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ABSTRACT

Existing Federated Learning (FL) methods are highly influenced by

the training data distribution. In the single global model FL systems,

users with highly non-IID data do not improve the global model,

and neither does the global model work well on their local data

distribution. Even with the clustering-based FL approaches, not

all participants get clustered adequately enough for the models

to fulfill their local demands. In this work, we design a modified

subjective logic-based FL system utilizing the distribution-based

similarity among users. Each participant has complete control over

their own aggregated model, with handpicked contributions from

other participants. The existing clustered model only satisfies a

subset of clients, while our individual aggregated models satisfy all

the clients. We design a decentralized FL approach, which functions

without a trusted central server; the communication and compu-

tation overhead is distributed among the clients. We also develop

a layer-wise secret-sharing scheme to amplify privacy. We exper-

imentally show that our approach improves the performance of

each participant’s aggregated model on their local distribution over

the existing single global model and clustering-based approach.

CCS CONCEPTS

· Security and privacy→ Distributed systems security.
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1 INTRODUCTION

Since its inception, Federated Learning (FL) has garnered immense

attention from the research community, corporations, and individ-

uals. The ability to access and contribute to high-quality models

without the need for massive datasets has made FL popular across

domains. Though FL exhibits exceptional benefits theoretically,

those benefits are unattainable in most practical cases.

In the context of FL, Independent and Identically Distributed

(IID) data implies FL system assumes that each class in the local

training data has the same number of data records across all the par-

ticipating clients. This assumption is not practical in real-world FL

setups since each client would have different requirements and data

collection strategies. On the other hand, non-IID data assumption

does not require the clients to have similar local data distribution.

Some non-IID FL protocols also use the single global model

approach [29], where all the clients’ local models are aggregated

to produce one global model. The requirement of a non-IID client

differs significantly from that of an IID client. The nature of the

distribution of the client’s training data is a testament to the client’s

evaluation requirements. If a client’s local data is extremely non-IID,

the client might expect his model to perform well on similar data

distribution. A single global model approach cannot satisfy all the

non-IID clients with the same model.

The clustering-based FL systems are a subset of FL protocols that

work well for non-IID data. Clustering methods group clients into

different clusters based on the similarities in their model features

[25, 27]. Then each cluster forms its own cluster model. These

clusters are a good alternative for single global models, but still, they

don’t completely satisfy clients with highly non-IID data. Clients

not closely related to other clients are grouped into an irrelevant

cluster or left out as outliers. Both these situations are equally
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unfavorable. Moreover, two unrelated cluster models will have

an abysmal performance on each others’ distribution, which is

undesirable.

In the single global model approach and clustering approach, the

participants are treated as part of a group, not as individual clients.

Every client joining an FL system enters with an expectation to

improve the performance of his model. He assumes that all the

other models in the network would help enhance its performance,

but, in many cases, it could be the contrary. If each user could build

their own FL model based on their requirements, then all the clients

in the system would be satisfied with the protocol rather than just

a subset of clients.

In our work, we design a decentralized FL framework using the

principles of Subjective Logic. Each client will directly evaluate the

other clients and use the information to determine the models that

will be a part of their Personal Aggregated Model. We make the

following contribution:

(1) We design a completely decentralized FL framework, where

each client assembles their own Personal Aggregated Model

suitable for their data distribution.

(2) We develop a GAN-based similarity metric, which allows the

clients to check their similarities with other clients in the

network without leaking their original training data.

(3) We build a Subjective Logic-based evaluation method that

allows users to shortlist clients for the aggregation process.

(4) We design a layer-wise secret sharing scheme that allows

clients to share models without breaching privacy.

(5) We experimentally evaluate the performance of our approach

against Single Global Model FL, Clustered Model FL, and

SOTA approaches under both IID and non-IID conditions.

This paper is organized as follows: In Sec. 2, we discuss the

prerequisite information regarding Federated Learning, Subjective

Logic, and GAN. Then, we look at some of the closely related works

in Sec. 3. Followed by that, in Sec. 4, we look at a high-level overview

of our approach and discuss the threat model and assumptions. In

Sec. 5, the methodology, we explore the various steps involved in

our decentralized FL approach in detail. It is followed by Sec. 6,

which is the experiment section that consists of the parameter setup

and evaluation of the approach in both IID and non-IID settings.

We discuss the limitations and the future works we have in plans

in Sec. 7. At last, we conclude paper in Sec. 8.

2 BACKGROUND

2.1 Federated Learning

Federated Learning is the process of fusing multiple local models

into a combined model encompassing the properties of all the local

models. FedAvg [22] was the first aggregation method introduced,

and is still one of the most common aggregation methods used.

This aggregation process is carried out for multiple rounds until

the global model reaches the desired performance standard. Each

participant in the system sends their model updates to the central

server, where FedAvg is applied to get the current global model.

𝑀𝑡+1
= 𝑀𝑡 +

𝜂

𝑁

𝑁∑︁

𝑖=1

(𝐶𝑡+1𝑖 −𝑀𝑡 ) (1)

In the equation above,𝑀𝑡 is the current global model at iteration t,

𝐶𝑡+1𝑖 is the model update of client 𝑖 , 𝑁 is the number of clients in the

current round, and 𝜂 is the global model learning rate. The global

model 𝑀𝑡 represents the combined model, which is expected to

have the desired properties of the local models of all the 𝑁 clients.

2.2 Data Distributions

Most of the existing classification models in machine learning are

trained using data collected under different classes. Based on the

distribution of the data in those classes, it can be categorized as

either Independent and Identically Distributed(IID) or non-IID.

2.2.1 IID Data. In the context of FL, IID data implies that FL pro-

cess assumes that each class in the local training data has the same

number of data records across all the participating clients. This as-

sumption is not practical in real-world FL setups, since each client

would have different requirements and data collection strategies.

Though this is impractical, this assumption makes it easier to build

global models with good performance with relative ease.

2.2.2 Non-IID. On the other hand, non-IID data assumption does

not require the clients to have similar local data distribution. It is

also possible for users to have data records only for some of the

classes involved in the FL system. Such variations in the local data

distribution creates differences in the local models trained by differ-

ent clients. These differences make FL under non-IID assumption

much more tedious than IID assumption.

2.3 Subjective Logic

Subjective Logic (SL) is a probabilistic logic predominantly applied

in trust and Bayesian networks [15, 16]. On a high level, SL is used

to form the Subjective Trust Network, which helps each node in

the network to establish a trust opinion of other nodes, which may

or may not be in direct contact with this node. It helps determine

the credibility of a node for a given proposition. There are many

variations of SL, but the initial binomial version consists of three

factors for any given proposition 𝑥 : 1) belief mass (𝑏𝑥 ) is the extent

to which 𝑥 is calculated to be true, 2) disbelief mass (𝑑𝑥 ) is the extent

to which 𝑥 is considered false, and 3) uncertainty mass (𝑢𝑥 ), is the

level of epistemic uncertainty involved in the calculations. The sum

𝑏𝑥 + 𝑑𝑥 + 𝑢𝑥 = 1. These factors are calculated by each node for its

neighbors and are updated after every interaction. The values of

𝑏𝑥 , 𝑑𝑥 , and 𝑢𝑥 are evaluated based on the number of positive and

negative interaction evidence among the nodes. The uncertainty in

the calculation drops as the number of interactions increase.

2.4 Generative Adversarial Networks

A Generative Adversarial Network is a subclass of Machine Learn-

ing whose objective is to generate data similar to the source data

used for training [8]. GANs are most commonly used in the com-

puter vision domain to generate photo-realistic synthetic images.

GAN-generated data records help extend the overall dataset in sit-

uations where the size of the local data is small. GAN needs to be

well-trained before extending the local data, which can be time-

consuming. But, the Generator can produce functional synthetic

data, with minimal source data properties, from the early stages
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Figure 1: An overview of all the major steps in our approach. These steps are followed by each of the clients in the FL process

for each round to obtain their own Personal Aggregation Model, which best suits their local requirements.

of training. We only require functional synthetic data for our pur-

poses and hence won’t have high time complexity. Moreover, under

trained data records do not leak any information about the source

data.

3 RELATED WORK

3.1 Federated Learning with Non-IID

Many recent works have discussed the distribution issues in Feder-

ated Leaning and have devised methods that work under certain

conditions [24, 33, 35, 37]. In [38], Zhao et al. state that non-IID data

causes divergence in the neural network layers. They create a small

subset of data shared among all the clients to reduce divergence. In

[34], the authors develop a framework called Favor that can select

the appropriate clients for each round to counterbalance the bias

induced by non-IID data. In [17], Li et al. mitigate model feature

shifts by local batch normalization before averaging. In [2], the

authors adopt a local update similarity-based clustering approach,

with each cluster having its global model. In [4], Chen et al. design

a system where the central model is updated asynchronously and

the edge devices perform continuous learning by streaming local

data. Many of the existing works rely on some form of clustering

approach or only produce a single global model to accommodate

all the client’s needs [3, 13, 23]. On the other hand, our work pro-

duces individual global models that best suits each of the client’s

requirements.

3.2 Decentralized Federated Learning

Most of the existing decentralized FL methods mainly focus on

the IID dataset. In [11], a segment-level decentralized FL approach

is designed by utilizing the node-to-node bandwidth. In [10], the

authors compare gossip learning with federated learning and pro-

pose gossip learning can be used as a decentralized FL alternative.

They claim that gossip learning works better than FL in the IID

setting. In [28], Roy et al. build a torrent-like decentralized FL

method, where versions of models are maintained by the clients

in a peer-to-peer network. In [26], a decentralized FL based on

Interplanary File System (IPFS) is developed. Clients can be con-

nected to the IPFS network and initiate or join the training process.

There is no information on whether it applies to non-IID settings.

A blockchain-based decentralized FL is designed in [18]. Li et al.

use the blockchain with committee consensus for storing the global

model and exchanging the local models. Our approach differs from

all this because of how each client can decide the contributors

of its PAM. Many other approaches use clients to determine the

functioning of the common global model.

4 OVERVIEW

This section discusses an overview of our approach. Fig. 1 gives a

gist of all the steps involved in our approach. Here, we analyze the

process from the perspective of Client A. All the clients follow the

same protocol as Client A to get their Personal Aggregation Model.

4.1 Steps Involved: High-Level

(1) Firstly, Client A randomly selects some other clients (B, C,

and D in this case) to work with on that round and exchanges

its GAN dataset with them. In return, it receives the predic-

tion results of the other clients on its GAN data.

(2) Client A applies Subjective Logic to the clients that are di-

rectly connected through the previous step to get the simi-

larity, dissimilarity, and uncertainty scores.

(3) Subjective Logic is then applied again to get the scores for

clients that are not directly connected in this round (E). These

indirect connections are only obtained through information

shared by the direct connections formed in that round.

(4) Then, Client A calculates a dynamic uncertainty threshold

that is used to shortlist the clients who would be suitable for

the aggregation step and a request is sent. In the toy example,

it is clients B, D, and E.

(5) To enhance security, the other clients first share their model’s

layer-wise secret shares among themselves before sending

them back to Client A.

(6) Once Client A receives all the relevant shares for aggregation.

It combines all the shares with its own local model and get
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the Personal Aggregated Model. Further local training is

conducted on this model. These steps are repeated in all

rounds.

The motivation behind our approach is to allow each client the

flexibility to build their own FLmodel. This ensures that the model’s

performance suits its local data requirements well.

5 METHODOLOGY

5.1 Initial Local Training and GAN Dataset
Generation

For ease of understanding, let us look at all the functions from

the perspective of a single client, the Representative Client (Rep-

Client). All the clients will follow the same protocol as the RepClient,

throughout the FL process. At the beginning of the FL process, the

RepClient trains its local model only based on its local dataset.

The hyperparameters and the initialization weights needed for the

training are part of the FL protocol.

Simultaneously with the local model training, the RepClient also

trains a weak Generative Adversarial Network to produce synthetic

data records similar to its local data. The GAN only needs to be

trained for a few epochs; the actual number of training epochs

would vary depending on the local dataset. The aim here is only to

generate data records, which are better than random vector data in

representing the features of the local data. Given that the GAN is

under-trained, there will be negligible information leakage about

the source data. Privacy-preserving GAN variants [19, 32] can also

be used to enhance privacy. In each round where GAN is trained, a

different seed input is used for GAN to improve privacy further.

5.2 Similarity Metrics

5.2.1 Class Prediction Count. Once the GAN data records are

generated, the RepClient tests those records against its local model

and estimates the number of records predicted for each class.We call

this the Class Prediction Count (CPC, denoted by Δ). For instance, if

there are 5 total classes in the FL training, and the GAN dataset has

1000 records, then theΔ
𝑅𝑒𝑝𝐶𝑙𝑖𝑒𝑛𝑡

𝑅𝑒𝑝𝐶𝑙𝑖𝑒𝑛𝑡
could be [151, 0, 356, 469, 24]. Each

value denotes the number of records classified into its correspond-

ing class. Δ𝐴
𝐵
signifies the CPC for Client A model’s performance

for Client B’s GAN dataset

5.2.2 Prediction Similarity Score. After calculating its own

CPC, the RepClient randomly selects a small subset of other clients,

known as Direct Subset (DS), and shares the GAN dataset with them.

The DS clients also send their GAN dataset back to the RepClient.

The RepClient calculates CPC individually for the received datasets.

The CPC values are sent back to the respective clients, along with

the CPC value of its own GAN dataset. Similarly, the DS clients

send back their CPCs for RepClient’s GAN dataset and their own

GAN dataset.

Based on the CPCs received, the RepClient can calculate the

similarity between its local model and other clients’ models. We

call this the Prediction Similarity Score (PSS, denoted by 𝜆); it is

the Cosine Similarity between the RepClient’s CPC and each of the

DS clients’ CPC. Client A can calculate the PSS score for Client B

given as 𝜆𝐴
𝐵
by:

𝜆𝐴𝐵 =

1

2

[
Δ
𝐴
𝐴
· Δ𝐵

𝐴

| |Δ𝐴
𝐴
| | ∗ | |Δ𝐵

𝐴
| |
+

Δ
𝐴
𝐵
· Δ𝐵

𝐵

| |Δ𝐴
𝐵
| | ∗ | |Δ𝐵

𝐵
| |

]

(2)

In the above equation, we take the average of the cosine similari-

ties of both the client’s CPCs on both the client’s GAN datasets. We

further fine-tune the PSS value by taking the performance average

on both the GAN datasets. By taking the average of the two, we

better capture the true similarity between the models.

5.3 Subjective Logic

Though we have the PSS with all the users in the DS, it does not

precisely reflect the exact similarity between the models. This defi-

ciency can be attributed to multiple factors, including the size of

the GAN dataset and the variance introduced by the training period.

Once the necessary PSSs are calculated, the RepClient applies a

variation of the SL in two phases. The SL metric 𝜒 between two

clients consists of three parts, 𝜒𝐴
𝐵
is the set containing {𝑠𝐴

𝐵
;𝑑𝐴

𝐵
;𝑢𝐴

𝐵
},

the SL value calculated by Client A for Client B.

5.3.1 Phase 1- Direct Information. In each round, the RepClient

forms a direct link with the clients in the DS.

𝑠𝐴𝐵 =

𝛼

𝛼 + 𝛽 + 2
(3)

𝑑𝐴𝐵 =

𝛽

𝛼 + 𝛽 + 2
(4)

𝑢𝐴𝐵 =

2

𝛼 + 𝛽 + 2
(5)

𝑠𝐴𝐵 + 𝑑𝐴𝐵 + 𝑢𝐴𝐵 = 1 (6)

Here 𝑠𝐴
𝐵
, 𝑑𝐴

𝐵
, and 𝑢𝐴

𝐵
denote the SL-based similarity, dissimilarity,

and uncertainty, respectively, calculated by Client A for Client B.

Initially, both 𝛼 and 𝛽 are equal to 1. Greater 𝑠𝐴
𝐵
means that A and B

are similar. Greater 𝑑𝐴
𝐵
mean that A and B are highly different from

each other. Greater 𝑢𝐴
𝐵
means that further investigation is needed

to determine the actual closeness of A and B. We increment both

𝛼 and 𝛽 values, simultaneously, for each direct interaction, with

𝛼 = 𝛼 + 𝜆𝐴
𝐵
and 𝛽 = 𝛽 + [1 − 𝜆𝐴

𝐵
]. All the above SL calculations are

only used for the DS clients in each round.

5.3.2 Phase 2- Indirect Information. The number of direct links

that can be formed efficiently in each round is minimal. If we were

to consider an FL system with thousands of participants, develop-

ing direct links among all the clients would be computationally

inefficient. This inadequacy can be overcome by sharing the SL

information among the clients.

After phase 1, the RepClient and the DS clients exchange their

calculated SL scores. Upon receiving the scores, the RepClient ap-

plies two rules to integrate this Indirect information into its SL

calculations.

Discounting. If Client A has a direct connection to Client B, and

Client B has SL scores for Client C, then the transitive similarity
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between Client A and Client C, based on Client B, is calculated as:

𝜒𝐴◦𝐵𝐶 = 𝜒𝐴𝐵 ⊙ 𝜒𝐵𝐶 (7)

𝑠𝐴◦𝐵𝐶 = 𝑠𝐴𝐵 𝑠
𝐵
𝐶 (8)

𝑑𝐴◦𝐵𝐶 = 𝑠𝐴𝐵𝑑
𝐵
𝐶 (9)

𝑢𝐴◦𝐵𝐶 = 𝑑𝐴𝐵 + 𝑢𝐴𝐵 + 𝑠𝐴𝐵𝑢
𝐵
𝐶 (10)

Consensus. Multiple clients in the DS can have SL scores for

C in the same round. Even Client A might have its own SL score

for Client C. In such cases, all the scores can be combined using

consensus rule.

𝜒𝐴:𝐵𝐶 = 𝜒𝐴𝐶 ⊕ 𝜒𝐵𝐶 (11)

𝑠𝐴:𝐵𝐶 =

(
𝑠𝐴𝐶𝑢

𝐵
𝐶 + 𝑠𝐵𝐶𝑢

𝐴
𝐶

)
/𝐾 (12)

𝑑𝐴:𝐵𝐶 =

(
𝑑𝐴𝐶𝑢

𝐵
𝐶 + 𝑑𝐵𝐶𝑢

𝐴
𝐶

)
/𝐾 (13)

𝑢𝐴:𝐵𝐶 =

(
𝑢𝐴𝐶𝑢

𝐵
𝐶

)
/𝐾 (14)

where 𝐾 = 𝑢𝐴𝐶 + 𝑢𝐵𝐶 − 𝑢𝐴𝐶𝑢
𝐵
𝐶 (15)

Generally, the uncertainty associated with Indirect information

is much higher than with direct connection.

B

A

C

D

B

A

C

D

i j  : Direct link between i and j
  existsi j  :

Case (i) Case (ii)

For (i):

For (ii):

Figure 2: Examples of combining SL scores using discounting

and consensus rules.

Fig. 2 shows an example from the perspective of Client A. It has

two cases showing how the 𝜒𝐴
𝐷
needs to be updated in a round,

depending on the existing SL scores and the direct links formed in

that round.

5.4 Selecting Clients for Personal Aggregated
Model

We use two factors to shortlist the clients (𝑃𝐴𝑀𝑙𝑖𝑠𝑡 ) who will be a

part of the Personal Aggregated Model (PAM).

5.4.1 Dynamic Uncertainty Threshold. As mentioned earlier,

the uncertainty associated with each client varies depending on the

number of Direct or Indirect contact it has had with the RepClient.

If the result of the interaction in each round is consistently positive

or consistently negative, then the uncertainty associated gradually

decreases. But, if the result of the interaction fluctuates, then the

uncertainty is maintained high. Even if the similarity of a client

seems good, if the uncertainty is high, then the client does not get

to contribute to the PAM. In such cases, an uncertainty threshold

must be applied, above which the client is not selected. We create a

Dynamic Uncertainty threshold (𝜏) measure to accommodate the

varying uncertainty .

𝜏 =




𝑎𝑣𝑔

(
𝑈𝑙𝑖𝑠𝑡

����
𝑁

1

)
, if 𝑎𝑣𝑔(𝑈𝑙𝑖𝑠𝑡 ) < 𝑚𝑒𝑑 (𝑈𝑙𝑖𝑠𝑡 )

𝑎𝑣𝑔

(
𝑈𝑙𝑖𝑠𝑡

����
𝑁 /2

1

)
, if 𝑎𝑣𝑔(𝑈𝑙𝑖𝑠𝑡 ) ≥ 𝑚𝑒𝑑 (𝑈𝑙𝑖𝑠𝑡 )

(16)

Here 𝑈𝑙𝑖𝑠𝑡 is the set of all the known SL uncertainty values

estimated by a given client, arranged in ascending order with the

smallest uncertainty score in position 1 and the largest in position

𝑁 .𝑁 is the total number of uncertainty values in𝑈𝑙𝑖𝑠𝑡 . The function

𝑎𝑣𝑔(·) return the average value of the input, and𝑚𝑒𝑑 (·) gives the

median value.

The purpose of using an uncertainty threshold is to minimize the

number of clients in the 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 , especially in the earlier rounds.

The bigger the 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 , the greater the communication overhead

among clients. By using 16, we ensure that the number of users

contacted is always maintained to be lower than 50% of the clients

in𝑈𝑙𝑖𝑠𝑡 until the overall uncertainty drops significantly.

5.4.2 Similarity-based Rescaling. Since similarity, dissimilarity,

and uncertainty sum up to 1, a decrease in uncertainty means an

increase in similarity or dissimilarity. The PAM should reflect the

extent of similarity between the RepClient and the other clients

in 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 . To achieve this, the RepClient rescales the models in

𝑃𝐴𝑀𝑙𝑖𝑠𝑡 by multiplying each client’s model weights with the their

respective similarity scores, 𝜎𝑖 = 𝑠
𝑅𝑒𝑝𝐶𝑙𝑖𝑒𝑛𝑡
𝑖 , where 𝑖 ∈ 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 .

Such a rescaling ensures that the models with higher similarity

contribute more substantially to the RepClient’s PAM than the

models with smaller similarity. If we used an approach where the

dissimilar models are completely neglected from contributing to the

Personal Aggregated Model, then PAM’s performance on foreign

data would be poor.

5.5 Decentralized Aggregation

Once the other client models are selected, and the respective scaling

ranges are determined, the models need to be aggregated with the

RepClient’s local model. First, the RepClient now communicates its

requirements to the selected clients.

5.5.1 Model Request Message. As a part of the model request,

the RepClient sends each selected client a message consisting of two

components. The first component is the similarity-based rescaling

value 𝜎 corresponding to the client. The second component in the

message is the list of the other clients who will also be contributing

to RepClient’s Personal Aggregated Model. Fig. 3(i) shows a toy

example of the model requesting process. Client A sends a model

request message to Clients B, C, D, and E.

5.5.2 Layer-wise Secret Shares. Suppose one client’s model is

directly shared with another client; the other client can execute a

membership inference attack or a reconstruction attack [12]. To
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(i) Client A sends a model
REQUEST message to all the

clients in its PAMlist

(ii) Client C SHARES its local
model with all the clients in

Client A's PAMlist

(iii) All the Clients send their
RESPONSE message back

to Client A for its PAM.

Figure 3: Communication steps involved in Decentralized

Aggregation process.

avoid such privacy breaches, we split the client’s model into multi-

ple shares such that the original model cannot be revealed unless

all the shares are combined. In essence, our approach is a modified

version of [31], without the need to recover the original message

as such. So, instead of directly sending the local model to the Rep-

Client, a client splits the local model into multiple shares and sends

it to all the clients in the RepClient’s 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 .

L1 L2
C1

C2

C3

Cn

L3 Lm
X11

X12

X13

X1n

X21

X22

X23

X31

X32
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Xm1

Xm2

Xm3

X2n X3n Xmn

LAYERS
CLIENTS

=1 =1 =1 =1

Figure 4: Layer-wise secret shares such that the sum of the

shares sent to all the clients for each layer is equal to the

original layer.

To execute this, we explore a layer-wise sharing approach. As

a first step, all the clients rescale their local models using the 𝜎

they received. After rescaling, the model must be shared with the

other clients in 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 . Fig. 4 shows the condition that needs to

be satisfied by each share. Here 𝑛 is the number of clients in the

𝑃𝐴𝑀𝑙𝑖𝑠𝑡 , and𝑚 is the number of layers in the neural network model.

0 ≤ 𝑋𝑖 𝑗 < 1 denotes the scalar weight that needs to be multiplied

by the client’s rescaled model vector weight in layer 𝑖 ∈ [1,𝑚] to

get that layer’s share for client 𝑗 ∈ [1, 𝑛]. The sum of all the scalar

weights for each layer should add up to 1,
∑𝑛

𝑗=1 𝑋𝑖 𝑗 = 1. The values

of the scalar weights are kept secret and never shared with other

clients. Each client 𝑖 sends a share to other clients consisting of:

[𝑆𝐻𝑅𝑖𝑗 ] = 𝜎𝑖 · {𝐿1𝑋1𝑗 ;𝐿2𝑋2𝑗 ; ...;𝐿𝑚𝑋𝑚𝑗 }

where 𝑗 ∈ {𝑃𝐴𝑀𝑙𝑖𝑠𝑡 − 𝑖}
(17)

Fig. 3(ii) shows how Client C shares its local model between Clients

B, D, and E.

5.5.3 Client Response Message. After each client shares their

local models with other clients, they are left with multiple shares

from all the other clients in 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 . Now, each client aggregates

all the received shares and sends them back to the RepClient. The

response message from each client 𝑖 consists of:

[𝑅𝑆𝑃𝑖 ] =
∑︁

𝑗∈{𝑃𝐴𝑀𝑙𝑖𝑠𝑡−𝑖 }

[𝑆𝐻𝑅
𝑗
𝑖 ] (18)

Fig. 3(iii) gives an example of Clients B, C, D, and E, who are part

of Client A’s 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 , sending their response messages back to the

requesting client, Client A.

5.5.4 Personal Model Aggregation. Once all the responses are

received, the RepClient aggregates them based on their individual

𝜎 value. Since all the models have been rescaled, the aggregation

should be divided by the rescaling factor:

𝑃𝐴𝑀𝑅𝑒𝑝𝐶𝑙𝑖𝑒𝑛𝑡
=

𝑀
𝑅𝑒𝑝𝐶𝑙𝑖𝑒𝑛𝑡

𝑙𝑜𝑐
+
∑
𝑖∈𝑃𝐴𝑀𝑙𝑖𝑠𝑡

𝑅𝑆𝑃𝑖

1 +
∑
𝑖∈𝑃𝐴𝑀𝑙𝑖𝑠𝑡

𝜎𝑖
(19)

Here,𝑀
𝑅𝑒𝑝𝐶𝑙𝑖𝑒𝑛𝑡

𝑙𝑜𝑐
denotes the RepClient’s local model. It would be

the PAM from the previous round unless it is the first round local

model.

6 EXPERIMENTS

In this section, we evaluate the performance of our approach under

different circumstances.

6.1 Setup and Baseline

6.1.1 Dataset. For our experiments, we use the CIFAR-10 image

dataset, which consists of 50,000 training and 10,000 testing records.

CIFAR-10 has the train and test data evenly split among its 10

classes, ranging from ’airplane’, ’bird’, ’cat’ to ’truck’. We also use a

subset of ImageNet32 dataset [5], which is a downsampled variant

of ImageNet dataset with an image of size 32x32. We randomly

select 40 classes which have more than 1000 data records in each

class for our testing purposes.

Figure 5: Sample GAN images used for CPC calculation.

R
ou

nd
s

Clients

Num. Users inAverage Uncertainty

Clients

DS=1 DS=2 DS=1 DS=2

Clients Clients

Figure 6: Average Uncertainty and number of clients in

𝑃𝐴𝑀𝑙𝑖𝑠𝑡 for all clients for the first 50 rounds

6.1.2 Distribution. We split the CIFAR-10 data among 50 clients

with data repetition under different distributions to check the ef-

fectiveness of our approach in an extreme situation. Dist-0. In this

distribution, Each client gets 2k training records in 3 classes, 1.5k in

2 classes, 1k in 2 classes, and 5 in 3 classes. Dist-1. Every client has

2.5K training data records in 3 of the 10 classes and 5 in all other
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classes.Dist-2.All the clients have 2K training records in 7 of the 10

classes and 5 in all other classes.Dist-3. This is a combination of all

the other distribution methods. 8 clients have a distribution similar

to Dist-0, 7 clients similar to Dist-1, and 7 clients similar to Dist-2.

8 clients have an even distribution, with 2k images in all training

classes. The 20 remaining clients have a random distribution of data

in all the classes, ranging from a minimum of 1 data record to a

maximum of 4k records per class. In all the distributions, the classes

that get more images are selected randomly for each client. Out of

all the distributions, Dist-3 is the closest to real-world distribution

and will be used in evaluation against other approaches. For the

ImageNet32 distribution, we split the data among 100 clients based

on Dirichlet distribution with parameters 0.6 and 0.3 as in [7].

6.1.3 Parameters. We run our experiments with a PyTorch code

on Dell G5 laptops with Intel Core i7-10750H CPU, 16 GB of RAM,

and NVIDIA GeForce GTX 1660 Ti GPU. We use ResNet18 archi-

tecture to train all the local models [9]. We use a vanilla GAN

implementation for generating images for each of the clients [8].

The quality of the images is not expected to be good; Fig. 5 shows

some of the samples of GAN images used in the CIFAR10 experi-

ments. In each round, the client sends 1K GAN-generated images

to the members in Direct Subset (DS).

The left two graphs of Fig. 6 shows the average uncertainty of

the 50 clients in Dist-3 for the first 50 rounds of the FL process. We

notice that the average uncertainty is much smoother when size

of DS=2 and decreases faster than DS=1. The right two graphs in

Fig. 6 represent the number of clients in the 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 for the same

settings. We can notice the number of clients is always below 26.

The fluctuations are more when DS=2, showing that the average

and median uncertainty are close across rounds. Such closeness is

possible if each client’s𝑈𝑙𝑖𝑠𝑡 is consistent with a normal distribution.

For this to be true, the majority of the uncertainties in the 𝑈𝑙𝑖𝑠𝑡
need to be updated in each round; otherwise, the distribution would

be skewed. We noticed that for both DS values, all the clients were

directly or indirectly reached at least once by all other clients before

round 4. We set DS=2 for all the experiments as it reaches enough

clients each round to maintain a good distribution.

6.1.4 Performance Metrics. We use prediction accuracy of the

individual clients as the metric to evaluate the performance of our

approach. Since there are 50 clients for CIFAR10, we measure the

average, minimum, and maximum accuracy across all clients. We

use two different test dataset distributions.

Local-non-IID. It is non-IID, and the distribution is similar to

the client’s local distribution.

Global-IID. This is an IID distribution of all the test images in

the CIFAR-10 test dataset. Such a distribution might not be nec-

essary for practical situations, but it still helps us evaluate other

users’ contributions.

6.1.5 Baseline Comparison. To verify the validity of our claims,

we test our method with CIFAR10 against two widely accepted Fed-

erated Learning approaches. Though our approach is decentralized

and does not require a central server, we will compare it against

established centralized approaches. We only use Dist-3 for compar-

ison against other methods since it is the closest to a real-world

scenario.

Single Global Model. Most existing FL systems still adopt a

Single Global Model (SGM) framework. This method works well

for IID data but is not always suitable for non-IID though it is

widely used. We will test against the most known SGM protocol,

the Federated Averaging method (FedAvg) [22].

Clustered Model. This technique acknowledges the influence

of non-IID data on the global model. So, instead of using a single

global model, the clients are separated into multiple clusters based

on their features. Then all the client model’s in each cluster combine

to get a global model for the cluster. Many variations of clustering

methods for FL have been developed recently [6, 25, 27, 36]. For

our comparison, we choose one of the most effective techniques.

To obtain the features needed for clustering, we find the pairwise

cosine similarity between the output layers of all the client’s local

models. Then the HDBSCAN clustering method is used to group

the clients into different clusters [21]. After clustering, each cluster

forms its own Clustered Model (CM). The 50 clients in Dist-3 were

grouped into 8 clusters.

6.2 Evaluation on Local-non-IID Data

It is important for the client’s Personal Aggregated Model to per-

form well in its local distribution. In this subsection, we test all the

client’s PAM’s against their local distribution.

6.2.1 Impact of Distribution Extent. Here, we test the four

distributions and check the minimum, maximum, and average ac-

curacy of all 50 clients. Fig. 7a shows the performance of our SL-FL

approach under different distributions at training round 100. From

the figure, all the distributions have a minimum accuracy of over

90%. Moreover, the average accuracy of all the clients for all the dis-

tributions is over 94%. Given that the distribution of all the clients

in Dist-1 is highly skewed, our approach still manages to extract

an exceptional performance on their Local-non-IID data.

6.2.2 PerformanceAgainst SGM. When evaluating our approach

against Single Global Model for Dist-3, we noticed that the perfor-

mance of the SGMwas poor for almost all the client’s Local-non-IID.

The poor performance is because of the contrast in the weights of

the local models of each client. Since the training data distribution

of all the clients is highly varied, their model weights may cancel

each other out in the SGM approach. Fig. 7b shows that the average

accuracy of the SGM on Local-non-IID is only close to 25%, even

after 100 rounds, whereas our approach has an average accuracy of

over 94%.

6.2.3 Performance Against CM. The Local-non-IID of each

client was evaluated using their corresponding clusters. Since the

global model executes the clustering, it has a global view of all

the clients, allowing for a faster matching among similar clients.

But the CM’s advantage over our approach is present only for the

first few rounds. As seen in Fig. 7c, after round 40, our method

consistently maintains about 10% higher average accuracy than

CM. Our approach, which is far more fine-tuned with the selection

and rescaling process, successfully manages to keep the essence
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Figure 7: Subfigure (a) shows the performance of our approach under different distributions on CIFAR10 Local-non-IID test

data. Subfigures (b) and (c) show the performance comparison of our approach against the Single Global Model approach and

the Clustering-based approach on CIFAR10 Local-non-IID test data.
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Figure 8: Subfigure (a) shows the performance of our approach under different distributions on CIFAR10 Global-IID test data.

Subfigures (b) and (c) show the performance comparison of our approach against the Single Global Model approach and the

Clustering-based approach on CIFAR10 Global-IID test data.

of the local distribution far better than the CM, though it has the

advantage of being centralized.

6.3 Evaluation on Global-IID Data

The Global IID data has an equal number of data records for all the

classes in the test dataset. Though rarely required, it is better to

have a good overall performance.

6.3.1 Impact ofDistribution Extent. Regarding the performance

on Global-IID data, the overall distribution of all the participants

play a crucial role. As shown in Fig. 8a, overall performance has

dropped for all the distributions. At round 100, the minimum accu-

racy for all the distributions is less than 75%. But, the lowest average

accuracy is almost 80%. This shows that there are many fluctuations

in the client’s performance when it comes to Global-IID data. The

lowest average accuracy is almost 80% for Dist-1, which is great

considering that it is an extreme non-IID distribution.

6.3.2 Performance Against SGM. Fig. 8b, shows only one line

representing SGM. This is because SGM only produces one Global

Model, and unlike Local-non-IID, where each client gets a different

distribution, Global-IID is a single test set for all the models. Hence,

only one accuracy result. Even with all the 50 clients combined,

the performance of SGM on IID data is poor. This is because of

the existence of some clients with extremely skewed distribution.

Such skewed models may negate the impact of the other clients,

leading to poor performance. Even here, we can notice that our

approach has an almost linear improvement in performance, owing

to decreasing uncertainty and increasing similarity over rounds.

This uncertainty decrease increases the appropriate contribution

of many clients, leading to improved Global-IID performance.

6.3.3 Performance Against CM. Fig. 8c shows that similar to

Local-non-IID performance, the CM seems to be performing better

in the early rounds of training. But, as the number of rounds in-

creases, our approach performs better than CM. In clustering-based

models, only the clients in the cluster can contribute to their CM.
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Table 1: Comparing the prediction accuracy of the clientmodels trainedwith different SOTAnon-IID FLmethods. The results are

based on the top-5 accuracy in round 200. DD1 and DD2 represents Dirichlet Distribution coefficient of 0.6, and 0.3 respectively.

Method

Top-5 DD1 DD2

minAcc maxAcc avgAcc minAcc maxAcc avgAcc

FedProx [29] 0.581 0.818 0.650 0.548 0.731 0.622

FedDC [7] 0.674 0.901 0.724 0.611 0.893 0.693

FedEM [20] 0.707 0.891 0.790 0.687 0.897 0.753

ClusteredFL [30] 0.658 0.854 0.700 0.559 0.713 0.662

SLFed (Ours) 0.741 0.935 0.863 0.735 0.943 0.879

This restriction causes some clustered models to not have any fea-

tures related to the clients on other clusters. But, in our approach,

as the uncertainty decreases, more rescaled models get added to

the PAM, even if it is not highly similar. Over time, this leads to

each of the models having a much better overall performance.

From Fig. 7b and Fig. 8b, we can notice that quick performance

boost in ourmethod against Local-non-IID, but the improvement for

Global-IID data is much more linear. In the earlier training rounds,

the models with high similarity contribute the most to the PAM,

leading to better Local-non-IID performance. But, as the number of

rounds increases and the overall uncertainty decreases, the not-so-

similar models also make small contributions to the PAM, causing

a gradual improvement in Global-IID performance.

6.4 Comparison with State-of-the-Art Methods

This subsection will compare our approach against state-of-the-art

FL methods designed to work well for non-IID datasets. For this

test, we use the ImageNet32 dataset distributed under two Dirichlet

distributions: 0.6 and 0.3 [7].We select methods like [7, 20, 29, 30] for

this comparison. FedDC [7] introduces lightweight modifications

in the local training phase to track the gap between local and global

parameters using auxiliary drift variables. FedEM [20] treats the

local data distribution of the clients to be unknown underlying

distribution and builds personalized models for clients not seen in

training time. ClusteredFL [30] exploits geometric properties of the

loss surface in order to cluster the client population into different

groups. FedProx [29] is a reparameterized version of the famous

FedAvg approach and is designed to work well with heterogenous

data distributions.

For our experiment, we will be considering the performance of

the methods when tested with local non-IID datasets. The results

will be presented as minAcc, maxAcc, and avgAcc. The minAcc and

maxAcc denote the client model, which yields the minimum, and

the client model, which yields the maximum accuracy, respectively.

The avgAcc is the average performance accuracy of all the 100

models.

In Table. 1, we compare the results of the Top-5 accuracy of all

the models in round 200. We can see that our approach’s perfor-

mance is better than existing works when we consider the model’s

performance against the client’s local data distribution. This shows

that each client successfully manages to find and aggregate the

models that are similar to it. This is a 40-class classification prob-

lem with a 32x32 dataset. Yet, our method gets a high average

accuracy across all models. When the Dirichlet co-efficient is 0.3, it

leads to highly uneven distribution. Even in that case, our model

outperforms existing SOTA approaches.

7 DISCUSSIONS

7.1 Computational Complexity

Let’s discuss the computational overhead induced by using GAN-

based similarity checking. The primary concern would be that

generating images using GAN might be costlier than the model

training. This case is untrue because we do not train the GAN

models to exhibit efficient performance. The GAN only needs to be

trained for a few iterations to get images that reflect the distribution

of the client. Individually, the generated images do not require

high prediction accuracy, drastically reducing the computational

overhead.

Reducing Computation Complexity. The GAN images need

not be generated in each round. Initially, when the original model

performance is improving rapidly, the GAN images need to be

generated once every 3-4 rounds. But, as the model performance

stabilizes, the same GAN images can be used for multiple rounds

rather than regenerating newer images.

7.2 Information Leakage

Another concern surrounding the use of GAN can be attributed to

the possibility of information leakage because of the GAN images

that are sent to other clients. As mentioned earlier, the GAN is

not trained long enough for the features of the local dataset to be

captured in the images. From the example shown in 5, we can notice

that there are no details leaked that can be perceived by human

beings because of how the images are in the early stages of the

GAN training process.

Enhancing Privacy. Instead of using vanilla GAN, the clients

can choose to use privacy-preserving GAN methods like [19, 32].

Such GAN methods specifically focus on reducing an attacker’s

ability to infer the data used for training the GAN model. Another

approach to defending against information leakage would be to use

methods like Locality Sensitive Hashing [14] to group the models

based on their similarities. This approach would require a central
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server to conduct the task and is not as granular as our decentralized

approach.

7.3 Communication Efficiency

Another concern with our approach is communication efficiency.

Our method has two processes not part of the general FL scheme,

making it communicationally costlier than standard FL. The two

processes are GAN-generated data sharing and layer-wise secret

sharing. This communication overhead can be costly for some

intricate FL tasks.

Improving Communication Efficiency. Suppose the clients

find the communication cost to be high. In that case, we can adapt

this decentralized scheme to function with a centralized server,

such that the centralized server has no real power but just acts as a

storage server. The clients can store their GAN data records on the

server and grant access to other clients whenever needed. Similarly,

the layer-wise secret sharing can be replaced by sending the local

model, 𝑃𝐴𝑀𝑙𝑖𝑠𝑡 , and 𝜎 directly to the central server. The central

server can take care of the aggregation process. It is essential to

ensure the trustworthiness of the central server if this technique is

used.

7.4 Future Work

Our framework is safe and efficient as long as the clients don’t

deviate from the protocol but is susceptible to security attacks

under other conditions. In the future, we intend to explore the

possibility of using a Multi-Armed Bandit [1] for the DS selection

process. We also want to make our approach data-type agnostic.

Clients with local models from different data domains like images,

audio, video, and text should all be part of the same safe and private

FL network and still build the PAM suitable for them.

Centralized Variation. A centralized variation of our approach

can utilize the global view to quicken the client evaluation process.

It can also improve the network’s security by applying clipping

methods and adding noise to make PAMs differentially private.

Each client sends all their requests and information through the

trusted central server. Multiple trusted central servers can also be

introduced into the network to reduce the individual computation

and communication overhead.

8 CONCLUSION

In this work, we have explored the possibility of establishing in-

dividual Personal Aggregated Models for all the clients through a

Subjective Logic-based decentralized learning approach. We use

a GAN-generated dataset to discover training data similarities be-

tween clients and utilize direct and indirect client information to

select contributors for the Personal Aggregated Model. We employ

a Dynamic Uncertainty Threshold for shortlisting the clients in

the network for aggregation. Our layer-wise secret sharing allows

clients to share models among themselves without compromising

privacy. We also show the superior performance of our approach

against Single Global Model methods and Cluster Model methods

under both IID and non-IID settings. Our approach outperforms the

state-of-the-art non-IID FL methods when tested on each client’s

local data distribution. Finally, we also discuss the communication,

computation, and privacy improvements to our method.

ACKNOWLEDGMENTS

This work is partially supported by the National Science Foun-

dation under Grant Numbers DGE-2011117, DGE-2146359, CNS-

2349233, and CNS-1852105; the National Natural Science Founda-

tion of China under Grant 62002059; and the Fundamental Research

Funds for the Central Universities under Grant 2242022k60005.

REFERENCES
[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47, 2 (2002), 235ś256.
[2] Christopher Briggs, Zhong Fan, and Peter Andras. 2020. Federated learning with

hierarchical clustering of local updates to improve training on non-IID data. In
2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 1ś9.

[3] Haokun Chen, Ahmed Frikha, Denis Krompass, Jindong Gu, and Volker Tresp.
2023. FRAug: Tackling federated learning with Non-IID features via representa-
tion augmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 4849ś4859.

[4] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. 2020. Asynchro-
nous online federated learning for edge devices with non-iid data. In 2020 IEEE
International Conference on Big Data (Big Data). IEEE, 15ś24.

[5] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2017. A downsampled
variant of imagenet as an alternative to the cifar datasets. arXiv preprint
arXiv:1707.08819 (2017).

[6] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2020. The limitations of
federated learning in sybil settings. In 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020). 301ś316.

[7] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu.
2022. Feddc: Federated learning with non-iid data via local drift decoupling
and correction. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 10112ś10121.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770ś778.

[10] István Hegedűs, Gábor Danner, and Márk Jelasity. 2019. Gossip learning as a
decentralized alternative to federated learning. In IFIP International Conference
on Distributed Applications and Interoperable Systems. Springer, 74ś90.

[11] Chenghao Hu, Jingyan Jiang, and Zhi Wang. 2019. Decentralized federated
learning: A segmented gossip approach. arXiv preprint arXiv:1908.07782 (2019).

[12] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun
Zhang. 2022. Membership inference attacks on machine learning: A survey. ACM
Computing Surveys (CSUR) 54, 11s (2022), 1ś37.

[13] Md Sirajul Islam, Simin Javaherian, Fei Xu, Xu Yuan, Li Chen, and Nian-Feng
Tzeng. 2024. FedClust: Optimizing Federated Learning on Non-IID Data through
Weight-Driven Client Clustering. arXiv preprint arXiv:2403.04144 (2024).

[14] Omid Jafari, Preeti Maurya, Parth Nagarkar, Khandker Mushfiqul Islam, and
Chidambaram Crushev. 2021. A survey on locality sensitive hashing algorithms
and their applications. arXiv preprint arXiv:2102.08942 (2021).

[15] Audun Jùsang. 1997. Artificial reasoning with subjective logic. In Proceedings of
the second Australian workshop on commonsense reasoning, Vol. 48. Citeseer, 34.

[16] Audun Jùsang. 2001. A logic for uncertain probabilities. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 9, 03 (2001), 279ś311.

[17] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. 2021.
Fedbn: Federated learning on non-iid features via local batch normalization.
arXiv preprint arXiv:2102.07623 (2021).

[18] Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, and Qiang
Yan. 2020. A blockchain-based decentralized federated learning framework with
committee consensus. IEEE Network 35, 1 (2020), 234ś241.

[19] Yi Liu, Jialiang Peng, JQ James, and Yi Wu. 2019. PPGAN: Privacy-preserving
generative adversarial network. In 2019 IEEE 25Th international conference on
parallel and distributed systems (ICPADS). IEEE, 985ś989.

[20] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard
Vidal. 2021. Federated multi-task learning under a mixture of distributions.
Advances in Neural Information Processing Systems 34 (2021), 15434ś15447.

[21] LelandMcInnes, John Healy, and Steve Astels. 2017. hdbscan: Hierarchical density
based clustering. J. Open Source Softw. 2, 11 (2017), 205.

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273ś1282.

[23] Mahdi Morafah, Saeed Vahidian, Weijia Wang, and Bill Lin. 2023. Flis: Clustered
federated learning via inference similarity for non-iid data distribution. IEEE



Subjective Logic-based Decentralized Federated Learning for Non-IID Data ARES 2024, July 30śAugust 02, 2024, Vienna, Austria

Open Journal of the Computer Society 4 (2023), 109ś120.
[24] Xutong Mu, Yulong Shen, Ke Cheng, Xueli Geng, Jiaxuan Fu, Tao Zhang, and

Zhiwei Zhang. 2023. Fedproc: Prototypical contrastive federated learning on
non-iid data. Future Generation Computer Systems 143 (2023), 93ś104.

[25] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering,
Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza
Zeitouni, et al. 2022. FLAME: Taming Backdoors in Federated Learning. (2022).

[26] Christodoulos Pappas, Dimitris Chatzopoulos, Spyros Lalis, and Manolis Vavalis.
2021. Ipls: A framework for decentralized federated learning. In 2021 IFIP Net-
working Conference (IFIP Networking). IEEE, 1ś6.

[27] Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza Sadeghi.
2022. DeepSight: Mitigating Backdoor Attacks in Federated Learning Through
Deep Model Inspection. arXiv preprint arXiv:2201.00763 (2022).

[28] Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and Chris-
tianWachinger. 2019. Braintorrent: A peer-to-peer environment for decentralized
federated learning. arXiv preprint arXiv:1905.06731 (2019).

[29] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar,
and Virginia Smith. 2018. On the convergence of federated optimization in
heterogeneous networks. arXiv preprint arXiv:1812.06127 3 (2018), 3.

[30] Felix Sattler, Klaus-Robert Müller, andWojciech Samek. 2021. Clustered Federated
Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy
Constraints. IEEE Transactions on Neural Networks and Learning Systems 32, 8
(2021), 3710ś3722. https://doi.org/10.1109/TNNLS.2020.3015958

[31] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612ś613.
[32] Warit Sirichotedumrong and Hitoshi Kiya. 2021. A gan-based image transforma-

tion scheme for privacy-preserving deep neural networks. In 2020 28th European
Signal Processing Conference (EUSIPCO). IEEE, 745ś749.

[33] Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang.
2023. Federated learning on non-iid graphs via structural knowledge sharing. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 37. 9953ś9961.

[34] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. 2020. Optimizing federated
learning on non-iid data with reinforcement learning. In IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 1698ś1707.

[35] Yanmeng Wang, Qingjiang Shi, and Tsung-Hui Chang. 2023. Why batch
normalization damage federated learning on non-iid data? arXiv preprint
arXiv:2301.02982 (2023).

[36] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang, Jing Jiang,
and Chengqi Zhang. 2020. Multi-center federated learning. arXiv preprint
arXiv:2005.01026 (2020).

[37] Lei Yang, Jiaming Huang, Wanyu Lin, and Jiannong Cao. 2023. Personalized feder-
ated learning on non-IID data via group-based meta-learning. ACM Transactions
on Knowledge Discovery from Data 17, 4 (2023), 1ś20.

[38] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chan-
dra. 2018. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582
(2018).


	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Federated Learning
	2.2 Data Distributions
	2.3 Subjective Logic
	2.4 Generative Adversarial Networks

	3 Related Work
	3.1 Federated Learning with Non-IID
	3.2 Decentralized Federated Learning

	4 Overview
	4.1 Steps Involved: High-Level

	5 Methodology
	5.1 Initial Local Training and GAN Dataset Generation
	5.2 Similarity Metrics
	5.3 Subjective Logic
	5.4 Selecting Clients for Personal Aggregated Model
	5.5 Decentralized Aggregation

	6 Experiments
	6.1 Setup and Baseline
	6.2 Evaluation on Local-non-IID Data
	6.3 Evaluation on Global-IID Data
	6.4 Comparison with State-of-the-Art Methods

	7 Discussions
	7.1 Computational Complexity
	7.2 Information Leakage
	7.3 Communication Efficiency
	7.4 Future Work

	8 Conclusion
	Acknowledgments
	References

