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Abstract

Purpose. Individuals with walking impairment, such as those with cerebral palsy, often
face challenges in leading physically active lives due to the high energy cost of
movement. Assistive devices like powered exoskeletons aim to alleviate this burden and
improve mobility. Traditionally, optimizing the effectiveness of such devices has relied
on time-consuming laboratory-based measurements of energy expenditure, which may
not be feasible for some patient populations. To address this, our study aimed to
enhance the state of the art predictive model for estimating steady state metabolic rate
from two minute walking trials to include individuals with and without walking disabilities
and for a variety of terrains and wearable device conditions. Methods. Using over 200
walking trials collected from eight prior exoskeleton-related studies, we trained a simple
linear machine learning model to predict metabolic power at steady state based on
condition-specific factors, such as whether the trial was conducted on a treadmill (level
or incline) or outdoors, as well as demographic information, such as the participant’s
weight or presence of walking impairment, and two minutes of metabolic data. Results.
We demonstrated the ability to predict steady state metabolic rate to within an accuracy
of 4.71 + 2.7% for varying walking conditions, such a differing terrain, patient
populations. Conclusion. This work seeks to unlock the use of in-the-loop optimization
of wearable assistive devices in individuals with limited walking capacity. A freely

available MATLAB application allows other researchers to easily apply our model.
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1. Introduction
High energetic cost of movement is a significant barrier to a physically active lifestyle for
those with deficits in neuromuscular control due to brain injury, such as in cerebral palsy
(CP) [1] and stroke [2]. This is particularly detrimental in pediatric populations, like those
with CP, where physical activity is an essential stimulus for healthy development [3].
The underlying mechanisms of these neuromuscular deficits appears to be multifaceted
and often patient-dependent, but are linked to impaired coordination that leads to
ineffective kinetics and kinematics [4], [5], [6]. The resulting increase in metabolic
demand can limit functional performance and make fundamental tasks, such as
activities of daily living, difficult to complete [7]. This high energetic demand with
movement is the basis for several established and evolving interventions for individuals
with CP that are aimed at improving mobility by reducing its metabolic burden, such as
passive bracing [8], [9], [10] and powered exoskeleton devices [11], [12]. Similarly,
independent mobility is closely linked with quality of life in the elderly [13], which has
also led to the exploration of assistive exoskeletons in this population [14], [15], [16].
The clinical acceptance of these assistive technology interventions is often predicated
on their ability to reduce energy expenditure and increase movement capacity in patient

populations.

Demonstrating reduced energy expenditure with assistive devices has often relied on

laboratory-based measurements of whole-body energy expenditure via gold standard



techniques such as indirect calorimetry. Indirect calorimetry works by measuring the
inspired and expired gases that correlate with metabolic activity within an individual’'s
musculature to estimate energy usage [17]. By measuring changes in metabolic power
from one activity (e.g., quiet sitting) to another (e.g., walking), a net difference can be
calculated (i.e., net metabolic power) that represents the energetic cost of the latter
activity relative to the former. This net metabolic power is a measure of how much
energy a person’s body expends on any given activity or task. A significant
disadvantage to this gold standard approach is the amount of time required to measure
metabolic power. Indirect calorimetry is inherently noisy and there is a delay in how
inspired and expired gases change with increased muscular metabolism due to
mitochondrial dynamics and gas transport [18], requiring individuals to partake in
potentially strenuous walking activity for extended periods of time (i.e., 5-10 minutes)
until a “steady state” is reached and an average of measured values can be taken to
reduce noise. This time requirement can be challenging when working with patient

populations where extended activity under multiple testing conditions is not feasible.

The time requirement for measuring steady state metabolic power is also limiting for a
leading machine learning approach used in optimizing assistive devices via human-in-
the-loop optimization [19]. This methodology uses an iterative process to determine
optimal design or control settings of an assistive device to maximally reduce a specific
metric, such as metabolic power. The process consists of walking with a specific
assistive setting (e.g., level of assistive torque) while steady state metabolic power is

measured or estimated, after which an optimization algorithm chooses a new assistive



setting and metabolic power is once again measured or estimated, repeating until the
algorithm can converge on the most optimal assistive settings. The outcomes of this
optimization process have been promising for establishing user-specific control settings
[19], [20], [21], [22]. However, measuring steady state metabolic power for each
iteration of a human-in-the-loop optimization scheme may not be possible for many
individuals with disabilities because they may be unable to walk for the time required for
convergence. For these reasons, there is motivation to predict steady state metabolic

rate from short walking bouts prior to reaching steady state.

Various methods have demonstrated promise for accurately predicting steady state
metabolic rate during walking in unimpaired individuals. These methods include
predictions based on anthropometrics and walking speed [23], first order physiological
signals [24], time derivatives of physiological signals [25], and the mechanics of walking
[26]. A prominent approach is based on a predictive model utilizing the first two minutes
of walking metabolic data to approximate the metabolic response as a first-order linear
system, essentially creating a two-minute weighted time series prediction [22]. This
method represents the current State of the Art (SoA) for human-in-the-loop optimization
of lower limb wearable devices. However, this method has not been evaluated in, or
developed for, individuals with neuromuscular disorders. This is of particular importance
because factors such as atypical muscle mass and physiology [27], deficits in
neuromuscular coordination, and abnormal walking kinematics [28] can have a
significant influence on energy expenditure, making predictive equations developed

from unimpaired populations much less accurate for those with impairments where



these factors are affected [29]. We expect that such a model would capture the
biomechanical causes (e.g., spasticity, sarcopenia, etc.) of differences in metabolic
power across patient populations during walking with and without assistive devices. This
void hampers the ability of researchers to individually optimize wearable devices for
people with walking disabilities, particularly when their disability limits the amount of

time they can ambulate.

The overarching objective of this study was to establish a model to quickly and
accurately estimate steady state metabolic power, with a similar accuracy (4-6% error)
and time requirements (2 minutes) as the current SoA, in individuals with impaired
ambulation under a variety of walking conditions, including on different terrains (e.g.,
level or incline), or with wearable assistive devices (e.g., exoskeletons) (Fig. 1). Our
primary goal was to validate and expand on, if necessary, the weighted time series
prediction model to accurately predict steady state metabolic rate from short, transient
walking trials of two minutes or less in individuals with CP and other walking
impairments. Given the complex interactions between movement impairment, assistive
device use, terrain, and metabolic power, we hypothesized that adding demographic
and condition-specific parameters to the current weighted time series prediction model
would result in a more accurate prediction of metabolic power when compared to the
weighted time series prediction model alone. ‘Demographic information’ included
information about the person and any groups to which they belonged, specifically — age,
height, weight, presence of a CP diagnosis or stroke history, being in an elderly

population or being unimpaired. ‘Condition-specific parameters’ refer to how the



experiment was conducted: Treadmill or overground terrain, surface grade, the
presence of an exoskeleton or ankle-foot orthotic, and walking speed. This allowed us
to compare the accuracy of our new predictive model with the existing weighted time
series prediction model across several clinical populations (CP, stroke, and the elderly).
This exploratory analysis sought to evaluate the potential for a single model that could
be applied across different assistive device research topics and patient populations.
Therefore, we also included a single stroke participant in this investigation. We did,
however, wish to see how a general model would function when applied to minimal
training data, and one stroke participant was included. We also had a secondary goal to
evaluate whether the prediction accuracy of our model would increase if we captured
the rate at which metabolic power increased at the start of each trial (i.e., “ramp rate”
the slope of the best fit line calculated on the first two minutes of metabolic data

recorded from each walking trial).
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Figure 1. Metrics used to create the dataset included personal information, trial details and metabolic time series
data. Boolean values (input format depicted as 0 or 1) marked each of the 5 populations, as well as specific trial
conditions which could be combinations of treadmill, overground, shod, exoskeleton assistance, zero-torque and
incline. The remaining variables required a continuous input data format. Metabolic data were initially collected from
both VO, and VCO,, but were combined into a single metabolic power metric and normalized to body mass. SoA
model from [22].

2. Materials and Methods
We implemented a retrospective analysis of walking data to generate a flexible linear
model for predicting steady state metabolic power in those with and without
neuromuscular impairment and under various walking conditions. The data for this

retrospective analysis were acquired from both prior and concurrent investigations at



Northern Arizona University [12], [14], [30], [31], [32], [33]. The studies were approved
by the Institutional Review Board (IRB) of Northern Arizona University under protocols
#986744-1:45. All participants, or their parents/guardians if under 18 years old, provided
informed consent, or verbal assent, if applicable, before participation. Each trial was
represented by a vector of variables with data format depicted in Fig. 1. Participants
included individuals with cerebral palsy, stroke, elderly individuals, and those without
walking impairments. All data were collected over the period spanning 2018 to 2024.
The dataset employed in this study comprised three primary data types: 1). Metabolic
data obtained from a metabolic sampling system (either Parvo (TrueOne, USA) or
Cosmed (K-5, USA)), 2); basic participant characteristics such as height, age, weight,
clinical population, and impairment level for CP (Gross Motor Function Classification
Score); and 3) experimental metrics including walking speed, presence of an
exoskeleton or walking aid, and terrain type. CP is divided into five Gross Motor
Function Classifications (I-V), where CP | is the least impaired and CP V has the
greatest impairment to motor control [34]. Consequently, the highest energetic costs
associated with ambulation are found in individuals with the CP IlI-V [35].The simplified
distributions of these demographics and the associated testing conditions are provided

in Table 1.



Table 1. Condition Distribution

Shod Zero-torque Assistance AFO
CPI(n=28) 48 30 96 0
CP Il (n=8) 12 15 54 0
CP Il (n=3) 12 12 39 3
Elderly (n =11) 8 2 19 0
Stroke (n = 1) 2 2 6 0
Unimpaired (n = 13) 0 66 168 0

Table 1. Distribution of the total utilized observations (inclusive of all three interopolation methods) across populations
and walking aids. Shod represents walking in shoes only, zero torque represents walking with the exoskeleton worn
but not imparting any significant additional forces, Assistance indicates that the device was providing stance-phase
torque assistance while walking, and AFQO indicates that the participant wore rigid or semi-rigid ankle-foot-orthoses
and no exoskeleton. CP I-lll represents Gross Motor Function Classificaiton Score Levels I-lll respectively.

a. Model Design Objectives
We considered two factors for establishing prediction accuracy targets for
benchmarking our models. First, due to the inherent variability in metabolic
measurements, we sought to predict steady state metabolic power to within the 95%
confidence interval (Cl) of the measurement average. The 95% CI for the data used in
our analysis (i.e., model labels) was 0.3-5.2%, with an average error rate of 2.5%. This
finding was consistent with a prior report of metabolic system accuracy ranging from 1.7
1+ 0.9% to 6.8 £ 6.5% measurement error [36]. Second, we also reviewed the accuracy
of weighted time series prediction when used in the context of human-in-the-loop
optimization. Predicting metabolic power to 4.3% accuracy, on average, with a
maximum reported error of 15.5%, has been demonstrated to be adequate for use in
human-in-the-loop optimization of exoskeleton assistance in unimpaired individuals [37].

Therefore, to serve as an effective tool for in-the-loop optimization, our model should



achieve a comparable accuracy of 4-6%, which was very similar to the target
established from our 95% CI calculation. To maximize the potential for our model to
facilitate the optimization of assistive devices in individuals with limited walking
endurance, we sought to assess model accuracy at the current best practice (120
second trial duration). Additionally, we sought to make a freely available MATLAB
application that would allow other researchers to easily input participant and walking

condition characteristics and apply our predictive model(s) in near real-time.

b. Linear Model Building
This study investigated the predictive capabilities of supervised learning, a category of
machine learning using labeled data to predict outcomes, combined with stepwise linear
regression models in estimating steady state metabolic power [38]. We chose linear
models and not more complex implementations for interpretability and ease of use [39].
Linear models assign a weight to each input variable and the sum of all weighted
variables is the prediction. Stepwise linear regression uses statistical methods to
iteratively select the most significant predictor variable to build a model that best fits the
data, and it does not include features that do not significantly improve model accuracy.
Using this architecture, we were able to examine how including additional parameters
(such as the demographic and condition-specific parameters mentioned above)

impacted our linear model's accuracy.

MATLAB (2023b) was used to implement a stepwise linear regression and identify

statistically significant features. We maintained a significance cutoff of p < 0.05 for



features to be added to the model, as well as requiring the p-value to remain below this
level to be retained in the final model. We then used only the features which were
identified as significant to train, validate, and test our PyTorch implementation of linear
regression; PyTorch is a freely available machine learning library for Python [40], [41].
The linear model used input data that were identified as significant from the linear
regression and used the validated adaptive moment estimation (ADAM) optimizer

contained in the PyTorch framework [42].

Data were initially pooled and shuffled, then ten-fold cross-validation was employed to
identify the optimal training duration, and the validation error for each of the ten folds
(i.e., set or partition of our dataset) was retained for accuracy assessment. Best
practices for cross-validation were employed, including tracking validation error for each
fold, and identifying overtraining prior to the cessation of training on that fold [43].
Additionally, validation errors were recorded for all folds and the average validation error
of the folds was used to identify the optimal number of training epochs prior to testing.
Interval scaling was used in conjunction with the scikit-learn standard scalar to ensure
that scaled observations would remain in the positive domain and on the same order of
magnitude as all other features to achieve model convergence [44]. Test data,
comprised of samples unseen by the model during training, were used to evaluate the
final performance of the model. These data were identified as a subset of the data in
each fold that used the repeated measurements interpolation method (an in-depth
explanation of the validation and testing splitting methodology is available in the

supplementary materials). Finally, the loss function used during optimization was the



minimization of mean squared error [45]. To identify optimal training times for each fold,
at the end of every epoch of training (i.e., complete pass of the training dataset through
the algorithm), the validation data were evaluated with the mean squared error loss
function, and recorded along with the accuracy of the training data. Once all epochs
were completed, the epoch corresponding to the minimum validation error was identified
and that duration was used to train on that fold and predict on the test set. This resulted
in ten test subset errors, which were used to compare model accuracies. All fold model
validation data were subsequently used to identify a minimum mean validation error and

the associated training epoch was used to build the final model weights.

c. Predictive Model Comparisons
Comparative analyses were conducted to assess the model accuracies relative to
benchmarks, including a “featureless baseline” [46], and the SoA prediction model. The
equations used for implementing the SoA model, as well as the list of inputs to each
model, including our linear model, can be found in Table 2 (expansion on the
implementation of the Zhang et al. weighted time series prediction is available in
supplementary material). The featureless baseline error was generated for each of the
ten folds in cross-fold validation where the average of all labels from the training set was
used to create a naive prediction (not using any feature data). Prediction error below the
featureless baseline indicates that a model is superior to the simple guess of the mean

of the population.



Table 2. Variables included in each prediction

Metabolic
Baseline Trial Height Speed Age Weight Population Terrain Time

Featureless

----------------------------------------------------------------------------------------------------

Zhangetal. | O o ] A o S L_.2min

Linear vV ViV iV iV Vv v i 12min
Equation Reference

[}g] — Aty Zang et al. [22]

yi and E were estimates of the initial metabolic response and steady state metabolic rate. A* was the
pseudo-inverse of A which was an iteratively constructed weight matrix based on the number of
metabolic readings in the time window, and y was the vector of metabolic costs measured in that
window.

In order to apply the weighted time series prediction model used by Zhang et al., we
implemented the metabolic power estimation equation from the supplementary material
of their previously published work [22]. However, we observed that the model
consistently underestimated steady state metabolic power from our training data. To
address this discrepancy and conduct the best comparison, several terms were
recalibrated for our specific dataset. This involved five rounds of grid searching based
on the provided constants [22], [47]. The width of the search range was progressively
reduced in each round of tuning to allow the identification of more refined constants. We
confirmed that the tuning process effectively minimized the error in unimpaired level-
ground walking to comparable mean ranges (5.2 £ 2.0%) as previously reported (4.3%).
Next, additional tuning was performed on all remaining training data (inclusive of

participants with walking impairment).



d. Data Analysis
We established flexible criteria for the inclusion and processing of walking trials in our
dataset used to train our linear models so that our models would be robust to
experimental variation when applied prospectively. Each trial required a standing
metabolic baseline period from which to calculate the net metabolic power of the
walking trial. The metabolic baseline was calculated as the mean metabolic power
recorded while quietly standing; during this time the participant was not allowed to
speak or make any large physical movements. The duration of the quiet standing period
varied depending on the study; 3 minutes was the most common duration. We then
defined an active walking trial period that commenced at the start of each walk and
progressed to include two or more minutes of steady state measurements. Walking
trials were generally 6-8 minutes in duration, with steady state selected from the last two
minutes. The shortest trial was five minutes and the longest was 16 minutes. In each
trial, steady state was confirmed visually by two separate researchers. Slight variation in
the selected start time of each walking trial was purposefully allowed to replicate how
the model would be applied to a real-world testing scenario where the initial application
of the model could vary slightly relative to the first step a participant takes. Time series
measurements of expired volumetric oxygen consumption and carbon dioxide
production were recorded by the metabolic system for each trial. We calculated

metabolic power using the modified Brockway equation (equation 1)

Metabolic Power = (VO2* 16.5835 +VCO,*4.51)/(60*BM) (1)



where VO2was the volume (mL) of oxygen consumption, VCO; was the volume (mL) of

carbon dioxide production, and BM was each participant’s body mass in kg [48].

Following the calculation of metabolic power from equation 1, the time series of
metabolic power for each walking trial was interpolated to estimate values at every
second within the trial duration. This interpolation was essential due to the inconsistent
sampling rate of multiple devices and allowed for more accurate segmentation in the
machine learning training data. The ranges observed for sampling rates in this study
were between one sample every second to one sample every 23 seconds. The most
common sampling frequency was one sample every three seconds, and the second
most common was at ten second intervals. Interpolation on each raw time series was
implemented using three different techniques, resulting in three interpolated time series
that were then used in model training so as to increase the size of our dataset and
introduce small variations (see supplementary material). The first method was a
repeated observations approach, which filled timepoints between observations with the
last observed value and did not alter the fidelity of the recorded data, keeping it
functionally equivalent to raw data. The second and third methods linearly interpolated
between each recorded timepoint to fill out the array. The third method differed from the
second method by using the standard deviation of the steady state metabolic power to
add simulated noise to every added point. By processing each input observation with all
three interpolation methods, variations in the values assigned to ramp rate and labels
were also introduced. This approach allowed us to effectively triple the size of the

dataset by generating three distinct input trials from a single input trial, thus enhancing



the robustness of our models. Our ramp rate metric was calculated based on 120
samples after interpolating ~10 to ~100 recorded measurements (depending on the
sampling frequency). Importantly, data in the test set were not linearly interpolated, so

that testing was only done on measured data [49].

Our input data included participant characteristics and experimental condition variables.
Participant characteristics included their population (CP, elderly status, stroke history, or
unimpaired), height (centimeters), age (years) and weight (kilograms). Experimental
condition variables included walking speed (meters/second), walking condition
(overground, level treadmill, incline treadmill), and assistance type (none/shod,
exoskeleton zero-torque, exoskeleton assistance, ankle-foot orthotics). In all cases
where an exoskeleton was included (zero-torque or assistance) the exoskeleton was an
untethered bilateral ankle exoskeleton weighing between 2.2 and 2.8 kg, and providing

0.1-0.35Nm/kg of peak assistive torque [12], [14], [30], [31], [32], [33].

3. Withheld Data Validation



To increase the generalizability of our results, a withheld data set was excluded from all
model training/testing, and was never viewed by the algorithm until after final training
was complete. The withheld data set was selected intentionally to include each of our
participant populations and assistive device conditions (Table 3). Each withheld data set
trial represented a unique participant, with one exception for the single stroke participant

who had two trials included.

Table 3. Withheld test set information

Shod Zero-torque Assistance AFO

CPI 1 1t 1 0
CPlI 0 0 1%, 1 0

CP 1l 1t 1* 1* 1
Elderly 1 1 0 0
Stroke 1 0 1 0
Unimpaired 0 1* 2 0

T overground trials
* incline trials
CP I-ll refers to Gross Motor Function Classification Score Levels |, Il, or Ill, respectively.

4. Results
Through the stepwise linear regression we found that the significant features were
limited to the aggregate “Ramp Rate” (p < 0.001), height (p < 0.001), weight (p < 0.001),
baseline (p = 0.019), walking speed (p = 0.027), CP I-lll (p < 0.001), incline (p < 0.001),
zero torque (p = 0.009), overground (p < 0.001), and the weighted time series prediction

(p < 0.001).



We found that our linear model, using only significant features identified by the stepwise
regression, predicted steady state metabolic power with 94.8+1.0% accuracy. This was
within a single standard deviation of the observed mean measurement error and
overlaps with the mean reported accuracy (95.7%). The prediction errors associated
with the withheld dataset were not significantly different from the testing error (p =
0.675). The overall best SoA (weighted time series prediction) model was a significantly
4.1% (p < 0.001) more accurate than the one constrained by values used in the initial
publications, additionally the linear model with significant features was a significant

3.3% (p = 0.006) more accurate than the optimally tuned weighted time series prediction

(Fig. 2).
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Figure 2. The featureless error for folds is shown with the grey background (22-27%), and the featureless accuracy
on the withheld data is shown with a red line. The mean measurement error is shown with a dashed black line
(2.49%) and the standard deviation is represented with a grey background on either side of the mean. The top row
shows the accuracy of the SoA when constrained by published values, the middle row shows accuracy of the SoA
when optimized for all training data, and the bottom row shows the accuracy of the linear model with significant
features, each using the 2-minute time window. The best model is circled and the corresponding weights for all
features are plotted to the right of the results. CP I-lll represents Gross Motor Function Classificaiton Score Levels I-
1l respectively.

The accuracy of the best model at each time interval were examined on specific
demographics of the test set (Fig. 3). Error for impaired populations in the withheld

dataset improved to within the measurement error for all 5 of our examined populations



relative to the optimized weighted time series (SoA) prediction; CP | error decreased
from 8.4% to 3.9%, CP Il decreased from 14.4% to 2.5%, CP Ill decreased from 13.1%
to 4.8%, Elderly error reduced from 14.5% to 3. 9%, and error in predictions for

individuals with a history of stroke decreased from 9.3% to 1.2%.
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Figure 3. The linear model and the SoA were tested on the withheld data for clarity on which populations
would be most able to use them. As expected, the SOA was not as accurate on unimpaired participants as
compared to the accuracies reported in the literature. This was expected due to the modifications made to
better predict on incline trials and in impaired populations. CP I-lll represents Gross Motor Function
Classificaiton Score Levels I-1ll respectively.

5. Discussion
Our primary goal was to validate an accessible predictive model for predicting steady
state metabolic power during walking in individuals with gait deficits. The results of this
study support our hypotheses that demographic and condition-specific information could
be used to expand the prediction of metabolic power during steady state walking in
individuals with neurological and walking deficits. Our second objective to validate the

use of an aggregate metabolic measure (i.e., “ramp rate”) corresponded to the second



largest weighting factor in our final model. Finally, a comparison of our model with
existing approaches in the literature demonstrated improved steady state metabolic
power prediction accuracy for individuals with walking deficits. By training a model using
data collected on individuals with movement impairments and while using assistive
devices, we were able to produce a more accurate predictive equation for these patient
populations and common walking conditions. The linear model consistently improved
the accuracy of the state of the art, though the weighted time series prediction was the

most heavily weighted feature.

The accuracies of the model proposed here demonstrated that it was able to predict
steady state metabolic power with two minutes of data and contextual information about
the trial with an accuracy of 94.8 + 1.0% for all populations, and 95.3 + 2.7% on
populations with walking impairments. These results are in line with the level ground
unimpaired metabolic prediction accuracies reported by Weyand et al. (which used
weight, height, and walking speed) and Zhang et al. (which used metabolic data only).
The Weyand model saw 91.9 + 6.7% accuracy while Zhang saw an average accuracy
of 95.7%, with a mode of 96.3%, and a minimum of 84.5% and was successfully able to
optimize exoskeletons with human-in-the-loop techniques. Our sample size of 44 unique
individuals is also within the range of these peer studies where Weyand et al. had 78
subjects and Zhang et al. had 7. This implies that our proposed method might be
effective in providing predictions accurate enough for optimization studies to be

conducted on impaired populations.



The linear model revealed a few interesting insights into the effects of, and interactions
between, several model parameters. Some seemingly obvious effects were evidently
captured by the model, like positive relationships between incline and speed on
metabolic power. Our model also captured evidence of slightly increased cost of
transport during treadmill vs overground walking [50]. Prior studies have demonstrated
that the energy cost of walking increases with the severity of neurological deficits from
CP (GMFCS levels I-111) [29]. Somewhat surprisingly, however, our model produced
similar weighting factors for GMFCS levels I-lll (labeled as CP 1-3), likely because other
model inputs more accurately captured each individual’s metabolic response (e.g., SoA,
ramp rate, etc.). Similarly, we were surprised that exoskeleton assistance was not a
statistically significant model input, likely for the same reason as was just mentioned.
Features including age, unimpaired, stroke, AFO, shod, elderly, and stroke history were
not identified as significantly impacting the accuracy of the linear model. The authors
believe this most likely was due to another feature more accurately capturing the

information presented by each of these variables (e.g., walking speed).

A core motivation was to develop and validate an easy to implement metabolic
prediction model to facilitate assistive device development for individuals with
neuromuscular conditions. As researchers in assistive device technology aim to reduce
the metabolic burden of movement for patient populations like CP and stroke, they can
utilize this model to more quickly evaluate the influence of device configurations on the
energy cost of walking. The accuracy of our model should allow for the use of in-the-

loop optimization of wearable assistive devices in individuals with limited walking



capacity [37]. To facilitate the utilization of our model, we have made available a
standalone MATLAB executable that accepts the simple biometric inputs we have
detailed here, and which can be paired with a real-time connection to a metabolic

system for the streaming of metabolic rate data.

This study had several limitations that could be expanded upon in future work. First, our
model used binary flags for assistance conditions, and the addition of contextual
information, such as the amount of assistance or additional power being added to the
user, may improve prediction accuracy. Another recommended future research
investigation would be to explore whether crouch severity could improve prediction
accuracy in CP. Also, trial data from individuals were allowed to be in both the training
and testing sets. Ideally, we would have had enough participants in every category,
shown in Table 1, to use participant separated data in each train and test set; however
this was not feasible with the impaired populations examined at this time. Future
validation work should test our model in real-time during prospective testing and
evaluate model accuracy for participants absent in the training dataset. Next, more
complex modeling paradigms could also be considered and layered to extract more
complex interactions between parameters. Applying a convolutional deep neural
network to the transient metabolic measurements could produce a second direct
predictor of metabolic power at steady state, which could in turn be a feature in a linear
model or subsequent deep neural network. The main reason this was not explored was
the desire for interpretability of our model. Recently created models, such as

Kolmogorov-Arnold Networks, could be used in future developments to maintain



interpretability and utilize machine learning'’s ability to identify relevant interactions
whether linear or nonlinear [51]. Lastly, there were limitations in the data available for
training. The dataset was noticeably missing unimpaired shod trials as well as having

very little data on individuals with a history of stroke or AFO users.

In summary, this study builds on the weighted time series prediction of steady state
metabolic power by demonstrating the benefit of modeling contextual information
capturing a variety of experimental factors. Our interpretable model demonstrated
promising results for predicting steady state metabolic power from two minutes of
walking metabolic rate data individuals with CP and other patient populations. This work
may unlock the use of in-the-loop optimization of wearable assistive devices in

individuals with limited walking capacity.
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