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Abstract—This paper presents experimental results on
differentiating between healthy wheat plants and plants
infected with Fusarium Head Blight (FHB) based on sensing
the ambient gases in the plant environment using a
gravimetric electronic nose enabled by a functionalized
capacitive micromachined ultrasonic transducer (CMUT)
array and machine learning (ML) algorithms. The CMUT
sensor array is functionalized with organic/inorganic
materials to capture disease-related volatile signals. The
sensor data is processed and analyzed using ML algorithms
for accurate plant classification. Experimental results
demonstrate the effectiveness of the proposed approach in
achieving high accuracy for plant disease detection at the end
of the 11" day after plant inoculation.

Keywords—VOCs; plants; infection; disease; e-nose;
machine learning.

L INTRODUCTION

Plant diseases cause significant threats to agricultural
productivity and global food security. Timely and accurate
detection of plant diseases is crucial for effective disease
management, prevention of crop losses, and sustainable
agricultural practices, which will result in reducing
economic losses [1].

Various technologies are currently employed in the
diagnosis of plant diseases [2]-[6]. Although these
techniques exhibit efficacy and sensitivity in detection, their
implementation predominantly occurs within laboratory
settings, necessitating the utilization of intricate
instrumentation that mandates specialized proficiency for
operation. Traditional methods of plant disease diagnosis
primarily rely on visual inspection, which often results in
delayed detection and ineffective control measures [7].
However, recent advancements in sensor technologies,
particularly gas sensors, have opened up new avenues for
early disease detection and precision agriculture [8].

Gas sensors offer the advantage of non-destructive and
real-time monitoring, enabling rapid detection of plant
diseases even at the earliest stages, when symptoms may
not be visually apparent. By detecting the volatile organic
compounds (VOCs) emitted by plants, gas sensors provide
valuable insight into the biochemical and physiological
changes occurring in plants affected by the disease [9]. Gas
sensors enable the identification of specific diseases or
disease patterns, facilitating targeted intervention strategies
for disease management and control. Furthermore,
integrating sensor technologies with precision agriculture
could revolutionize plant disease management practices
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[10]. By continuously monitoring the VOC emissions from
crops, gas sensors can provide real-time data on disease
dynamics within a field or greenhouse environment. This
information enables farmers to make data-driven decisions
regarding disease control measures, such as targeted
pesticide applications or optimized storage strategies, thus
minimizing the use of agrochemicals and reducing the
environmental impact [11].

Gas sensors for plant disease detection are undergoing
rapid development and refinement, with advancements in
sensor design, sensitivity, selectivity, and data analysis
techniques. Researchers explore various sensor types, each
with advantages and limitations. Additionally, integrating
gas sensors with machine learning algorithms holds
immense potential for enhancing disease detection accuracy
and automation [12].

This paper aims to present functionalized CMUT sensor
array results for plant disease detection in growth chambers
using ML-based classification algorithms. This work
attained a precision level of over 85% within an adequate
dataset. The successful validation of a notable accuracy
during the proof-of-concept phase promises the prospective
efficacy of the device in the actual application. Details of
sensor preparation, experimental setup, gas testing, and
results from plant experiments are provided in the following
sections.

II.  EXPERIMENTAL WORK

A. Preparation of Sensors

Capacitive  micromachined ultrasonic  transducer
(CMUT) arrays used for sensor implementation in this
study were fabricated on a 100-mm glass wafer using
standard microfabrication techniques [13]. The array
consists of 8 elements (Fig. 1a). The top surface of the
CMUT elements was coated with gold. In addition to one
unfunctionalized (gold) channel, Polyisobutylene (PIB),
Polydimethylsiloxane (PDMS), Copper (II) Phthalocyanine
(CuPc), and silver nanoparticles (Ag) were used as sensing
layers on other channels. Each element in the array was
functionalized with 0.1-wt% diluted solutions by using the

Fig. 1. a) E-nose sensor array, b) Test chamber.



drop coating technique [14], [15]. The array elements were
wire-bonded on a chip carrier connected to the supporting
electronics. The whole system was powered by a 3.7-V
lithium-ion battery and placed in a small chamber to
perform the gas tests (Fig. 1b).

B. Plants Inoculation

The Perigee wheat plants provided by BASF were grown
in Cone-tainers containing a soil-less mix in an air-
conditioned greenhouse with a 50% shade curtain for 25
days (four days for emergence plus three weeks post-
emergence). Greenhouse temperatures were set to 25°C
during the day and 17°C during the night. Relative
humidity was 65% and day length was 16 hours. Plants
were then selected for uniformity and moved to a growth
chamber before treatment.

An aerosol sprayer was used to spray the head of plants
(around Feekes 10.5) with fungal inoculum (10,000
spores/ml) or sterile water (mock) from top to bottom until
liquid was dripping from plants. The plants were moved to
dark dew chambers set at 25°C with 95-98% relative
humidity for 24 hours. Then placed back into the growth
chambers. As a secondary control and to test method
related plant stress volatiles, untreated (healthy) plants that
were not exposed to the dew chamber were used to collect
volatile compounds.

C. Experimental Setup

The infected and mock treated plants were grown and
placed in the growth chambers for testing. Fig. 2 shows a
schematic sensor setup. As the first step of the testing
procedure, a sensor baseline was obtained by using
ambient air filtered by desiccants. Plant gas samples were
collected through each growth chamber using a vacuum
pump. Only one solenoid valve was active at a time, while
the rest were off. The described sampling process was
repeated many times to have adequate data for
implementing the machine learning algorithms for
classification. Moreover, the data were collected on the 6™
day and 11" day after the inoculation of the plants.

® ook =5 I M
Test Chamber Desiccants

Flowmeter  gqjenoid Valve
Vacuum Pump

Fig. 2. Experimental setup.

D. Data Processing

MATLAB 2021a was utilized for all data processing
(Fig. 3). The sensor data were collected from the plants on
the 6% day and 11" day after inoculation. Initially, a
baseline correction was implemented on the raw data to
prevent signal drift caused by environmental factors [16].
Subsequently, frequency shift (Af) features were extracted
from the sensor signal, using subtraction of data points
between the gas on and the gas off states, (Fig. 3). For
evaluating the classification performance, various machine
learning (ML) algorithms, namely Random Forest (RF), k-
Nearest Neighbor (k-NN), and Support Vector Machine
(SVM) were employed. A k-fold cross-validation technique
was utilized, where a model was created using a training set
(k-1) and evaluated using the remaining set as the test set.
This process was repeated iteratively for k times. The
accuracy results were presented as a confusion matrix in k-
fold cross-validation, comprehensively explained in a
previous study [14].
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Fig. 3. Data processing flow chart and baseline-corrected signal
response of Au sensor.

Machine learning (ML) algorithms often come with
default hyperparameters, which are pre-defined settings.
This can be a quick and convenient way to start machine
learning, especially when exploring a new algorithm or
dealing with a small dataset. By performing model tuning,
hyperparameter settings that are more suitable for a specific
dataset and problem can be obtained. This can lead to
improved model performance, accuracy, generalization, and
predictions or results. The model tuning was implemented
using different hyperparameters for each model to minimize
five-fold cross-validation loss in the data using Bayesian
optimization of the classifiers. These hyperparameters were
found using automatic hyperparameter optimization, which
gives the best hyperparameters for each classifier.

III. RESULTS AND DISCUSSION

A. Infected and Mock Treated Plants on Different Days

At 6 days after infection, early symptoms (yellowing)
were observed in heads of infected plants compared to
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mock infected control plants (Fig. 4). Clear differences
were observed at 11 days. Infected plants showed head
bleaching, indicative of FHB symptoms. Mock infected
plants showed no bleaching, but some evidence of
physiological stress (leaf yellowing) was observed in both
mock and infected plants.

VA i

Fig. 4. Mock-treated plants on a) day 6 and c) day 11. Infected plants
on b) day 6 and d) day 11.

B. Classification of the Plants by the CMUT E-Nose
Technology and Data Analytics

In Table 1, the prediction accuracies of several models
were shown to analyze the distinction between the mock
treated and infected plants on the 6 day (D6) and the 11%
day (D11) after inoculation. All ML algorithms had higher
classification accuracy on D11 than that on D6. The highest
accuracies on both D6 and D11 were obtained by using the
SVM classifier (Fig 5a and Fig. Sb). It was observed that
almost 50% of the time, the plants were mismatched on the
D6 data set. However, classification accuracy increased to
85% for the D11 data set, which might be caused by the
increasing disease status of the plants.

TABLE 1. CLASSIFICATION ACCURACY RESULTS FOR THE PLANTS ON TWO

DIFFERENT DAYS
ML k-NN SVM RF
Featur D6 D11 D6 D11 D6 D11
Af! 40 85 45 85 37 82
Af 52 85 50 83 42 87

D6, D11: They refer to the 6 and 11" days after infection of the plants, respectively.
Af': Default hyperparameters of the models were used.

Af?: Hyperparameter optimization of the models were done.

All the numbers represent the classification accuracy.

The model tuning was performed on the ML classifiers.

Table 1 also shows that the model tuning increased the
classification accuracy, e.g., from 82% to 87% for the RF
classifier (Fig. 5c¢). It was observed that 90% of the infected
plant data samples were classified correctly. In comparison,
this ratio for the mock plant data set was around 83%,

which showed that 25 out of 30 samples were correctly
classified as mock plants. The hyperparameters of the RF
classifier are optimized using the Bayesian optimization
method. For the present dataset, optimum number of
“meanleafsize” was calculated as 13, and the optimum
method turned out to be the “GentleBoost”, which
minimizes the exponential loss because of prediction.

Within this work, we have conducted a comparative
analysis of classification performance using model tuning
on the ML classifiers. Our findings indicate that
hyperparameter optimization improves classification
performance.
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Fig. 5. Comparison of confusion matrices for a) day 6 and b) day 11,
c¢) Confusion matrix resulting from model tuning
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IV. CONCLUSION

Previously, we have introduced an e-nose sensor
technology and explored its applications for environmental
sensing as well as plant volatiles in a laboratory setting
[14], [15]. This work has presented that the sensor
prototype produces results in the plant environment
indicating remote real-time monitoring for crop yield could
be feasible. Our primary objective was to demonstrate this
technology in a growth chamber environment as a first step
for deployment to realistic plant environments. Next, we
will test our sensors in more realistic environments, such as
larger growth chambers, greenhouses, etc. We also aim to
detect differences between the diseased plants and control
plants in earlier stages of disease progression by refining
our gas sampling procedures, optimizing the chemical
functionalization layers in our sensor prototype, and fine-
tuning the classification algorithms used.
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