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Abstract  

Purpose. Individuals with walking impairment, such as those with cerebral palsy, often 

face challenges in leading physically active lives due to the high energy cost of 

movement. Assistive devices like powered exoskeletons aim to alleviate this burden and 

improve mobility. Traditionally, optimizing the effectiveness of such devices has relied 

on time-consuming laboratory-based measurements of energy expenditure, which may 

not be feasible for some patient populations. To address this, our study aimed to 

enhance the state of the art predictive model for estimating steady state metabolic rate 

from two minute walking trials to include individuals with and without walking disabilities 

and for a variety of terrains and wearable device conditions. Methods. Using over 200 

walking trials collected from eight prior exoskeleton-related studies, we trained a simple 

linear machine learning model to predict metabolic power at steady state based on 

condition-specific factors, such as whether the trial was conducted on a treadmill (level 

or incline) or outdoors, as well as demographic information, such as the participant9s 

weight or presence of walking impairment, and two minutes of metabolic data. Results. 

We demonstrated the ability to predict steady state metabolic rate to within an accuracy 

of 4.71 ± 2.7% for varying walking conditions, such a differing terrain, patient 

populations. Conclusion. This work seeks to unlock the use of in-the-loop optimization 

of wearable assistive devices in individuals with limited walking capacity. A freely 

available MATLAB application allows other researchers to easily apply our model. 
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1. Introduction 

High energetic cost of movement is a significant barrier to a physically active lifestyle for 

those with deficits in neuromuscular control due to brain injury, such as in cerebral palsy 

(CP) [1] and stroke [2]. This is particularly detrimental in pediatric populations, like those 

with CP, where physical activity is an essential stimulus for healthy development [3]. 

The underlying mechanisms of these neuromuscular deficits appears to be multifaceted 

and often patient-dependent, but are linked to impaired coordination that leads to 

ineffective kinetics and kinematics [4], [5], [6]. The resulting increase in metabolic 

demand can limit functional performance and make fundamental tasks, such as 

activities of daily living, difficult to complete [7]. This high energetic demand with 

movement is the basis for several established and evolving interventions for individuals 

with CP that are aimed at improving mobility by reducing its metabolic burden, such as 

passive bracing [8], [9], [10] and powered exoskeleton devices [11], [12]. Similarly, 

independent mobility is closely linked with quality of life in the elderly [13], which has 

also led to the exploration of assistive exoskeletons in this population [14], [15], [16]. 

The clinical acceptance of these assistive technology interventions is often predicated 

on their ability to reduce energy expenditure and increase movement capacity in patient 

populations. 

 

Demonstrating reduced energy expenditure with assistive devices has often relied on 

laboratory-based measurements of whole-body energy expenditure via gold standard 



techniques such as indirect calorimetry. Indirect calorimetry works by measuring the 

inspired and expired gases that correlate with metabolic activity within an individual9s 

musculature to estimate energy usage [17]. By measuring changes in metabolic power 

from one activity (e.g., quiet sitting) to another (e.g., walking), a net difference can be 

calculated (i.e., net metabolic power) that represents the energetic cost of the latter 

activity relative to the former. This net metabolic power is a measure of how much 

energy a person9s body expends on any given activity or task. A significant 

disadvantage to this gold standard approach is the amount of time required to measure 

metabolic power. Indirect calorimetry is inherently noisy and there is a delay in how 

inspired and expired gases change with increased muscular metabolism due to 

mitochondrial dynamics and gas transport [18], requiring individuals to partake in 

potentially strenuous walking activity for extended periods of time (i.e., 5-10 minutes) 

until a <steady state= is reached and an average of measured values can be taken to 

reduce noise. This time requirement can be challenging when working with patient 

populations where extended activity under multiple testing conditions is not feasible.  

 

The time requirement for measuring steady state metabolic power is also limiting for a 

leading machine learning approach used in optimizing assistive devices via human-in-

the-loop optimization [19]. This methodology uses an iterative process to determine 

optimal design or control settings of an assistive device to maximally reduce a specific 

metric, such as metabolic power. The process consists of walking with a specific 

assistive setting (e.g., level of assistive torque) while steady state metabolic power is 

measured or estimated, after which an optimization algorithm chooses a new assistive 



setting and metabolic power is once again measured or estimated, repeating until the 

algorithm can converge on the most optimal assistive settings. The outcomes of this 

optimization process have been promising for establishing user-specific control settings 

[19], [20], [21], [22]. However, measuring steady state metabolic power for each 

iteration of a human-in-the-loop optimization scheme may not be possible for many 

individuals with disabilities because they may be unable to walk for the time required for 

convergence. For these reasons, there is motivation to predict steady state metabolic 

rate from short walking bouts prior to reaching steady state. 

 

Various methods have demonstrated promise for accurately predicting steady state 

metabolic rate during walking in unimpaired individuals. These methods include 

predictions based on anthropometrics and walking speed [23], first order physiological 

signals [24], time derivatives of physiological signals [25], and the mechanics of walking 

[26]. A prominent approach is based on a predictive model utilizing the first two minutes 

of walking metabolic data to approximate the metabolic response as a first-order linear 

system, essentially creating a two-minute weighted time series prediction [22]. This 

method represents the current State of the Art (SoA) for human-in-the-loop optimization 

of lower limb wearable devices. However, this method has not been evaluated in, or 

developed for, individuals with neuromuscular disorders. This is of particular importance 

because factors such as atypical muscle mass and physiology [27], deficits in 

neuromuscular coordination, and abnormal walking kinematics [28] can have a 

significant influence on energy expenditure, making predictive equations developed 

from unimpaired populations much less accurate for those with impairments where 



these factors are affected [29]. We expect that such a model would capture the 

biomechanical causes (e.g., spasticity, sarcopenia, etc.) of differences in metabolic 

power across patient populations during walking with and without assistive devices. This 

void hampers the ability of researchers to individually optimize wearable devices for 

people with walking disabilities, particularly when their disability limits the amount of 

time they can ambulate.   

 

The overarching objective of this study was to establish a model to quickly and 

accurately estimate steady state metabolic power, with a similar accuracy (4-6% error) 

and time requirements (2 minutes) as the current SoA, in individuals with impaired 

ambulation under a variety of walking conditions, including on different terrains (e.g., 

level or incline), or with wearable assistive devices (e.g., exoskeletons) (Fig. 1). Our 

primary goal was to validate and expand on, if necessary, the weighted time series 

prediction model to accurately predict steady state metabolic rate from short, transient 

walking trials of two minutes or less in individuals with CP and other walking 

impairments. Given the complex interactions between movement impairment, assistive 

device use, terrain, and metabolic power, we hypothesized that adding demographic 

and condition-specific parameters to the current weighted time series prediction model 

would result in a more accurate prediction of metabolic power when compared to the 

weighted time series prediction model alone. 8Demographic information9 included 

information about the person and any groups to which they belonged, specifically 3 age, 

height, weight, presence of a CP diagnosis or stroke history, being in an elderly 

population or being unimpaired.  8Condition-specific parameters9 refer to how the 



experiment was conducted: Treadmill or overground terrain, surface grade, the 

presence of an exoskeleton or ankle-foot orthotic, and walking speed. This allowed us 

to compare the accuracy of our new predictive model with the existing weighted time 

series prediction model across several clinical populations (CP, stroke, and the elderly). 

This exploratory analysis sought to evaluate the potential for a single model that could 

be applied across different assistive device research topics and patient populations. 

Therefore, we also included a single stroke participant in this investigation. We did, 

however, wish to see how a general model would function when applied to minimal 

training data, and one stroke participant was included. We also had a secondary goal to 

evaluate whether the prediction accuracy of our model would increase if we captured 

the rate at which metabolic power increased at the start of each trial (i.e., <ramp rate=: 

the slope of the best fit line calculated on the first two minutes of metabolic data 

recorded from each walking trial). 

 



 

Figure 1. Metrics used to create the dataset included personal information, trial details and metabolic time series 
data. Boolean values (input format depicted as 0 or 1) marked each of the 5 populations, as well as specific trial 
conditions which could be combinations of treadmill, overground, shod, exoskeleton assistance, zero-torque and 
incline. The remaining variables required a continuous input data format. Metabolic data were initially collected from 
both VO2 and VCO2, but were combined into a single metabolic power metric and normalized to body mass. SoA 
model from [22].  

2. Materials and Methods 

We implemented a retrospective analysis of walking data to generate a flexible linear 

model for predicting steady state metabolic power in those with and without 

neuromuscular impairment and under various walking conditions. The data for this 

retrospective analysis were acquired from both prior and concurrent investigations at 



Northern Arizona University [12], [14], [30], [31], [32], [33]. The studies were approved 

by the Institutional Review Board (IRB) of Northern Arizona University under protocols 

#986744-1:45. All participants, or their parents/guardians if under 18 years old, provided 

informed consent, or verbal assent, if applicable, before participation. Each trial was 

represented by a vector of variables with data format depicted in Fig. 1. Participants 

included individuals with cerebral palsy, stroke, elderly individuals, and those without 

walking impairments. All data were collected over the period spanning 2018 to 2024. 

The dataset employed in this study comprised three primary data types: 1). Metabolic 

data obtained from a metabolic sampling system (either Parvo (TrueOne, USA) or 

Cosmed (K-5, USA)), 2); basic participant characteristics such as height, age, weight, 

clinical population, and impairment level for CP (Gross Motor Function Classification 

Score); and 3) experimental metrics including walking speed, presence of an 

exoskeleton or walking aid, and terrain type. CP is divided into five Gross Motor 

Function Classifications (I-V), where CP I is the least impaired and CP V has the 

greatest impairment to motor control [34]. Consequently, the highest energetic costs 

associated with ambulation are found in individuals with the CP III-V [35].The simplified 

distributions of these demographics and the associated testing conditions are provided 

in Table 1. 

 

 

 

 

 



 

 

Table 1. Condi.on Distribu.on 

 Shod Zero-torque Assistance AFO 

CP I (n = 8) 48 30 96 0 

CP II (n = 8) 12 15 54 0 

CP III (n = 3) 12 12 39 3 

Elderly (n = 11) 8 2 19 0 

Stroke (n = 1) 2 2 6 0 

Unimpaired (n = 13) 0 66 168 0 

 

Table 1. Distribution of the total utilized observations (inclusive of all three interopolation methods) across populations 
and walking aids. Shod represents walking in shoes only, zero torque represents walking with the exoskeleton worn 
but not imparting any significant additional forces, Assistance indicates that the device was providing stance-phase 
torque assistance while walking, and AFO indicates that the participant wore rigid or semi-rigid ankle-foot-orthoses 
and no exoskeleton. CP I-III represents Gross Motor Function Classificaiton Score Levels I-III respectively.  

 

a. Model Design Objectives 

We considered two factors for establishing prediction accuracy targets for 

benchmarking our models. First, due to the inherent variability in metabolic 

measurements, we sought to predict steady state metabolic power to within the 95% 

confidence interval (CI) of the measurement average. The 95% CI for the data used in 

our analysis (i.e., model labels) was 0.3-5.2%, with an average error rate of 2.5%. This 

finding was consistent with a prior report of metabolic system accuracy ranging from 1.7 

± 0.9% to 6.8 ± 6.5% measurement error [36]. Second, we also reviewed the accuracy 

of weighted time series prediction when used in the context of human-in-the-loop 

optimization. Predicting metabolic power to 4.3% accuracy, on average, with a 

maximum reported error of 15.5%, has been demonstrated to be adequate for use in 

human-in-the-loop optimization of exoskeleton assistance in unimpaired individuals [37]. 

Therefore, to serve as an effective tool for in-the-loop optimization, our model should 



achieve a comparable accuracy of 4-6%, which was very similar to the target 

established from our 95% CI calculation. To maximize the potential for our model to 

facilitate the optimization of assistive devices in individuals with limited walking 

endurance, we sought to assess model accuracy at the current best practice (120 

second trial duration). Additionally, we sought to make a freely available MATLAB 

application that would allow other researchers to easily input participant and walking 

condition characteristics and apply our predictive model(s) in near real-time. 

 

b. Linear Model Building 

This study investigated the predictive capabilities of supervised learning, a category of 

machine learning using labeled data to predict outcomes, combined with stepwise linear 

regression models in estimating steady state metabolic power [38]. We chose linear 

models and not more complex implementations for interpretability and ease of use [39]. 

Linear models assign a weight to each input variable and the sum of all weighted 

variables is the prediction. Stepwise linear regression uses statistical methods to 

iteratively select the most significant predictor variable to build a model that best fits the 

data, and it does not include features that do not significantly improve model accuracy. 

Using this architecture, we were able to examine how including additional parameters 

(such as the demographic and condition-specific parameters mentioned above) 

impacted our linear model's accuracy. 

 

MATLAB (2023b) was used to implement a stepwise linear regression and identify 

statistically significant features. We maintained a significance cutoff of p < 0.05 for 



features to be added to the model, as well as requiring the p-value to remain below this 

level to be retained in the final model. We then used only the features which were 

identified as significant to train, validate, and test our PyTorch implementation of linear 

regression; PyTorch is a freely available machine learning library for Python [40], [41]. 

The linear model used input data that were identified as significant from the linear 

regression and used the validated adaptive moment estimation (ADAM) optimizer 

contained in the PyTorch framework [42].  

 

Data were initially pooled and shuffled, then ten-fold cross-validation was employed to 

identify the optimal training duration, and the validation error for each of the ten folds 

(i.e., set or partition of our dataset) was retained for accuracy assessment. Best 

practices for cross-validation were employed, including tracking validation error for each 

fold, and identifying overtraining prior to the cessation of training on that fold [43]. 

Additionally, validation errors were recorded for all folds and the average validation error 

of the folds was used to identify the optimal number of training epochs prior to testing. 

Interval scaling was used in conjunction with the scikit-learn standard scalar to ensure 

that scaled observations would remain in the positive domain and on the same order of 

magnitude as all other features to achieve model convergence [44]. Test data, 

comprised of samples unseen by the model during training, were used to evaluate the 

final performance of the model. These data were identified as a subset of the data in 

each fold that used the repeated measurements interpolation method (an in-depth 

explanation of the validation and testing splitting methodology is available in the 

supplementary materials). Finally, the loss function used during optimization was the 



minimization of mean squared error [45].  To identify optimal training times for each fold, 

at the end of every epoch of training (i.e., complete pass of the training dataset through 

the algorithm), the validation data were evaluated with the mean squared error loss 

function, and recorded along with the accuracy of the training data.  Once all epochs 

were completed, the epoch corresponding to the minimum validation error was identified 

and that duration was used to train on that fold and predict on the test set.  This resulted 

in ten test subset errors, which were used to compare model accuracies. All fold model 

validation data were subsequently used to identify a minimum mean validation error and 

the associated training epoch was used to build the final model weights.   

 

c. Predictive Model Comparisons 

Comparative analyses were conducted to assess the model accuracies relative to 

benchmarks, including a <featureless baseline= [46], and the SoA prediction model. The 

equations used for implementing the SoA model, as well as the list of inputs to each 

model, including our linear model, can be found in Table 2 (expansion on the 

implementation of the Zhang et al. weighted time series prediction is available in 

supplementary material). The featureless baseline error was generated for each of the 

ten folds in cross-fold validation where the average of all labels from the training set was 

used to create a naïve prediction (not using any feature data). Prediction error below the 

featureless baseline indicates that a model is superior to the simple guess of the mean 

of the population. 



 

In order to apply the weighted time series prediction model used by Zhang et al., we 

implemented the metabolic power estimation equation from the supplementary material 

of their previously published work [22]. However, we observed that the model 

consistently underestimated steady state metabolic power from our training data. To 

address this discrepancy and conduct the best comparison, several terms were 

recalibrated for our specific dataset. This involved five rounds of grid searching based 

on the provided constants [22], [47]. The width of the search range was progressively 

reduced in each round of tuning to allow the identification of more refined constants. We 

confirmed that the tuning process effectively minimized the error in unimpaired level-

ground walking to comparable mean ranges (5.2 ± 2.0%) as previously reported (4.3%). 

Next, additional tuning was performed on all remaining training data (inclusive of 

participants with walking impairment). 

 

Table 2. Variables included in each prediction 

 Metabolic        

 Baseline Trial Height Speed Age Weight Popula.on Terrain Time 

Featureless          

Zhang et al.         2 min 

Linear         1-2 min 

 

Equa.on 

 

Reference 

!	�$�&� 	( = � � Zang et al. [22] 

 �$  and �&�  were es)mates of the ini)al metabolic response and steady state metabolic rate. �  was the 

pseudo-inverse of A which was an itera)vely constructed weight matrix based on the number of  

metabolic readings in the )me window, and y was the vector of metabolic costs measured in that  

window. 

 



d. Data Analysis 

We established flexible criteria for the inclusion and processing of walking trials in our 

dataset used to train our linear models so that our models would be robust to 

experimental variation when applied prospectively. Each trial required a standing 

metabolic baseline period from which to calculate the net metabolic power of the 

walking trial. The metabolic baseline was calculated as the mean metabolic power 

recorded while quietly standing; during this time the participant was not allowed to 

speak or make any large physical movements. The duration of the quiet standing period 

varied depending on the study; 3 minutes was the most common duration. We then 

defined an active walking trial period that commenced at the start of each walk and 

progressed to include two or more minutes of steady state measurements. Walking 

trials were generally 6-8 minutes in duration, with steady state selected from the last two 

minutes. The shortest trial was five minutes and the longest was 16 minutes. In each 

trial, steady state was confirmed visually by two separate researchers. Slight variation in 

the selected start time of each walking trial was purposefully allowed to replicate how 

the model would be applied to a real-world testing scenario where the initial application 

of the model could vary slightly relative to the first step a participant takes. Time series 

measurements of expired volumetric oxygen consumption and carbon dioxide 

production were recorded by the metabolic system for each trial. We calculated 

metabolic power using the modified Brockway equation (equation 1) 

 

Metabolic Power = (VO2* 16.5835 +VCO2*4.51)/(60*BM)   (1) 

 



where VO2 was the volume (mL) of oxygen consumption, VCO2 was the volume (mL) of 

carbon dioxide production, and BM was each participant9s body mass in kg [48].  

 

Following the calculation of metabolic power from equation 1, the time series of 

metabolic power for each walking trial was interpolated to estimate values at every 

second within the trial duration. This interpolation was essential due to the inconsistent 

sampling rate of multiple devices and allowed for more accurate segmentation in the 

machine learning training data. The ranges observed for sampling rates in this study 

were between one sample every second to one sample every 23 seconds.  The most 

common sampling frequency was one sample every three seconds, and the second 

most common was at ten second intervals. Interpolation on each raw time series was 

implemented using three different techniques, resulting in three interpolated time series 

that were then used in model training so as to increase the size of our dataset and 

introduce small variations (see supplementary material). The first method was a 

repeated observations approach, which filled timepoints between observations with the 

last observed value and did not alter the fidelity of the recorded data, keeping it 

functionally equivalent to raw data. The second and third methods linearly interpolated 

between each recorded timepoint to fill out the array. The third method differed from the 

second method by using the standard deviation of the steady state metabolic power to 

add simulated noise to every added point. By processing each input observation with all 

three interpolation methods, variations in the values assigned to ramp rate and labels 

were also introduced. This approach allowed us to effectively triple the size of the 

dataset by generating three distinct input trials from a single input trial, thus enhancing 



the robustness of our models. Our ramp rate metric was calculated based on 120 

samples after interpolating ~10 to ~100 recorded measurements (depending on the 

sampling frequency). Importantly, data in the test set were not linearly interpolated, so 

that testing was only done on measured data [49].  

 

Our input data included participant characteristics and experimental condition variables. 

Participant characteristics included their population (CP, elderly status, stroke history, or 

unimpaired), height (centimeters), age (years) and weight (kilograms). Experimental 

condition variables included walking speed (meters/second), walking condition 

(overground, level treadmill, incline treadmill), and assistance type (none/shod, 

exoskeleton zero-torque, exoskeleton assistance, ankle-foot orthotics). In all cases 

where an exoskeleton was included (zero-torque or assistance) the exoskeleton was an 

untethered bilateral ankle exoskeleton weighing between 2.2 and 2.8 kg, and providing 

0.1-0.35Nm/kg of peak assistive torque [12], [14], [30], [31], [32], [33]. 

 

3. Withheld Data Validation 



To increase the generalizability of our results, a withheld data set was excluded from all 

model training/testing, and was never viewed by the algorithm until after final training 

was complete. The withheld data set was selected intentionally to include each of our 

participant populations and assistive device conditions (Table 3). Each withheld data set 

trial represented a unique participant, with one exception for the single stroke participant 

who had two trials included.  

 

4. Results 

Through the stepwise linear regression we found that the significant features were 

limited to the aggregate <Ramp Rate= (p < 0.001), height (p < 0.001), weight (p < 0.001), 

baseline (p = 0.019), walking speed (p = 0.027), CP I-III (p < 0.001), incline (p < 0.001), 

zero torque (p = 0.009), overground (p < 0.001), and the weighted time series prediction 

(p < 0.001).  

 

Table 3. Withheld test set information 

 Shod Zero-torque Assistance AFO 

CP I 1 1  1 0 

CP II 0 0 1*, 1 0 

CP III 1  1* 1* 1 

Elderly 1 1 0 0 

Stroke 1 0 1 0 

Unimpaired 0 1* 2 0 

 
  overground trials 

* incline trials 
CP I-III refers to Gross Motor Function Classification Score Levels I, II, or III, respectively. 



We found that our linear model, using only significant features identified by the stepwise 

regression, predicted steady state metabolic power with 94.8±1.0% accuracy. This was 

within a single standard deviation of the observed mean measurement error and 

overlaps with the mean reported accuracy (95.7%). The prediction errors associated 

with the withheld dataset were not significantly different from the testing error (p = 

0.675). The overall best SoA (weighted time series prediction) model was a significantly 

4.1% (p < 0.001) more accurate than the one constrained by values used in the initial 

publications, additionally the linear model with significant features was a significant 

3.3% (p = 0.006) more accurate than the optimally tuned weighted time series prediction 

(Fig. 2). 

 

Figure 2.  The featureless error for folds is shown with the grey background (22-27%), and the featureless accuracy 
on the withheld data is shown with a red line.  The mean measurement error is shown with a dashed black line 
(2.49%) and the standard deviation is represented with a grey background on either side of the mean. The top row 
shows the accuracy of the SoA when constrained by published values, the middle row shows accuracy of the SoA 
when optimized for all training data, and the bottom row shows the accuracy of the linear model with significant 
features, each using the 2-minute time window.  The best model is circled and the corresponding weights for all 
features are plotted to the right of the results. CP I-III represents Gross Motor Function Classificaiton Score Levels I-
III respectively. 

 

The accuracy of the best model at each time interval were examined on specific 

demographics of the test set (Fig. 3). Error for impaired populations in the withheld 

dataset improved to within the measurement error for all 5 of our examined populations 



relative to the optimized weighted time series (SoA) prediction; CP I error decreased 

from 8.4% to 3.9%, CP II decreased from 14.4% to 2.5%, CP III decreased from 13.1% 

to 4.8%, Elderly error reduced from 14.5% to 3. 9%, and error in predictions for 

individuals with a history of stroke decreased from 9.3% to 1.2%.  

 

 

 

5. Discussion 

Our primary goal was to validate an accessible predictive model for predicting steady 

state metabolic power during walking in individuals with gait deficits. The results of this 

study support our hypotheses that demographic and condition-specific information could 

be used to expand the prediction of metabolic power during steady state walking in 

individuals with neurological and walking deficits. Our second objective to validate the 

use of an aggregate metabolic measure (i.e., <ramp rate=) corresponded to the second 

 

Figure 3. The linear model and the SoA were tested on the withheld data for clarity on which populations 
would be most able to use them.  As expected, the SoA was not as accurate on unimpaired participants as 
compared to the accuracies reported in the literature. This was expected due to the modifications made to 
better predict on incline trials and in impaired populations. CP I-III represents Gross Motor Function 
Classificaiton Score Levels I-III respectively. 

 



largest weighting factor in our final model.  Finally, a comparison of our model with 

existing approaches in the literature demonstrated improved steady state metabolic 

power prediction accuracy for individuals with walking deficits. By training a model using 

data collected on individuals with movement impairments and while using assistive 

devices, we were able to produce a more accurate predictive equation for these patient 

populations and common walking conditions. The linear model consistently improved 

the accuracy of the state of the art, though the weighted time series prediction was the 

most heavily weighted feature.   

 

The accuracies of the model proposed here demonstrated that it was able to predict 

steady state metabolic power with two minutes of data and contextual information about 

the trial with an accuracy of 94.8 ± 1.0% for all populations, and 95.3 ± 2.7% on 

populations with walking impairments. These results are in line with the level ground 

unimpaired metabolic prediction accuracies reported by Weyand et al. (which used 

weight, height, and walking speed) and Zhang et al. (which used metabolic data only). 

The Weyand model saw 91.9 ± 6.7% accuracy while Zhang saw an average accuracy 

of 95.7%, with a mode of 96.3%, and a minimum of 84.5% and was successfully able to 

optimize exoskeletons with human-in-the-loop techniques. Our sample size of 44 unique 

individuals is also within the range of these peer studies where Weyand et al. had 78 

subjects and Zhang et al. had 7. This implies that our proposed method might be 

effective in providing predictions accurate enough for optimization studies to be 

conducted on impaired populations. 

 



The linear model revealed a few interesting insights into the effects of, and interactions 

between, several model parameters. Some seemingly obvious effects were evidently 

captured by the model, like positive relationships between incline and speed on 

metabolic power. Our model also captured evidence of slightly increased cost of 

transport during treadmill vs overground walking [50]. Prior studies have demonstrated 

that the energy cost of walking increases with the severity of neurological deficits from 

CP (GMFCS levels I-III) [29]. Somewhat surprisingly, however, our model produced 

similar weighting factors for GMFCS levels I-III (labeled as CP 1-3), likely because other 

model inputs more accurately captured each individual9s metabolic response (e.g., SoA, 

ramp rate, etc.). Similarly, we were surprised that exoskeleton assistance was not a 

statistically significant model input, likely for the same reason as was just mentioned. 

Features including age, unimpaired, stroke, AFO, shod, elderly, and stroke history were 

not identified as significantly impacting the accuracy of the linear model.  The authors 

believe this most likely was due to another feature more accurately capturing the 

information presented by each of these variables (e.g., walking speed). 

 

A core motivation was to develop and validate an easy to implement metabolic 

prediction model to facilitate assistive device development for individuals with 

neuromuscular conditions. As researchers in assistive device technology aim to reduce 

the metabolic burden of movement for patient populations like CP and stroke, they can 

utilize this model to more quickly evaluate the influence of device configurations on the 

energy cost of walking. The accuracy of our model should allow for the use of in-the-

loop optimization of wearable assistive devices in individuals with limited walking 



capacity [37]. To facilitate the utilization of our model, we have made available a 

standalone MATLAB executable that accepts the simple biometric inputs we have 

detailed here, and which can be paired with a real-time connection to a metabolic 

system for the streaming of metabolic rate data. 

 

This study had several limitations that could be expanded upon in future work. First, our 

model used binary flags for assistance conditions, and the addition of contextual 

information, such as the amount of assistance or additional power being added to the 

user, may improve prediction accuracy. Another recommended future research 

investigation would be to explore whether crouch severity could improve prediction 

accuracy in CP. Also, trial data from individuals were allowed to be in both the training 

and testing sets. Ideally, we would have had enough participants in every category, 

shown in Table 1, to use participant separated data in each train and test set; however 

this was not feasible with the impaired populations examined at this time. Future 

validation work should test our model in real-time during prospective testing and 

evaluate model accuracy for participants absent in the training dataset. Next, more 

complex modeling paradigms could also be considered and layered to extract more 

complex interactions between parameters. Applying a convolutional deep neural 

network to the transient metabolic measurements could produce a second direct 

predictor of metabolic power at steady state, which could in turn be a feature in a linear 

model or subsequent deep neural network. The main reason this was not explored was 

the desire for interpretability of our model. Recently created models, such as 

Kolmogorov-Arnold Networks, could be used in future developments to maintain 



interpretability and utilize machine learning9s ability to identify relevant interactions 

whether linear or nonlinear [51]. Lastly, there were limitations in the data available for 

training. The dataset was noticeably missing unimpaired shod trials as well as having 

very little data on individuals with a history of stroke or AFO users.  

 

In summary, this study builds on the weighted time series prediction of steady state 

metabolic power by demonstrating the benefit of modeling contextual information 

capturing a variety of experimental factors. Our interpretable model demonstrated 

promising results for predicting steady state metabolic power from two minutes of 

walking metabolic rate data individuals with CP and other patient populations. This work 

may unlock the use of in-the-loop optimization of wearable assistive devices in 

individuals with limited walking capacity. 
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