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Abstract. Landscapes are often assumed to be homogeneous
when interpreting eddy covariance fluxes, which can lead to
biases when gap-filling and scaling up observations to deter-
mine regional carbon budgets. Tundra ecosystems are hetero-
geneous at multiple scales. Plant functional types, soil mois-
ture, thaw depth, and microtopography, for example, vary
across the landscape and influence net ecosystem exchange
(NEE) of carbon dioxide (CO2) and methane (CH4) fluxes.
With warming temperatures, Arctic ecosystems are changing
from a net sink to a net source of carbon to the atmosphere
in some locations, but the Arctic’s carbon balance remains
highly uncertain. In this study we report results from grow-
ing season NEE and CH4 fluxes from an eddy covariance
tower in the Yukon–Kuskokwim Delta in Alaska. We used
footprint models and Bayesian Markov chain Monte Carlo
(MCMC) methods to unmix eddy covariance observations
into constituent land-cover fluxes based on high-resolution
land-cover maps of the region. We compared three types of
footprint models and used two land-cover maps with vary-
ing complexity to determine the effects of these choices on
derived ecosystem fluxes. We used artificially created gaps
of withheld observations to compare gap-filling performance
using our derived land-cover-specific fluxes and traditional
gap-filling methods that assume homogeneous landscapes.
We also compared resulting regional carbon budgets when
scaling up observations using heterogeneous and homoge-
neous approaches. Traditional gap-filling methods performed
worse at predicting artificially withheld gaps in NEE than
those that accounted for heterogeneous landscapes, while
there were only slight differences between footprint models

and land-cover maps. We identified and quantified hot spots
of carbon fluxes in the landscape (e.g., late growing season
emissions from wetlands and small ponds). We resolved dis-
tinct seasonality in tundra growing season NEE fluxes. Scal-
ing while assuming a homogeneous landscape overestimated
the growing season CO2 sink by a factor of 2 and underes-
timated CH4 emissions by a factor of 2 when compared to
scaling with any method that accounts for landscape hetero-
geneity. We show how Bayesian MCMC, analytical footprint
models, and high-resolution land-cover maps can be lever-
aged to derive detailed land-cover carbon fluxes from eddy
covariance time series. These results demonstrate the impor-
tance of landscape heterogeneity when scaling carbon emis-
sions across the Arctic.

1 Introduction

Eddy covariance (EC) towers provide some of the longest
and highest-resolution time series of in situ observations of
energy, water, and carbon fluxes. Eddy covariance flux data
provide landscape-level insight into numerous ecosystem
processes, such as water-use efficiency, crop yields, and car-
bon balances (Baldocchi, 2003; Baker and Griffis, 2005; Re-
ichstein et al., 2007; Knauer et al., 2018). Global and regional
networks of EC towers, such as FLUXNET and AmeriFlux
(Novick et al., 2018; Papale, 2020), are commonly used to
benchmark Earth system models, provide a priori fluxes for
atmospheric inversion models, or train remote-sensing-based
models to scale bottom-up carbon budgets (Friend et al.,
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2007; Wang et al., 2007; Jung et al., 2009, 2020; Cheval-
lier et al., 2012; Tramontana et al., 2016; Chen et al., 2018;
Schiferl et al., 2022). The surface source area contributing
to EC flux measurements (i.e., the footprint) is much larger
than other types of direct flux measurements, such as cham-
bers, but is spatially and temporally variable and can change
with wind direction and atmospheric stability. The dynamic
spatial influence on EC fluxes is often ignored under implicit
assumptions that landscapes within the EC footprint are ho-
mogeneous or spatially representative (Griebel et al., 2016;
Giannico et al., 2018).

Numerous footprint models have been developed to quan-
tify source area contribution to EC tower flux observations
(Schmid, 2002) and inform interpretations and analysis of
these fluxes. Aggregate footprints are commonly used to
determine the general spatial extent and seasonal patterns
in EC tower source areas (Amiro, 1998). When combined
with land-cover maps of EC tower locations, footprints have
been used to filter flux observations to include only those
from distinctly uniform source areas for further interpreta-
tion and analysis, though the practicality of this is highly de-
pendent on landscape heterogeneity and the EC tower site
location (Jammet et al., 2017; Juutinen et al., 2022; Becke-
banze et al., 2022). Studies using concurrent chamber-based
fluxes within EC tower source areas have used footprints to
scale up chamber fluxes and compare to EC tower fluxes,
which can provide confidence in the flux measurements, the
representativeness of the chamber fluxes, and the land-cover
map used (Kade et al., 2012; Stoy et al., 2013; Morin et al.,
2017; Davidson et al., 2017). However, disagreement be-
tween scaled chamber and EC tower fluxes is difficult to di-
agnose; chamber fluxes are often limited in temporal resolu-
tion and spatial extent, and land-cover maps might not cap-
ture detail or distinctions relevant for fluxes (Fox et al., 2008;
Forbrich et al., 2011; Budishchev et al., 2014). Footprints
have been used to identify hot spots of methane (CH4) fluxes
(Matthes et al., 2014; Rößger et al., 2019; Reuss-Schmidt
et al., 2019), and in circumstances where there is a single
known source location against a known or zero flux back-
ground, the footprint-weighted flux maps can derive CH4
fluxes at these hot spots (Rey-Sanchez et al., 2022). However,
footprint-weighted flux maps cannot derive actual fluxes in
circumstances with multiple different CH4 sources or when
fluxes, such as carbon dioxide (CO2), have high temporal
variability. Tuovinen et al. (2019) used footprints to weight
contributions to CH4 fluxes from land-cover classifications in
heterogeneous Siberian tundra and, by assuming fluxes were
constant through time, were able to solve for land-cover-
specific CH4 fluxes using ordinary least squares.

Despite the documented effects of heterogeneous surfaces
on the interpretation of fluxes, most uses of EC fluxes ig-
nore the dynamic nature of flux source areas. For applications
such as model benchmarking, bottom-up scaling, and gap
filling, the landscape around EC towers is implicitly assumed
to be homogeneous. Gap-filled time series are often required

to create seasonal or annual carbon budgets. One of the most
widely used gap-filling approaches for CO2 fluxes, marginal
distribution sampling (MDS), primarily uses the mean flux
of CO2 from similar meteorological conditions within a cer-
tain window of time, irrespective of the wind direction and
source area of the gap-filled time point, or of the observations
used to do the filling (Reichstein et al., 2005; Wutzler et al.,
2018). Both model benchmarking and bottom-up carbon flux
scaling rely on EC tower fluxes being spatially representative
of a larger region (Williams et al., 2009). While landscape
representativeness or homogeneity is a reasonable assump-
tion for some EC tower sites, such as agricultural fields, it is
rarely tested explicitly with footprints. A recent study by Chu
et al. (2021) tested the spatial representativeness of Ameri-
Flux sites using footprint climatologies and found that a mi-
nority of sites were representative of areas more than 1 km
away from the EC tower. A recent synthesis of circumpolar
CH4 fluxes excluded EC measurements that could not be at-
tributed wholly to wetland or waterbody sources (Kuhn et al.,
2021).

Arctic ecosystems in particular require representative car-
bon flux observations to accurately derive seasonal and an-
nual budgets. Rapid Arctic warming is thawing and mo-
bilizing carbon stored in permafrost, leading to direct cli-
mate feedbacks through decomposition and indirect conse-
quences through changing hydrology, vegetation, and distur-
bances (Schuur et al., 2015; Rantanen et al., 2022). There is
large uncertainty in the Arctic carbon budget, and it remains
unclear whether the Arctic is currently a carbon source or
sink (McGuire et al., 2009, 2018; Natali et al., 2019, 2021;
Virkkala et al., 2021; Watts et al., 2021, 2023). Tundra
ecosystems are extremely heterogeneous at multiple scales
(Virtanen and Ek, 2014), which when combined with lo-
gistical difficulties in monitoring in the Arctic, can lead to
difficulties in calculating representative bottom-up carbon
scaling (Goodrich et al., 2016; Lara et al., 2020; Pallandt
et al., 2022). For example, bottom-up scaling models esti-
mate twice as much CH4 from the Arctic as top-down at-
mospheric inversions (Thornton et al., 2016; Saunois et al.,
2020).

This study addresses how landscape heterogeneity affects
gap-filling and bottom-up scaling of CO2 and CH4 EC fluxes.
We used footprint models and land-cover maps to unmix EC
fluxes into constituent land-cover fluxes in heterogeneous
tundra in the Yukon–Kuskokwim (YK) Delta, Alaska. We
investigated how the choice of footprint model affects gap-
filling and carbon budgets by comparing results using three
of the most commonly used footprint models. We compared
the net ecosystem exchange (NEE) of CO2 fluxes using both
a simple and a complex land-cover map to determine how
the scale of heterogeneity that we consider impacts our re-
sulting carbon budgets. Lastly, we compared gap-filled NEE
fluxes and scaled-up carbon budgets to an identical approach
that only differs by assuming a homogenous landscape and
to a commonly used gap-filling approach (MDS), which im-
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plicitly assumes a homogeneous landscape. We discuss the
implications of the resulting CO2 and CH4 fluxes and carbon
budgets for the YK Delta and Arctic carbon feedbacks.

2 Methods

2.1 Site description

The study region is located in the Izaviknek and Kingaglia
Uplands of the Yukon–Kuskokwim Delta in Alaska, approx-
imately 90 km northwest of Bethel, Alaska, and 110 km in-
land from the coast. Mean annual air temperature in Bethel
was 1.2 °C for 2019 to 2020, 13.8 °C during summer (June,
July, August), −11.9 °C during winter (December, January,
and February), and above freezing from May to October. The
study region is underlain by discontinuous permafrost, with
permafrost underlying peat plateaus and absent under wet-
lands and lakes (Frost et al., 2020). Thaw depths on peat
plateaus averaged 30 to 40 cm in June and July 2016 to 2017
and 60 to 70 cm in September 2016 (Ludwig et al., 2022).
Vegetation on the peat plateaus is heterogeneous and dom-
inated by lichen (primarily Cladonia spp.), Sphagnum fus-
cum, or low-lying shrubs, while wetland vegetation is typ-
ically Sphagnum and graminoid spp. (Zolkos et al., 2022).
The EC tower was installed in July 2019 on a peat plateau in
unburned tundra at 61.2548° N, 163.2589° W.

We used a land-cover map developed by Ludwig et al.
(2022) to characterize the EC tower location and a nearby
region of unburned tundra for scaling up the carbon budget
(Ludwig et al., 2023a). The land-cover map is 5 m× 10 m
resolution and derived from Sentinel-1 synthetic aperture
radar (SAR), the Sentinel-2 multispectral instrument (MSI),
and the ArcticDEM. Two versions of land cover were used:
(1) a simple version with only four categories (surface wa-
ter, tundra, wetland, and degrading permafrost) and (2) a
complex version where tundra was further split into lichen
tundra, shrub tundra, sedge tundra, and tundra at the edge
of degrading permafrost (Fig. 1). Tundra land-cover cate-
gories were primarily located on peat plateaus and share the
same dominant vegetation types of lichens, dwarf shrubs,
mosses, and sedges. The differences within tundra categories
were subtle. Shrub tundra was often located at the edges of
peat plateaus bordering and along banks with slightly larger
shrubs. Sedge tundra was located on peat plateau slopes
that were slightly greener. Lichen tundra was the least green
and largest area of tundra types within the region, domi-
nated by lichen, moss (Sphagnum spp. and Dicranum spp.),
and graminoids (Carex spp. and Eriophorum angustifolium)
(Baillargeon et al., 2022). The edge of degraded tundra in-
cluded tundra bordering degraded permafrost, often wetter,
mossier, and slightly subsided. Degraded areas included iso-
lated shallow depressions on peat plateaus, more evolved net-
works of flow paths draining peat plateaus into wetlands, and
recently drained waterbodies. Depending on seasonality and

Table 1. Land-cover category percentages in the immediate eddy
covariance tower area (radius of 300 m) and in the region used to
scale up ecosystem carbon fluxes (Fig. 1).

Land-cover category Tower area Scaling region
(%) (%)

Lichen tundra 12 27
Shrub tundra 18 11
Sedge tundra 23 16
Edge of degraded permafrost 21 11
Degraded permafrost 3 5
Wetland 20 18
Water 3 12

antecedent rain, degraded areas could have standing water,
saturated soils, exposed mud, or graminoid-dominated veg-
etation. The wetland category included a range of wetland
vegetation such as mosses, graminoids, and tall shrubs, often
with complex underlying hydrology. Wetland soils were usu-
ally saturated, with small, sub-pixel channels or waterbod-
ies undetectable at the resolution of the land-cover map. Sur-
face water includes all lakes, ponds, and streams detectable
at the land-cover map resolution (Ludwig et al., 2023b).
There are likely smaller ponds or channels within wetlands
and degraded areas, but higher-resolution mapping would be
needed to identify that level of heterogeneity. The full dis-
tribution of land-cover areas in a 300 m radius circle around
the EC tower location and in the region used for scaling is
described in Table 1. The scaling region was approximately
150 km2, which is similar to the average size of a grid cell in
Earth system models (Williams et al., 2009).

2.2 Eddy covariance data processing

Data used in this study span from 12 July 2019 to 30 Septem-
ber 2020, though we only include May through Septem-
ber months. The EC tower instrumentation consisted of a
Gill WindMaster Pro sonic anemometer, LI-7500DS open-
path analyzer for CO2 and H2O, LI-7700 for CH4, Vaisala
HMP155 humidity and temperature probe, LI-190R quantum
sensor for photosynthetically active radiation (PAR), Kipp
and Zonen CNR4 four-component net radiometer, and Huk-
seFlux HFP01SC soil heat plates. All instrumentation was
connected to a LI-7550 interface equipped with a LI-COR
SmartFlux system. The measurement height was 2.5 m above
ground level. Half-hourly flux calculations were made us-
ing the eddy covariance method (Baldocchi et al., 1988)
from 10 Hz data using the EddyPro software program (Fratini
and Mauder, 2014). We used the double coordinate rotation
method, spike removal, block averaging, and time lag re-
moval by covariance maximization (Moncrieff et al., 1997).
We made corrections for air density fluctuations for CO2,
CH4, and H2O fluxes following Webb et al. (1980). We re-
moved fluxes with nonstationarity (flags of 2 in the overall
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Figure 1. Scaling region within the YK Delta used in this study. Sentinel-2 RGB imagery (a) with the location of the grid within Alaska
as an inset, simple land-cover map (b), and complex land-cover map (c). Panel (d) shows 300 m radius regions around the eddy covariance
(EC) tower for the same Sentinel-2 RGB imagery as (a) in the upper left, the same simple land-cover map as (b) in the upper right, and the
same complex land-cover map as (c) in the lower left. The EC tower is indicated by the star at 61.2548° N, 163.2589° W. Maps were created
using the PyGMT software package; Wessel et al., 2019; Tian et al., 2024.

flag system) (Mauder and Foken, 2015). We filtered fluxes to
remove times of low signal strength (< 15 %) and low turbu-
lence (friction velocity (u∗)< 0.1 ms−1 threshold was cho-
sen where CO2 fluxes were independent of u∗). Energy bal-
ance closure at the site was typical (70 %). Lastly, we filtered
fluxes to remove spikes using the double median absolute de-
viation method (Mauder et al., 2013). The resulting time se-
ries had 26 % and 61 % missing data for CO2 and CH4 fluxes,
respectively. Due to limited access for site maintenance dur-
ing the COVID-19 pandemic and the remote site location,
power outages contributed to 1.5 % missing data in fluxes,

air temperature, and PAR. While only actual observations of
air temperature and PAR were used for training gap-filling
models, we used a complete time series of drivers for scaling
and to sum fluxes to monthly carbon budgets. To interpolate
missing data in air temperature and PAR for scaling we used
the marginal distribution sampling and mean diurnal course
method from REddyProc (Wutzler et al., 2018). Annual time
series of CO2 fluxes, CH4 fluxes, air temperature, and PAR
observations can be found in the Supplement (Fig. S1a–d).
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2.3 Eddy covariance footprint modeling

We compared three commonly used footprint models to de-
termine source areas for fluxes: the Hsieh model (with the
2D extension from Detto et al., 2006), the Kljun model, and
the Kormann and Meixner model (Hsieh et al., 2000; Ko-
rmann and Meixner, 2001; Kljun et al., 2015). The Hsieh
model is a hybrid approach blending a forward Lagrangian
stochastic numerical model with an analytical solution. The
Kljun model uses multiple parameterizations of a backward
Lagrangian particle model to be applicable across atmo-
spheric stability regimes. The Kormann and Meixner model
is an Eulerian analytical footprint model based on Monin–
Obukhov similarity theory. All three footprint models as-
sume Gaussian dispersion in the crosswind direction and hor-
izontal homogeneity in turbulence effects (Schmid, 2002).
Given the flat deltaic landscape and extremely short tundra
canopy height relative to instrument measurement height,
this site was an ideal location for footprint modeling, while
still encompassing heterogeneity in CO2 and CH4 fluxes.
We calculated a single roughness length for the site (0.02 m)
from the measured wind speed and friction velocity under
neutral conditions assuming a logarithmic wind profile and
zero displacement height. For each half-hour flux observa-
tion, 1 m× 1 m grid footprints were generated using each
of the three model types and then rotated into the wind di-
rection. Each footprint was modeled 1000 m in the down-
wind direction and 250 m to either side in the crosswind di-
rection. These values were chosen as they were well in ex-
cess of the 90 % contours of all footprints (peak influences
were< 100 m and the 90 % contours averaged 200 m from
the EC tower). These footprints were then reprojected to
match the resolution and extent of the land-cover maps at
5 m× 10 m. Footprints were normalized to total 100 % by di-
viding by the sum of the weights within each observation.
The footprint weights were then summed over each land-
cover type (i) for each flux observation (k) as �i,k (see Eq. 1
in Sect. 2.4.1).

2.4 Unmixing and gap-filling models

We compared several modeling approaches for predicting
and gap-filling the EC NEE time series. First, we explic-
itly consider landscape heterogeneity by unmixing EC tower
fluxes using each of the three types of footprint models when
summarized over both the simple and complex land-cover
map (Sect. 2.4.1). In order to do so, NEE fluxes were parti-
tioned into respiration and gross primary productivity (GPP)
with simple empirical models driven by PAR and air temper-
ature. Second, we used the same method of flux partitioning,
modeling, and parameter estimation to gap-fill NEE, but in-
stead assumed a homogeneous landscape. Each of the het-
erogeneous types of gap-filling models and the similar ho-
mogeneous variation were trained separately for each month
in the growing season (May through September) to accom-

modate seasonality. Observations from both 2019 and 2020
were used to train the gap-filling models, though we only
predicted and scaled for 2020, since the 2019 growing sea-
son was incomplete. We tested the inclusion of 2019 ob-
servations for August and September, and there was little
effect on the derived land-cover fluxes. Last, we compared
these results to a widely used approach by gap-filling NEE
with MDS, which implicitly assumes a homogeneous land-
scape. CH4 fluxes were not as temporally variable as NEE
and largely unrelated to biometeorological drivers measured
at the EC tower (Fig. S2). CH4 fluxes were subsequently
treated as land-cover-specific constant fluxes through time
and solved for separately in each month of the growing sea-
son, as has been done similarly in other studies (Rey-Sanchez
et al., 2022; Tuovinen et al., 2019; Hannun et al., 2020).

2.4.1 Heterogeneous gap-filling models

Assuming that every pixel within a land-cover type is char-
acterized by a similar flux, for a given (k) half-hour mea-
surement, the observed EC tower NEE flux is the sum of
each (i) land-cover flux (NEEi,k) times the total influence
of those pixels within a footprint (�i,k) across all (P ) land-
cover types (Eq. 1).

NEEObs,k =

P∑
i=1

NEEi,k ×�i,k (1)

CO2 fluxes are often highly variable in time, especially from
vegetated environments. Tundra NEE has been well charac-
terized as the difference between respiration – modeled as an
exponential function of temperature – and gross primary pro-
ductivity – modeled as a light-saturating response curve often
attenuated by temperature or vapor pressure deficit (Williams
et al., 2006; Shaver et al., 2007; Loranty et al., 2011). For the
heterogeneous gap-filling models, we structured the (NEEi,k)
fluxes from vegetated land cover as temporally variable and
dependent on air temperature (Tairk), light (PARk), and air
temperature rescaled between 0 and 1 (Tscalek).

NEEi,k = Ri,k −GPPi,k (2)
Ri,k = αi × e

βi×Tairk (3)

GPPi,k = Tscalek ×
E0i ×Pmaxi ×PARk
Pmaxi +E0i ×PARk

(4)

Tscalek =
(Tairk − Tmin)(Tairk − Tmax)

(Tairk − Tmin)(Tairk − Tmax)− (Tairk − Topt)2
(5)

The parameters are the baseline respiration (αi), the
temperature sensitivity of respiration (βi), the light-use
efficiency of GPP (E0i), and the maximum photosyn-
thetic capacity (Pmaxi). GPP is attenuated by tempera-
ture using Tscalek , where Tmin=−1.5 °C, Tmax= 40 °C, and
Topt= 15 °C (Luus and Lin, 2015; Luus et al., 2017; Schiferl
et al., 2022). For the simple land-cover map, NEE fluxes from
tundra, wetland, and degrading permafrost were all parame-
terized according to Eqs. (2) to (5). Surface water CO2 fluxes
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were parameterized as a constant flux over time. While this is
likely an oversimplification, a more complex lake emissions
model was not feasible because the surface waters within
the footprint were too small an area and too small in foot-
print influence to inform a more complex model. Similarly,
for the complex land-cover map, all NEE fluxes from tun-
dra land-cover types as well as from wetland and degrading
permafrost were structured according to Eqs. (2) to (5) with
water as a constant flux.

CH4 fluxes were assumed to be constant over time for each
land-cover type.

CH4 Obs,k =

P∑
i=1

CH4,i ×�i,k (6)

The only parameters in this simpler version of unmixing
are the land-cover CH4 fluxes themselves, CH4,i , with the
footprint influences (�i,k) as the only time-variable driver
(Eq. 6). All three footprint models were similarly compared
for CH4 fluxes. Only the complex land-cover map was used
to unmix CH4 fluxes, since the categories within tundra were
known to be divergent, e.g., known very small fluxes from
lichen tundra, while tundra at the edge of degraded could
possibly be a large source (Ludwig et al., 2018b).

2.4.2 Parameter estimation and flux prediction

We unmixed EC tower fluxes to land-cover CH4 and NEEi,k
fluxes by using a Bayesian analysis with Markov chain
Monte Carlo (MCMC) simulation. We chose this method
partly because unmixing approaches such as ordinary least
squares (as used by Tuovinen et al., 2019) are not applicable
with the nonlinear relationships used here between CO2, air
temperature, and PAR, and nonlinear least squares (as used
by Rößger et al., 2019) assumes normal distributions for pa-
rameters and error variance, which is often not the case. In
addition, there are several advantages to using a Bayesian ap-
proach to solve for land-cover fluxes. First, we can provide
prior information on flux parameters. This prior information
could be specific (e.g., from chamber fluxes from land cover
within the footprints), it could be more general (e.g., dictat-
ing one land cover known to have higher GPP than another),
or it could be mostly uninformative and merely place restric-
tions on parameter space based on physical properties (e.g.,
non-negative Pmaxi). We used the latter approach to NEE
priors for this study to demonstrate the impacts of unmixing
EC tower NEE on gap-filling accuracy and bottom-up scal-
ing while using the fewest assumptions. Given the simpler
approach used to unmix CH4 fluxes, there were multiple so-
lutions if all prior fluxes were strictly uninformative. We used
mostly uninformative prior fluxes for land cover known to
emit CH4 (e.g., fully saturated soils and open water) by disal-
lowing CH4 uptake for degraded, edge of degraded, wetland,
and water land-cover classes (Ludwig et al., 2018a). Peat
plateau chamber flux measurements from 2017 demonstrate

a very small but nonzero CH4 flux at the driest time of the
growing season (Ludwig et al., 2018b), and we assigned prior
fluxes for tundra types accordingly. Prior distributions can be
found in the Supplement (Tables S1–S3). The second ben-
efit of using Bayesian analysis with MCMC is that derived
quantities and predictions of new data are inherently treated
as random variables with their own probability distributions,
thus enabling easy calculations of uncertainties. Therefore,
we carry through uncertainty from both partitioning and gap
filling to uncertainty in predicted land-cover NEEi,k or CH4
fluxes, which, when summed over time and scaled up by area,
leads to distributions of carbon budgets from which we can
calculate explicit uncertainties.

For each month of the growing season (May to Septem-
ber), gap-filling models were fit separately for each footprint
type and land-cover map combination. First, NEEObs,k val-
ues were filtered to dark data (PAR< 50 µmolm−2 s−1) and
respiration parameters (Eq. 3) were determined while using
uninformative priors. The GPP parameters (Eq. 4) were then
estimated using the NEEObs,k from the full dataset, with un-
informative GPP priors but using the posterior distributions
of the respiration parameters as strict prior information for
the respiration component of Eq. (2). CH4 fluxes were fit
separately by month as well, but all times of day were used.
We used a Gibbs sampler for the MCMC iterations (Just An-
other Gibbs Sampler; JAGS) implemented with the runjags
R package (Denwood, 2016), with a burn-in of 5000 itera-
tions and an adaptation of 5000 iterations, and we retained
3000 iterations in the final chains. Three parallel chains were
used for each model with different initial parameter values
(Tables S1–S3). We evaluated parameter convergence using
the Gelman diagnostic (Gelman and Rubin, 1992; Brooks
and Gelman, 1998). Model performance was further checked
using posterior predictive checks of the mean, standard devi-
ation, and sum of squared residuals (Gelman et al., 1996).

2.4.3 Homogeneous gap-filling models

We used several methods to gap-fill the EC tower NEE and
CH4 fluxes that both assume a homogeneous landscape and
footprint for comparison. The first method is a Bayesian
analysis with MCMC sampling that mirrors our land-cover
flux unmixing approach in every way except by assuming
a homogeneous landscape. For the homogeneous Bayesian
model, we assume a single land-cover type everywhere that
accounts for 100 % of the footprint influence at every flux ob-
servation. The homogeneous land-cover NEE was modeled
monthly by Eqs. (2) to (4), with the same partitioning and
parameter estimation as described in Sect. 2.4.2. The second
homogeneous NEE gap-filling approach we used was MDS
(Reichstein et al., 2005). We used the REddyProc package
with default settings to implement the MDS gap filling (Wut-
zler et al., 2018). Since the CH4 fluxes did not have relation-
ships to observed biometeorological drivers such as air tem-
perature or PAR (Fig. S2), we estimated monthly budgets by
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calculating the monthly average CH4 flux for each half-hour
of the diurnal cycle and then applying these averages to each
day within the month.

2.4.4 Artificial gaps

Artificial gaps in the NEE and CH4 flux observation time se-
ries were created in order to be able to evaluate and compare
gap-filling approaches. Since the MDS gap-filling method
requires at least 90 d of half-hourly measurements, it could
only be applied to the 2020 growing season (data in 2019 be-
gan in mid-July). Therefore, we only created artificial gaps
in the 2020 growing season for comparability. Artificial gaps
were generated separately for each month to ensure each por-
tion of the growing season had a similar amount of with-
held data. Between 15 % and 20 % of the time series of each
month was withheld as random artificial gaps of stratified
sizes, with ≈ 5 % as larger gaps (10 observations), ≈ 5 %
as smaller gaps (4 observations), and the remainder as sin-
gle gaps. The withheld drivers corresponding to the artifi-
cial gaps (PAR, air temperature, footprint weights) were then
used to predict EC tower NEE or CH4, and gap-filling meth-
ods were evaluated by calculating the root mean square error
(RMSE).

2.5 Scaling up NEE and CH4

We used the parameter posterior distributions from MCMC
simulations and full time series of air temperature and PAR to
predict complete, gap-filled CH4 and NEEi,k flux time series
for the land-cover types as described in Sect. 2.4.2. We then
summed these distributions of half-hourly fluxes over time
and multiplied by their respective areas in the scaling region
(Sect. 2.1, Fig. 1) to determine estimations of monthly carbon
budgets for each land-cover type. Monthly land-cover carbon
budgets were calculated for each footprint model and land-
cover map combination. Land-cover carbon budgets were
then summed to create monthly and growing season carbon
budgets for each footprint model and map type. Monthly and
growing season carbon budget distributions for the Bayesian
homogeneous gap-filling models were similarly estimated.
The observed EC tower NEE fluxes with MDS gap filling
were also summed over time and multiplied by the total scal-
ing region to arrive at comparative monthly carbon budget
estimates. CH4 was presented alongside NEE in carbon bud-
gets as CO2 equivalents (CO2-eq) by multiplying by a factor
of 28, a conservative choice among commonly used approx-
imations of relative global warming potentials (Bastviken
et al., 2011; Stocker, 2013; Euskirchen et al., 2014; Beaulieu
et al., 2020; Skytt et al., 2020). For discussion of uncertainty
in carbon budgets, we calculated 89 % Bayesian credible in-
tervals (CIs), which are analogous to frequentist 95 % con-
fidence intervals (Kruschke, 2014; McElreath, 2015; Hobbs
and Hooten, 2015), using the highest-density interval method
from the “baysetestR” package (Makowski et al., 2019).

3 Results and discussion

3.1 Footprint influence

The most common and most influential land cover within
the footprints was tundra, averaging 70 % influence over the
growing season for all three footprint model types. There
was a fairly even distribution between tundra category types,
though sedge tundra had slightly more influence than lichen,
shrub, and degraded edges. The footprint influence from wet-
lands was comparable to that of individual tundra types. The
least represented land cover types were degraded permafrost
and surface water, both of which were between 0 % and 20 %
influence (Fig. S3). The vast majority of footprints were a
mix of land-cover types, with almost no individual footprints
having a land-cover type with more than 75 % influence
(Fig. S3). There was a fair amount of agreement between
the three footprint models, with the majority of footprint in-
fluences close to the 1 : 1 line on regressions between model
types (Figs. 2 and S3). Other studies that have sought to com-
pare the ability of these footprint models to recover known
flux sources have found little distinction between them, de-
spite the differences in their methodology (Coates et al.,
2021; Rey-Sanchez et al., 2022). However, the land-cover in-
fluences used here were sums of all pixel influences within
a land-cover type; therefore, small differences between mod-
els on a pixel basis were cumulative and would lead to larger
discrepancies overall. There are also distinct periods of larger
differences between footprint models, for example when the
peak footprint influence was near the boundary between two
land-cover types; thus, a small shift in peak location between
model types would lead to a large difference in land-cover
influences. A higher-resolution land-cover map (e.g., 3 m or
smaller) would minimize some footprint model discrepan-
cies, though this is relative to the extent of the footprints and
the scale of landscape heterogeneity affecting carbon fluxes.

3.2 Model performance

All posterior predictive checks were passed (Bayesian p-
values of 0.1<p< 0.9), and all parameters converged (Gel-
man diagnostics ≈ 1) for every Bayesian gap-filling model.
All Bayesian gap-filling models were able to accurately re-
construct the EC tower NEE across the growing season as
a function of PAR, air temperature, and source attributions
(Figs. 3 and S4). The only notable deviations were exclu-
sive to outliers in EC tower NEE observations. This result
is not unexpected, as EC data are often noisy. Mismatch
with EC tower NEE outliers could also be a consequence
of processes dominating fluxes that were not represented in
our models, e.g., high CO2 emissions from ebullition align-
ing with high lake influence within a footprint. When com-
paring performance for filling the same artificial gaps, all
Bayesian models had a lower (better) RMSE than the MDS
method (Fig. 3). The Bayesian models, both heterogeneous

https://doi.org/10.5194/bg-21-1301-2024 Biogeosciences, 21, 1301–1321, 2024



1308 S. M. Ludwig et al.: Resolving heterogeneous fluxes from tundra halves the growing season carbon budget

Figure 2. Scatterplot demonstrating comparison of footprint influence weights between the three models (Hsieh, Kljun, Kormann–Meixner)
for lichen tundra. Other land-cover footprint influence comparisons can be found in the Supplement (Fig. S3). The dashed red line indicates
the 1 : 1 line.

and homogeneous, drive NEE as deterministic functions of
PAR and temperature. This may be why they were more ac-
curate than MDS, which has been shown to be biased in
high latitudes due to the effects of skewed distributions of
net radiation (Vekuri et al., 2023). The heterogeneous gap-
filling models often performed better than their homoge-
neous equivalent (Fig. 3). For most months, the heteroge-
neous complex map solutions had lower RMSEs than those
of the simple map, though the Bayesian 89 % CI overlapped
between all months but May (Fig. 3). In May near the shoul-
der season, tundra types exhibited greater differences in sea-
sonality. For example, the lichen tundra had very little GPP,
while the sedge tundra was a distinct carbon sink (Fig. 4), and
this could be accommodated in the complex map while the
simple map attempted to fit both to a single “tundra” flux.
While there were clear improvements in gap-filling RMSE
using this unmixing method, the differences in RMSE were
small relative to the magnitude of the fluxes. The drawbacks
of the flux unmixing method used here are site-specific solu-
tions and longer computation times, which increase with the
landscape complexity considered. MDS remains faster to im-
plement and could be preferred when landscape homogeneity
can be safely assumed.

None of the three footprint models consistently performed
better in terms of RMSE, and for most outcomes, the
Bayesian 89 % CIs for their RMSEs overlapped (Figs. 3
and S5). Given that none of the three footprint model types
quantify their uncertainty, we continued to evaluate all three
as an ensemble of footprint models that represents the range
in footprint influence outcomes. Another way to evaluate
performance of the three footprint models is by compar-
ing their consistency in predicting land-cover NEE fluxes
when the underlying land-cover map switches from simple
to complex. The degraded permafrost, water, and wetland
land-cover types were identical between the two maps and
ideally should have the same derived fluxes even if the tun-

dra categories were treated differently. Similarly, the overall
tundra footprint-weighted flux should match between simple
and complex land-cover types, even though the complex tun-
dra was a combination of four types where there was only one
tundra type for the simple map. By weighting the predicted
land-cover NEE by their respective footprint influences for
each observation, we regressed the simple vs. complex so-
lutions (Figs. S6–S10). While the EC tower NEE and tun-
dra total weighted NEE were very consistent between land-
cover maps for all footprint models, the Hsieh and Kormann–
Meixner models were notably inconsistent for degraded per-
mafrost for June and July (Figs. S7 and S8), while the Kljun
footprint model was always distinctly consistent (Figs. S6–
S10). This outcome might indicate that the Kljun footprint
model was more representative of land-cover influences at
peak growing season. In the absence of extensive concurrent
chamber fluxes to conclusively distinguish between derived
land cover types from the footprint models, we recommend
a footprint model ensemble approach.

3.3 Derived land-cover fluxes

There was enough similarity between footprint model influ-
ences to yield similar patterns in derived land-cover fluxes
(Figs. 4 and S11, Tables S4–S10). For example, in all three
footprints both shrub tundra and tundra at the edge of de-
grading permafrost had higher peak carbon uptake (−0.342,
−0.266, −0.308 kg C month−1 m−2, for Hsieh, Kljun, and
Kormann and Meixner, respectively) than sedge and lichen
tundra (−0.175, −0.175, −0.139 kg C month−1 m−2, for
Hsieh, Kljun, and Kormann and Meixner, respectively)
(Fig. 4). This aligns with previous studies that have found
higher productivity in shrub tundra and areas adjacent to dis-
turbed tundra, possibly the result of increased nutrient avail-
ability (Schuur et al., 2007; Bowden et al., 2008; Lee et al.,
2011). The range of NEE fluxes derived for tundra vegeta-
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Figure 3. Monthly RMSE (a–e) and growing seasonal total (f) for 2020 from artificial gap-filling NEE fluxes. Boxes are the median and
interquartile range (IQR), and whiskers are 1.5 · IQR for the Bayesian model gap-filling RMSEs. The red line indicates MDS (marginal
distribution sampling) gap-filling RMSEs. Distributions with overlapping Bayesian 89 % credible intervals are designated with matching
letters. Note that the scales on y axes are different between panels to highlight the comparability of footprint models and land-cover maps
within months.

tion was similar to ranges in NEE observed at other tundra
sites (Euskirchen et al., 2012; Howard et al., 2020; Virkkala
et al., 2022). All three footprint models also derived higher
CO2 and CH4 emissions from surface water and wetlands
later in the growing season (Figs. 4 and 5), which could be
the result of increased thaw depths contributing to greater
lateral carbon transport from peat plateaus. Pore-water dis-
solved organic carbon and dissolved CO2 and CH4 were
extremely high on peat plateaus during the growing season
(Zolkos et al., 2022), and open waters in both wetlands (sub-
pixel) and waterbodies were likely hot spots for decomposi-
tion and outgassing (Ludwig et al., 2022). The wetlands were
also characterized by deep, carbon-rich soil, which could be
contributing to higher baseline respiration (Fig. 4, Table S9).

The derived CH4 fluxes from land-cover classes in this study
were within the ranges reported in the Boreal–Arctic Wet-
land and Lake Dataset (BAWLD-CH4), including from wet-
lands and the edge of degraded permafrost (wetlands and wet
tundra in BAWLD), peat plateaus (dry tundra in BAWLD),
and waterbody CH4 fluxes (small peatland lakes in BAWLD)
(Kuhn et al., 2021). The CO2 fluxes reported here are similar
in range to those observed in small ponds in other sub-Arctic
tundra ecosystems (Kuhn et al., 2018).

The three footprint models followed similar patterns in
peat plateau seasonality as well, with NEE uptake peaking
in July for most tundra types (Fig. 4). Lichen and sedge tun-
dra were very small CH4 sources (Fig. S11), though given the
large area of lichen tundra in the landscape this resulted in a
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Figure 4. Monthly violin plots of predicted NEE fluxes from the 2020 growing season by land cover (columns) for each of the three footprint
models (rows) using the complex land-cover map to unmix the EC tower fluxes. Distributions for violin plots are derived from posterior
distributions of predicted NEE. Black dots indicate medians.

notable contribution to total CH4 (Fig. 5) when scaling up.
Shrub tundra was either zero or a very small CH4 source, de-
pending on the footprint model (Fig. 5). Tundra at the edge
of degrading permafrost was a significant CH4 source and
behaved more similarly to wetlands than degraded areas in
terms of seasonal patterns (Fig. 5). Interestingly, degraded
permafrost was a sink of CO2 earlier in the growing season
(Fig. 4), but all GPP parameters converged to zero in August
and September (Fig. 4, Table S8). Degraded permafrost was a
source of CH4 early in the growing season, decreased to near
zero as the depressions dried down, and then increased again
later in the growing season (Figs. 5 and S11). This aligns with
the wettest portion of the growing season, when the small
depressions of degrading permafrost become inundated as
small ponds (Mullen et al., 2023), which could explain the
renewed CH4 emissions and decline in GPP.

There were differences as well between the derived land-
cover fluxes for the three footprint models. These differences
were offsetting between adjacent land-cover types. For ex-
ample, degrading permafrost and tundra at the edge of de-
grading permafrost were always, by definition, near one an-
other. When the Kljun model had high CO2 uptake in de-

grading permafrost it had lower uptake at the edge of de-
grading permafrost, whereas Hsieh and Kormann–Meixner
displayed the opposite pattern (Fig. 4). This discrepancy was
the result of slight differences between footprint models in
peak influence positioning at the boundary of the two land-
cover types (Figs. 2 and S3). The differences in effects of
the footprint models can likely be minimized by using a rela-
tively higher-resolution map or including spatial drivers such
as leaf area index (LAI), soil moisture, and soil tempera-
ture, which would provide further constraints for land-cover
fluxes.

The complex heterogeneous models captured distinctive
seasonality. Lichen and shrub tundra were net neutral in May,
had peak CO2 uptake in July, and remained small sinks in
September (Fig. 4). In contrast, the sedge tundra and edge
of degrading permafrost were small sinks in May, peaked
earlier, and were net neutral or CO2 sources by September
(Fig. 4). Increasing the complexity of the underlying map al-
lowed us to determine this separate but ecologically signifi-
cant seasonality in peat plateau CO2 cycling. However, there
is a limit to how complex one can get. The land-cover map
used in this study identified two types of wetlands, one much
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Figure 5. Monthly violin plots of CH4 2020 growing season budgets by land cover (columns) for each footprint model (rows). Distributions
for violin plots are derived from posterior distributions of predicted CH4 fluxes scaled by their land-cover areas in Fig. 1. Black dots indicate
medians.

more prevalent near the EC tower than the other. Attempting
to use both wetland types failed, as the parameters for the
less prevalent wetland could not converge. We subsequently
lumped both wetland categories as “wetland”. This failure to
converge serves as a check against over-fitting, which can be
used in addition to comparing against withheld data via arti-
ficial gaps. In the event that a land cover with small area or
influence is significant to the research questions posed and
this unmixing method cannot derive a flux, then we recom-
mend supplying stricter prior information for the land cover
via chamber fluxes. By combining chamber fluxes and EC
tower flux unmixing, one can leverage both the spatial cov-
erage and temporal frequency of EC tower fluxes with the
specificity of chamber fluxes.

3.4 Land-cover scaling

Scaling up fluxes to the region led to distinct land-cover hot
spots of carbon sinks and sources, with all three footprint
models having similar monthly NEE and CH4 budgets by
land-cover type (Figs. 5 and 6). Lichen tundra was the largest
sink of carbon (the 89 % CI of July carbon uptake was−2628
to −5075 Mg C for the Hsieh model, −2715 to −5452 MgC
for the Kljun model, and −2493 to −4428 Mg C for the
Kormann and Meixner model), though this was driven in

part by occupying the largest area in the region (Fig. 1; Ta-
ble 1). Wetlands and surface waters were significant sources
of both CO2 and CH4 in the latter half of the growing sea-
son (July–September), with large enough emissions to off-
set the carbon uptake in some of the peat plateau land cover
types (Figs. 5 and 6). Wetlands account for, on average, only
7 % of what the EC tower sees, but 18 % of the area in the
region. If we were to use a coarser land-cover map, such
as the recently updated circumpolar Arctic vegetation map
(CAVM) (Raynolds and Walker, 2022), we would have at-
tributed 100 % of the EC tower fluxes to wetland complex
vegetation, which would scale up to 26 % of the region us-
ing CAVM. Given the clearly distinctive carbon dynamics
between wetlands and peat plateau vegetation, using a land-
cover resolution appropriate to the scale of heterogeneity is
important for obtaining an accurate regional carbon budget
and understanding the ecosystem.

Regional surface water carbon emissions scaled up from
the EC tower fluxes are likely an overestimate, since the
waterbodies within the EC tower footprints were amongst
the two smallest size classes of waterbodies in the region,
which have the largest diffusive carbon fluxes (Ludwig et al.,
2023b). In comparison, the coarser CAVM land-cover map
does not identify any surface waters in the entire scaling re-
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Figure 6. Monthly violin plots of 2020 growing season NEE carbon budgets by land cover (columns) in the complex map for each footprint
model (rows). Distributions for violin plots are derived from posterior distributions of predicted NEE fluxes scaled by their land-cover areas
in Fig. 1. Black dots indicate medians.

gion, which would lead to these hot spots of emissions being
completely underestimated. Scaling up surface water carbon
emissions would be better done using an approach that in-
cludes both terrestrial and aquatic landscape drivers and uses
better spatial representation (e.g., Ludwig et al., 2023b) than
the area seen by a single EC tower. However, we were able
to capture both plant-mediated carbon fluxes and ebullition
in addition to diffusive fluxes, as well as describe the broad
seasonal trends in carbon emissions using this approach.

3.5 Regional carbon scaling

Land-cover carbon budgets were summed to regional carbon
budgets and compared to carbon budgets estimated using the
Bayesian and MDS homogeneous approaches (Fig. 7). To-
tal NEE was similar between the three footprint models with
overlapping 89 % CI. Regional CH4 budgets were also simi-
lar, with most months overlapping 89 % CI between the three
footprints and a small difference in July. There was also no
difference in total NEE budgets between the simple and com-
plex map solutions. For most months the complex map solu-
tions were slightly more uncertain, a consequence of estimat-
ing almost twice as many parameters and carrying through
all of their uncertainties. The exception was May, for which

the simple map was more uncertain, likely because group-
ing all tundra vegetation as one class was a poor assumption
for that time. Despite the differences in methodologies, the
two homogeneous approaches (Bayesian models and MDS)
resulted in very similar NEE budgets to one another when
scaling up to the region for June, July, and August (Fig. 7). In
months closer to the shoulder season (May and September),
the distributions of light and temperature were more skewed,
which can be a source of bias in the MDS method and could
explain the slight differences in the MDS and Bayesian ho-
mogeneous results for those months.

In contrast, all homogeneous scaled-up carbon results
were quite different from the heterogeneous results. While
the homogeneous approaches were worse at predicting to
withheld gaps in the EC tower observations (Fig. 3), the dif-
ferences in RMSE were small. However, the consequences
for scaling were large. At every part of the growing sea-
son the homogeneous NEE overestimated the carbon sink
relative to the heterogeneous NEE. This overestimation was
smaller towards the shoulder seasons in May and Septem-
ber and larger in June, July, and August. Assuming homo-
geneity at this site meant approximating the same diurnal cy-
cle of NEE everywhere that averages over different sink and
source strengths in the landscape. Similarly, assuming a ho-
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Figure 7. Monthly total (a–e) and 2020 growing season total (f) CO2-eq carbon budgets for each gap-filling technique. Boxes are the
median and interquartile range (IQR), and whiskers are 1.5 · IQR for the Bayesian model gap-filling carbon budgets using the three footprint
models over the complex and simple land-cover maps, as well as without considering footprints and assuming a homogeneous landscape.
The solid red line indicates MDS (marginal distribution sampling) homogeneous gap-filling NEE budgets. The dashed red line indicates the
diurnal average CH4 gap-filling homogeneous budgets. Distributions with overlapping Bayesian 89 % credible intervals are designated with
matching letters. Note that the scales on y axes are different between panels to highlight the comparability of footprint models and land-cover
maps within months.

mogeneous landscape when scaling up an average CH4 flux
led to consistently underestimating the regional CH4 emis-
sions (Fig. 7). Because land-cover types that were hot spots
of emissions were farther from the footprint influence peaks,
while those that exhibited larger carbon uptake were more
often nearer the peaks, applying the EC tower flux to the re-
gion without accounting for footprints resulted in too much
carbon uptake in NEE and too little carbon emission in CH4.

Throughout the growing season, incorrectly assuming a
homogeneous landscape, regardless of gap-filling methodol-

ogy, resulted in nearly doubling the NEE growing season car-
bon sink while nearly halving the CH4 emissions (Fig. 7f). If
we had assumed a homogeneous landscape we would have
determined the region to be a net growing season carbon
sink even after accounting for CH4 emissions as CO2 equiv-
alents (89 % CI: −9960 to −11 919 MgC, Fig. 7f). We can
combine the posterior distributions of scaled carbon from all
three footprint model results to calculate a single CO2-eq
carbon budget estimate that accounts for across-model un-
certainties. Doing this, we find that growing season CH4

https://doi.org/10.5194/bg-21-1301-2024 Biogeosciences, 21, 1301–1321, 2024



1314 S. M. Ludwig et al.: Resolving heterogeneous fluxes from tundra halves the growing season carbon budget

emissions (mean: 16 633, 89 % CI: 15 208 to 18 212 MgC
CO2-eq) more than offset the CO2 growing season sink
(mean: −12 512, 89 % CI: −15 718 to −9189 Mg C). Sim-
ilarly, Kuhn et al. (2018) found that accounting for emis-
sions from commonly overlooked small ponds offset much
of the wetland carbon sink in northern Sweden. Other EC
tower flux sites might see similar or opposite results from ac-
counting for footprint heterogeneity (Griebel et al., 2016; Gi-
annico et al., 2018; Reuss-Schmidt et al., 2019). A heteroge-
neous site with low carbon uptake or high carbon emissions
located near the peak of footprint influences would overesti-
mate carbon emissions when scaling assuming homogeneity.
Unaccounted-for heterogeneity such as this could help ex-
plain the mismatch between bottom-up and top-down carbon
budgets (Thornton et al., 2016; Saunois et al., 2020).

3.6 Uncertainty

A benefit of using this Bayesian approach is that uncertain-
ties in model fit for respiration, GPP, and constant fluxes
were carried through into uncertainties in NEE and CH4
gap-filling and scaled-up carbon budgets. Sources of uncer-
tainty included times and locations at which the determinis-
tic models used here were oversimplifications and failed to
capture other important processes affecting carbon cycling.
Instances in which the land-cover maps were not accurate de-
lineations of carbon cycling are also included in this uncer-
tainty. For example, if an underlying gradient of soil mois-
ture were causing different CH4 fluxes within a vegetation
type this would lead to greater uncertainty after the aggre-
gation of footprint influences over the categorical map used
here. Not all land-cover carbon budgets were equal in terms
of uncertainty; for example, among the tundra vegetation
types, NEE fluxes from the edge of degraded areas were the
most uncertain, followed by shrub, lichen, and sedge (Fig. 4,
e.g., Kljun–June standard deviations: 0.061, 0.031, 0.030,
and 0.016 kgC month−1 m−2, respectively). After scaling up
to the region in (Fig. 1), lichen NEE carbon budgets were
the most uncertain due to their larger area in the region, fol-
lowed by the edge of degraded permafrost, shrub, and then
sedge tundra (Fig. 6, e.g., Kljun–June standard deviations:
1199, 1009, 516, and 388 MgC month−1, respectively).

Degraded permafrost NEE and CH4 fluxes had the most
uncertainty (Figs. 4 and S11). This was likely due to a com-
bination of their small extent and influence in the footprint
supplying less signal to the EC tower fluxes, as well as the
deterministic models oversimplifying carbon processes. In
this case, the fluxes from degraded permafrost were distinc-
tive enough that they could be determined while unmixing
the EC tower fluxes despite their small area in the footprints.
Within the areas of degrading permafrost there was hetero-
geneity in vegetation and surface water on a scale smaller
than the resolution of the land-cover maps, as well as more
temporal dynamics related to hydrology. Similarly, NEE and
CH4 fluxes from water had relatively large uncertainty due

to estimating an average flux rather than presenting diffu-
sive, plant-mediated, and ebullitive fluxes deterministically.
In lieu of representing these processes explicitly, our simpler
models had greater uncertainty. The uncertainty around de-
graded NEE and CH4 fluxes had a smaller impact on NEE
carbon budgets than other land cover types (Figs. 5 and 6)
due to the small area of degraded locations in the landscape
(Fig. 1). Since all of the uncertainties in gap-filling fluxes and
partitioning NEE were carried through into carbon budget
estimates, we lose nothing by including these small areas of
heterogeneity despite not representing them as well as other
land-cover types.

3.7 Applications and limitations of unmixing eddy
covariance fluxes

Heterogeneity within EC tower landscapes is a common
problem, and employing this flux unmixing approach at sites
such as those identified by Chu et al. (2021) could improve
accuracy in scaling carbon budgets and benchmarking mod-
els. Several studies have used summed spatial variables af-
ter weighting by EC footprints to relate to EC flux observa-
tions (Reuss-Schmidt et al., 2019; Xu et al., 2017; Metzger
et al., 2013). While a useful way to incorporate heterogeneity,
this approach reduces meaningful variation of spatial vari-
ables within footprints to single non-unique results. For ex-
ample, there are multiple combinations of footprint weights
and values of the spatial drivers that could result in the same
weighted sum. Statistically unmixing fluxes could yield more
informative relationships to spatial drivers.

Future applications of the flux unmixing approach demon-
strated in this study could incorporate spatially explicit
drivers such as soil moisture and soil temperature, as well
as more specific prior information from chamber fluxes. Do-
ing so would further reduce uncertainty in landscape car-
bon fluxes. Seasonality could be represented through spa-
tially explicit and temporally variable drivers such as solar-
induced fluorescence (SIF) (Luus et al., 2017; Schiferl et al.,
2022). Interannual variability could be investigated using a
hierarchical model structure by, for example, fitting an un-
derlying distribution of a vegetation-type-specific Q10 from
which each year’s specific Q10 is drawn. This method of in-
terpreting EC fluxes could also be useful at sites with nested
EC towers, multiple instrument heights, or where instrument
heights have changed over time (e.g., Klosterhalfen et al.,
2023). Flux data from such circumstances could be analyzed
concurrently, since each observation is a function of an ex-
plicit footprint distribution. Thus, it would not matter if in-
strument height or position were different between observa-
tions.

An alternative model structure for GPP was investigated
that uses leaf area index (LAI) as a driver (Shaver et al.,
2007). In lieu of field-based LAI data, we used a time series
of NDVI from cloud-free Sentinel-2 imagery and the empir-
ical relationship to LAI from pan-Arctic tundra described in
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Shaver et al. (2013). The LAI-version GPP model failed pos-
terior predictive checks for most months of data and was not
further pursued. This failure is likely because the approxi-
mation from NDVI was a poor representation of LAI for this
site, particularly during May, August, and September when
sub-pixel water presence could lead to erroneous NDVI and
LAI. Furthermore, lichen and moss species dominated the
vegetation biomass on peat plateaus and LAI may not be
an appropriate metric in such cases. However, a spatially re-
solved driver such as LAI might be effective in applications
for unmixing NEE at other sites.

This method of unmixing EC fluxes relies upon accurate
footprint influence maps with sufficient variability over the
heterogeneity in the landscape. The analysis in this study as-
sumes that the footprints were observed perfectly; i.e., foot-
print influence is not a random variable. For this reason, we
recommend always using an ensemble of footprint models.
However, for sites where the assumptions of footprint mod-
els are not met and footprint influence maps are likely to be
more error-prone, this study’s methodology will not work.
Examples of such cases might include sites with instrument
heights close to canopy heights where the effects of the sur-
face roughness sub-layer are a concern or anywhere the as-
sumption of horizontal homogeneity in turbulence is invalid.
In addition to valid footprint influences, this method requires
variability in footprints. When footprint influences are aggre-
gated over a land-cover type for unmixing, there need to be
enough differences between observations to avoid an under-
determined dataset, where finding a solution to land-cover-
specific fluxes will not be possible. Sites with consistent wind
directions and atmospheric stability that result in very similar
footprints between observations could have this issue. Small
changes in the peak influence location could create enough
variability between observations, even with consistent wind
directions, depending on the position and scale of heteroge-
nous land-cover patches at the site.

4 Conclusions and implications

We compared multiple footprint models and land-cover maps
in our analysis to investigate their effects on unmixing land-
cover carbon fluxes. While the Kljun footprint model was the
most consistent in determining fluxes when comparing out-
comes using simple and complex land-cover maps, there was
no clearly best footprint model. We recommend including all
three footprint models as an ensemble when interpreting EC
fluxes. Flux estimates based on the more complex land-cover
map captured important differences in seasonality in tundra
vegetation carbon fluxes. However, there were only minor
differences in regional growing season carbon budgets be-
tween the two land-cover maps, and using the more complex
map had trade-offs such as greater computation time and un-
certainty due to increasing the number of parameters. Inves-
tigating carbon fluxes using multiple land-cover maps allows

for informed lumping of land-cover classes based on the re-
sulting fluxes and the investigator’s research questions.

Eddy covariance towers provide a wealth of high-
frequency flux data with large spatial extents. However, EC
tower fluxes are under-utilized or potentially misleading if
footprints are not taken into account in heterogeneous land-
scapes. We have demonstrated an approach to unmixing
EC tower NEE and CH4 fluxes from heterogeneous tun-
dra, which provided detailed interpretations of landscape car-
bon cycling such as the detection and quantification of hot
spots of carbon emissions and different timing in peak car-
bon uptake and senescence in tundra vegetation. We found
that methods that consider footprint influences during gap-
filling NEE fluxes were more accurate at predicting missing
NEE fluxes than methods that assume landscape homogene-
ity. By using a Bayesian approach, we were able to quantify
and compare uncertainties between carbon fluxes from dif-
ferent land-cover classes. These uncertainties were carried
through when gap-filling and scaling up, providing an intrin-
sic estimate of uncertainty for the resulting carbon budgets.
The consequence of assuming homogeneity in the landscape
when gap-filling and scaling up instead of using land-cover-
specific carbon fluxes was substantial: over the growing sea-
son (May to September) the homogeneous carbon budgets
had half as much CH4 emissions and twice as much net
CO2 uptake, greatly overestimating the carbon sink in the re-
gion and potential negative feedback to climate from carbon
emissions. Accounting for landscape heterogeneity in carbon
fluxes from EC towers could reduce uncertainty in bottom-up
carbon budgets and the mismatch with top-down carbon bud-
gets.

Code and data availability. Eddy covariance flux data, summa-
rized footprint influences, and analysis code are located in the fol-
lowing repository: https://doi.org/10.5281/zenodo.10578675 (Lud-
wig, 2024). Code for the three footprint influence models as well as
reprojecting and summarizing over the land-cover maps is located in
the following repository: https://doi.org/10.5281/zenodo.10578685
(Jones and Ludwig, 2024).
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