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ABSTRACT. We introduce the class of principal symmetric ideals, which are
ideals generated by the orbit of a single polynomial under the action of the
symmetric group. Fixing the degree of the generating polynomial, this class
of ideals is parametrized by points in a suitable projective space. We show
that the minimal free resolution of a principal symmetric ideal is constant on
a non-empty Zariski open subset of this projective space and we determine this
resolution explicitly. Along the way, we study two classes of graded algebras
which we term narrow and extremely narrow; both of which are instances of
compressed artinian algebras.

CONTENTS
1. Introduction 1831
2. Representation theory for the symmetric group 1834
3. Duality and compressed algebras 1838
4. Narrow and extremely narrow algebras 1844
5. Quadratic principal symmetric ideals 1852
6. Principal symmetric ideals generated in degree d: An example 1855
7. Linear relations of the inverse system 1860
8. Main theorem, and the case of cubic principal symmetric ideals 1870
Appendix A. Brief review of the category modg R 1877
Acknowledgments 1881
References 1881

1. INTRODUCTION

Let k be a field and let R = k[z1,...,2,] denote the polynomial ring in n
variables. The ring R comes equipped with a natural action of the symmetric
group &,, given by

o f(@1,.. ., 20) = f(Zo1), -+ Tom)) for o€ 6,
We are interested in homogeneous ideals which acquire an induced action from the
action of G,, on R, which we refer to as symmetric ideals. The study of such ideals
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is both a classical topic in commutative algebra and one of current interest. In
particular, the graded betti numbers for (certain families of) monomial symmetric
ideals are the focus of the recent works [12], [4] and [22].

In this paper, we introduce a different class of symmetric ideals which we term
principal symmetric ideals. We determine the graded betti numbers for general such
ideals, that is, when their generator belongs to a non-empty Zariski-open set in its
natural parameter space. This constitutes a symmetric counterpart to the study of
general graded artinian algebras parametrized by their Macaulay dual generators,
an endeavor which was undertaken primarily in [15] and [5].

We now introduce the main characters of our work in more detail. Let fi,..., f.
€ R. Define the symmetric ideal generated by fi,... f, to be

(fi,.- - fa)s,=(0-fi:0€6,,1<i<a).

We are particularly interested in the case of homogeneous principal symmetric
ideals. A principal symmetric ideal is an ideal of the form (f)g, , where f € Ris a
homogeneous polynomial.

Fix d € N. A parameter space for the set of principal symmetric ideals gener-
ated in degree d is PN~!, where N = (”+g_1). Indeed, let M, denote the set of
monomials of degree d in R listed as My = {m1,...,my} in an arbitrary order (for
example, lexicographical). Points in PV ~! parametrize principal symmetric ideals

generated in degree d via the assignment

@ : PV~ - principal symmetric ideals,
N
Dey:-ten) = (fe)s,s where f. = Zczml
i=1

The map ¢ above is onto, but not one-to-one. It allows us to formulate a notion
of a general principal symmetric ideal, which we now formalize. We will say that a
general principal symmetric ideal generated in degree d satisfies property P if there
exists a non-empty Zariski-open set U of PV so that for each ¢ € U, the principal
symmetric ideal ®(c) = (f.)s, satisfies the property P.

With this terminology in place, we inquire into properties satisfied by general
principal symmetric ideals. Our initial interest in this question was spurred by a
result in [17, Theorem 1], where Kretschmer proves (in a different language) a more
general version of the following result.

Theorem 1.1 ([17, Theorem 1 (i)]). For each d € N, a general principal symmetric
ideal I generated in degree d has the property that R/I is artinian.

The main goal of this paper is to describe general symmetric ideals in more
detail, specifically in terms of their numerical and homological invariants such as
the Hilbert series, socle type, Macaulay inverse systems, and minimal graded free
resolutions. Recall that the graded betti numbers of a graded R-module U are

fj(U) := dimy Tor[ (U, k); for 4,j € Z. They are summarized in a betti table
which displays 3; ;(U) in column ¢ and row j — 1.

The following is our main result. It employs the notation P(d) for the number

of partitions of d, that is,

P(d):#{(p177pt)|p12Zpt7p1++pt:d7t€N}
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Main Theorem (Theorem 8.4). Suppose k is infinite with char(k) = 0 and fiz an
integer d > 2. For sufficiently large n, a general principal symmetric ideal I of
k[z1,...,2,] generated in degree d satisfies the following.

(1) The Hilbert function of A= R/I is given by
dimg R, ifi<d—1,
HFA(i) == dimg A; = { P(d) =1 ifi=d,
0 ifi > d.
(2) The betti table of A has the form

0 1 2 - 7 - n—=2 n—1 n
total: 1 w; wugy -+ u; -+ Up—2 Up—1+L¢ a-+bd
0: 1
d—1: . Uy Uy - Ui = Up—2 Unp—1 b
d: . . . . . . Y4
with
a=P(d) -1,

b = dimy Ry_y — (P(d) — 1)(n— 1) + P(d — 1),

() o )
¢=P(d) - P(d—1) 1.

(3) The graded minimal free resolution of A has &, -equivariant structure de-
scribed by the &, -irreducible decompositions for the modules TorZR(A7 k)
given in Theorem 8.3.

Moreover, the Poincaré series of all finitely generated graded A-modules are ra-
tional, sharing a common denominator. When d > 2, A is Golod. When d =2, A
is Gorenstein and Koszul.

In order to prove the above theorem, we single out the class of narrow graded
algebras, which we believe to be interesting in its own right. A narrow algebra is
an artinian quotient algebra A = R/I with I a homogeneous ideal, so that the
initial degree of I coincides with the top socle degree of A, cf. Definition 4.1. It is
a consequence of the definition and in fact equivalent to it that the betti table of a
narrow algebra is concentrated in two adjacent rows, except for its 0-th homological
degree. In view of this, Theorem 8.4(2) yields that quotient algebras defined by
principal symmetric ideals in sufficiently many variables are narrow. In fact they
are extremely narrow, cf. Definition 4.6, a property that forces additionally that the
betti table is concentrated in a single row except for the 0-th, (n — 1)-st and n-th
homological degree according to Lemma 4.7.

Algebras with Hilbert function as in part (1) of the above Theorem are instances
of compressed algebras; see Definition 3.11. This class of algebras has been studied
extensively in the graded case most notably by Iarrobino [15] and Boij [5] and in
the local case by Kustin-Sega-Vraciu [19]. Compressed level artinian algebras are
often studied using the Macaulay inverse system, which parametrizes this class of
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algebras. Our Theorem 8.4 shares some similarities with results regarding general
level artinian algebras: indeed, these are known to be compressed, and their betti
tables are also concentrated in two adjacent rows with the exception of the 0-th
and n-th homological degrees [5]. Unlike our results, those for general artinian level
algebras hold for an arbitrary number of variables. However Theorem 8.4 does not
hold when there are not enough variables; see Example 8.5.

The equivariant structure for the minimal free resolution of a symmetric ideal
incorporates the action of the symmetric group in describing the resolution. An
action of &,, on R/I extends to an action on the minimal free resolution of R/I
making each of the graded vector spaces Torf'(R/I,k); into a finite-dimensional
representation of the symmetric group as recalled in Lemma A.5. We describe
the &,-equivariant structure of the minimal free resolution of a general principal
symmetric ideal by finding the decomposition of Tor}*(R/T, k) ;j into irreducible &,,-
modules (Specht modules) in Theorem 8.3.

Equivariant structures on the resolutions of certain families of symmetric ideals
have been previously described by Galetto [12] for the ideals generated by all
squarefree monomials of a given degree, by Biermann-de Alba-Galetto-Murai-Nagel-
O’Keefe-Romer-Seceleanu [4] for symmetric shifted ideals, and by Murai-Raicu [22]
for all symmetric monomial ideals. Our work does not exhibit significant overlap
with these contributions. The graded free resolutions for the powers of the ho-
mogeneous maximal ideal can be deduced from work of Buchsbaum-Eisenbud [7],
which is an important ingredient in our proof. The focus of [7] is however on equi-
variant resolutions with respect to an action of the general linear group whence
a translation to the induced action of the symmetric subgroup is necessary; see
Lemma 2.7.

Our paper is organized as follows. Section 2 introduces some representation-
theoretic tools, while Section 3 recalls Macaulay duality and its homological con-
sequences. Section 4 focuses on properties of narrow algebras, including equiva-
lent descriptions in terms of their minimal free resolutions in Lemma 4.3 and the
Macaulay inverse system in Lemma 4.2. The subclass dubbed extremely narrow
algebras is also discussed therein, with a focus on determining the betti numbers of
these algebras in Corollary 4.10. Section 5 constitutes an introduction to employing
the methods presented so far for quotient algebras defined by principal symmet-
ric ideals. More precisely, in Section 5 we analyze the case of quadratic principal
symmetric ideals, which is less involved, but sets forth a blueprint for our general
investigation. In Section 6 we construct sufficiently general principal symmetric
ideals generated in arbitrary degree, for which we determine the Macaulay inverse
system in Section 7. This allows us to show that quotient algebras defined by prin-
cipal symmetric ideals are extremely narrow. Our main theorem comes together
in Section 8, by combining all the ingredients prepared in advance. Finally, in the
appendix, we make brief remarks about the category of finitely generated graded
R-modules with group actions.

2. REPRESENTATION THEORY FOR THE SYMMETRIC GROUP

The irreducible representations of the symmetric group &,, were worked out by
Young and Specht in the early 20th century. Recognizing the latter mathematician’s
contribution, the irreducible representations of &,, are now called Specht modules.
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Let n be a positive integer. We denote [n] = {1,...,n}. Let A be a partition
of n, that is, a tuple A = (A1,...,Ap) such that Ay > Ay > --- > X, and |A| =
A1+ -+ A, = n. We denote the fact that A is a partition of n by A - n. For
a partition A\ we write #\ for the number of parts, not to be confused with ||,
the sum of the parts of A. When it is convenient to do so, we view A as a t-tuple
(t > #\) by appending ¢ — #\ entries equal to zero.

Specht &,,-modules are in bijection with partitions of n. For each A - n the
corresponding Specht module is denoted Sp,. We adopt the convention that if
o is a tuple which is not a partition then Sp, = 0. The Specht modules Sp,,
where A\ varies over all partitions of n, form a complete set of finite-dimensional
irreducible representations for &,, over C (see [16, Theorem 4.12]). In fact, since
Specht modules are defined over Z, they continue to form a complete set of irre-
ducible representations over any field of characteristic zero.

Example 2.1. The Specht modules Sp,,) and Sp ;. are the trivial and sign rep-
resentation of &,,, respectively.

The next result collects a few useful properties of Specht modules used in our
proofs.

Fact 2.2. The following are known properties of the Specht modules.

(1) The natural representation of &,,, acting by permutation matrices on V =
k™, decomposes as V' = Sp(,,) ® Sp(,,_1,1), where Sp(,,_; ;) is the standard
representation.

(2) The exterior powers of the standard representation are A’ SPn-1,1) =
SP(n—s,17), cf. [10, Exercise 4.6].

(3) For each partition A of n there is an identity, cf. [14, p. 257-258]

SpA @k Sp(n-1,1) = PSP,
HEI(AN)

where: Z(\) is the set of partitions whose Young diagram is obtained from
that of A by removing a box from the Young diagram of A and adding a
box to the resulting diagram, ¢, = 1 whenever u # A, and cy is the number
of distinct parts of A minus one.

2.1. The category modg, R. The polynomial ring R = k[z1,...,2,] = Sym,(R;)
with homogeneous maximal ideal m = (x1,...,x,) carries the structure of an &,,-
representation, given by extending the permutation representation structure of Ry
(obtained by permuting variables) to the symmetric algebra it generates. This
coincides with the explicit action of &,, on polynomials given in the beginning of
Section 1.

An 6, -equivariant graded R-module M is an R-module endowed with an &,,-
action which is degree-preserving and for which the multiplication map RQM — M
is G,,-equivariant. Let us denote by modg, R the category of finitely generated
graded &,-equivariant R-modules. This category is discussed in more detail in
Appendix A.

If M is an object in mode, R, then the action of &, extends to the entire
minimal free resolution F' of M; see [12]. If F; is a free module appearing in F,
then F; is isomorphic in modg, R to F;/mF; ®¢ R, hence the action of &,, on F; is
determined by its action on the vector spaces F;/mFE; 2 Tor (M, k).
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In this paper we will be interested in quotient rings given by principal sym-
metric ideals, viewed as members of modg, R. In particular we consider how
the &,,-representation structure of such quotient algebras R/(f.)s, varies in fam-
ilies parametrized by ¢ € PVN~1 as in Section 1. Our approach will be via de-
termining the equivariant structure of the modules Tory(R/(f.)s, k). We show
in Theorem 8.3 that the isomorphism class of Tor(R/(f.)s,,k) in mods, R is
constant on a Zariski open set of PN~! for n > 0 and we determine its value.

Example 2.3. Set M = k with trivial &,-action. It is well known that the minimal
free resolution of k is the Koszul complex K(x1,...,z,) and that the free modules
in this complex are described by K; = /\ﬁRl ®k R. We conclude that

Torl(k,k) = K;/mK; = ALR; @y (R/mR) = A R;.
Fact 2.2(1) and (2) yield (noting also that Sp(,, is the trivial 1-dimensional repre-
sentation) that
(2.1)

T‘OI‘,LR(k7 k) = AiRl = /\i (Sp(n) (5] Sp(n_Ll)) = @ (Ai Sp(n) ®k/\z|l(_j Sp(n_ljl))
7=0

= NiSP(n_1.1) BN SP(m1.1) = SP(ni1é) ®SP(n_ir11i-1) -
Example 2.4. Fix an integer d > 1 and set M = m?. The minimal free resolution
L of M over R can be deduced from the more general construction given in [7].
The Koszul complex K (z1,...,2,) splits into graded strands of the form
(2.2) s NTRy @k Rjog — NyRy @k Ry — N 'Ry @k Ry — -+
For our purposes it suffices to note that the free module appearing in homological
degree i the resolution £ of m? can be described as
(2.3) Lia=ker (N.R1 ® Rq — N 'Ry ® Rat1) ®k R
(2.4) =im (/\fj—lRl Rk Rg—1 — /\f;Rl Rk Rd) Rk R,
where the map above comes from the Koszul complex (2.2). The differentials in
the complex £ are induced, viewing £; 4 as a submodule of by /\f(Rl Rk Rq ®« R,
by 0 ® id where 0; : /\f;R1 — /\f;Rl is the differential of the Koszul complex and id
is the identity map of Ry ®x R. The module M and indeed the entire resolution £
are equipped with an action of the general linear group GL,, (k) extended from the
natural action of GL,,(k) on Ry. The GL, (k)-module

S(j71i) = ker (/\iR1 Rk Rj — /\i_lRl Rk Rj+1) ,

where the map is the differential of the Koszul complex, is a GL,, (k)-representation

known as the Schur module corresponding to the partition (j,1"); see [10, Exercise
6.20 (c)].t

From (2.3) we obtain the isomorphisms
(25) Torf(md, k) = Eiyd/mﬁiyd = S(d71’7)
of GL, (k)-modules. The particular case Lo/mLo = S(g) identifies Ry = S(gy in
modg, R.

IThe indexing convention for Schur modules used here differs from that in [27, Example
(2.1.3)(h)] by transposing partitions.
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While (2.5) identifies the structure of £ as a GL,,(k)-representation, we are in-
stead interested in its structure as a &,-representation, where we view &,, as a
subgroup of GL,, (k) by its usual embedding as the subgroup of permutation matri-
ces. To describe this, we need additional notation. Let Sy denote the Schur module
determined by a partition A. Up to isomorphism, the Schur modules Sy for A a
partition with length < n parametrize the irreducible polynomial representations
of GL, (k). The construction of Schur modules in this generality can be found in
e.g. [10, §6.1]. If a partition v = (¥4, va,...,Vs) has the property that n > vy + |v|
(note in particular this means v is a partition of an integer strictly smaller than n),

we may define v(n) := (n — |v|,v1, V9, ...,Vs), which is a partition of n. We denote
by Resgi"(k) the restriction operator which takes a GL,, (k)-representation and con-

siders it as a &,,-representation. Let A be a partition. Applying the restriction to
the corresponding Schur module Sy we obtain a formula

Ba” ™
(2.6) Resd WS = D (Smw)

vi+|v|<n

where the ai(") are by definition the multiplicities with which the relevant Specht
modules appear in the decomposition of the LHS of (2.6) into irreducible &,,-
representations. In particular, a;(n) are non-negative integers by definition. Little-

wood [20] (see also [25] and [26, Exercise 7.74]) gave a formula for the multiplicities
ai(n by means of plethysm, recorded in (2.7).

Fact 2.5 ([20]).

(1) The multiplicities for the irreducible decomposition of the restricted repre-
sentation in (2.6) are given by

(2.7) ai(") = (Sx; Sum)[L + b1+ ha+---]),

where s)(z1,- -+ ,z,) = char(S,) is the Schur polynomial, the character of
the Schur module Sy, and, for a non-negative integer k, we have

hy = E Liy Ty =+ Ly,

1<in < <ip<n

is the complete homogeneous symmetric polynomial. The notation s, ¢, [1+
hi+ hg + - - -] stands for plethysm. Specifically, g[f] is the result of substi-
tuting the monomials in the support of f into g. The Hall inner product
for characters is determined by (sx,s,) = 0x .

(2) The limit af := lim,, oo az(n) exists.

(3) For A, v partitions with |A| < |v|, one has a¥ = 6 ..

Remark 2.6. It is a long-standing question to give a combinatorial formula for the
coeflicients af\(") appearing above; it is sometimes called “the restriction problem”.
Littlewood’s results in Fact 2.5 reformulate the question in terms of plethysm, but
a combinatorial formula is not known for the RHS of (2.7). However, partial results
are known for very special cases. We do not give an exhaustive list here, but some
recent progress for the cases of the trivial and the sign representations can be found
in [23, Theorems B and C]. In another direction, a symmetric function approach to
the problem was given by Orellana and Zabrocki [24].
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While they are not mentioned explicitly in our main theorem stated in Section 1,
the coefficients ai(n) appear in Theorem 8.3, and we use them to describe the &,-
equivariant structure of the minimal free resolution of a general principal symmetric
ideal. This will be done, in part, by means of Lemma 2.7, which provides the &,-
equivariant structure of the resolutions of powers of the maximal ideal.

Lemma 2.7. The &, -equivariant structure for the minimal free resolution of m?
is given by
Ba” ™
(2:8) Torf(m' k)= @ (Spui)
lv|<it+d
vi+|v|<n
where the multiplicities are given by the plethysm (2.7).

Proof. The desired &,,-irreducible decomposition (2.8) follows from (2.5) and (2.6).
To see the restrictions on v in the summation, note that if |(d,1%)] = i +d < |v|
then Fact 2.5(3) implies that the multiplicity of Sp,, in (2.8) is zero. O

3. DUALITY AND COMPRESSED ALGEBRAS

We give here an exposition of the Macaulay inverse system and Matlis/local
duality, as needed towards our main results. We use Bruns and Herzog [6] as a
reference for standard duality facts.

In this section, R = k[z1,...,z,] is always taken to be a polynomial ring over
a field k, with n variables in degree 1. When regarded as a graded ring itself, k
is considered to be concentrated in degree zero. We work with graded R or k-
modules. When we write Homp(—, —), Homy(—, —), Extg(—,—) or Tor®(—, -),
we understand the graded versions of the functors, as described in [6, Section 1.5]
and explained further in Appendix A. In particular, if U, V are graded R-modules,
then Tor’(U, V) is a bigraded module, and Tor?* (U, V); denotes the component in
homological degree ¢ and internal degree j.

3.1. Duality. If U is graded R-module, we define the graded R-module
U* := Homp(U, R).
On the other hand, viewing U as a graded k-module, we may also define the graded
k-module
UY := Homy(U,k)  where  (U"); = Homy(U_;,k)
for all i. Note that UV has a graded R-module structure given by
(3.1) (ap)(u) = p(au) forae R, U, uel.

We recall below the results that allow us to use (graded) Matlis duality. Since
R =K[z1,...,z,], considered with its (graded) maximal ideal m = (x1,...,z,), is a
Noetherian complete *local ring (in the sense of [6, 1.5.13]) and is Cohen-Macaulay
of dimension n, the following holds.

Proposition 3.1 ([6, Proposition 3.6.16, Example 3.6.10, Theorem 3.6.17(c), The-
orem 3.6.19]). With notation as above,

(1) RY is the (graded) injective hull of k.
(2) UY 2 Hompg(U, RY).
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(3) The functor (—)V establishes an anti-equivalence between the category of
graded artinian R-modules and that of finitely generated graded R-modules.
In particular, the functor (—)V is exact, and U is artinian if and only if
UV is finitely generated.

(4) If U is artinian, then UV = Exth(U,wgr), where wg = R(—n) is the
(graded) canonical module of R.

We set S = RY. Recall that S; = Homy(R_;, k) for all i. Let y%el)yéeﬁ glen)
denote the basis element of S that is dual to the monomial z*z5? ... z& with e; > 0
for all 4, with the convention that we will write y; instead of ygl) and we may omit

ygei) when e; = 0, unless e; = 0 for all ¢, in which case we will write 1 for the

basis element dual to 1 € R (e.g. we may write y;y3 instead of y%l)yéo)yél))? The

R-module structure of S can be described equivalently as a contraction, defined by
extending the following action on monomials by linearity in both arguments:

( —d ) ( n_dn) 3 N
(3.2) aft - a0yl .. ylen) = A e = di = 0 forall .
0 otherwise.

We emphasize that we regard S as a graded injective hull of k, and, as such, the

basis element ygel) = ~y7(f") has degree equal to — Y I | ;.

As discussed in Remark A.2(4), the natural action of &,, on S is given by
o-s(t)=s(c""-t) forceG,,tc R, scS.
We record two important aspects of this action below.

Lemma 3.2. With notation as above, the following hold.
(1) For each dual basis element y;el) e yﬁf") €S ando € G,,

o - (y§el) e yge")) = y‘(je(ll)) e yge(:l))

(2) Foralli>0,0€&,, reR; and s € S;, we have:
o-(ros)=ros when i+ j > 0.

Proof. Indeed, to show (1), it suffices to prove the equality when evaluating at an

arbitrary basis element z* - - - 2% of R. We have:

(o ygen cglen)y(gh ) = (ygen cyle ) (omh ad gdn)
(y§61) e y£€7l))(xg'171(1) e :I;Zil(n))
(A7) gl @7 )

_J1 ife; =ds for all ¢,
10 otherwise.

2 Although we are not making use of a multiplicative structure on S, we note that S can be
identified to either the ring of inverse polynomials k[ml_l, e xﬁl} or to a divided power algebra
DK(V*) where V = Span, (1, ...,2»). The notation that we adopted for the dual basis is in line
with the latter.
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On the other hand, we have

e €n (egf ) (egf ,,L)
WS D@ ) = (T T @

)1 ifes-14y = d; for all 4,
" 10 otherwise.

Since e,-1(;) = d; for all 4 if and only if e; = d, ;) for all 7, these two computations
prove (1).

To explain (2), observe that ros € S;4; and S;4; = 0 when ¢+ j > 0, while
Si+; = k when i+j = 0. Thus the action of &,, on S;; is trivial in these cases. [

We expand the notation introduced for modules to complexes, as well.

Notation 3.3. For any commutative ring @, if X is a complex of @-modules and
M is a Q-module, then we denote by Homg (X, M) the complex ¥ of @-modules,
where

Y; :=Homg(X 4, M) and (3" (f))(x) := (=1)'f(0¥ (x))
for feY,and z € X_;;1. We set
X*:=Hompg(X,R) and X" :=Homy(X,k)

as complexes, noting that the latter is a complex of R-modules as well, and
Proposition 3.1(2) gives

(3.3) XY =2 Homg(X,S).

Also, for a € Z, we let X*X denote the complex with
(2°X);:=X,_, and 97X :=(=1)%0%.

Observe that

(3.4) (X)) =3279XY).

We reproduce below, with more detail, part of the statement of [5, Proposition
2.2], which is a direct consequence of the isomorphisms in Proposition 3.1.

Proposition 3.4 ([5, Proposition 2.2 (iv),(v)]). Let U be an artinian R-module
and suppose

F: B Fr. . «F& R, «F«0
is a graded minimal free resolution of U over R. Then
Y"Hompg(F,wg) :
E,"(—n) + -+ Fi1"(—n) « E*(—n) + -« Fy"(—n) «+ 0
is a graded minimal free resolution of UV over R. In particular
Torf (U, k); = Homy (Tort_ (U, Kk),_;, k)
for all i with 0 <i<mn and all j € Z.

We will need an equivariant version of the previous result which we state in
Proposition 3.5. This differs from Proposition 3.4 by a twist given by the 1-dimen-
sional representation A} %1, denoted Sp(ln) in Example 2.1.
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Proposition 3.5. Let R = k[z1,...,xz,] and assume k is a field of characteristic
zero. Suppose that U is an object of mode,, R which is an artinian R-module. Then
there is an isomorphism in modg, R
Torl (k,U); = ARy @ (Tor_,(k,UY),_;)"

Proof. As noted above, a projective resolution of k in mode, R is given by the
Koszul complex K. Since R is Cohen-Macaulay of dimension n, we know that
K* is exact, except in homological degree —n, see [6, Theorem 1.2.8]. Since
K;* = Homg(K;, R) is a free R-module, we conclude that the complex X" K*
is a projective resolution of Ext's(k, R) in modg, R.

Moreover, there is an isomorphism Ext’(k, R) = (A}(R1))Y in mode, R, since
the former module fits into the equivariant exact sequence

Homp(K,_1,R) 2 Homg(K,, R) — Ext}(k, R) — 0,

where, with respect to appropriate bases, n = [z1 — 29 23 — x4 ... (—=1)"Tlz,],
and hence
Ext(k, R) = K,,* /mK,* = (A} (R1))" .

Consider now (K;* ®g UY)Y. We have isomorphisms in modg, R

(3.5) (K;* ®r UY)Y 2 Hompg(K,;" @ Homg(U, S), S)
(3.6) ~ Homp(K;", Homp(Homg(U, S), S))
(3.7 >~ Hompg(K;*,U)

(3-8) ~ K" ®@pU

(3.9) =K, ®rU

that are justified as follows: (3.5) follows from (3.3), (3.6) is by hom-tensor adjunc-
tion, (3.7) is by (3.3) and equivariant Matlis duality [28, Lemma 3.8], (3.8) is by
Lemma A.3(1) and (3.9) is by Lemma A.3(2). All these isomorphisms are natural,
so they induce an equivariant isomorphism of complexes (K* @ UY)Y 2 K @r U.
In view of (3.4), we also have (X"K* ®@r UY)Y 2 XK ®g U. Since the functor
(=) is exact, we obtain

(Tor?_,(ARy)Y,UY))” = Hy o(S"K* @p UY)Y)
>~ H;, (X"K @gU) = Torl(k,U).
Since (A} (R1))Y ®x — is an exact functor, we further have
Tor,_;(NCR1)Y, UY) = Tor;’ (N R1)Y @k, UY) = (A R1)Y @ Torg_ (k,UY)
whence
(Torst (N R1)Y,UY)) 2 (MR @ (Torgl_ (k. UY))
>~ AP Ry @ (Tor®_,(k,UY))" .

Tracing through the isomorphisms above, where Al R; is concentrated in inter-

nal degree n, we see that the degree j component of (Torfﬂ-((/\f}h)v, UV))v is
isomorphic to

(AR, @ ((Torf (6 U)Y) = iRy @ (Torff,(k,UY)y) . O

Jj—n
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Another way to recover the twist by AlR; in Proposition 3.5 is by using
Proposition 3.4 and the canonical description of wg as A} R1 ®« R.
3.2. Macaulay inverse systems.

Definition 3.6. Let I be a homogeneous ideal of R. The Macaulay inverse system
of I is defined as the graded R-submodule of S given by

(3.10) It :=Amng(I)={ge€S: fog=0forall feT}.
Remark 3.7. Since Anng(I) =2 Hompg(R/I,S), we see from Proposition 3.1 that
It = (R/I)V

and I+ is finitely generated if and only if R/I is artinian.

If W is a graded R-submodule of S, then WV = Homg(W, S) = R/ Anng(W),
where Anng(W) ={f € R: fog =0 for all g € W} is a homogeneous ideal of R.
It is thus a consequence of (graded) Matlis duality that
(3.11) Anng(It) =1 and (Anng(W))* = W.

Let U be a finitely generated graded R-module. The Hilbert function of U is the
function
HFy: Z — N, with HFy (i) = dimy U; for all i € Z.
We also use the Hilbert series of U, defined as
Hu(z) = (HFy(i))2".
i€z
The generator type of U is the polynomial Gy = HFy /g, v
Definition 3.8. We define the initial degree of U to be the integer
t(U) := min{i € Z: HFy (i) # 0}.

Assume I is a homogeneous ideal of R and set A = R/I. We refer to A as
an algebra quotient of R. When using this terminology, it is implied that I is
homogeneous.

3.3. Compressed artinian algebras. Assume further, for the remainder of the
section, that A is an artinian R-algebra. We let m denote the ideal Ry, =
(z1,...,2,) and my its image in A. The socle of A is the graded A-module

Soc(A) := Anny(my) = Homa(k, A).
The Hilbert function of the socle is called the socle type of A. We refer to the
Hilbert series Hgoc(a)(2) of Soc(A) as the socle polynomial of A. Since Soc(A4) is a
finite dimensional k-vector space, this is indeed a polynomial. The Hilbert function

and the socle type of A can be read off the Macaulay inverse system of I. Namely,
we have

(3.12) HF ;1 (—4) = dimy (1) _; = dimy A; = HF 4(i),
s
(313) G]L (—Z) = dimk <m oL ) B = dimk SOC(A)Z = HFSoc(A) (’L),

where the first equation follows from the isomorphism I+ = AY = (R/I)" and the
second is due to the isomorphisms

(It /mo I')Y = Soc((I+)Y) = Soc(A),
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which follow from [6, Proposition 3.6.17] and (the graded version of) the proof of
[6, Proposition 3.2.12(d)].

Remark 3.9. A is Gorenstein if and only if I* is a cyclic R-module. Indeed, since
A is artinian, it is Gorenstein if and only if its socle is 1-dimensional, and the
statement follows from (3.13).

Definition 3.10. The top socle degree of A is defined to be the integer
s(A) :=max{i > 0: Soc(A); # 0}.

Set s = s(A) and let Y ;_, e;2" be the socle polynomial of A. In view of (3.13),
the isomorphism I+ = AV gives an inequality:

s
(3.14)  Ha(i) < min {dimy R;,» e;dimy R;_;}  for all i with 0 <i <s.
j=i
Compressed algebras were defined and first studied in [15] as algebras whose Hilbert
series is largest that is allowed by the socle polynomial.

Definition 3.11. Set s = s(A) and let Y.} e;z* be the socle polynomial of A.
We say that the algebra A is compressed if equality holds in (3.14).

There need not always exist an algebra having a given socle polynomial that is
compressed in the sense of Definition 3.11. A sufficient (but not necessary) con-
dition for the existence of such algebras is phrased in terms of permissible socle
polynomials.

Definition 3.12. Following [15], we say that a polynomial p(z) = >_;_, ez’ is
permissible for a socle polynomial of a compressed algebra A = R/I, where t(I) =t
and s(A) = s if the following conditions are satisfied:
(i) e; > 0 for all ¢ and e; > 0;
(ii) Z@t e; dimy R;_; < dimy Ry;
(lll) €t—1 = maX(O, Rt—l - Zi}t €; dimk Ri—(t—l))~

If p(z) is permissible for a socle polynomial, then all artinian algebra quotients A
of R that have p(z) as their socle polynomial can be parametrized by a certain space,
and a general A (with respect to this parameter space) is known to be compressed.
Consult the literature, e.g. [15] or [9], for more details.

When A is compressed, one can use the socle polynomial of A and duality to
derive information about the betti numbers of A over R. For example, when the
socle is concentrated in a single degree (i.e. the algebra is level), the free resolution
of a compressed algebra is concentrated in two strands, except for the beginning
and the end, see [5]. Also, if A is compressed with permissible socle polynomial
p(z) =>7_, | ez’ as above, and

Z ejdimy R; 41 = dimy Ry—1,
:

then the minimal free resolution of A over R is almost linear, meaning that all
matrices in a minimal free resolution of A have entries in degree at most 1, except
for the first and the last, see [15, Proposition 4.1A].

Finally, observe that the invariants s(A) and ¢(I) impose bounds on the betti
numbers of A as follows.
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Lemma 3.13. If A is an artinian algebra quotient of R, then for all i > 0:
(1) B (A k) =0 for all j with j <i—141t(I), and Bft(l)(A, k) #£0;

(2) fj(A, k) =0 for all i,j with j > i+ s(A), and BﬁnH(A)(A, k) # 0.

In particular, t(I) < s(A) + 1, where s(A) equals the regularity of A.

Proof. If M is a finitely generated graded R-module, observe that TorlR(M ,k); =0
for all j < i+ t(M), and Tory(M,k); # 0 for j = t(M). This can be seen
by inspecting the degree shifts in a graded minimal free resolution of M over
R. Part (1) follows by using this observation with M = I and the isomorphism
TOI"?(A, k)J = TOI‘l-Ril(I, k)J

Using Proposition 3.4 and the isomorphism AY 22 It we have

Torf' (A, k); = Toryl_ (I, K)n—j.

Since t(I+) = s(A) by (3.13), (2) follows from the same observation, with M =
I+ O

4. NARROW AND EXTREMELY NARROW ALGEBRAS

We use the notation introduced in Section 3. While we do not make a blanket
assumption that A = R/I is artinian, this will be implied whenever s(A) < co. We
discuss a class of compressed R-algebras for which we can use duality to determine
their betti numbers over R. In general, Lemma 3.13 gives t(I) < s(4) + 1. We
study algebras that are extremal with respect to this inequality.

Definition 4.1. Let A = R/I be an artinian algebra quotient of R. We say that
A is narrow if t(I) > s(A), that is, the top socle degree of A is at most the initial
degree of I.

While we use different terminology, the idea of studying ideals that are extremal
with respect to the inequality ¢(I) < s(A) + 1 is not new. When A is artinian,
t(I) = s(A) + 1 means that A is extremal Cohen-Macaulay, and ¢(I) = s(A) means
that A is nearly extremal Cohen-Macaulay, in the terminology of [18]. In particular,
some of our results below share some overlap with those in [18].

We start with equivalent characterizations of narrowness in terms of the Macaulay
inverse system and the betti numbers. Lemma 4.2 indicates, in particular, how one
can construct examples, using the inverse system. In what follows, (Fi,...,Fy,)
denotes the k-vector space spanned by F1, ..., F, and (Fi,...,F,) denotes the R-
submodule of S generated by Fi,..., F,.

Lemma 4.2. Letd>1,a>1 and Fy,...,F, € S_4. Let A= R/I be an algebra
quotient of R. The following are equivalent:

(1) A is narrow with s(A) =d and (I*)_q = (F1,..., F,);
(2) IL = (Fl...,Fa)+S>_(d_1),'
(3) I =Anng ((Fl...,Fa)—l—S),(d,l)).

If these conditions hold, then we also have
I =Amngp(Fy,...,F,)Nnm?= (V) +mit
where V = Anng(Fy, ..., F,) N Ry.
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Proof. Note that (I*+)_4 = (F,...,F,) is a consequence of both (1) and (2), and
thus the equivalence (1) <= (2) is established through the following sequence of
equivalent statements:

t([) >d <— dimy Ad—l = dimy Ry_1
= (I")_(a-1) = S—@-1)
<~ (IJ‘): (Fl,...,Fa)+S>_(d_1).

The equivalence (2) <= (3) is a consequence of duality, cf. (3.11).
Further, we have

Anng ((Fl o o)+ S>,(d,1)) = Anng(F ..., F,) N Anng(S>_(4-1))
= AHHR(Fl ce 7Fa) ﬁmd
= (V) +m™,

where the last equality is justified by the inclusion m?*! C Anng(F, ..., F,), which
is in turn implied by the inclusion (Fi,...,F,) C S>_q4. |

Lemma 4.3 justifies the terminology “narrow” as applicable to algebras whose
non-zero betti numbers are concentrated in only two adjacent degrees with the
exception of the Oth homological degree.

Lemma 4.3. Letd > 1 and let A = R/I be an algebra quotient of R with s(A) = d.
The following are then equivalent:

(1) A is narrow;
(2) Bij(A) =0 foralli,j withj ¢ {i+d,i+d—1} andi> 0.

Proof. This follows directly from Lemma 3.13. ]
Notation 4.4. Let Fy,..., F, € (I*)_4 and define

LF1,~..7Fa = {(fl,fg,...,ea) (S Rlal Zél OFi = 0}
=1

When Fy,...,F, is a basis of (Il),d, the k-vector space L, . . p, is independent,
up to isomorphism, of the choice of F1,...,F, and we will also denote it by L4
when appropriate. Note that we have an exact sequence of k-vector spaces

(4.1) 0= Lpy..p, = RS Rio(FL,...,F))_qg—0
with (1, 02,...,4,) =Y i, £; o F;, and, since dimy Ry = n, we have
(4.2) dimy(La) = an — dimy (Ry o (1) _,) .

We now list several properties of narrow algebras. Lemma 4.5 establishes, in
particular, that narrow algebras are instances of compressed algebras, but their
socle polynomial may not be permissible.

Lemma 4.5. Let d > 1, a > 1. If A is a narrow algebra with s(A) = d and
dimy (I*)_,; = a, then the following hold:

(1) The socle polynomial of A is bz?~! + az?, where
b= dimg Rg—1 — dimy (Ry o (I")—4) = dimg Rg—1 —an +dimcLa  and
dimy Rg_1 > b > dimy Ry_1 — an.
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(2) A is compressed and has Hilbert function
dimy R, ifi<d-—1.
HFA(i)) = qa if i = d.
0 ifi>d.
(3) We have t(I) € {d,d+ 1}, and
th)=d+1 < I=m?"' — a=dimRy.

4) If I # w91, then the following are equivalent:
g
a) The socle polynomial of A is permissible;

(a) poly p j

(b) b=dimy Rg_1 — an;

(¢) La=0.
(5) Let Fy,...,F, € S_q such that (I*)_, = (Fy,...,F,) and define a map

o:m? — k%(—d) by

o(r)=(roFy,roFy,...,10Fy) for r € m?.

Then ¢ is surjective and Ker(p) = I. Furthermore, if F; are invariant
with respect to the action of &, on S, then ¢ is &, -equivariant, when
considering k*(—d) to be endowed with the trivial &, -structure.

Proof. Write (I+)_, = (Fy,...,F,) as in (5). Since dimy(I1)_4 = a, note that
Fi,..., F, are linearly independent. By Lemma 4.2, we have

It =(Fy...,F)+ 55 (4-1).

In particular, I+ does not have minimal generators in degrees other than —d and
—(d—1), and hence Soc(A) is concentrated in degrees d and d — 1 by (3.13). More
precisely, b := dimy Soc(A)4_1 is equal to the number of minimal generators of I+
in degree —(d—1), and this justifies the first equality in (1). The second equality in
(1) follows from (4.2). The inequalities in (1) follow from the preceding equalities,
noting that dimy Ly > 0 and Ry o (I*+)_4 # 0, since a > 0 and d > 0.

Since Soc(A4); = 0 for ¢ > d and dimy Soc(A)g = a # 0, we must have Soc(A4)g =
Aq and A; = 0 for ¢ > d. Since ¢(I) > d, we also have A; = R; for i < d. These
remarks justify the expression for the Hilbert series in (2). To check that A is
compressed, we need to verify that equality holds in (3.14) for all ¢ with 0 <1 < d.
When i = d, the equality is a consequence of the inequality a < dimy Ry. When
i < d—1, then equality holds in (3.14) because HF 4 (i) = dimy R;.

For (3), use Lemma 3.13 to see t(I) € {d,d+ 1}. If t(I) = d + 1, then Ay = Ry
and, since Ay, 1 = 0, we must have Iy, 1 = Rq,1 and thus I = m?*!, If g = dimy Ry,
then we must have Rq = A4, and thus ¢(I) > d, hence ¢(I) = d+ 1. The remaining
implications are clear.

To prove (4), assume I # mé*! so that t(I) = d by (3). Note that condition
(iii) in Definition 3.12 can be rewritten as b = max{0,dimy Ry_1 — an}. In view
of (1), this holds if and only if L4 = 0, if and only if b = dimy R4—1 — an. To
finish the proof of (4), note that condition (i) in Definition 3.12 holds trivially, and
condition (ii) requires a < dimy R4, and this holds by (3), since a = dimy Rq implies
t(I)=d+ 1

We now prove (5). For each u = (ug,...,u,) € N, set 2 = 2] 25?2 - - - zfi» and
y(u) _ ygul)yguz) .. -yr(Lu")- Set

NE={u=(ur,...,u,) EN":uy +ug + -+ u, = d},
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and write

F, = Z caiy™ and r= Z duzr" € Ry.
ueNd ueN?

Noting that 2" o y(W = 1, we have
rokF; = Zducu,i € k.

It is clear from here that ¢ is surjective because Fi, ..., F, are linearly independent.
To see that I = Ker(y), we first observe that I C Ker(y), because F; € I+ for all
i with 1 <4 < a. To establish equality, we see that HF; = HFyc, (). Indeed, we
have:

dimy R; if i >d+ 1,
HFKer(«p) (’L) = dimk(md)i — dimk(ka(—d))i = dimk Rd —a ifi=d
0 ifi <d

= HF (i) — HF 4 (i) = HF(4),

where the third equality is by part (2) above. To prove the final statement, assume
F; are G, -invariant and k%(—d) has a trivial &,-structure. If r € m¢, we have

olo-r)y=(o-r)oF,-- (o-r)oFy)=((c-1)o(c-F1),---,(c-1)o(0-F,))
=(oc-(roky),---,0-(rokF,))=(roFy, - ,roF,) =¢(r)=0-p(r),
where in the second equality we used that F; are G, -invariant, in the third equality
we used fact that S € modg, (R), in the fourth equality we used Lemma 3.2(2)

and in the last equality we used the assumption that k*(—d) carries a trivial &,,-
structure. (]

We specialize next the class of narrow algebras even further, by introducing a
class of algebras for which we will be able to compute explicitly the betti numbers.

Definition 4.6. Let d > 1 and let A = R/I be an algebra quotient of R. We say
that A is d-extremely narrow if the following hold:
(i) s(A) =t(I) = d;
(ii) there exists a basis Fy, ..., F, of (I*)_4 and an element = € Ry such that
Lp, . . r, C Ry

The next result is instrumental in establishing identities for the betti numbers
of extremely narrow algebras.

Lemma 4.7. Assume A is d-extremely narrow. Then the following hold:
()Tor (It,K)i—a =0 for all i > 2,
( ) Ty (IL k) La,
(3) T f:i(I k); =0 foralli <n—3and all j #i+d, and
(4) If n > 3, then I is generated in degree d.

Proof. Let Fy,...,F, be a basis of (I*)_, and complete Fi,...,F, to a minimal
generating set of I by adding a finite number, say b, of additional homogeneous
generators. Note that these b generators are in degree —(d — 1). Let F = R(d)* &
R(d - 1)b and let ¢: F — It be the map that sends a basis of F to the full
generating set consisting of a + b many elements. Set N = Ker(y) and let L be
the graded R-submodule generated by L4 in R(1)*. Note that N is generated in
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degrees > —d+1, and L is equal to the submodule of N generated by its generators
in degree —d 4+ 1. We have an exact sequence

0—-L—N-—N/L—D0,
which yields the exact sequence
Tory(N/L,k) _qy2 — Torf (L, k) _aqyo — Torf (N, k) 410 — Torl(N/L,k) _qyo.
The definitions of L and N imply N_4 =0 and (N/L)_44+1 = 0, and hence
Tors(N/L, k) _aqyo = 0 = Torj"(N/L, k) _aya.
In view of the exact sequence above, we conclude
(4.3) Tor (L, k) _g12 = Torf (N, k) _gro0.
Now consider the short exact sequence, with  as in Definition 4.6(ii):
0—L—zF —aF/L—0.

It yields an exact sequence
(4.4) Tor¥ (2 F/L,K)_g42 — Torf (L, k) _g10 — Torl(zF, k) _g4a.
Since zF is a free R-module, we have Torf(zF, k) = 0. We also have (zF); = 0 for
all i < —d + 1, hence Torg(xF/L, k)—g42 = 0.

Equations (4.4) and (4.3) give then Torf'(N,k)_g4y2 = 0. In turn, given our
definition of N as a first syzygy of I+, this implies

TorZR(Il, K) g & Torf{_l(N7 K)_qri=0 for all i > 2.
We also have
TorF (It k) _gy1 2 (N @rk)_gp1 = LOpk = Ly,

This concludes the proof of (1) and (2).

To see (3), recall that I+ = AY and apply Proposition 3.4 to (1) in order to obtain
Torf%(l7 k)itar1 = 0 for ¢ < n — 3. This observation, in addition to Lemma 4.3,
yields the claim, since A is narrow.

Finally, (4) follows from (3) by taking i = 0. Indeed, Tor(I,k); = 0 for j > d+1
implies that I has no generators in degrees greater than d. O

Part (3) of the above result shows that an extremely narrow algebra A = R/I
is defined by an ideal I such that the differentials in the resolution of I are given
by matrices with linear entries except possibly for the differentials in homological
degrees n — 3 and n — 2.

The following will be our main criterion for checking that an algebra A is d-
extremely narrow, assuming that I is generated in a single degree. Note that the
hypothesis does not require A to be artinian.

Proposition 4.8. Letn >3,d>1anda > 1. Let A= R/I be an algebra quotient
of R with t(I) = d, and assume the following conditions hold.
(1) dimy Ag < a, or equivalently dimy Iy > dimy Ry — a;
(2) There exist Fy,...,F, € (I*)_q4 linearly independent such that
Lp,. . r, CxzRy" for some z € Ry.
Then I+ = (F1,...,F,) +S>_ay1 and A is d-extremely narrow, with socle polyno-
mial
(dimg Rg—1 — an + dimy LA)z”l_1 + az?.
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Proof. Assume (1) and (2) hold. Let Fy,...,F, € (I1)_4 as in (2). We have
a = dim(Fy, ..., F,) < dim(I't)_4 = dimy 44 < a.

In view of condition (1), we see that the inequality above must be an equality, and
hence
(I _a=(F1,...,F,),
implying also Iy = Anng(Fi, ..., Fy)q by (3.11).
Note that we must have a < dimy Ry, since ¢(I) = d. To show A is d-extremely
narrow we need to show s(A) < d (and hence s(A4) = d). Set

J = AnnR((Fl, ce ,Fa) + S>_d+1) and A = R/J

By Lemma 4.2, the algebra A’ is then narrow with s(A’) = d and dimy Soc(A’)4 =
a, and in particular ¢(J) > d. Since a < dimy R4, we must have t(J) = d by
Lemma 4.5(3). Using the hypothesis (2), it follows that J is a d-extremely narrow
algebra, and in particular J is generated in degree d, by Lemma 4.7(4).

Since t(I) = d, we have S>_gq11 C I+ and hence (F,...,F,) + S>_ay1 C It.
We have then

I = ADDR(IL) - AHHR((Fl, c. ,Fa) + S>,d+1) =J.

Since Iy = Anng(Fy, ..., F,)q = J4, and since J is generated in degree d, whereas
I is generated in degrees at least d, we have J C I. We conclude that I = J and
hence A = A’; moreover, A is d-extremely narrow.

Finally, the formula for the socle polynomial follows from Lemma 4.5(1). ]

Theorem 4.9. Let d > 1 and let A = R/I be a d-extremely narrow algebra with
socle polynomial bz~ 4+ az?. By Lemma 4.5(5) there is a short exact sequence

(4.5) 0— I —=m?Ek(=d) — 0.
This sequence induces a long sequence in homology that splits into exact sequences:
0 — Torl*(I,k)irq — Tor(m? k)ipq — Torf(k? k); — 0 fori<n-—2,
0 — Torf | (I,K)n_14a — Tor  (m® k) _11q
— Tor? | (k% k)p_1 — Tor® (I, k)p_144 = 0,
Torf (K, k), 2 Tor_, (I, )osa

where all TorZR(I7 k); that do not appear in one of the sequences above are equal to
zero. Further, there are isomorphisms

TOTS—Q(I, K)n—14+d = Homy (L4, k),
Torffl(*lv k)nfler = Homk((Il),dJrl, k) = kb7
Torrlt%—l(lv k)n+d = HOInk((IL)_d7 k) =~ ka.
Proof. The fact that all Tor]'(I,k); that do not appear in one of the sequences
above are equal to zero follows from Lemma 4.3 and Lemma 4.7.

The modules k and m? are known to have a linear resolution, see Example 2.3
and Example 2.4, and hence

Torf%(ka(—d)7 k)jta = Torf?”(ka7 k), =0= TorzR(md7 k)jta=0 for j # 1.

This implies the claimed splitting of the long exact sequence in homology.
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The last isomorphisms can be seen using the isomorphism AY = [t
Proposition 3.4 and Lemma 4.7(2). (]

The next corollaries are deduced directly from Theorem 4.9. They describe the
betti numbers and the minimal free resolution of the ideal defining a d-extremely
narrow algebra.

Corollary 4.10. Letd>1 anda > 1. If A= R/I is a d-extremely narrow algebra
with dimy Soc(A)4 = a, then

BE(md) — aBf (k) ifi<n—2andj=i+d,
dimy (L 4) ifi=n—-2andj=1i+d+1,

) =1a ifi=n—1andj=i+d,
dimg Ry 1 —an+dimy Ly ifi=n—1andj=i+d+1,
0 otherwise.

With u; = Bi(m?) — ap;(k), £ = dim(L4) and b = dimyg Rg_1 — an + dimy L4, the
minimal free resolution F of I over R has the following shape:

R*(—d) < R (-d—1) ¢ -+« R**3(=d—n+3)
R¥n=2(=d—n+2)  R’(—d—n+1)
— ® — ® +— 0.
RY(—d—n+1) R%(—d—n)
Corollary 4.11. Letd > 1. If A= R/I is a d-extremely narrow algebra with socle
polynomial bz?~' +az?, then the exact sequence (4.5) induces short exact sequences

0 — Tor®(I, k) — Torf(m?, k) — Tor®(k*(—d),k) =0  for alli <n — 3,
0 — TorZ(k%(—d), k) — Torl | (I,k) — 0.

Furthermore, if La = 0, then the first sequence is also exact for i =n — 2.
Consequently, if F, L, and G respectively denote minimal free resolutions of I,
m?, and k%(—d), and we extend p: m? — k?(—d) to a map of compleves p: L — G,
then
]:gnf‘g = Ker(apgn,g).
Furthermore, if La = 0, then F¢n—2 = Ker(pgn—_2).

Remark 4.12. The resolutions G, £ are known, see Example 2.3 and Example 2.4.
Then Corollary 4.11 can be used to describe the first n — 3 differentials in F. Note
that the matrices representing these differentials have linear entries. If one wants
to describe the matrices corresponding to the last two differentials in the minimal
free resolution of a d-extremely narrow algebra A, it may be useful to think of
them as being the transpose to the first two matrices in a minimal free resolution
of AV = It over R.

We end this section with a result that addresses betti numbers of modules over
a narrow algebra A. In conjunction with the formulas in Corollary 4.10, this result
allows one to compute the betti numbers of k over A when A is a d-extremely
narrow algebra.

We first need to introduce the necessary concepts. Let A = R/I be an algebra
quotient of the polynomial ring R = k[x1,...,z,]. If M is a finitely generated
graded A-module, then 824(M) = dimy Tor? (M, k) and the Poincaré series Pfy(t)
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of M over A is the generating series of the sequence {2 (M)},, of betti numbers of
M, namely

Pl = BAe.
n=0

Since minimal free resolutions of modules over a non-regular ring are often infinite,
attention has been given to understanding whether Poincaré series are rational. A
discussion of this problem can be found in [2]. In general, one has an inequality

A (L+0)"

(16) RO < TRy =T
When equality holds in (4.6), the ring A is said to be Golod, see [2, Section 5.
While the original definition is usually stated for local rings, it translates as usual
to the graded case at hand. When A is Golod, not only P/(t) is rational, but it
is also known that P} (¢) is rational, sharing the same denominator, for all finitely
generated graded A-modules M.

Another instance when P/(t) is rational is when the algebra A is Koszul, mean-
ing that ﬁ{}j(k) = 0 for all ¢ # j, or, equivalently, that the minimal graded free
resolution of k over A is linear. In this case, one has

RO =

Proposition 4.13. Let A = R/I be an algebra quotient of R = K[z, ..., x,]. Then

(1) If A is narrow and t(I) > 3, then A is Golod.
(2) If A is 2-extremely narrow, then A is Koszul.

In either case the Poincaré series of all finitely generated graded A-modules are
rational, sharing the same denominator.

Proof.

If Ais anarrow algebra and ¢(I) > 3, then we see that the inequality s(A) < 2t(I)—3
holds, and thus A is a Golod ring by [19, Observation 5.6].

Assume A is 2-extremely narrow with socle polynomial bz + az2. Condition (ii) of
Definition 4.6 implies dimy L4 < a. Using Lemma 4.5(1), we have

(4.7) 0<b=n—an+dimyLy <n-—an+a.

If n > 2, this inequality implies a = 1, or, in other words, dim, m4% = 1. We also
have a = 1 when n = 2, because a = dim m4? < @ when A is artinian. From
(4.7) we also get b < 1. One can see that b = 0 when n = 2.

We have thus dimyms? = 1 and dimy Soc(A4) = a +b < n — 1. By [3, Theorem
4.1, Corollary 4.4], we see that A is Koszul with PA(t) = (1 — nt + t?)~! and
the Poincaré series of all finitely generated graded A-modules are rational, with
denominator equal to 1 — nt + t2. (The results of [3] imply that A is in fact

absolutely Koszul, in the sense of [8].) O

Remark 4.14. Assume that A = R/I is narrow with ¢(I) = 2, which is equivalent to
m4% = 0. An example of Anick [1] shows there exist such algebras for which PA(t)
is not rational. However, this does not happen when A is 2-extremely narrow, as
shown in Proposition 4.13(2).
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5. QUADRATIC PRINCIPAL SYMMETRIC IDEALS

In this section we begin our task of studying principal symmetric ideals. Such an
ideal is denoted (f)s, , where f € R is a homogeneous polynomial. As explained
in Section 1, such ideals can be parametrized by points in projective space. In this
section we focus on the case of quadratic polynomials f, i.e. deg(f) = 2, in order
to gain intuition towards the general case.

We denote by p(I) the minimal number of generators of a homogeneous ideal I.
We record here a general result on the minimal number of generators of a principal
symmetric ideal, needed for our later arguments.

Lemma 5.1 (Upper semicontinuity of the minimal number of generators). Let
m > 1, d > 1. If there exists a principal symmetric ideal I' generated in degree d
such that p(I') > m, then a general principal symmetric ideal I generated in degree
d satisfies u(I) > m.

Proof. Using the notation in Section 1, let I = (f)g,, with f = f. = Eiil cim;
and
c=(ci:---:ey) e PNTL
Note that
p(I) =dimy Iy = dimy(o - f: 0 € &)

is given by the rank of the (n!) x N matrix M of coefficients for the set of degree d
polynomials o - f with respect to the monomial basis mq, ..., my of Rg. The locus
where dimy, Iy < m is cut out by the ideal I,,(M) of m x m minors of M, which
are homogeneous polynomials in ci,...,cy. Set U = PY \ V(I,,(M)). This is a
Zariski-open set of PV which is not empty by the hypothesis on the existence of
the ideal I’. Thus, if ¢ € U, then dimy Iy > m. O

We start our investigation by looking at a specific case, c¢f. Example 5.2. We
then describe the general behavior, when the degree of the generator is 2.

Example 5.2. Assume n > 2. Let I = (2% — 23 + 7122)s, and set A = R/I.
Observe

I = (2}—23 m120)s, = (x?—x?,xkxg: i<jk<{t)= (a?%—x?,xkxg: Jj# Lk <.
The generators listed on the right are clearly linearly independent, and thus

dimy I = dimy Ry — 1.
It is straightforward to verify that the inverse system of I is

It =7+ +ud).

Since I+ is a cyclic R-module generated by y£2) 4+ 4 yg), A is Gorenstein; see
Remark 3.9.

Example 5.2 is an illustration of the following general result.

Theorem 5.3. Assume n > 2 and the field k is infinite. A general principal sym-
metric ideal I generated by a homogeneous quadratic polynomial yields a quotient
A= R/I so that A is artinian Gorenstein with m,® = 0 # mu2.

Furthermore, A is 2-extremely narrow, the Macaulay inverse system It is a
cyclic R-module generated by a symmetric quadratic polynomial, and Lo = 0.
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Proof. As explained in Section 1, and with the notation there, we consider f = f.

with ¢ € PN=1, where N = (") and f = cymy + coma + -+ + cymy. We find it

convenient to rename the coefficients ¢, as follows:
a; if mr = I?,
Ck = . . . .
by  if my = ;o with ¢ < 5.

With this notation, we have:

i=1

1<i<j<N

We first show that for f general, the hypotheses (1) and (2) in Proposition 4.8 are
satisfied. To prove (1), use Example 5.2 and upper semicontinuity (Lemma 5.1) to
find a non-empty Zariski open set U such that, if ¢ € U, then dimy Is > dimy Rs —1.

To prove (2), define

(5.2) F=p (Z?A”) —al D> vy,
i=1

1<i<j<n
where
a:Zai and 8= Z bij.
i=1 1<i<j<n
A computation shows that (o - f) o F' = 0 for each ¢ € &,, and hence F € (I+)_,.

We show next that, for f general, we have Ly = 0. Suppose that £ =" | e;z;
satisfies £ o F' = 0. This translates as

o Zej —Ber=0forall 1 <k <n.

ik
Regarding this as a system of linear equations with indeterminates es,...,e,, the
coeflicient matrix of this system is the n x n matrix
_/B a a PR a
a - a - o«
M — a a —/8 ... a
a a a - —f

with
det(M) = ((n — a — B)(a—B)" .

When ¢ € U’ = PN~1\ V(det(M)) one obtains £ = 0 and hence dim, L4 = 0.
Further, note that, if f is as in Example 5.2, then o« = 0 and g = 1, and hence
det(M) # 0 in this case, showing that U’ is non-empty.

Finally, U N U’ is not empty, since both U and U’ are non-empty Zariski open
sets and k is assumed infinite. Thus, for ¢ € U NU’, Proposition 4.8 shows that the
algebra A is 2-extremely narrow with socle polynomial bz + 22, and

b=n—-—n+dimyLs =0.

This shows that the socle is 1-dimensional concentrated in degree two, and I+ =
(F). The fact that A is Gorenstein follows from Remark 3.9. O
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We now establish the &,,-equivariant structure of the resolution of a general
quadratic principal symmetric ideal.

Theorem 5.4. Let n > 2 and let k be an infinite field with char(k) = 0. A general
principal symmetric ideal I = (f.)s, with deg(f.) = 2 satisfies®

SP(n—i,2,11-2) @Sp(nﬂ‘,v)z D Sp(n7i71,2,1i71)2
TOI'ZR(R/I7 k) = D Sp(nfifl,l’“rl)z @ Sp(n,i,Q’Q’li) fO'I" 0 S 1<n.
Sp(in) © Sp(2,1n-2) fori=n.
Proof. Let I be so that the conclusion of Theorem 5.3 holds. In particular, I+ =

(F), where F' is a symmetric quadratic polynomial and L4 = 0. By Lemma 4.5(5)
we have a short exact sequence

(5.3) 0—=1—= Rsy 5 k(—2) =0

and this exact sequence is G,,-equivariant, when considering the trivial &,,-action on
k(—2). By Corollary 4.11, this sequence induces equivariant short exact sequences
as follows:

(5.4) 0 — Torf(I,k) — Torf(m? k) — Tory (k(=2),k) = 0 ifi<n—1,
(5.5) 0 — TorZ(k(—2),k) — Tor? | (I,k) — 0.

It remains to determine the representation-theoretic structure of the modules
Tor!(k, k) and Tor(m?, k) appearing in (5.4) and (5.5). Recall from Example 2.3
that the Koszul complex yields

Tor}(k, k) = SP(n—i,11) B SP(n—it1,1i-1) -
As in Example 2.4, a &,-equivariant minimal resolution £ of m? = Rss can be
described by setting
L; = coker (N*2Ry — N 'Ry @p Ry) @k R

with differentials induced from the Koszul complex of R. Thanks to Fact 2.2(3) we
have

N'Ry ®@p Ry = (Sp(n—i,li) @Sp(n—iﬂ,u—l)) QR (Sp(n) @Sp(n—m))

= SP(n—it+2,11-2) B SP(n_it1,2,1:-3) @Sp(n—i+1,1i*1)3
@ Sp(n—i,Q,l'i*2)2 D Sp(n—i,l’i)B ® SP(n—i—1,2,1i-1);
in view of which we compute
TorZR(Rﬂ7 k) = coker (/\H'QRl — AN R, ®p Rl)
= SP(n—it1,1-1) DSP(n_i21i-2) @Sp(n—i,l’i)3
@ Sp(n7i71,2,1i71)2 D Sp(n7i71,1i+1)2'
Substituting the above identities into equations (5.4) and (5.5) yields the claim. O

The goal of the next sections is to generalize the above phenomena that we have
recorded in the degree 2 case.

3Recall that if « is a tuple which is not a partition then Sp, = 0 by our convention.
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6. PRINCIPAL SYMMETRIC IDEALS GENERATED IN DEGREE d: AN EXAMPLE

Based on our work in the previous section, it is apparent that an essential
part of proving properties of symmetric ideals that hold “generically” is to con-
struct a concrete example which exhibits those properties, thus ensuring that an
appropriately-defined Zariski-open subset is non-empty. The proof of Theorem 5.3
clearly illustrates this principle. The main result of this section is Proposition 6.12.
Its purpose is to construct a polynomial f, of degree d > 2 and in n variables for
n sufficiently large, which has the property that the principal symmetric ideal it
generates is particularly easy to describe, while also exhibiting the characteristic
properties of general principal symmetric ideals described in Theorem 8.4. We will
then use Proposition 6.12 in later sections to prove results analogous to those in
Section 5 when d > 2.

Throughout the section, we work in a polynomial ring R = k[x1, ..., z,], where n
will need to be chosen to be large enough in order for the objects of interest to exist.
To explain the construction, we need some preliminary notation and definitions.

Definition 6.1. Fix a partition A = (A1, -+, ) of d with s parts, with d > 1.

e We say that a monomial of the form m = xf‘ll xf‘; X ~xf‘j,

pairwise distinct, has type .

e If m is a monomial of degree d, then there exists a unique partition A - d
such that m has type A\, and we write type(m) = .

e We denote by () the empty partition with 0 parts and set type(1) = ().

e We say that b € R is a A-binomial if b = m — m/, with m,m’ distinct
monomials of type .

e If b is a A-binomial as above, we set g(b) = ged(m, m’). We say that b is

admissible if g(b) is relatively prime with both Sty and 55

with 41, i

Given a monomial m of type A as above, note that the indices i1, ...,is are not
uniquely determined by m; only the (unordered) set of these indices is unique. We
usually write m so that i, < ix41 when Ay = Ag41, but rearrangements may be
needed in what follows, in order to verify certain conditions.

Example 6.2. Let A = (3,2,2,1). Set

b= aiaxiadas — adaiades and b = alrdadv, — adxialas.
Then b and b’ are A-binomials and g(b) = x22% = g(¥'). The binomial b is admissi-
ble, while b’ is not admissible.

Definition 6.3. We say that a partition «y is a subpartition of the partition A, and
we write v C A, if the multiset of parts of v is a submultiset of the parts of A. If
v C A, we describe by indicating which parts of \ are present in «y as follows. If
v = (71, ,M), then we can choose distinct integers k1, - - , ks such that v; = A,
for all ¢ with 1 < < ¢. Since the choice of such integers is not necessarily unique, we
further require that these indices are chosen in order, starting with £, and ending
with k; and, whenever a choice is to be made, we choose k; to be the smallest of
the available choices. With these rules in place, then the indices k; are unique and
we set T(\,y) 1= {k1,..., ke }
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Example 6.4. If A = (5,5,2,2,1), then the following is a list of all subpartitions
v with v C X\

(5,2,2,1), (5,52,1), (5,5,2,2), (552), (551), (522, (521),
(27271)7 (575)7 (572)7 (571)7 (272)7 (271)7 (5)7 (2)7 (1)7 ()

With v = (5,5,2), there are two choices for k; with 74 = Ag,, namely k; = 1 or
k1 = 2. Since we are supposed to choose the smallest of the choices, we must take
k1 = 1. The only remaining choice for ko # ki with y2 = Ak, is k2 = 2. Further,
there are two choices for k3 with v3 = Ag,, namely k3 = 3 or k3 = 4. Our definition
dictates k3 = 3 and thus T7((5,5,2,2,1),(5,5,2)) = {1, 2, 3}.

Remark 6.5. Let d > 1 and let A = (A1,...,As) be a partition with s parts. Let b
be a A-binomial and let v denote the type of g(b). Using the definition of admissible
binomial, it is not hard to see that the following statements are equivalent:

(1) bis admissible;

(2) v € A, and there exists a choice of indices with 4y,...,4s distinct and
J1s--.,Js distinct such that b = :vf‘ll . :Cf‘ — x?f .- x? and

(6.1) ig=7g¢ forallleT and  {i, | £&TIN{je | L& T} =0,
where T'=T'(A, 7).

Further, observe that condition (2) above can only hold if n (the number of vari-
ables) is sufficiently large, and thus the existence of admissible binomials imposes
restrictions on the size of n. If n is sufficiently large, then for any v C A there
exists an admissible A-binomial b with ¢g(b) of type 7. Note that such a b may not
be unique.

Example 6.6. Let A = (5,5,5,2,1) and v = (5,5,2). We have T = {1,2,4}. To
construct an admissible A-binomial b such that g(b) has type v, we need n > 7. Then
we can choose (il, ig, i3, i4, 15) = (1, 2, 37 4, 5) and (jl,jg,j3,j4,j5) = (1, 2, 67 4, 7),
giving:

b= alrSadaies — abadadaie,.
The binomial

/ 5.5..5.2 5..5..5.2 5.5.5. 2 5..5..5.2
b = $1x2$31‘4l‘5 - l‘ll‘3l‘6$4l‘7 = .2?11‘31‘23341‘5 - J)ll‘3x61‘4l‘7

is also an example of an admissible A-binomial g(b') of type . Note that the

multiplication order in b’ needs to be rearranged to the form on the right, in order
for (6.1) to be satisfied.

While there may be many choices of admissible A-binomials b with g(b) of type
for a fixed ~, the choice is unique up to the action of &,,. The following statement
is straightforward so we omit the proof.

Lemma 6.7. Let \ be a partition of d > 2, If b and b’ are both admissible \-
binomials such that g(b) and g(b') have the same type, then there exists o € &,
such that o-b=1b.

Construction 6.8. Fix an integer d > 2. We proceed to construct a homogeneous
polynomial f € k[z1,...,z,] of degree d.

For each partition A - d, A # (d) with s parts and for each partition v with
v € A, including v = (), we choose an admissible A-binomial b(\, ) with g(b(}, 7))
of type v and such that for each ¢ with 1 < i < n, the variable x; appears in
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at most one of the terms of the summation (6.2). Note that such a collection of
binomials exists, provided that the number n of variables is sufficiently large. While
the binomial b()\, ) is dependent on a choice, the ideal (b(A,7))s,,

We then define f as follows

(6.2) f=att Y D b

A-d AA(d) YSA

By construction, f is homogeneous of degree d. Since f depends on the choice of
the binomials (A, 7), it is not uniquely determined. However, in view of Lemma 6.7
and since there is no overlap in indices between the variables of the summands, we
see that the principal symmetric ideal (f)e, generated by f is independent of the
choices made in defining f.

Example 6.9. Let d = 3. Then the possible partitions A are (3),(2,1),(1,1,1),
with 1 part, 2 parts and 3 parts, respectively.

We list all possible of v, A with A # (3), v € A: For A = (2,1), we have v = () or
v=(2)ory=(1). For A =(1,1,1), we have v = () or v = (1) or v = (1,1). Thus,
the summation in the formula (6.2) will have 7 terms. We need to choose the 6
binomials b(A, ), making sure that no two such binomials share the same variables
among themselves and also with #$. Below is such a choice:

[ =28 + (a3m3 — 23ws) + (zgw7 — gas) + (v3210 — 711210)
+ (T12213%14 — T15T16T17) + (T18T19%20 — T18T21T22)
+ (223024295 — T23%24T26),

where we need to assume that the ambient polynomial ring has at least 26 variables.

The main result of this section is to give a concrete description of the principal
symmetric ideal generated by the polynomial f constructed in Construction 6.8,
for n sufficiently large. The terminology below will be useful for this purpose.

Definition 6.10. Although we did not define a multiplication on the dual S = RV

defined in Section 3, we refer to the elements of S as polynomials in y;. Let A =

()\1,- -, As) be a partition of d with s parts. We call a basis element of the form
= yz(l)‘l) yZ( *) 2 monomial of type A, and we write type(m) = A.

We define the monomial symmetric polynomial is S corresponding to A to be

Zy()\l . s) €S,

where the summation is taken over all distinct monomials of type A. Observe that
my is invariant under the &,-action on S.

Observation 6.11. If m € R is a monomial of type A’ for some ) F d, then the
definition of the contraction in (3.2) yields

0 ifN £ A,
A PR TS

We now wish to show that a polynomial f as in Construction 6.8 gives rise to
a corresponding symmetric ideal which can be concretely described, and moreover,
its Macaulay inverse system can also be explicitly computed. As noted earlier, for
n sufficiently large, polynomials f as in Construction 6.8 exist, so the statement
below is not vacuous.
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Proposition 6.12. Let k be a field with char(k) # 2. Let d be an integer, d > 2.
Let n be a positive integer with n > 3d, and additionally assume n is sufficiently
large so that Construction 6.8 can be done. Let f € R = k[z1,---,zy] as in
Construction 6.8, and set I = (f)s, . The following hold:

(1) The principal symmetric ideal I generated by f may be computed as follows:

(6.3) I=@f)e + D>, D 0O,

AFdAA(d) YEA
(2) If P(d) denotes the number of partitions of d, then
dimk Id = dimk Rd - (P(d) - 1).

(3) The (—d)-degree component of the Macaulay inverse system of I can be
computed as

(I)-a=(mx | AFd, X # (d)).

Proof. We begin with (1). Since the LHS of (6.3) clearly lies in the RHS, it suffices
to show the opposite inclusion, namely, that the RHS of (6.3) lies in the LHS. In
particular, it suffices to show that each summand in (6.2) belongs to I. To see this,
fix a partition A - d, X\ # (d) with s parts and v C A and let

b()\,’y) — xi\ll .. .xi\ss _ x‘;\ll . .x;\:’
such that T'= T'(\, v) satisfies (6.1). In particular, i; = j; for ¢ € T and i; # j; for
t ¢ T. Define the permutation

g = H(/Ltujt)

teT

By the assumptions on T' = T'(\, ) in (6.1), it follows that the transpositions (i, j;)
commute with each other, and thus the multiplication order in o is irrelevant. By
construction of f, each variable that appears in b(\,~y) does not appear in any
b(X,~") with (\,v) # (N,7'), and it follows that o fixes b()\',+'). On the other
hand, observe that

o- b()‘v FY) = _b(/\’ FY)'

From this we conclude

bA) =5 (f - el

Since I is G,,-invariant, if one binomial is contained in I then any permutation of
it also lies in I, so we conclude (b(\,y))e,, is contained in I, as desired. Moreover,
by subtracting binomials we may also conclude that z¢ and hence also any xf is
contained in I, completing the proof of (1).

We now prove (2). Let Ny denote the set of all monomials in R of type A and
let M), denote the k-span of Ny. Since Ry is spanned by degree d monomials, and
any monomial of degree d is of type A for some partition of d, we have

(6.4) Ra =P M..
Ad

From (1) above, we know that I can be described as a sum of ideals as in (6.3). The
ideals in question are all homogeneous, so we may restrict to degree d components.
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Moreover, the ideals (b(A,7))s, appearing in the RHS of (6.3) lie entirely in M)
for each . So by the decomposition (6.4) we obtain

(6.5) Id:((x‘f)en)d@ P D etrne,

ArdA(d) \YEA d

) n

It is easy to see that ((x‘f)e ) = (2f,...,2%) = M(g. We next claim that, for
n d
each \ # (d), the vector space M) decomposes as

(6.6) M, = < > m> @Y 6,

meNy YCA d
To see this, we consider the decomposition
(6.7) MA—<Z m>®<m—m’|m,m’€N,\,m;£m’>.
meENy

We want to show that the second summands in (6.6) and (6.7) are equal. Since the
inclusion

Z(b()\,v))en C(m—m'|mm € Ny,m#m')
YEA d

is apparent from the definitions, it suffices to prove the reverse inclusion. For
distinct monomials m,m’ € N, with

! )\1 /\5
=T Tjeo

set T ={¢ € [n]|ip = je} and consider a subset of indices {ky | £ € T} so that
{kelegTin{ie|€¢Ty=0 and  {k [€ZT}N{je [£E T} =0

m:xf“uw%” and m
1 is

It is straightforward to see that such choices of k, for £ ¢ T' always exist provided
that n > 3d. Also, set ky = iy = j, for £ € T. We may write

/— )\1... )\S_ )\1... )\S )\1... )\S_ )\1... )\S
m-—m = (371'1 A xks) + (wkl " — ) a:J) .

Let by (respectively by) denote the first (respectively second) binomial in the above
decomposition of m — m’. Both by,bs are admissible A-binomials, with g(b;) of
type v for ¢ = 1,2 for some v with v C A. Use then Lemma 6.7 to conclude that
b1,b2 € (b(A,7))s, , and hence that m—m' = by —bs € (b(A\,7))s, . This establishes
the desired inclusion and proves (6.6). In view of (1), it also follows that

(6.8) m—m' el for all m,m’ € Ny,m #m/, A\ d,\ # (d).

Since the first term in the RHS of (6.6) is a 1-dimensional subspace, we may
conclude from (6.6) the identity

dimy [ Y (6(A7))g, | = dim My —1.
YEA
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Now, computing dimensions by means of (6.5) and using the relation Ry =
D,y M) yields

dimy Iy = dimy Mgy + Y (dimy My — 1) = dimy Rq — (P(d) — 1).
AA(d)

This proves (2).
Finally, we prove (3). To begin, consider the linear subspace of S defined as
follows:

(6.9) W= (my | A n,A# (d).

We now claim that W = (I+)_.

The inclusion W C (I+)_,; can be seen as follows. In view of (6.3), we need to
show z¢ o my = 0 and b(\,7) omy = 0 for all A,y with A+ d, A\ # (d) and v C .
Both these equations follow directly from Observation 6.11.

Observe that dimy W = P(d) — 1. In view of (3.13) and part (2), we also have

dimy (I') _4 = dimy Ry — dimy Iy = P(d) — 1
and hence W = (I*)_4. This completes the proof. ]

By definition of the symmetric polynomials m) and Lemma 3.2, the group &,
acts trivially on each my. Corollary 6.13 is therefore immediate from Proposition
6.12.

Corollary 6.13. Under the assumptions and notation of Proposition 6.12, the
natural &,,-action on S restricts to be trivial on (I+)_,.

7. LINEAR RELATIONS OF THE INVERSE SYSTEM

In the previous section, we gave an explicit description of the Macaulay inverse
system of a special type of principal symmetric ideal (f)g, , where f is constructed
in a very specific manner. The main goal of the current section is to use the analysis
in Section 6 to compute the space of linear relations on a subspace W (t) (to be
defined precisely below) of the Macaulay inverse system for a more general class of
polynomials f. The dimension computations in this section then lead directly to
our main results in Section 8.

In this section, we let R = k[z1,...,x,] with k a field, and S denotes the dual
S = RY, as in Section 3.

Notation 7.1. Let d > 1. We introduce scalar parameters t) € k for each A - d, A #
(d). We assemble these scalars to define the notation ¢ := (tx)ra,x(a)- Next, we
define a subspace of S associated to t as follows:

(7.1) W(t) :== (mx —tamy | A= d, A # (d)).

We associate to a homogeneous polynomial f € R of degree d, a list of parameters
t = (tx)ara,x2(a) as follows. For each partition A of d, let ay denote the sum of all
coefficients of monomials of type A in the support of f. Assume () # 0. Under
this hypothesis, we define, for each A - d, the scalar ¢y 1= ax /o).

We start with a lemma which identifies the resulting vector space W (t) as a
subspace of the Macaulay inverse system of (f)s

n
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Lemma 7.2. Let f € Ry and let (f)s, denote the corresponding principal sym-
metric ideal. Let ) be defined from f as above and assume that cqy # 0. Let t be
constructed from f as in Notation 7.1. Then the vector space W (t) defined by (7.1)
satisfies

W(t)C (Nen) a-

Proof. Let M, denote the set of all monomials of degree d in R. If m € My, let a,,
denote the coefficient of m in f, so that f = >_ a,mm. By Observation 6.11,
we have

meMy

fomy= § Ay = Q)
meMg,type(m)=X\

for any A+ d. Thus, if A # (d), we have
(72) fo(mA —t)\m(d)) = ) —t)\Ot(d) :O,

since we defined ¢, = %

Next, let 0 € &,,. We claim that (¢ - f) o (mx — taxmg)) = 0 when X # (d).
Indeed, we have:
(o’~f)o(m)\—t)\m(d)) = (U'f)O(U . (m)\ — t)\m(d))) = 0’~(f0(m)\—t)\m(d)) =0-0=0.
In the first equality, we used the fact that my and m4) are symmetric, so that they
are invariant under the action of o. In the second equality, we used the fact that

S € modg,, (R), as shown in Remark A.2(4). In the third equality we used (7.2).
The inclusion W (t) C (f)g, now follows, in view of the definition of W (¢). O

It will turn out — as a consequence of results we obtain in later sections (cf.
Corollary 8.2) — that, for a general (in a suitable sense) principal symmetric ideal,
the containment in Lemma 7.2 is in fact an equality.

7.1. Linear relations on W. Recall from (4.1) that for polynomials Fy,..., F, €
S, the vector space L, .., of linear relations on the given polynomials is defined
by means of the following exact sequence of k-vector spaces:

(7.3) 0= Lpy..m = Ri® 5 Rio(Fyy..., Fa)oa — 0,

where (01, 0o, ..., ¢0) == >I_, {; o F;. Here we view the vector space Ry" as a
direct sum of r many copies of the standard representation of &,,. If W denotes
the vector space spanned by Fi, ..., F, we will also write Ly instead of Lg,, . F,.
We begin with the following.

Lemma 7.3. Let Iy, ..., F. € S and suppose F; is &, -invariant for alli,1 <i <r.
Then the map v in (7.3) is &, -equivariant and the subspace Lp, .. . C R is stable
under the &, -action.

Proof. Let 0 € &,,. We compute

s s

o (Yl by, 0) =D o (LioF) =Y (0-Li)o(o-F)=Y (0-;)oF;
=1

=1 i=1
= ¢(U (613‘62;"'3‘67“)),

where we use Remark A.2(4) in the second equality and the &,,-invariance of the F;
in the third equality. This shows that 1 is equivariant and consequently its kernel,
Lp, ... F, is stable under the &,-action, as claimed. O
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Remark 7.4. The hypothesis that F; are invariant polynomials is necessary in
Lemma 7.3. To see this, consider the n — 1 polynomials F; = yfd) — yid) for

each i > 1. Note that these F; are not &,-invariant. The corresponding v then
takes an n — 1-tuple (fa,---, fu) € RY™' t0 ¢(fa, -+, fu) = Yiey fi o Fy, and

it is straightforward to compute that (z1,---,21) = —(n — l)ygd_l) whereas
P(x, - ,xe) = yédil). Taking o to be the simple transposition (12) which swaps 1
and 2, we have o(x1) = x5 and o - ¢(x1) # ¥ (o - x1). Thus ¢ is not &,-equivariant

in this example.

Lemma 7.3 applies in particular to the special case where F), = m,) are the
monomial symmetric polynomials in S_g4 for A - n, A # (d). There are P(d) — 1
many such monomial symmetric functions. In (6.9) we denoted by W the subspace
spanned by them. Applying Lemma 7.3 with r = P(d) — 1, it follows that the space
of linear relations Ly, is a &, -representation. Our next goal is to determine this
action of &,, on Ly ; the answer is given in Proposition 7.7.

To prove Proposition 7.7, we begin with a definition of a total order on the set
of partitions of a fixed integer d.

Definition 7.5. Fix a positive integer d. We define the lexicographic (total) order,
denoted >1.ex, on the set of partitions of d as follows: for p = (p1,p2, -+ ,ps) and
q=(q1, - ,q) any two distinct partitions of d, we define

b= (pl,p%-"aps) >Lex 4 = (qlaq2a"'7qt)

if there exists an integer k£ > 1 such that

P1=q1,P2 =q2, " Pk = Qk, and pr1 > Qi1
The following technical lemma is used in the sequel.

Lemma 7.6. Let F' € S_; is a non-zero symmetric polynomial that does not con-
tain ylid) in its support for any k. Then for every pairi,j € [n] with i # j, we have

(x; —xj) 0o F #0.

Proof. The monomials my with A I d form a basis for the subspace of symmetric
polynomials in S_,4. Using also the assumption on the support of F', we can write

F = Z a)my with ay € k.
AFdA#(d)

Define p := maxpex{A F d | ax # 0} where the maximum is taken with respect
to the lex order >pex of Definition 7.5 and note that by our assumption we know

u < (d). Hence, p is a partition with at least 2 parts.

For the purposes of the proof, we say that the monomial ygel)yéw) .. .y,(f”) is

divisible by ygell)yéeé) . .yy(f;’) if e; > e} for all i € [n].

Let ¢,j € [n] with ¢ # j. We wish to show (z; — x;) o F' # 0. Suppose in order
to obtain a contradiction that (z; — z;) o F = 0, i.e., x; 0 F = x; o F. By the
symmetry of F' and because m, appears in F' (i.e. a, # 0), we know that there

is a monomial in F' divisible by yl(“ l)yj(.“ 2)

a monomial divisible by yE“l)yj(m_l). By assumption z; 0 F' = ;0 F, so z; 0 F

also contains such a monomial, from which it follows that there must appear in F a

monomial which is divisible by yg” 1+1)y](.“ 2=1)

. From this we see that x; o F' contains

. But such a monomial has a type A

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



THE RESOLUTION OF A GENERAL PRINCIPAL SYMMETRIC IDEAL 1863

with the property that A1 > w3, which contradicts the choice of p as the maximal
in lex order. Thus we achieve a contradiction and the claim is proved. ([l

We can now compute the &,-action on the space of linear relations Ly,. By
definition, Ly is a subspace of R?P(d)fl, the direct sum of P(d) — 1 many copies
of Ry, that is equal to the kernel of the map v from (7.3), which, in this case is
described by

() Arda£(d)) = Z Oxoma(yr, - s YUn)-
AR, A#£(d)
In what follows, (3.7, x;)Ro denotes the vector subspace of Ry spanned by the
linear form >, z;. With this notation in place, we can state and prove the
following.

Proposition 7.7. Let W be as defined in (6.9) and let Ly denote the kernel of ¥
as above. Then Lw C (321, xi)RO)@P(d)_l C R?P(d)fl. In particular, Ly is a
trivial S, -representation.

Proof. Any element in Ly, C R?P(d)fl

so for ¢ € Ly, we may write

= <Z ci,)\xi> € Ly for ¢; ) €k
i=1 Ad A (d)

To prove the first claim, it would suffice to show that ¢; x» = c;  forall 1 <i,5 < n.

To see this, recall from Lemma 7.3 that Ly is stable under the &,,-action. Thus
for any i,j € [n], i # j, we have that (ij) - ¢ € Ly . In other words, 1 (£) = 0 and
¥((i§) - €) = 0. We now compute each explicitly.

is a (P(d) — 1)-tuple of linear polynomials,

We have
(74) ’(/J(f) = Z (Z Ce Tk © m,\> =0.
ArdA£A(d) \k=1
We may also compute
(7.5)
¢((Z])€)= Z Z CkATEOMy | +cjax;omy + ¢ xjomy | =0.
Ad, £ (d) k+#i,j

Subtracting (7.5) from (7.4), we obtain
Z (Ci))\—Cj))\)(l‘i—J)j)omk :O7
Ad,A£(d)

which is equivalent to

(l‘i — l‘j) o Z (CZ‘,)\ - Cj,)\)mA =0.
AR, A #£(d)
Note that the polynomial being contracted by x; — x; above is a symmetric poly-
nomial that does not contain z¢ in its support. It follows by Lemma 7.6 that this
must be the zero polynomial. This implies that ¢; » = ¢; x for all A - d, A # (d).
Moreover, the above argument is valid for any pair of 4,7 € [n] with i # j, so
the claim is proved. Finally, the linear polynomial Y 1 , z; is &,-invariant, so
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the k-vector space it spans is the trivial &,-representation, as is its direct sum

(>, xi)RO)EBP(d)A. Any subspace of a trivial representation is still trivial, so
we may conclude Ly is also the trivial &,,-representation. This concludes the
proof. O

7.2. Linear relations on W (t). We now turn our attention to the general case of
the subspace W (t) from (7.1). The subspace W studied in the previous subsection
is the special case when t) = 0 for all A\. It will turn out that our analysis of the
linear relations Ly in this special case will allow us to compute the dimension of
Ly for t = (ty) € AP(@1 general (in a suitable sense to be made precise in
Proposition 7.15), and in addition, it will allow us to show that for such ¢, the
subspace Lyy ;) carries a trivial &,-action — giving us a natural generalization of
Proposition 7.7. These statements are contained in Corollary 7.16.

We first need some notation. For an arbitrary tuple of non-negative integers
a=(ai,...,as) € Z%, we denote by part(«) the tuple with the same entries as «
but with entries re-ordered to be non-increasing, so that part(«) is a partition.

Notation 7.8. For a partition p = (pi,...,ps) denote by #p the length of the
partition, so #p = s in the example given. For any ¢ with 1 < i < #p + 1, define
the notation

pri e {part(pl, cesDie1,Pi + L, Div1y o Ds) %f 1 <i< #p=s,
(p1,- -5 ps; 1) if i=#p+1=s+1.
In particular, ps; is undefined for any ¢ with i & [#p + 1].
Example 7.9. Assume d > 4. Let p= (d —3,1,1). Then
pr1=(d—2,1,1), pro=prs=(d—3,2,1), paa=(d—-3,1,1,1).

Our second piece of notation involves the support of vectors in Z%. Let o € ZZ,.
Recall that the support of «a is the set

Supp(a) = {i | a; # 0} C [n].
We also denote by ey, ..., e, the standard basis of ZZ,.

Definition 7.10. Let a € Z%, with part(a) = p. We define a function

diff, : Supp(a) — {1,..., #p}
such that if ¢ € Supp(«), then diff,(7) is the unique index 1 < diff,, (i) < #p such
that
part(a)aig, (i) 7 Part(a + e;)ais. (i)-

Example 7.11. Let a = (1,d —2,1,0"3). Then Supp(a) = {1,2,3}. Assume
d > 3. Then part(a) = (d — 2,1,1) and we have a + e; = (2,d — 2,1,0"3) and
part(a +e1) = (d — 2,2,1) so diff,(1) = 2. Similarly o + ez = (1,d — 1,1,0"73)
so part(a + eg) = (d — 1,1,1) and diff,(2) = 1. A similar computation yields
diff ,(3) = 2.

The following is a straightforward consequence of definitions and is left to the
reader.

Lemma 7.12. Let a € ZY,, and let part(a) = p.
(1) Fori & Supp(ex), we have part(a + €;) = Dragpt1-
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(2) Fori € Supp(a), we have part(a + €;) = prais,, (i) -
(3) The multisets {prai, i) | © € Supp()} and {py; | 1 < i < #p} are equal.

We may also succinctly express the action of a monomial on elements of W using
this notation.

Lemma 7.13. Let p be a partition of d — 1. Let a € Z% with part(a) = p. For
each i € [n] and A& d, let ¢; » be an element of k. Then

« p— . .
(7'6) T o E CiAL; OMy | = E : Ci,prapia + E : Ci,prditea (i) *

AR i¢Supp(a) i€Supp(a)

Proof. For any 8 € Z%, and corresponding monomial P = xf 1:10262 coegbhin R =
k[z1,--- ,x,], use Observation 6.11 to see that 2 o m, is non-zero if and only if
type(z®) = A, and this occurs if and only if part(3) = A. Moreover, if 2% omy # 0,
then zf omy = 1.

From the above paragraph, we see that in order to compute the LHS (and show
that it is equal to the RHS) of (7.6) it suffices to find conditions on « such that
x%x; has type A. Notice that in order for this to occur, it is necessary that part(c)
be a partition of [A\| =1 = d — 1 (as we have assumed). We take cases according as
to whether z; appears in 2, i.e., whether or not 4 is in Supp(«a).

Suppose i ¢ Supp(a). Then part(c + e;) = prgp+1 and thus

S 0y = 1 if and only if prapt1 = A,
0 else.

If i € Supp(a) then part(a + e;) = praig, iy by Lemma 7.12(2) and thus

22, 0y = 1 if and only if praig, ) = A,
’ 0 else.

The claim of the lemma now follows. |
Recall that Lyy ;) is defined to be the kernel of the map in (7.3), given by
Y (OA)araa£(d) € REPO- Z Oy o (mx — tamyay).
Ad A (d)

Writing £, = Z?Zl ciax; for each A, we then see that Ly () consists of tuples
(301 ciati)az(a) where the (¢; y) must satisfy the equation

(77) Z Ci,)\zi o (m)\ — t,\m(d)) = 0
i, A\Fd,A#(d)

Note that the LHS of (7.7) is a homogeneous polynomial of degree d — 1. Given
an element g € S, we have that % o g is the coefficient in g of the monomial with
exponent vector a, for any such a. Thus (7.7) is equivalent to the statement that
(7.8)

%0 Z ciati o (my —txmgy) | =0 for all @ € N* with |af =d - 1.
i, AR, A£(d)
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For a given «, let ¢ be defined by ¢ := part(«). Note that if ¢ # (d — 1), then
z“z; is not of the form z¢ for any i € [n], so 2% o (z;0m(q)) = 0 in that case. Hence
if part(a) = g # (d — 1) equation (7.8) is equivalent to

%o E ciariomy | =0
i AFd,AA(d)

which in turn is equivalent to

(7'9) Z Cigraqr1 T Z Ci,qraitee () — 0

iZSupp(«) i€Supp(a)

by Lemma 7.13. On the other hand, when part(a) = ¢ = (d — 1), which means
T = xzfl for some k € [n], then (7.8) is equivalent to the equations

(710) Z Ci,(d—Ll) - Z Ck7)\t)\ =0.

1<i<n,ik A-d, A (d)

Note that equation (7.10) is the only ons in which the parameters ¢y appear.

One of the goals of this section is to find the dimension of the space of solutions
{ci} of equations (7.9) and (7.10), which computes the dimension of Ly . For
the convenience of the reader, we now give an overall sketch of our strategy before
handling the details. First, we introduce some notation. We let D(t) denote the
dimension of the space of solutions of the system of equations (7.9) and (7.10),
and note that D(t) = dimy Lyy ). We denote by C(t) the dimension of the space
of solutions to (7.9) and (7.10) under the additional condition that the solution
{ci,»} must be symmetric in the ¢, that is, ¢; » = ¢; » for all 1 <4, < n. We also
let Dgeneric, respectively Cyeneric, denote the minimum value attained by D(t),
respectively C(t) for t € AP(@D=1 The reason for the use of the word “generic”
is that the entries of coefficient matrices of the respective systems of equations
are linear functions in the parameters ¢t € AP(@D=1 and thus these matrices attain
maximal rank (and hence the solution spaces of the corresponding systems have
minimal dimension) when ¢ is in a non-empty open subset of AF (-1 We also set
Coy = C(0) and Dy = D(0); these are the dimensions of the two solutions sets that
are obtained when ¢ = 0, meaning ¢y = 0 for all A\ F d, A # (d). Our proof can now
be summarized through the following steps:

e In Proposition 7.7 we proved that if ¢ = 0, then any solution to (7.9)
and (7.10) must satisfy that the ¢; » are independent of 4. This implies
C() = Dy.

e Observe that C(t) < D(t) for all t € AP(@)~1 gince the system correspond-
ing to C(t) is obtained from the system corresponding to D(¢) by adding
additional linear equations that symmetrize the solutions. We have thus

(7.11) Cyeneric = C(t) and Dgeneric = D(2) for t in an open set
(712) Cgeneric < Dgeneric < Dy = Cy.

o We explicitly compute Cyeperic and we prove Cgeperic = Co. This implies
that equalities must hold in (7.12). More precisely, (7.11) gives that if V
is the non-empty open subset V' C AP(@~1 on which C(t) = Cp, then
D(t) = C(t) = Cp for all t € V. A direct consequence of the equality
D(t) = C(t) is that, when t € V, any solution {¢; »} for equations (7.9)
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and (7.10) satisfies ¢; » = ¢; » for all 4, j € [n]; this is equivalent to the fact
that Ly, is a subspace of (31" | ;) Rg)(d)*l
To fill in the details of the sketch-of-proof outlined above — namely, to compute
Cyeneric and prove that Co = Cgeneric — we need some preliminaries. We will first
analyze and rewrite equations (7.9) and (7.10) under the additional assumption that
¢;,» is independent of 7. In this case, we may use the simplified notation cy := ¢; .
Moreover, by Lemma 7.12(3), we know (using the ¢, notation just introduced)

E : qu;ﬁam E :CqT_]

i€Supp ()

Therefore, under the symmetry assumption on the coefficients, equation (7.9) be-
comes

#q
(7.13) (n = #4)Cqrppir + > Cay, =0

j=1
for each ¢ - (d — 1) with ¢ # (d — 1). For ¢ = (d — 1), equation (7.10) becomes
(714) (n —1- t(d—l,l)) C(d—l,l) - Z tacy = 0.

Ard,A#(d),(d—1,1)

As suggested above, we now view these equations as linear equations in the variables

c,\,(a)nd the coefficients of these linear equations depend on the parameters t €
AP d)—1

We illustrate the corresponding matrix A of coefficients associated to equa-
tions (7.13) and (7.14) in a specific instance of d below. Indeed, for this specific
case, we can also compute the (generic) rank of A, and the techniques used in Ex-
ample 7.14 illustrates the general argument we give below in Proposition 7.15. Our
reasoning utilizes the lexicographic order in Definition 7.5.

Example 7.14. Assume char(k) = 0 and assume n > d = 5. In this case, there
are 6 partitions A of d = 5 with A # (5), namely

{(1,1,1,1,1),(2,1,1,1),(2,2,1),(3,1,1),(3,2), (4, 1)}
listed in increasing lex order. There are 4 partitions g of d—1 = 4 with ¢ # (d—1) =
(4):
{(1,1,1,1),(2,1,1),(2,2), (3, 1)}
listed again in increasing lex order. Thus by varying ¢ F 4,q # (4) in (7.13), we

obtain the following 4 equations:

n—4)cai1,1) +4ce1,,) =0,
n—3)e@1,1,1) T 2¢2,.2,1) +¢@3,1,1) = 0,
n —2)c@2,1) +2¢@3,2) =0,

n—2)cs1,1) +¢3,2) + can) = 0.

(
(
(
(

Finally, taking ¢ = (4) we rearrange (7.14) so the coefficients ¢y appear in increasing
lex order and we obtain

—t(1,1,1,1,1)€(1,1,1,1),1 —1(2,1,1,1)€(2,1,1,1) —£(2,2,1)€(2,2,1) —£(3,1,1)€(3,1,1) ~1(3,2)€(3,2)
+ (n -1 t(471))0(411) =0.
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The corresponding matrix A, with columns indexed by A F 5 with A # (5) listed
in increasing lex order, and rows indexed by ¢ - (4) in increasing lex order, is as
follows:

(n — 4) 4 0 0 0 0

0 (n—3) 2 1 0 0

A= 0 0 (n—2) 0 2 0

0 0 0 (-2 1 1
Lty —teany —teen) —teay —tez) (=1 —tun)]

We now argue that for a generic choice of (¢), this 5 x 6 matrix has full rank. In
order to see this, we consider the 5 x 5 minor of A obtained by deleting the column
corresponding to partitions A  (5) that do not end with a 1. Since partitions
of A F (5) that end with a 1 (e.g. (2,2,1)) are in bijective correspondence with
partitions ¢ of (4) (e.g. (2,2)) by deleting the last “1” entry, it is straightforward
to see that the resulting minor is indeed square, of size 5 x 5 = P(4) x P(4). It is
also straightforward to see that this construction holds for general d > 4, resulting
ina P(d—1) x P(d— 1) matrix. In this case of d = 5, the resulting minor is:

(n — 4) 4 0 0 0
0 (n—3) 2 1 0
(7.15) A= 0 0 n-2) 0 0
0 0 0 (n-2) 1
| —ta111,1) —teay —teen —teiny (—1—tu)]

We see that A’ is almost upper-triangular, in the sense that any entry below
the diagonal and above the bottom row are equal to 0. Since n = d > 5 we also
know that the first 4 entries along the main diagonal are positive. It follows, by
performing basic row operations which clear the leftmost 4 entries along the bottom
row (using the first 4 entries along the diagonal), that

(7.16) det(A") = (n —4)(n = 3)(n - 2)* - g(1),

where g(t) is a polynomial in the ). In fact, using the standard definition of a
determinant as a sum over permutations ¢ in Sy of the products

(A/)l,a(l)(A/)Z,o(Z) T (A/)5,a(5)

of matrix entries, that in fact the polynomial g(t) must be linear in the variables ¢,.
Moreover, g(t) is not identically 0, since it is evident from (7.15) that g(0) =n — 1.
Thus, for any tuple (¢)) € A%\ V(g) where V(g) denotes the vanishing locus of the
non-zero linear polynomial g(t), we have det(A’) # 0 and hence the matrix A is
full rank, as desired. In the terminology of the discussion above, the non-empty
Zariski-open subset V with C(¢) minimal is precisely V := A®\ V(g).

From the fact that A is full rank for (¢)) € V, and the fact that A is of size
P(4) x (P(5) — 1), we conclude that for such ¢ = (t5), we have C(t) = Cyeneric =
P(5)— P(4) — 1.

Example 7.14 clearly illustrates the idea of the general argument, which we
formalize with the next result. Equation (7.16) also illustrates the necessity of the
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assumption on the characteristic of the base field, if we wish to avoid situations in
which the determinant of A’ (or A) is identically 0.

Proposition 7.15. Suppose char(k) = 0 and fix integers n > d > 2. Let A denote
the P(d—1) x (P(d)—1) matriz of coefficients, which depends on (ty), corresponding
to the linear equations (7.13) and (7.14). Then there exists a non-empty Zariski-
open subset V. C AP D=1 such that for (ty) € V, the matriz A has full rank.
Moreover, the origin (tx) = (0) is contained in V', and

Co = Cyeneric = P(d) — P(d — 1) — 1.

Proof. The general argument follows closely the argument given for d = 5 in the
example above. Let A’ denote the P(d — 1) x P(d — 1) minor of A obtained by
deleting the columns corresponding to A F (d) that do not end with a 1. This
results in a P(d — 1) x P(d — 1) minor since the partitions A F d that do end with
a 1 are in bijective correspondence with partitions ¢ - d — 1, by deleting the last 1.
In particular, each such A - d can be written as A = gy444+1 for a unique ¢ - d — 1.
Note also that this bijective correspondence respects the lexicographic order, as can
be checked.

We next claim that A’ is almost-upper-triangular in the sense that the (¢, A =
Qigpq41)-th entry of A’ equals 0 if ¢ > ¢’ and ¢ # (d — 1). In other words, A’ is
upper-triangular except for the bottom row. To see this, suppose ¢ F d — 1 and
g # (d—1). Then by the form of equation (7.13) it follows that the coefficient A, x
is non-zero if and only if either

A= Qigpg i1 = Qg
or

A= Qg1 = Qdift, (3)
for 1 <4 < #q, and qpaifr,(;) ends with a 1. In the first case, we have ¢ = q. In
the second case, by definition gyqif,(s) is a partition obtained from g by increasing
one of its entries by 1 and then re-ordering to make it a partition. In particular, by
the definition of lex order it follows that gpaifr, (i) > ¢t#4+1 and since ¢’ is defined
by qraiet, (i) = q’T 4q'+1 it follows that ¢ > q. Thus we have shown that A’ is upper-
triangular except for the bottom row, as claimed. Moreover, since n > d we also
know from (7.14) that the diagonal entries A4, ., for ¢ (d—1) and ¢ # (d—1)
are non-zero, since n — #q > 0 for all such gq.

Now, from the form of (7.14), it immediately follows that every entry in the
bottom row of A’ (which corresponds to ¢ = (d — 1)) is non-zero, and each non-
diagonal entry is a single variable ¢t5. Moreover, each ¢ty which appears along the
row appears exactly once. As argued above for in Example 7.14, by elementary row
operations it now follows that

det(A') = I ®-#] 90

g-d—1,q#(d—1)

for some linear polynomial g(¢) in the t) parameters. Moreover, since the bottom
right corner entry of A" isn —1 — t(d—1,1), it is evident that if all £y = 0 then

det(A) = [I (-#a] -1 0.

g-d—1,q#(d—1)
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In other words, g(0) # 0. Now let V := AP(4=1\ V(g) where AP(?=1) is the space
of tuples (¢)). Arguing as in Example 7.14 above, it follows that V' is a non-empty
Zariski-open set containing (0). Thus for (tx) € V' we conclude det(A’) # 0 and
hence the original matrix A is full rank. The dimension of the space of solutions
is therefore P(d) — 1 — P(d — 1) as desired, and the rest of the claim follows as in
Example 7.14. g

Returning now to the discussion before Example 7.14, we observe that Proposi-
tion 7.15 computes that

Cgeneric = Co = P(d) = P(d—1) — 1.
Recall that, by the previous discussion, this implies
Cyeneric = Dgeneric = Do = Cy = P(d) — P(d —1) — 1.
We have thus obtained Corollary 7.16.

Corollary 7.16. Assume char(k) =0 and fixn > d > 2. There exists a non-empty
Zariski-open subset V.C AP =1 of tuples (t\) such that 0 € V and, for (ty) € V,
the following hold:

(1) The dimension of the solution set of equations (7.9) and (7.10) in the vari-
ables ¢; » is equal to P(d) — P(d—1) -1, i.e.,

dimk LW(E) = P(d) - P(d - 1) -1

forteV.
(2) Any such solution must satisfy the property that the c;x = ¢ for all
1,7 € [n], i.e.,

LW(L) C (Z xz) R(J;(d)—l.

i=1
In particular, Ly () 18 a trivial &, -representation.

The above arguments show an open set of parameters ¢, with the desired proper-
ties. In the next section, we will translate to a Zariski open subset of the parameter
space for the polynomials f that define the principal symmetric ideals of interest
for this paper. This set will then be used in describing the generic condition on
these ideals that is needed towards the main theorem of this paper.

8. MAIN THEOREM, AND THE CASE OF CUBIC PRINCIPAL SYMMETRIC IDEALS

The present section contains the statement and proof of our main result,
Theorem 8.4. Some preliminary results are needed for the proof, since the argument
relies on the theory developed for extremely narrow algebras in Section 4. Thus
we first prove Theorem 8.1, which shows that the quotient algebras corresponding
to general principal symmetric ideals are extremely narrow algebras. We also need
Theorem 8.3, which gives us an understanding of the &,-equivariant structure of
the minimal resolutions which arise. Finally, in Subsection 8.2, we illustrate in
some detail the case of cubic ideals, where deg(f) = 3. In part, this serves as an
illustration of our main results, but in addition, we present this case because in this
situation we can prove some additional facts and give a more detailed analysis than
in the general case. (Recall that the case deg(f) = 2 was fully treated in Section 5.)
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8.1. Main theorems. We begin with the following result, which shows that for
general principal symmetric ideals, the corresponding quotient is extremely narrow.
Recall that P(d) denotes the number of partitions of d.

Theorem 8.1. Assume k is infinite with char(k) = 0 and fiz integers d > 2 andn >
0. If I = (f)s,, is a general principal symmetric ideal generated by a homogeneous
polynomial f of degree d, then the quotient algebra A = R/I is a d-extremely narrow
algebra. Moreover, the socle polynomial of A is

((“ ;Lf ) 2) —(n—1)P(d) — P(d—1) +n — 1) 2471 4 (P(d) — 1)2%
Proof. Let ¢ € PN~! and let f, € R of degree d be the corresponding polynomial, as
defined in Section 1. Let a4y denote the sum of the coordinates of ¢ corresponding
to coefficients of the monomials x¢ appearing in f.. Since we are interested in
general f., we may restrict to working with c in the Zariski-open set where the sum
a(q) is non-zero — the complement of the hyperplane V(«a(q)).

For each A\ F d, let ay denote the sum of all coefficients of monomials of type
A in the support of f.. For ¢ € U and for A - d set tx = ax/a(g). This gives a
morphism

U:U = APD=1 e b= (ty).
To show that A is d-extremely narrow, we need to verify conditions (1) and (2)

in Proposition 4.8. To prove (1), use Proposition 6.12 and upper semicontinuity
(Lemma 5.1) to conclude

dimk Id Z dimk Rd — (P(d) — 1)

for f = f. with ¢ € U, with U a non-empty Zariski open set.
For each partition A of d, A # (d), define polynomials

Fx = a@my — axm,

and note that (Fy | A d, A # (d)) = W(¢) in the notation of (7.1). Since the poly-
nomials m) have disjoint support, they are linearly independent and consequently
the polynomials F) are also linearly independent. In Corollary 7.16 we have identi-
fied a non-empty Zariski-open set V C AP(=1 50 that 0 € V. Take V' = U~ 1(V).
Then V' is Zariski-open and non-empty as we have seen that ¥(c) = 0 for the
polynomial f. in (6.2), so that V' is non-empty.

Corollary 7.16 shows that for ¢ € U NV’ one has

(8.1) dimy Ly = P(d)—P(d—1)—1 and Ly C (Z ;v2> RE@=1,
i=1

In particular, the inclusion above implies that Ly carries a trivial &,,-structure.
Let c € UNV'. Since {F) | A # (d)} is linearly independent and is contained
in (I+)_4 by Lemma 7.2, equation (8.1) allows us to apply Proposition 4.8 with
a = P(d) — 1, and conclude that A is d-extremely narrow with socle polynomial
bz4=1 + (P(d) — 1)2%, where
b=dimyg Rq_1 — (P(d) — 1)n + dimy Lp, xx(q)
=dimg Rg_1 — (P(d) —1)(n — 1) + P(d — 1). O
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Corollary 8.2. Under the assumption of Theorem 8.1 for a general principal sym-
metric ideal (f)s, we have an equality in Lemma 7.2. Namely,

((Ns,) _s=WE)

for the tuple t defined therein. In particular, this vector space carries a trivial
S, -action.

Proof. Since Lemma 7.2 provides a containment, the desired equality follows by
establishing equality for the dimensions of the two vector spaces. By Theorem 8.1
we have dimy ((f)én)id = P(d) — 1. Since the spanning set of W (t) in (7.1) is
a basis, due to the linear independence of the monomial symmetric functions, we
conclude that dimy W(t) = P(d) — 1 as well. Finally, since W(¢) is spanned by
G ,,-invariant polynomials we conclude it is a trivial representation. |

For our main result we also need to understand the equivariant structure of
the resolution of a principal symmetric ideal. This is summarized in the following
result.

Theorem 8.3. Assume k is infinite of char(k) = 0 and fiz an integer d > 2. Set
a=P(d)—1and ¢ = P(d) — P(d—1) — 1. For n sufficiently large, a general
principal symmetric ideal I = (f)s, generated by a homogeneous polynomial f of
degree d yields a quotient A = R/I so that for 1 <i <n —1 we have

) a(n,—?:+1,1i*1)_a
~ (d,1%) (d,1%)
Tor; (A, k)itd—1 = @ (pr(n)) @ (Sp(n—i-i-l,li*l))
[N <i+d
PYREPYESD

A1) AA1)

a(nf@,li)fa
(d,1%)
S (Sp(nfi,l'i)>
and all the remaining non-zero components of TorzR(A7 k) with 1 < are given by

TOI‘gfl(A, k)n71+d = Spfln),
Tor,, (A, k)n—1+d

A a2 +P(d=1)+1 a2t

= P 6 <d’“>®(5p<m>) ’ @(Sp<z,w4>) ’ ;
MtA<n
A(n)#(1™)

A(n)#(2,1°72)
’I‘OI‘,’,I§(147 k)n+d = Sp?l”) .

The formulas above utilize exponents given by (2.7).
Proof. By Lemma 4.5(5) we have a short exact sequence
(8.2) 0—1— Rsqg 5 k(—=d) — 0.

Recall that map ¢ is given by ¢(r) = (ro Fy,...,r o F,) where Fy,..., F, form a
basis for (I+)_4. Furthermore, by (7.1) and Corollary 8.2, the basis F}, ..., F, can
be chosen so that it is indexed by A+ d, A # (d) and

F\ =m) —txmyay-
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Note that these polynomials are invariant under the action of the symmetric group
on S. By Lemma 4.5(5), the exact sequence (8.2) is &,-equivariant, when consid-
ering the trivial &,-action on k*(—d).

By Theorem 4.9 and Lemma A.5(3), the &,-equivariant sequence (8.2) induces
the following equivariant short exact sequences relating the non-zero graded com-
ponents of the relevant homology modules:

(8.3) 0 — Torf(I,k);rq — Tor;(m? k);yq — Tor;(k%, k); — 0 for i <mn—2,

(84) 0— rTOI',,}f_l(I7 k)n—1+d — Torf_l(md, k)n—l-i—d
— Tor? | (k% k)p_1 — Tor® (I, k)p_144 — 0,
(8.5) TorZ(k?, k), = Tor2 | (I, k), va-

Focusing on ¢ < n — 2 and internal degree ¢ + d and substituting (2.8) and (2.1)
into (8.3) we obtain the short exact sequence below which yields the first item of
the claim

a/\(n)i
0— TOI"lR(I, k)i+d — @ (Sp)\(n)> (@10 — Sp((ln—i,li) S¥) Sp((ln_i_i_l’lifl) — 0.
[A|<itd

For ¢ =n — 2, we have isomorphisms in modg, R
Tor (1, K)n-1+a = Torlty (R/L K 144 = (Torf (I, K)a1)” @k Spoiey
(8.6) = (Lp,... r,)" @k SPany = SP(n) ®k SP(1n) = SP(1n) -

The first isomorphism comes from Proposition 3.5 and Lemma A.6, the second
isomorphism comes from Lemma 4.7 (noting that it is indeed an isomorphism in
mode, R due to the &,-structure on Lp, ... r,) and the second to last equality
comes from (8.1).

Substituting (2.8), (2.1) and (8.6) into (8.4) yields

A(n)

O — TOI',,IE_I(I, k)n—l-‘,—d — @ (Spk(n)) @1m=h
A+ AI<n

— Sp‘(lln) © Sp((LQ’lnfz) — Spfln) — O,

whence the second item of the claim follows. Finally, (8.5) establishes the last
claim. g

We now recall and prove our main theorem.

Theorem 8.4. Suppose k is infinite with char(k) = 0 and fiz an integer d > 2. For
sufficiently large n, a general principal symmetric ideal I of k[z1, ..., x,] generated
in degree d has the following properties:

(1) the Hilbert function of A = R/I is given by

dimg R;  ifi<d—1.
HFA(Z) = dlmkAz: P(d)—l Zf’L:d,
0 ifi>d,
(2) the betti table of A has the form
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o 1 2 - ¢ - n=2 n—1 n
total: 1 w; wug -+ w cc+ Up—9 Up—1+€ a+d
0: 1
d—1: . Uy Uy - Ui = Up—2 Unp—1 b
d: . . . . . . Y4
with
a=P(d) -1,

b=dimy Rg_1 — (P(d) —1)(n—1) + P(d — 1),

oo () oo ()

0= P(d)— P(d—1) — 1,

(3) the graded minimal free resolution of A has &, -equivariant structure de-
scribed by the &, -irreducible decompositions for the modules TorzR(A7 k)
giwen in Theorem 8.3.

Moreover, the Poincaré series of all finitely generated graded A-modules are ra-
tional, sharing a common denominator. When d > 2, A is Golod. When d =2, A
is Gorenstein and Koszul.

Proof. The first two items follow from Theorem 8.1 by means of the formulas devel-
oped in Lemma 4.5 for the Hilbert function and in Corollary 4.10 for betti numbers
of extremely narrow algebras, respectively. The third item is Theorem 8.3. Based
on the value 8,,(A) = a + b established in part (2) as well as the evident inequality
a > 1, it can be deduced that A is Gorenstein if and only if P(d) —1 =a =1 and
b = 0. This yields d = 2. The case of d = 2 is discussed in detail in Theorem 5.3,
where it is also established that A is Gorenstein provided the principal symmetric
ideal is quadratic.

The rationality of Poincaré series and the fact that A is Golod when d > 2 and
is Koszul when d = 2 follow from Proposition 4.13. (]

8.2. Cubic principal symmetric ideals. While the general results in the pre-
vious section hold for n sufficiently large, we want to make the point in this sub-
section that for the cubic case (d = 3) specifically, the general behavior described
in Theorem 8.7 holds whenever n > 5, and this precise lower bound on n is not
covered by the previous results. (See Example 6.9, which shows that our previous
results would only apply to n > 26 when d = 3.) Additionally, the lower bound
n > 5 is sharp, that is, it is the smallest embedding dimension in which the betti
numbers of cubic principal symmetric ideals behave as predicted in Theorem 8.4(2).
This is illustrated by the Macaulay2 computations recorded in Example 8.5 below.

Example 8.5. Computations performed using the computer algebra system
Macaulay2 [13] indicate that with very high probability for k = Q a general cubic
principal symmetric ideal I has the following betti table in low embedding dimen-
sions n < 4:
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n 1 2 3 4
012 o123 01 2 3 4
o 1fo: 1 . .fo1 0: 1
betti table of R/7 |2 1 |} | ! S
1: 2.2 |2 .64 .|2 . 15 26 10
2 . 1[3 . . |3 13 41
4 .. 1|4 14 1

We now present an example that requires n > 5 variables.
Example 8.6. Assume n > 5 and char(k) # 2. Take

3 3 2
I = (27 — x5 + 223 + TaT3Ty — T2T3T5)s

Claim.
3 3
I =(x; — a3,

= (.Iii’ - $?7 Iil’[, L1T2X3 — LuTyTw | jvk # gau <v <w, {15 273} # {uavaw}>'

Ty, TpTgTy — TuLpTy |1 < J kA Lp<g<ru<v<w)

Indeed, let f = o — 23 + 2223 + Tox374 — To2375. Notice that
1
g::§(f—|—(45)-f):x‘;’—x‘;’—l—x?xg el and h:=f—g=xox3x4—Tox325€ .
If o € &5 satisfies 0(2) =1 and o(4) = 2 we have
si=g—(24)-g=—a34ael and gto-s=alazel

and
t:=h—(15)(34)-h = 222304 — X2x3%5 — (T2X3Ty — TaTy®1) = T1ToTg — T2X3T5 € I.
By applying suitable permutations, ¢ and A yield all binomials x1x9x3 — Ty%yTe
where {1,2,3} N {u,v,w} has two, respectively one, element(s). If n = 5 this
recovers all the binomials x1xox3 — T, T2, with 1 < u,v,w < 5.

If n > 6, then we also get
t— (1 3)(2 4)(5 6) -h = L1X2T4 —AX2X3T5 — ($1IQI4 —1‘1I4I6) = X1T4T6 — T2T3T5 € I.

The Claim follows from here, as all listed generators of I can be obtained by acting
with a permutation on one of the monomials or binomials that we established to
be in I. The generators listed in the second line of the Claim are clearly linearly
independent, and thus a count yields

dimk 13 = dimk Rg — 2.

A computation in Macaulay2 with k = Q yields that the betti table of the ideal
described in this example for n =5 is

0 1 2 3 4 5
0: 1
(8.7) 1: . . .
2 33 95 106 50 5
3: . . . . .2
Notice that this resolution is almost linear, in the sense of [15], meaning that
the matrices giving the differential have linear entries, except for the first and the

last. We show the essential features of Example 8.6 persist in embedding dimension
n > 5.
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Theorem 8.7. Assume n > 5 and k is infinite with char(k) # 2. A general princi-
pal symmetric ideal I generated by a homogeneous cubic polynomial yields a quotient
A = R/I which is a 3-extremely narrow algebra, thus compressed, with permissi-
ble socle polynomial w,zz +223. Moreover, A has an almost linear resolution
over R with betti numbers given in Theorem 8.4. Moreover, if char(k) = 0, the

&, -equivariant structure on the resolution of A is as described in Theorem 8.3.

Proof. As explained in Section 1, and using the notation therein, we consider f = f.

with ¢ € PN~!, where N = ("‘2"1) and f = cymy + como + -+ cympy. We find it

convenient to rename the coefficients ¢, as follows:
a; if my = x§7
Cr = bij if my = LEZZ.’EJ' with 7 75 7,
eijr  if mp = zizja with ¢ < j < k.

With this notation, we have:

n
2 3 2 2 § :

f = a;T; + bz]IZ Xy + €ijkTiTjTk.
i=1

1<4,5<n,i#] 1<i<j<k<n

We will verify conditions (1) and (2) of Proposition 4.8, for ¢ general.

To show (1), use Example 8.6 and upper semicontinuity (Lemma 5.1) to find a
non-empty Zariski open set U such that, if ¢ € U, then dimy I3 > dimy R3 — 2.

Set

a = zn:ai, ﬁ = Z bij and g = Z €ijk-
i=1

1<i,j<n,itj 1<i<j<k<n

To show (2), we define

F—B(izé‘”)—w S Py
i=1

1<i,j<n,i#j

G=p3- Z YiYiYe | —€- Z yi(Q)yj

1<i<j<k<n 1<4,5<n,i#j
A computation shows that fo F'=0= foG. Since F' and G are invariant under
the action of &, it follows that (¢ f)o F =0 = (0 f) oG for all 0 € &,,, and
hence F,G € (I*)_3. We show that, for f = f. general, F and G are linearly
independent. Indeed, this is satisfied when the matrix
, B —a 0
M= {O —c ﬁ}
has maximal rank. The locus where the rank is not maximal is described by the
ideal J generated by Be, a8 and 32, which are homogeneous polynomials in the
coefficients of f. Set U’ = PN~1\V(J). This is a Zariski open set of P’ ~1. Observe
that U’ is non-empty for the specific choice of ¢ that corresponds to Example 8.6.
Indeed, in this case we have o = ¢ = 0 and = 1 and 3% # 1.
We now show dimy Lg g = 0 for general f. Assume

Zui(xiOF)—Fvi(xiOG):O with  u;,v; € k.

i=1

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



THE RESOLUTION OF A GENERAL PRINCIPAL SYMMETRIC IDEAL 1877

We need to show u; = v; = 0 for all i. Observe that

zioF =py? —ad o —a g,

J#i J#i
2
zioG=p8 Y, yjyk—EZyj(- ) —e> vy
J<k,j,k#i J#i J#i

We have thus

Z wiBy® — wia Z yj(-Q) - U Z Yiy; + viP Z Yi Yk

i J#i J#i J<k,j,k#i
e eS| 0
V;€ Y, (%19 Yiy; | = V.
J#i J#i

The degree —2 monomials in S are linearly independent, and, so, equating the
coeflicients of each of these monomials, one obtains a system of linear equations
with variables u;, v;. The matrix M" of this system is of size h x 2n, where
h = dim Ry = @ For ¢ general, we need this matrix to have maximal
rank. The locus where the rank is not maximal is cut out by the ideal I5,(M") of
maximal minors of M”, which are homogeneous polynomials in the coefficients of
f- Set U" =PN=1\ V(Iy,(M")). This is a Zariski open set of PY~1. We will show
that U” is non-empty for the specific choice of ¢ that corresponds to Example 8.6.
In this case, we have & = ¢ = 0 and 8 = 1, and hence we need to verify that the
equation

Z uiy2(2) +u Z yiye | =0
i j<k,jkti
only has the trivial solution u; = v; = 0. This can be easily verified.

The Zariski open set U N U’ NU” is non-empty, as k is assumed infinite and
we have shown that each of the sets U, U’, U” is non-empty. Then, with ¢ €
UNU' NU", Proposition 4.8 shows that the algebra A is 3-extremely narrow with
socle polynomial bz? + 223, where

4 dim L, = M3
2 2
The fact that A has permissible socle type and has an almost linear resolution is a
consequence of the fact that L4 = 0, in view of Corollary 4.10 and Lemma 4.5(4).
Since we established that A is 3-extremely narrow, one can proceed as in the
proofs of Theorem 8.4 and Theorem 8.3 to deduce that the formulas given there for
the betti numbers and the &,-equivariant structure of the resolution apply. ]

b =dimy Ry — 2dimy Ry +dimy L4 =

APPENDIX A. BRIEF REVIEW OF THE CATEGORY modg R

Let R = @, Ri be a commutative Z-graded k-algebra. We assume Ry = k. Let
G be a group which acts on R by degree-preserving k-algebra automorphisms, that
is, via a group homomorphism G — Aut(R). When R = k[z1,...,z,] equipped
with the standard Z-grading, we restrict attention to subgroups G of GL,,(k), where
GL, (k) acts on Ry = (21, -, %) in the standard way and acts trivially on k, and
this action naturally induces an action on R; for ¢ > 0. The special case G = &,,,
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viewed as the subgroup of permutation matrices in GL,, (k), is utilized in the bulk
of this paper.

For a graded ring R as above, M is said to be a (Z-)graded R-module if M =
Gajez M; is an R-module and the module structure respects the grading, i.e.
R; x M; maps to M;4;. In this Appendix we denote the R-module structure
as (r,m) — rm for r € Rym € M. Given two graded R-modules M and N, a
morphism in the category of graded R-modules is a map f : M — N which is a
homomorphism of R-modules and also preserves gradings, i.e. f(M;) C N; for all
i. On the other hand, as explained in [6], for the purposes e.g. of constructing the
graded version of the Ext functor, it is necessary to consider a broader class of mor-
phisms, and in this manuscript we denote by Homg (M, N) := €, ., Hom;(M, N)
the collection of homogeneous module morphisms, where ¢ € Hom,; (M, N) is said
to be homogeneous of degree i if ¢ is an R-module homomorphism, and in addi-
tion, p(M,) C N,4; for all n. It is not hard to see that Homp(M, N) is itself
a graded R-module, defined for ¢ € Hompg(M, N) by (r¢)(m) := r(e(m)) for all
re R,me M.

In what follows, we restrict attention further to graded R-modules which have
the additional data of a G-action which is compatible with the graded R-module
structure as well as the G-action on the coefficient ring R, as follows.

Definition A.1. The category of finitely generated (Z-)graded R-modules with G-
action modg R has as objects Z-graded R-modules M = @, M; as above, endowed
with an action of G so that ¢ € G acts as a degree-preserving k-vector space
automorphism of M; for all g € G and i € Z, and

(A1) g-(rm)=1(g-r)(g-m) forallg e G,r e R, me M.

The morphisms in modg R are G-equivariant graded R-module homomorphisms
f: M — N. By G-equivariance we mean that a morphism f : M — N must satisfy
flg-m)=g- f(m) forall g € G, m € M.

Remark A.2. We list some facts about modg R.

(1) The category of modg R is an abelian category.

(2) If M and N are in modg R, then G acts on M®@gN by g-(v@w) = g-v®@g-w
and M ®r N € modg R.

(3) If M,N € Modg(R) and dimy(M;) < oo for all i € Z, then G acts on
Hompg(M, N) via (g- f)(m)=g- f(g~' - m) and Hompg(M, N) € modg R.

(4) Consider k with the trivial R-module structure, where Ry = k acts by usual
multiplication in k and R; for ¢ # 0 acts on k by sending everything to 0.
For M € Modg(R), we define MY := Homy (M, k). We equip MV with an
R-module structure defined by

(r¢)(m) := ¢(rm)

forr € R, ¢ € MY and m € M. Moreover, taking N = k with trivial
G-action in (3) above, MV is also equipped with a G-action, given by

(A.2) (g-0)(m):=p(g™" -m) forge G, o e MY, me M.

We next observe that the above R-action and G-action are compatible in
the sense that MV € modg R as well. To see this, we must check that (A.1)
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holds. This can be seen by the following computation:
((g-m)(g-9)) (m) = (g-9) ((g-7)m) = (g~ " - (g-r)m) = d(r(¢g”" - m))
= (r¢)(g~" -m) = (g~ (rd))(m),
where the first and fourth equations follow from the definition of the R-

module structure of MY, the second and fifth equations are from (A.2),
and the third equation is implied by (A.1), applied to M € modg R.

If additionally the category of finite dimensional graded representations of G over
k is semisimple, then the following hold:
(5) Any surjective map M — N in modg R admits a section as a map of graded
G representations. If moreover M is projective as an R-module then the
map admits a section in modg R.
(6) Every object in modg R has a free resolution in modg R [11, Proposition
2.4.9 and Remark 2.4.10].

The following well-known isomorphisms of R-modules have equivariant counter-
parts.

Lemma A.3. If F,U are objects in modg R and F is a finitely generated free
R-module the following are natural isomorphisms in modg R

(1) Homg(F,U) 2 F*@rU;

(2) F** > F.

Proof. (1) The isomorphism is given for f € F*,u € U by f ® u — ¢, where
P(v) = f(v)u. For g € G we have

g-(fou)=(g-f)@(g-u)— e, where
()= (g- W) g-uw) = (g-flg™"v)(g-u)=g-flg~" - v)u=(g-¥)(v).

This shows that the isomorphism is G-equivariant.
(2) The isomorphism is given for € F by x — ¢ where ¢(f) = f(x) evaluates
f € F*atx. Now g-x — ¢ where ¥(f) = f(g- ) while

(g-0)f)=g-dlg~ - =99 flg-2) = flg-=).

Therefore 1) = g - ¢ and the isomorphism is equivariant as desired. |

Remark A.4. Note that the action of a group element ¢ € G on a module M in
modg R is not R-linear, which makes it inconvenient to work with directly. We
may repackage this in the category of R-modules as follows: consider the ring
homomorphism ¢ : R — R and let g* : mod(R) — mod(R) denote the restriction of
scalars functor via g. Specifically, if M is an R-module then ¢g*M is M as a vector
space, with R-module structure defined by rm = (g-r)m for all r € R,m € g*(M),
and if f is a homomorphism then g*f = f. Since it preserves maps, restriction of
scalars is an exact functor.

If M is an object in mod¢g R then for each g € G the map g: M — ¢*M, g(m) =
g-m is an R-module homomorphism.

Let M, N be objects in modg R. We now discuss the canonical structure of
Tor’(M, N) as objects of modg R, which we shall always consider when discussing
these modules.

Lemma A.5. If the category of finite dimensional graded representations of G over
k is semisimple, then the following hold.
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(1) The derived functor Tor® (M, N) applied to objects in modg R produce ob-
jects with canonical structure in modg R.

(2) If M, N are objects in modg R then the G action on Torl(M, N) does not
depend on the choice of projective resolution for M or for N.

(3) Exact sequences 0 - M’ - M — M"” -0 and0 - N —- N = N" =0
induce G-equivariant long exact sequences in homology.

Proof. (1) If P is a projective resolution for an object M of modg R then
for every g € G applying Remark A.4 one constructs an R-linear chain
map g : P — ¢g*P lifting g : M — g*M. If FF: modg R — modg R
is a right exact functor, one obtains induced R-linear maps in homol-
ogy g : H(F(P)) — H(F(g*P)). Since the functor ¢g* is exact we have
H(F(g*P)) = ¢g*H(F(P)) and we interpret g : H(F(P)) — g*H(F(P)
as an action of G on H(F(P)), which endows H(F(P)) with a canonical
structure in modg R.

(2) If P and @ are projective resolutions for an object M of modg R and F' :
modg R — modg R is aright exact functor, then one constructs comparison
maps f: P — @ and h: @ — P in modg R lifting the identity on M. Let
g € G. Applying the functor ¢g* yields an R-linear chain map g*f : ¢*P —
¢*Q which fits into a commutative diagram (since the comparison maps are

natural)
P! . q H(F(P) — H(F(Q)
J{g y g — lg . J{g
g*'P = g*Q. g*H(F(P)) == g*H(F(Q))

Since hf and the identity map are both chain maps P — P lifting the
identity, they are homotopic, thus induce the same map (the identity) on
H(F(P)). This shows that the map H(f): H(F(P)) — H(F(Q)) induced
by f is an R-module isomorphism and the commutative diagram above
shows it is a G-equivariant.

The above considerations applied to FF = — ®g N and G = M ®p —
yield the claim regarding the structure of the respective derived functors in
modg R and their independence on resolutions.

(3) It is well known that the functor that takes short exact sequences of com-
plexes to long exact sequences in homology is natural. Applying this functor
to the map of complexes

0 — F(P)) —— F(P) —— F(P") —— 0

2 [s !
0 — g*F(P') — ¢g*F(P) —— ¢g*F(P") —— 0
where P’, P, P are projective resolutions for M’, M, M" induces a chain
map in homology which shows the corresponding long exact sequence in

homology is G-equivariant.
O
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Lemma A.6. If the category of finite dimensional graded representations of G over
k is semisimple, then the derived functor TorzR(—7 —) applied to objects in modg R
does not depend on which argument is resolved.

Proof. Consider equivariant projective resolutions F = M and G = N. Then
there are equivariant quasi-isomorphisms F' @r N = ForpG < M ®g G, which
induce for all ¢ isomorphisms H;(F ®g N) = H;(F ®r G); =2 H;(M ® G) in
modg R. O
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