0 (0.0) 0.0 (0.0)

FaceNet Single RS-BC 1.2 (1.7) 1.8 (2.7)
Multi RS-BC 0.0 (0.0) 0.0 (0.1)

LIA

CA-MMOC

No
BC

L-SVM 1.4 (4.2) 1.5 (3.2)
LDA 1.6 (3.0) 2.1 (3.2)
LR 1.4 (3.8) 1.5 (3.0)

F-MMOC
L1 1.2 (2.5) 1.3 (2.3)
L2 1.1 (3.0) 1.2 (2.9)

L_inf 1.3 (2.6) 1.4 (2.6)
D-CSLDA CSLDA 19.1 (8.2) 24.7 (8.7)

ArcFace Single RS-BC

LR

0.1 (0.3) 0.1 (0.5)
Multi RS-BC 0.0 (0.2) 0.1 (0.2)

FaceNet Single RS-BC 2.7 (3.2) 2.5 (2.3)
Multi RS-BC 0.1 (0.3) 0.1 (0.4)

UMAN

CA-MMOC

No
BC

L-SVM 0.1 (0.1) 1.1 (0.2)
LDA 0.4 (0.4) 3.0 (2.7)
LR 0.1 (0.1) 0.1 (0.2)

F-MMOC
L1 0.1 (0.2) 0.1 (0.1)
L2 0.1 (0.1) 0.1 (0.1)

L_inf 0.7 (1.3) 1.1 (1.1)
D-CSLDA CSLDA 16.1 (4.6) 23.1 (10.2)

ArcFace Single RS-BC

LR

0.0 (0.1) 0.0 (0.0)
Multi RS-BC 0.0 (0.0) 0.0 (0.0)

FaceNet Single RS-BC 2.6 (4.4) 3.6 (6.6)
Multi RS-BC 0.2 (0.6) 0.4 (1.8)

UNIS

CA-MMOC

No
BC

L-SVM 0.1 (0.2) 0.1 (0.2)
LDA 0.4 (0.4) 0.3 (0.4)
LR 0.1 (0.2) 0.1 (0.2)

F-MMOC
L1 0.3 (0.3) 0.5 (0.8)
L2 0.2 (0.2) 0.4 (0.7)

L_inf 0.7 (1.1) 1.0 (1.1)
D-CSLDA CSLDA 15.1 (7.1) 21.0 (8.4)

ArcFace Single RS-BC

LR

0.0 (0.0) 0.0 (0.0)
Multi RS-BC 0.0 (0.0) 0.0 (0.0)

FaceNet Single RS-BC 1.6 (3.2) 1.7 (2.8)
Multi RS-BC 0.0 (0.1) 0.1 (0.3)

UOULU

CA-MMOC

No
BC

L-SVM 0.1 (0.1) 0.8 (0.6)
LDA 0.6 (0.4) 9.3 (6.5)
LR 0.1 (0.1) 0.5 (0.9)

F-MMOC
L1 0.2 (0.1) 7.3 (11.1)
L2 0.1 (0.1) 6.8 (13.1)

L_inf 0.5 (0.6) 7.1 (10.8)
D-CSLDA CSLDA 22.5 (9.2) 31.1 (11.5)

ArcFace Single RS-BC

LR

0.0 (0.5) 0.0 (0.1)
Multi RS-BC 0.0 (0.1) 0.0 (0.1)

FaceNet Single RS-BC 2.2 (2.6) 3.9 (4.3)
Multi RS-BC 0.1 (0.3) 0.3 (0.5)

Table 2: The performance of the systems designed in [10] compared
to ours (BioCapsule schemes, highlighted green).

from the VGG2 dataset [1]. Figure 4 also shows that BC reduces the
intra-class variation of the generated feature vectors compared to
the original feature vectors. This again is due to the RS applying a
constant transformation on the input feature vectors, smoothing
out high variation in input images.

When comparing the baseline feature vectors (the top two graphs
of figure 4) with both feature vectors generated using BC with both
Single andMulti RS (the bottom four graphs), we see that the clusters
for each person end up in a new location in the space, implying that
BC performed a spacial transformation on the features, as expected.

Figure 4: Visualization of feature vectors generated from face images
sampled from the VGGFace2 dataset [1].

However, we can also see the clusters tighten when BC is applied in
both the Single andMulti RS variations (lower intra-class variation).
We can further see that Multi RS further separates clusters (higher
inter-class variation) while Single RS brings them closer together
(lower inter-class variation).

6 CONCLUSION
Biometrics has grown to play an important role in user authen-
tication in recent years, due to the rise of mobile devices. With
this, there is a need for better security around these mobile devices.
AA is one way to provide a stronger layer of security. While this
works well on its own, AA using biometrics does not address the
privacy concerns of today’s users, nor does it deal with the problem
of template revocability that hinders the proliferation of biometric
authentication.

The BC scheme can solve these issues, while remaining secure
and preserving the representational power of the underlying system.
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Our tests find that the BC scheme can be applied to face-based
AA systems and can perform comparably to these systems, while
providing more security benefits for the system and users.
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