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Covert Vehicle Misguidance and Its Detection:
A Hypothesis Testing Game Over
Continuous-Time Dynamics

Takashi Tanaka
Yohei Watanabe

Abstract—We formulate a stochastic zero-sum game
over continuous-time dynamics to analyze the competition
between the attacker, who tries to covertly misguide the
vehicle to an unsafe region, versus the detector, who
tries to detect the attack signal based on the observed
trajectory of the vehicle. Based on Girsanov’s theorem and
the generalized Neyman-Pearson lemma, we show that a
constant bias injection attack as the attacker’s strategy and
a likelihood ratio test as the detector’s strategy constitute
the unique saddle point of the game. We also derive the
first-order and the second-order exponents of the type Il
error as a function of the data length.

Index Terms—Stochastic optimal control, fault detection,
information theory and control.

[. INTRODUCTION

ALSE data injection (FDI) attacks are widely recognized
as major threats to control systems. In [1], the authors
performed a field experiment to misguide a 65-meter yacht to
its unintended destination via GPS spoofing and demonstrated
the vulnerability of modern maritime vessels to deceptive
sensor data injection. In their experiment, the authors showed
that a GPS deception attack, if carefully designed, can be
disguised as the effects of natural disturbances such as slowly
changing ocean currents and winds, and is difficult to detect
unless the controller has an alternative source of reliable sensor
data (e.g., radar and visual bearing).
In many circumstances, system faults (including mali-
cious attacks) must be detected and isolated by continuous
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monitoring of the sensor readouts. In the vessel misguidance
example [1], the spoofed GPS signal may be distinguished
from the natural background noise by an appropriate statis-
tical test. However, knowing that the system is continuously
monitored, a rational attacker will conduct a covert attack,
maximizing the attack’s impact while avoiding detection.
Hence, a zero-sum game arises between the attacker and
the detector, where the detector’s purpose is to design the
“most effective” statistical test for attack detection, whereas
the attacker tries to inject the “most stealthy” attack signal.

Similar games between the attacker and the detector have
been studied by many authors in the systems and control
community. For example, the works [2], [3], [4] adopted
the hypothesis testing theory to characterize covert FDI
attacks against control systems. Invoking Stein’s lemma, [2]
introduced the notion of e-stealthiness as measured by rel-
ative entropy. The worst-case degradation of linear control
systems attainable by e-stealthy attacks was studied in [3], [4].
Sequential and composite hypothesis testing frameworks have
also been proposed (e.g., [5], [6] to name a few) for anomaly
detection.

Despite recent progress, existing applications of hypothesis
testing frameworks to control systems are limited to discrete-
time settings. The goal of this letter is to broaden the scope
of the literature by formulating the aforementioned zero-sum
game in continuous time based on the generalized Neyman-
Pearson theory [7]. We make the following methodological
contributions:

1) We propose a novel zero-sum game formulation to
model the competition between the attacker and the
detector over continuous-time dynamics. Instead of
taking relative entropy as a stealthiness measure for
granted (the operational meaning of relative entropy in
continuous-time hypothesis testing scenarios is not well-
established in the literature), we use more fundamental
quantities, such as probabilities of type I and type
IT errors and the probability of successful attacks, to
formulate the game. While the game considered in this
letter is simple, the results and methodologies we present
are canonical and allow for various generalizations in
future studies.

2) We show that a constant bias injection attack as the
attacker’s strategy and a likelihood ratio test as the
detector’s strategy constitute the unique saddle point of
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the game. The proof is based on Girsanov’s theorem and
the generalized Neyman-Pearson lemma.

3) We analyze the exponent of the type II error as a function
of the horizon length of the game and show that the first-
order asymptote coincides with the relative entropy. This
result is reminiscent of classical Stein’s lemma. We also
quantify the second-order asymptote, providing a tighter
estimate of the error probability in the finite horizon
length regime.

Notation: The normal distribution with mean m and covari-
ance o2 is denoted by N(m, 02), and the cumulative
distribution function olf th(?,r standardznormal distribution is
denoted by ®(x) = Ef—oo exp(—5)dr. We write []* =
max{0, -}. 1) represents the indicator function. C[0, T] is the
space of continuous functions x : [0, 7] — R. The Radon-
Nikodym derivative of a probability measure u with respect

.. . du
to a probability measure v is denoted by .

[I. PROBLEM FORMULATION

Inspired by the vessel misguidance [1], we formulate a
stochastic zero-sum game modeling the competition between
an attacker, who tries to covertly misguide the vehicle to
an unsafe region, versus a detector, who tries to detect the
existence of the attack based on the observed trajectory of the
vehicle. For simplicity, we model the trajectory of the vehicle
(deviation from the nominal trajectory) as a continuous-time,
scalar-valued Ito process x; over the time interval 0 < ¢t < T
defined by the following stochastic differential equation:

dx(t) = 6(t)dt + dw(r), x(0) = 0. (1)

Here, w(¢) is the standard Brownian motion in the underlying
probability space (€2, F, u). For each 0 <t < T, we denote
by F(r) € F the filtration of the process w(r). We call the
drift term 6 : [0, T] — R the attack signal, which is chosen
by the attacker. The attack signal 6 is assumed to be a Borel
measurable function such that fOT |6(r)|dt < oo to guarantee
the existence of the strong solution to (1).

As shown in Fig. 1, we consider the terminal condition such
that x(T) > Td unsafe, where d > 0 is a given constant.
When there is no attack (i.e., (1) = 0, Vt € [0, T]), we have
x(T) ~ N(0, T). Therefore, the probability of the terminal
state being unsafe is ®(—+/7d). This probability can be
altered by injecting a non-zero attack signal.

In this letter (except in Section V-A where we consider
feedback policies), we restrict the attacker’s strategy to the
class of open-loop policies. That is, the attacker must fix an
attack signal 6 : [0, T] — R a priori without observing the
state x(f). We also restrict the attacker to the space of pure
strategies, i.e., the action is not randomized. With this setup,
we have x(T) ~ N(m, T) with m = fOT 0 (¢)dt. Consequently,
the probability of the terminal state being unsafe is Cb(% -
«/Td). In the sequel, we call y(0) := <I>(% —«/Td) the attack
success rate. We assume that, whenever the attack is applied,
the attacker must ensure that the attack success rate is beyond a
given threshold c, i.e., ¥ (0) > c. Notice that requiring y (6) >
c is equivalent to imposing a constraint

T
/ 0()dt = NT® ' (¢) + Td 2)
0

uoibal ajeg ‘ uolBal ajesun

Fig. 1. Sample paths of (1) with 6(t) = 0 (blue) and sample paths (1)
with 6(t) = 2 (red). We assume T = 1 in this plot.

on the attack signal 6. In the sequel, we assume ¢ > % and
d > 0, which ensures that the quantity (2) is positive.

From the detector’s viewpoint, it is not known in advance if
the vehicle’s operation is nominal or under attack. Therefore,
the detector’s task is to determine if the observed trajectory x
is generated by (1) with & = 0, or if a non-zero attack signal
6 is injected. The former scenario is the null hypothesis Hy,
whereas the latter is the alternative Hj:

Ho:0() =0 Vtel0,T] A3)
T

H : f 6(dt > NTP ' (¢) + Td. 4)
0

Notice that this is a composite hypothesis testing problem
since, while the null hypothesis Hy is simple, the alternative
H) contains a family of functions 6.

The role of the detector is to design a hypothesis testing
algorithm ¢ : C[0, T] — {0, 1} such that

0 “No alarm”
¢(x) = { 1 “Alarm”. (5)

The detector’s decision (5) is made a posteriori after observing
the entire state trajectory x(¢),0 <t <T.

The quality of a testing algorithm ¢ is measured in terms
of the probability «(¢) of a false alarm (also known as Type
I error) and the probability B(6, ¢) of a detection failure (also
known as Type 1II error):

a(@) =Pr{¢(x) =1 | Hy is true} (6)
B©O.$) =Pr{p(x) =0 | H, is true}. (7

We say that a testing algorithm ¢ is admissible if a(¢) < €
for some given constant € € (0, %).

In this letter, we model the interaction of the detector and the
attacker as a zero-sum game. Since the false alarm rate «(¢)
does not depend on the attacker’s policy 6, it is convenient
to use «(¢) as a constraint on the detector’s policy. Similarly,
since the attack success rate y(0) does not depend on the
detector’s policy ¢, it is convenient to use y(f) > c as a
constraint on the attacker’s policy. In contrast, the detection
failure rate B8(6, ¢) depends on both parties’ policies which
is minimized by the detector and maximized by the attacker.
Therefore, we formulate a mini-max game:

B, d) ®)

* = min max

¢ a(p)<eb : y(@)>c
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and its dual:
d* = max min
0 :y@)=co : alp)<e

By the weak duality, p* > d* holds trivially. In this letter, we
will provide a unique pair of policies (6%, ¢*) that constitutes
a saddle point of the game, satisfying

B(6.¢") = B(6.9%) < B(6". ¢) (10)

for all ¢ with a(¢p) < € and for all & with y(0) > c.
Consequently, the strong duality p* = d* will be established,
and the value of the game B(6*, ¢*) will be computed.

BO. ). (€))

[1l. PRELIMINARIES

This section summarizes the mathematical ingredients
needed to derive the main result.

A. Girsanov’s Theorem

Given two random processes x and w related by (1),
we have already defined the probability measure p as the
one in which w is the standard Brownian motion. In u, x
is not the Brownian motion. However, Girsanov’s theorem
[8, Th. 8.6.3] [9, Th. 6.3] states that there exists an alternative
measure g in which x is the standard Brownian motion.
Specifically, for each sample path x, the likelihood ratio (;% (x)
is given by

m r 1
—(x) = exp O(t)dw(t) + =
dig 0 2 Jo
T 1 T
=exp{/ 0(t)dx(r) — -/ 92(t)dt}. (11b)
0 2 Jo

That is, observing a particular sample path x as an outcome
of (1) (this occurs with probability o< @(x)) is ;%(x) times
more likely than observing the same sample path x as a
realization of the standard Brownian motion (this occurs with
probability o g (x)).

The false alarm rate «(¢) is defined as the probability of
¢ (x) = 1 when there is no attack, i.e., when x is the standard
Brownian motion. Since x is the standard Brownian motion
in wug, this quantity can be expressed as a(¢) = EH*[¢(x)].
Despite the appearance of 6 on the right-hand side, the false
alarm rate does not depend on 6. In contrast, the detection
failure rate B(0,¢) = 1 — E*[¢(x)] depends on 6, as the
distribution of x depends on 6 under the measure p in which
w is the standard Brownian motion.

T
92(t)dt} (11a)

B. Neyman-Pearson Lemma

Consider the binary hypothesis testing problem in which
the simple null hypothesis (3) is to be discriminated from the
simple alternative (4) with a fixed 0 satisfying y (0) > c.

Lemma 1: The testing algorithm ¢ : C[0, T] — {0, 1} that
minimizes B(6, ¢) subject to the constraint w(¢) < € is
given by

_JO ifzg(x, T) < A*
P00 = { 1 if z9(x, T) > A*  p-almost surely (12)
where
t 1 t
z(x, 1) = eXP{/ 6 (s)dx(s) — —/ 02(s)ds} (13)
0 2 0

and A* > 0 is a constant satisfying a(¢) = €.

Proof: We accept the Neyman-Pearson lemma [7], which
states that the optimal hypothesis test to discriminate a null
hypothesis x ~ pug(x) from an alternative x ~ p(x) is in
general given by a randomized policy of the form

O X) = lizy.1)>2%) + b ligg1)=2%) (14)

p-almost surely, where A* = inf{A > 0 : a(¢) < €} and b is
an appropriate binary random variable. To complete the proof
based on this result, it is sufficient to show that A* in our setup
attains a(¢) = €, and Pri{zg(x, T) = A*} = 0.

Notice that

a(@) =B [p )] = E" 1z ]

Since x is the standard Brownian motion in ug, a(¢) can be
written in term of the standard Brownian motion x as

T 1 T
a(p) = Pr{exp{/ O (t)dx(t) — —f Gz(t)dt} > A}
0 2 Jo

T T
=Pr{/ 9([)dx(t)>%/ ez(z)dt+1ogx}. (16)
0 0

(15)

Since the random variable X := fOT 6()dx(t) has a continuous
cumulative distribution function, «(¢) is a continuous, non-
increasing function of A such that a(¢p) — 1 as L — 0
and a(¢p) — 0 as A — +oo. Therefore, for each € €
(R %), there exists A* > 0, which is the smallest constant
satisfying a(¢) < €. Using the fact that X has a continuous
cumulative distribution function, we also have Pr{zg(x, T) =
Wy =Pr(X = 1 [T62(dr +log 1*} = 0. m

For a fixed 6 such that y () > c, let ¢ be the optimal test
given by Lemma 1. Then, the detection failure rate can be
written as

B©O.¢) =1—-E [¢px)]
=1-E"[¢®)z(x, T)]
=1—VE[¢px)] — E*[¢ () (z0(x, T) — 1¥)]
=1 — e —E"[z(x, T) — 1*]" (17)

In the last step, we used the fact that E*?[¢ (x)] = a(¢p) = €
(Lemma 1) and (12).

IV. MAIN RESULT

The main result of this letter is the following:
Theorem 1: The following pair of policies form a saddle
point of the zero-sum game (8) and (9):

0*(t) =0 = Lolrl(c) +d Vte[0,T]

18
NG (18)

s O A X(T) < VTOI(1 —¢)

¢ (0 = {1 if X(T) > VTO~ (1 — ¢). (19)

Moreover, the saddle point (6*, ¢*) is unique in the sense that
if (0’,¢") is another saddle point, then 6*(r) = 6’(¢) holds
almost everywhere in [0, 7] and ¢*(x) = ¢’(x) holds w-almost
surely. Furthermore, the value of the game is

B(6*, ¢*) = <I>(<I>*1(1 —e)—d (o) — ﬁd). (20)

Specifically, if 1 — e = ¢, then B(6*, ¢*) = ®(—/Td).
Remark 1: Theorem 1 states that the max-min policy (the

most covert attack) is a constant bias injection 0 () = 6, where

the constant 6 is chosen to be the smallest value satisfying
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y(0) > c. Conversely, the minimax policy ¢*(x) (i.e., the most
powerful hypothesis test) only examines the final value x(7") of
the observed sample path x. As we will see below, ¢*(x) can be
viewed as the Neyman-Pearson type binary hypothesis testing
algorithm that discriminates Hy : dx; = dw; from H; : dx; =

Remark 2: Suppose both (0*, ¢*) and (0, ¢’) are saddle
points of the game. Then, Theorem 1 states that they can only
differ on a set with measure zero. By the interchangeability
of saddle points of two-person zero-sum games [10], it also
follows that (6%, ¢*), (6%, ¢"), (8', ¢*), and (8', ¢’) are all
saddle points, and they attain the same value.

To prove Theorem 1, notice that for any fixed 6* such that
y(0*) > ¢ and ¢™* such that a(¢*) < €, we have

inf 0*,¢) < su inf 6, ¢) 2la)
¢ 0t(¢)§€ﬂ( ¢) 9 - y(l(:;))zc¢ : a(d’)Seﬂ ¢
< inf sup  B@O,¢) (21b)

¢ a@)=€q . y@)>c

< sup B(6,9%)

0 y@)=c

21c)

where (21b) follows from the max-min inequality. Hence, if
the pair (0%, ¢*) satisfies the saddle point condition
BO,¢*) = (6", ¢") = inf  B(6%, ) (22)

su
; ¢+ alp)<e

0 y@)=c

then the chain of inequalities (21) holds with equality and the
strong duality p* = d* = B(0*, ¢*) is implied.

Therefore, in Section IV-A below, we show that the pair
(6%, ¢*) given by (18) and (19) indeed satisfies the saddle
point condition (22). However, such an argument is insufficient
to prove that (0%, ¢*) is the unique saddle point. To establish
the uniqueness result, notice that the first inequality (21a)
implies that if (', ¢') is a saddle point, then 6’ must be the
max-min solution that attains

inf

su
; ¢ a(@)<e

0 : y(@)=c

BO. b) =, in

£ B0.¢). (23
inf _B(E.9). 23

and that ¢’ is the best response to 6. In Section IV-B below,
we show that (23) is attained uniquely by 8’ = 6*, and that
¢™* is the unique best response to 6*. This will establish the
uniqueness of the saddle point (6%, ¢*).

A. Saddle Point Condition

We prove (22) by showing the first equality (optimality of
0*) and the second equality (optimality of ¢*) separately.

1) Optimality of 6*: We first prove that B(0,¢*) <
B(O*, *) holds for all 6 such that y(#) > c. Notice that
the function ¢*(x) in (19) only depends on the terminal state
x(T). Moreover, under any admissible attack strategy, we have
X(T) ~ N(m,T), where m = [ 6(0dt > VTd~(c) + Td.
Therefore, to maximize the detection failure rate, it is optimal
for the attacker to choose a strategy that attains the smallest
admissible value of m. Hence, any function 6 : [0,7T] — R
such that fOTQ(t)dt = ﬁ@‘l(c) + 7d is a best response
to ¢*. Since such a class of functions contains 8%, we have
B, ™) < BOF, ¢%).

2) Optimality of ¢*: We next prove that B(6*, ¢*) <
B(O*, ¢) holds for all ¢ such that a(¢) < €. To this end, let

the attacker’s policy be fixed to 6* in (18). Then, by Lemma 1,
the optimal test ¢ is given by

0 if zg«+(x, T) < A*

o) = { 1 if 2o+ (x, T) > A* @4

where
T _ 1 T _
2+ (x, T) =exp{ / Odx(t) — = / det} (25a)
0 2 Jo
= exp{éx(T) - géz}. (25b)

Hence, it is sufficient to show that (24) is equivalent to (19).
Since x(T) ~ N(0, T) under pg,

a(¢) = E¥[¢p ()] (26a)

(foo(t=57) - })
= ug| Jexp Gx(T)—EG > A (26b)

~ logA*
_ 1o YT ler) (26¢)
2 JT6
Solving a(¢) = €, we obtain
_ T -
A= exp(ﬁecb‘ (1—e)— 592) (27)

Substituting (27) into (24), we obtain (19).

B. Uniqueness of the Saddle Point

We now solve the max-min problem on the left-hand side
of (23). Let the function 6 : [0,7] — R be fixed. Then,
according to the Neyman-Pearson lemma, the best response is
a threshold-based policy of the form:

0 if zg(x, T) < A*

o0 = { 1if z(x, T) > A* (28)

where
13 1 t
20(x, 1) = exp{ / 0(s)dx(s) — 5 / 92(s)ds} (29)
0 0
and A* > 0 is a constant that satisfies «(6) = €. Assuming the

best response (28) to the attack signal 6, we obtain from (17)
that

su inf (0, ¢)
0 : y(g)chb Da(g)<e
= sup - —E"[zxT) —-1*]".  (30)
0 y@)=c

We will show that this supremum is attained by a constant
function 6*(f) = 0 given by (18), and that any 6 that attains
the supremum must coincide with (18) almost everywhere in
t € [0, T]. Recall that the last term in (30) means

EH [z (x, T) — 2*]"

T 1 (7T *
:E“"[exp{ /0 0(dx(r) — /O 92(t)dt}—k*} @1

Since x(¢) is the standard Brownian motion in pg, and since
w(t) is the standard Brownian motion in u, the quantity (31)
can also be written as
T 1 T
EH [exp{ / 0 (t)dw(t) — 3 [ Oz(t)dt} —,\*}
0 0

+
(32)
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Introducing

' t
Lo(t) = exp{/ 0 (s)dw(s) — lf Gz(s)ds}, 33)
0 2 Jo

Eq. (32) can also be written as E#[¢ (T) — A*]T. Therefore,
it is left to prove the following lemma:
Lemma 2: Let 6* be given by (18). Then,

i I X1 = B0 (T — 2%
. inf B [a (D = 2] =B o) - 27"

(34)

Moreover, if 8’ attains the infimum on the left-hand side, then
0’ (t) = 0*(¢) almost everywhere in ¢ € [0, T].

Proof: The proof strategy is inspired by [7, Sec. 5], which
is further attributed to [11].

Let f : R — [0,00) be a convex function satisfying the
linear growth condition. We will show that

EXf (5o« (T)) < EXf (5o (T)) (35)

for all 6 such that y(6) > c. The claim (34) follows from (35)
by choosing f(z) = [z — A*]T.

For each 6 such that y(f) > c¢, observe that A(r) =
fé 0%(t)/6%dt is a non-decreasing function. Moreover, con-
sider the inner product (vi,v;) = fOT vi(©Ova()dt of vi(t) =
6(r) and v2(r) = 1. Since ||v||®? = fOT 02(ndt, |n)*> = T,
and y(0) > c implies (vi,vp) = fOTG(t)dt > T8, it follows
from the Cauchy-Schwarz inequality that fOT 0%(t)dr > TH>.
The equality holds if and only if 6(f) = 6 almost everywhere.
Hence, we have A(T) > T. Therefore, if we define a right
inverse A~! of A by A7!(s) := inf{r : A(t) > s}, we have
A’l(T) < T. Now, notice that a time-changed process

A7)
w(s) == / ?dw(s), 0<s<T (36)
0
is a martingale of the filtration ﬁ(s) =F(A7 (), 0<s<
T such that

A Ns) p2
En?(s) = /0 Oé(zs)ds = A(A—l(s)) =5

(37

Therefore, w(s) is a Brownian motion with respect to F (5).
Moreover, considering the time change 7 = A~ !(0),

1+/S;9(A*1(a))édww) (382)
0
A1) _
=1+ / Lo (D)OAW(A (1)) (38b)
0
A7)
=1+ / ze(r)ée(e;)dw(r) (38¢)
0
A=)
=1+ / 2o (D)0 (T)dw(T) (38d)
0
=l (A‘l(s)). (38¢)

In the last step, we used the fact that ¢(¢) as defined
in (33) satisfies the stochastic differential equation d¢y(f) =
Lo (OO (1)dw(t) (see, e.g., [8, Exercise 4.4]). Since

t
Cox(1) =1 +/o Lo+ ()0dw(T), (39)

comparing (38) and (39), we conclude that processes ¢5(-) and
Zo(A™1 (")) have the same distribution. From this observation,
and from the optional sampling theorem, we have

Ef (o 0) = B (oA~ )

for 0 < ¢ < T. Also, since A~(T) < T, and since f(z5(-))
is a submartingale (a consequence of Jensen’s inequality), we
obtain

(40)

B (e (A71(D)) = B (T). (1)
From (40) and (41), we obtain (35). |
C. Value of the Game
The result (20) follows directly as follows:
B(6%, ¢%) = E*[1 — ¢ ()] (42a)
= E”‘ |:1 {X(T)Sﬁq)_l(lé)}} (42b)

1 o~1(1-¢) 1 N2
- Efoo exp{—z(x— ﬁe) }dx (42¢)
- c1>(<1>—1(1 e — ﬁé) (42d)
- q>(q>—‘(1 —)—d (o) — ﬁd). (42e)

We used the fact that \Lﬁx(T) ~ N (/T0,1) in step (42¢).

V. DISCUSSION
A. Feedback Information Structure

The results so far are restricted to games (8) and (9) in
which the attacker must choose the attack signal 6(f) in an
open-loop manner. We now consider a modified setup in which
the attacker is allowed to choose a state-dependent attack
signal. Specifically, in (1), suppose that 6(¢) is an JF (¢)-adapted
function satisfying Pr{fOT |6(t)|dt < oo} = 1. Such a class of
functions includes feedback policies and gives an advantage
to the attacker. We keep the strategy space for the detector the
same. The detector’s policy is a hypothesis testing algorithm
¢ : C[0,T] — {0, 1}.

We now demonstrate that the pair of policies (6%, ¢*)
provided in Theorem 1 is no longer a saddle point in this
modified information structure. To see this, it is sufficient
to construct a feedback policy 6’ such that B0, ¢*) >
BO*, ¢™). To be concrete, assume T =1, d = 1.5, and ¢ =
1 —€ = 0.95. In this case, the region x(1) > 1.5 is considered
unsafe and ¢* triggers the alarm if x(1) > & (1—e€) ~ 1.645
as shown in Fig. 2. Consider a feedback policy 6'(r) = b;f(tt) ,
where b is a constant satisfying d < b < ®~!(1 — €). In this
case, (1) becomes

b — x(1)

dx(t) = T—;

dt +dw(t), x(0)=1. (43)
The solution to (43) is known as the Brownian bridge, and
satisfies lim;—1x(f) = b p-almost surely (Fig. 2). This
means that the feedback policy 6’ attains y(6’) = 1 and
B6', ¢*) = 1. That is, the attacker wins most dramatically.

We are currently unaware of the saddle point strategies
under the feedback information structure.
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Fig. 2. Sample paths of the Brownian bridge.

B. The First and the Second Order Error Exponents

It is apparent from (20) that the detection failure rate
B(0*, *) diminishes to zero as T — oco. While (20) already
provides a compact formula, it is insightful to characterize it
in terms of the first and the second-order error exponents (i.e.,
the coefficients of the 7 and /T terms in log B(6*, ¢*)). To
this end, let the attack signal 6*(r) = 6 be fixed. Introduce the
relative entropy rate D(u||pg+) = limsupy_, o ~D(jillpo+)
and the variance rate V(u|ue+) = lim SUpr_, o0 7V (1l o*),
where

D(u|pg+) = EF[log zg+]
V(lper) =B (Dulpar) — log zo-)*]

44)
(45)
with log zg« = [ 6*(dw(1)+ 1 ] 0*(0)%dr. Using 6*(1) = 6

and the fact that w(¢) is the standard Brownian motion in wu,
we obtain

6%, V(uluer) = 6°. (46)

Now, using (24) and (27), B(0*, ¢*) can be written as
B(0*. ¢*) = u({logze~ < logr*})
({éw(r) + 262 < JTHo™' (1 — €) — 552})
(i <o l(1—e)— ﬁé])
({ > «/Té+c1>*1(e)}). (47)

Since w(T)/~/T ~ N(O,1) in u, by Hoeffding’s inequal-
ity for sub-Gaussian distributions, we have B(0*,¢*) <
exp{—3 (VTG + @~ '(e))?), or

_ 1
D $) = —
(o) 5

%Iv %L

1 B}
—log (6%, ¢*) = §T92 + VTGP ' (¢) + const.  (48)

Using (46), this inequality can be expressed as
—log B(0*, ¢*)
> TD(ul o) + VT Vil o) @7 (€) + const. (49)

The appearance of D(pt||pg+) on the right-hand side of (49) is
a reminiscent of Stein’s lemma [12, Th. 11.8.3]. The inequality
above shows the achievability of the relative entropy rate

as the first-order asymptotes. The second term provides a
tighter estimate in the regime of finite 7. Notably, (49) is
consistent with the known characterization of the second-order
asymptotes (e.g., [13], [14], [15]), despite the major difference
between prior works on discrete-time hypothesis tests and
our study on continuous-time counterparts. The appearance of
higher-order terms in (49) implies that stealthiness measured
by relative entropy alone [2], [3], [4] may not be accurate for
moderate values of T.

VI. FUTURE WORK

While the scope of this letter is restricted to a simple system
model (1), the approach we introduced in this letter can be
generalized to high-dimensional and nonlinear system models.
By substituting the function y () with other cost functions, the
proposed framework accommodates a broader class of attack
scenarios. Numerical approaches to compute the saddle point
solutions (e.g., [16]) in these generalized settings are important
research topics in the future. Saddle point solutions under
the feedback information structure need further investigation.
Finally, non-asymptotic (finite sample) analysis of the saddle
point value for a broader class of games in view of the recent
progress [13], [14], [15] in information theory literature will
also be a fruitful research direction.
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