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Rate-Distortion Achievability via Event Threshold
Quantizers for Planer Wiener Processes

Ronald Ogden

Abstract—We analyze the rate-distortion performance of
two quantized event-based encoding paradigms estimating
a two-dimensional Wiener process. Each encoder remains
silent until the estimation error reaches a threshold and
then transmits a packet from a finite codebook over a
noiseless, zero-delay channel to a decoder that updates
the estimate. Both encoding methods are parameterized
by the radius of the event threshold and the size of the
codebook. The first encoding scheme simply quantizes
the error of the source process on the event threshold. The
second scheme employs a dithered quantizer, which sim-
plifies the derivation of an analytical rate-distortion upper
bound. Each method is simulated in discrete time to inform
the choice of the bitrate-optimal codebook size and event
radius for a given distortion constraint. The rate-distortion
performance of these encoding schemes are compared to
a known lower bound and a conservative upper bound that
we derive herein.

Index Terms—Information theory and control, networked
control systems, estimation.

[. INTRODUCTION

URRENTLY, periodic sampling paradigms dominate the

fields of sensing, estimation and control theory. However,
event-based sampling schemes have shown the potential to
reduce the sampling rate required to achieve a fixed estimation
quality [1], among other benefits. Unlike periodic method-
ologies which generate samples at regular time intervals,
event-based schemes produce samples as needed according
to some application-specific rule. For example, unlike frame-
based cameras which encode information for each pixel at
each time step, event cameras encode information from pixels
asynchronously, each pixel firing only when it detects a signif-
icant change in intensity. Event-based sampling methodologies
like this enable information to be encoded in both the samples
and their timing which can reduce the data rate required
to stabilize a system [2]. In practice, this reduction allows
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sensors, estimators and encoding policies that utilize event-
based architectures to achieve a desired performance objective
while reducing the consumption of physical resources such as
power, computational capacity and bandwidth.

In this letter, we explore the performance of event-based
sampling when estimating a process over a channel with com-
munication constraints. In such a scenario, one often desires
to minimize the communication resources (data rate) required
to achieve a given estimation quality (distortion) or vice versa.
Demonstrating optimality of an event-based sampler observing
a general process has proven to be a challenging problem,
but some success has been found for particular processes. For
example, optimal sampling of continuous-time 1-dimensional
stochastic processes has been studied extensively. Guo and
Kostina considered Markov processes in [3], Rabi et al.
considered Ornstein-Uhlenbeck processes in [4], Sun et al.
considered a Wiener process in [5], and Ornee and Sun con-
sidered a Ornstein-Uhlenbeck processes in [6], the latter two
considering channel delay. All find that the resulting optimal
sampling policy is a threshold-based policy similar to that
studied by Astrém and Bernhardsson in [1]. The optimality
of threshold-based sampling policies for the estimation of
discrete time processes has also been extensively studied,
as in [7] and [8]. Building on the results of Nayyar et al.
in [9], which derive a jointly optimal communication schedule
and estimation strategy for remote estimation of a discrete
time process, Nar and Bagsar demonstrate in [10] that for
an n-dimensional Wiener process, the real-valued sampling
rule that minimizes the time-averaged mean square estimation
error given a constraint on average sampling frequency is an
analogous event-triggered threshold policy.

In practice, one is often limited to the use of a finite code-
book to encode the estimation error of a process, precluding
the use of real-valued sampling. Despite this, the problem of
finding an optimal sampling policy for the system described
in [10] under a finite codebook constraint remains unexplored.
For such a problem, it is natural to inquire whether a quantized
threshold sampling policy analogous to the optimal policy
presented in [10] remains optimal. In this letter, we explore the
performance of the following analogous sampling policy for
a multidimensional Wiener process: N points are distributed
around a sphere of radius r and whenever the magnitude of the
estimation error reaches the threshold, r, a quantized sample
of the state is taken according to which of the N points the
estimation error is closest to. Unlike real-valued sampling, a
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Fig. 1. Block diagram of source process estimation over a channel.

quantized sampling policy like this will result in a non-zero
posterior estimation error after each sample almost surely.

Deriving the analytical rate-distortion performance for this
sampling scheme poses the challenge that it is not generally
possible to symmetrically distribute N points on a sphere in
n-dimensional space. However, for a sphere in 2-dimensional
space, this is possible for all N. Furthermore, the resulting
threshold is a 1-dimensional manifold, allowing an easy
application of the dithering scheme utilized in [11], [12],
and [13], which simplifies rate-distortion analysis. We restrict
this letter to a 2-dimensional Wiener process to leverage these
advantages.

Introducing dither enables us to derive an expression for
the average sampling rate of this scheme, which we use to
develop an upper bound on its rate-distortion performance. In
contrast, Cuvelier et al. derive a rate-distortion lower bound
in [14] for event-based encoding of Gauss-Markov processes, a
very general class of processes compared to the 2-dimensional
Brownian motion considered herein. Since Brownian motion
is a Gauss-Markov process, the performance of the optimal
sampling scheme for a 2-dimensional Wiener process with a
finite codebook constraint must lie in between the lower bound
from [14] and the upper bound we introduce. Finally, we use
simulation to determine what N and r yield the optimal rate-
distortion performance for the quantized sampling policies we
introduce, providing insight for future investigation into the
optimal sampling policy for this problem.

[I. PROBLEM FORMULATION

Consider a continuous-time source process x; € R? that
consists of pure 2-dimensional Brownian motion which we
seek to estimate with a given distortion over a noiseless,
zero-delay communication channel using minimal data rate.
An encoder noiselessly observes the source process and can
transmit a codeword from a finite codebook over the channel
to a decoder as shown in Fig. 1. The decoder then decodes the
message sent from the encoder to update its estimate of the
source process X;. Note that because the channel is noiseless
and zero-delay, the encoder knows all of the information
that is received by the decoder and thus has access to X
at the same instant the decoder does. The encoder compares
the output of the source process x;, to its estimate X; in
continuous time, yielding the estimation error ¢; = x; — %
(we assume ey = 0), and sends a non-empty, variable-length
packet from a codebook Cy to the decoder exactly when the
magnitude of the error reaches a threshold, r. Otherwise, the
encoder remains silent. In this model, we assume the decoder
decodes each codeword individually, precluding the need for

an instantaneous code; a nonsingular code is sufficient. The
codebook Cy consists of the N shortest length, non-empty
binary strings, that is, the first N elements of the sequence
{0, 1,00, 01, 10, 11,000, ..., }. Upon each transmission, the
decoder updates the estimate X; based on the a priori estimate
and the most recent message received. Note that with this
formulation, any encoder/decoder pair can be parameterized
by the tuple (N, r).

Under these dynamics, one can easily construct an
encoder/decoder policy that precludes Zeno behavior; a policy
that ensures the posterior error is less than r almost surely
is sufficient. In this class of policies, one can represent the
transmitted codewords as a sequence, {ax}, where k € N, and
one can represent the corresponding sequence of transmission
times as {t;}. Given an encoder/decoder policy (N, r), we
quantify the associated communication cost as the expected
bits transmitted per unit of time.

i 1
R(x(N.r) =limsup — Y Ell(a)], (1)
T—o0 Tk:tka
where [ : Cy — N maps a codeword to its length. We
quantify the corresponding distortion as the time averaged
mean squared error.

T e
D@ (N, r)):]lmsup?/ E[||e,||2]dt. )
T— 00 0

For a fixed policy &, we wish to find the parameterizing tuple
(N, r) that minimizes the expected bitrate while achieving a
distortion less than Dg. That is, we want to compute

(N* r*) = arg (]i\?f)R(n(N, r)) 3)

o

s.t. D(w (N, r)) < Dy.

[1l. ACHIEVABILITY RESULT

In this section, we describe two policies that fall under the
class described in Section II. For this 2-dimensional source
process, whenever the magnitude of the estimator error reaches
the event threshold of the encoder, the state of the process can
be encoded solely with the angular argument 6 € ® = [0, 27)
of its polar representation, a fact that is leveraged under both
policies described below. Analysis of the dithered quantizer
defined in Section III-B shall be used to derive a rate-distortion
upper bound in Section III-C.

A. Escape Argument Quantizer
Let QA be a uniform scalar quantizer defined as follows:
OA@0) == A(l6/A]+1/2), where A € R is the quantizer step
size. Then the image of the set ® under the function Qng,
denoted Q2. (®), has N elements. Thus, if the argument of the
N

source process at an event is ;, and ék = Q2 (6y,), then ék can
be losslessly encoded with a codebook of size N. Without loss
of generality, we choose any bijection from Q2. (®) to Cy to
be the encoding policy for an event. The decoder then applies
the inverse mapping to the received codeword and updates the
estimate in Cartesian coordinates as follows:

. . 6
th— = xtk— + r(COS Ak>. “4)

sin Oy
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Fig. 2. lllustration of an escape argument quantizer policy. The blue
path depicts the evolution of the error e; between two events with the
center of the circle corresponding to an error of 0. When the magnitude
of the error reaches the event threshold r, depicted by the black dashed
circle, the argument 6 of the a priori error is quantized to produce 6.
The small black circles on the event threshold represent the possible
values of 0, and in this example, since the escape argument is closest
to a = 00, this is the codeword that is used to encode the error. The
parallel green lines illustrate the direction of the corresponding estimate
update.

The behavior of this policy is depicted in Fig. 2.

Under this policy, the maximum magnitude of the posterior
error is given by maxg, ||et;r|| = r/2(1 = cos(w/N)), for
given an arc with angle 27 /N, the Euclidean distance between
the center of the arc and either edge is this quantity. As
mentioned in Section II, we desire this quantity to be less
than r almost surely, which holds if we restrict N > 3. As
N approaches infinity, the behavior of this policy approaches
that of the real-valued sampling scheme that was shown to
be optimal in [10]. The policy presented in this section acts
as a quantized analog of the optimal policy proposed in [10],
making it a natural policy to examine given a finite codebook
constraint. However, the derivation of an analytical rate-
distortion performance can be simplified with the introduction
of dither.

B. Dithered Argument Quantizer

This policy, in short, is a dithered version of the policy
described in Section III-A. At the k" event, the encoder and
decoder are given access to the value of the same uniform ran-
dom variable & ~ U[—7%;, §], known as the dither (in practice,
this could be achieved by using synchronized pseudorandom
number generators at each end of the communication channel).
Suppose the argument of the source process at an event is 6;,.
Then let 6 := (6, + &) mod 2 € O be the dithered escape
argument. As before, Q2 (G¢) can be losslessly encoded using
any bijection from Q2. é\,@) to Cy. The decoder then recovers
this quantity using the inverse of this mapping and proceeds
to compute O = Q2 (Gp) — & and updates the estimate of
the process according to (4). The behavior of this policy is
depicted in Fig. 3

Fig. 3. lllustration of a dithered argument quantizer policy. When the
magnitude of the error reaches the event threshold, some dither &4 is
added to the argument 6 of the a priori error to produce the dithered
escape argument .. This is then quantized to produce Qo n(0k). The
small black circles on the event threshold represent the possible values
of Qor/n(0k), and in this example, since the dithered escape argument
is closest to a = 0, this is the codeword that is used to encode the error.
The decoder decodes this transmission and subtracts the same dither
&, from the result to produce 6y, which is used in the estimation update.
The parallel green lines illustrate the direction of the corresponding
estimate update.

Let ny =
the dithered argument. Note that nx ~ U[—7%, §] and is
independent of 6;,. This fact has been demonstrated in several
prev10us works including [12], [13] and [15] Furthermore,

Or = (k + 6;) mod 2, so under this policy, Gk is equivalent
to the escape argument plus uniform noise. This means that at
every event, the distribution of the magnitude of the posterior
estimation error is known, which we shall leverage to facilitate
the analysis of this policy. As with the undithered encoder, we
restrict N > 3 to ensure the posterior error is almost surely
within the event threshold.

Qo (ék) — ék be the quantization error of
N

C. Rate-Distortion Upper Bound

We combine a precise computation of the rate achievable by
the dithered quantizer with a conservative upper bound on its
distortion that applies to all policies described in Section II.
The result is the following upper bound on the performance
achievable by a dithered quantizer.

Theorem 1: Let mp denote the dithered policy described in
Section III-B. Suppose D(wp (N, r)) = Dg. Then the following
holds:

%Zé\il [logy (i + 1) |
D()(— sm( ) — 1)

R(xp(N, 1)) <

Proof: Let 11 = t; and ¢ = t — tx—1 for k > 1.
The communication cost as defined in (1) of this policy is
given by
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Fig. 4. Geometric illustration of a dithered quantizer estimation update.
The solid arc depicts a section of the event threshold, the parallel dashed
lines indicate the direction of the estimation update and the dotted arc
represents the possible values the posterior error can take given the
escape argument is 6, . The distribution of the posterior error given the
escape argument is uniform along this arc.

K -1k
R(xp(N, r)) = limsup <Z rk> > Ell(ar)]
k=1

K—o0 k=1

X -1

= lim sup<M> E[l(a)]
K—o0 K

_ Ell@)]

s 5
El7] ®)

where the first equality comes from the fact that T — g is
small compared to tx as T — oo, the second equality is due
to the radial symmetry of both the policy and the dynamics
(no codeword is used preferentially), and the final equality is
the result of the law of large numbers.

To compute E[l(ar)], we begin by considering the first K
codewords sent by the encoder {ak}szl. Let f : Cy — Cy
be an arbitrary bijection of Cy to itself. The initial estimation
error is 0 and independent of any information, the distribution
of x; has polar symmetry. Therefore any sequence {ak}f= | s
as likely to occur as {f (ak)},’f:l. The bijection f is arbitrary, so
the expected frequency of any codeword is uniform. Thus, the
expected length of the codewords used is the average length of
the available codewords in Cy. The length of the i element of
the sequence {0, 1, 00, 01, 10, 11,000, ..., } is Llogz(i + 1)J,
so we have

N

1
E[l(ap)] = v ZLlogz(i + 1] (6)

i=1

To compute E[tx], we begin by noting that by
Theorem 9.1.2 in [16], the expected escape time of a Wiener
process from a d-dimensional ball of radius r starting from a
point e inside the ball is given by

Bpey = el )

y .
Given the quantization error for the kth event, 1, the magni-
tude of the posterior estimation error is given by ||e[k+(nk)|| =

r+/2(1 —cosng). See Fig. 4 for a geometric illustration.
Additionally, for any event, ng ~ U[—%;, §;]. Combining these
facts with (7) and utilizing the law of iterated expectations,
we have

mm=Emmmn=fmmm=mmwm
/”/N 2 —2r%(1 — cos ) < N )
—n/N 2 2

=72<gsm<%>——%>. ®)

As expected, as N approaches infinity, (8) shows that the
sampling frequency of the dithered quantizer approaches the
behavior of the real-valued sampling analog studied in [10].
Substituting (6) and (8) into (5) yields an expression for the
bitrate of 7p.

We provide a conservative upper bound for the distortion
of mp. Let p represent the magnitude of the posterior error.
Then as before, we have p = r/2(I — cos ). Given that n ~
U[— %, ], the probability that the posterior error is less than
p is the fraction of values of 7 in the interval [—%;, ;] that
correspond to a posterior error of less than p. (In Fig. 4, it
is the fraction of the dotted arc that is within a distance p of
the origin). Thus, letting pmax = 7+/2(1 — cos(xr/N)) be the

magnitude of the maximum posterior error,

_ 2

P@%nsp)={¥“”10‘%@))P<Pm»

1, £ = Pmax-
Differentiating this expression with respect to p and dividing
by 2mp yields an expression for the polar coordinate represen-
tation of the 2-dimensional PDF of the posterior distribution:

N
p(p,0) = { 2m2p/r2—p2 /4’ P < Pmax, )
0, P = Pmax-

For a fixed 0, the PDF in (9) for the posterior error distribution
strictly decreases as p increases over the interval (0, pmax).
The process e; is composed of Brownian diffusion and a jump
process from the event boundary to the posterior distribution
in (9). Thus, for a fixed 0, the stationary (i.e., steady state)
distribution for the estimation error strictly decreases as p
increases over the interval (0, ), resulting in a stationary dis-
tribution that has a variance smaller than that of a uniform
distribution on a disk of radius r. The variance of this uniform
distribution is given by r? /2, so we have that D(rp(N, r)) <
r2)2. [ ]
As shown in [10], the distortion of this policy as N — oo
is given by r2/4, so this bound is conservative. A precise rate-
distortion curve could be derived given an explicit expression
for the stationary distribution e;. As our simulations will show,
the optimal dithered and non-dithered rate-distortion curves
are very close, so such an expression could also be used
to accurately gauge the performance of the optimal escape
argument quantizer. For the dithered policy, 6 is equivalent
to 0; plus uniform noise, so this policy can perform no
better than the undithered policy. Thus, Theorem 1 bounds the

performance of the escape argument quantizer as well.

IV. DISCRETE-TIME SIMULATION

We simulated both of the policies described in Section III
to determine the optimal tuple (N*, r*) for each policy and
how the rate-distortion performance of the policies compare
to each other, Theorem 1 and a lower bound from [14].
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Fig. 5. Simulation results for the escape argument quantizer.

A. Simulation Description

In order to conduct numerical experiments, the continuous
time process e; is simulated with a sufficiently small step size
At at each time step 7 using the following dynamics: e[i+1] =
elil+wlilv/At— Ax[i], where each w[i] ~ N(0, I) is i.i.d. and
AX[i] is the estimation update which takes the value O for all
i such that ||e[7]|| < r and is assigned the following otherwise:

Ars cos @ [7]
Axli] = A
Al r<sin9[i])
The value of 4[i] depends on the encoder being used. For
the escape argument quantizer described in Section III-A, the
simulated estimation update is given by 6[i] = Q2 (arge[i]).

For the dithered argument quantizer described in Section III-B,
the simulated estimation update is given by

0li] = Qaz ((argeli] + &[i]) mod 27) — £Ll,

where each &[i] ~ U[—F;, §] is i.i.d.

To compute the bitrate for the simulation, an arbitrary map
from Q2 (®) to Cy was selected as in Fig. 2 so that the k™
event would generate a codeword a; from the input to Q2 (-).
Then, assuming the simulation was run over K events, the
bitrate was computed as the ratio of the total bits sent between
the encoder and the decoder over the simulation divided by
the total simulation time: Ry, = [Z,If: 1 a1/ (ig AD).

The corresponding distortion was computed as the average
estimation error squared, le[illl%, over all timesteps:

Dgim = (" | llelill*) /ik.

B. Simulation Results

In order to determine N* and r* for both of the poli-
cies described in this letter, the simulation described in
Section I'V-A was run for each policy with ¢[0] = 0 over values
of Ne{3,4,...,8} and r € {2,2.5, ..., 6}. The time step of
the simulation At was scaled with the square of the threshold
radius r. In particular, these simulations used Af = 2 /200.
Each simulation was run until 10,000 events occurred. The
results are shown in Fig. 5 and Fig. 6.

Observe that if one fixes r, the resulting bitrate is not
a monotonic function of N. This is because on one hand,
the definition of our variable length codebook Cy makes the
expected codeword length a strictly increasing function of N,
so increasing N causes the numerator of (5) to increase.

0.8

o Ut W

~ 0.6

® ~

bits/sec]

0.4+

Rate |

0.2+

14
Distortion

Fig. 6. Simulation results for the dithered argument quantizer.
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Fig. 7. Comparison of expected codeword length.

However, increasing N reduces the posterior error at each
event, resulting in an increase in the expected sampling period,
the denominator of (5).

Both Fig. 5 and Fig. 6 show that the rate-distortion curve
corresponding to N = 6 lies below that of any other codebook
size. Therefore, these simulations suggest that for either of the
policies described in this letter, the optimal codebook size for
a given distortion constraint is N* = 6. Fixing this parameter,
the corresponding optimal threshold 7* is a one-to-one function
of the distortion constraint. For example, Fig. 6 shows that
for a dithered argument quantizer, given a distortion constraint
D(z (N, r)) < 6.1, the optimal codebook size is N* = 6 and
the corresponding optimal threshold is approximately r* =
4.5, achieving a bit rate of approximately R(w (N*, r*)) = 0.17
bits/sec.

It is worth noting that N* depends on the type of codebook
used. For example, if we use a fixed-length codebook, simu-
lations show N* = 4, which can be explained in part by the
relatively large jump in expected codeword length from 2 for
N € {3,4} to 3 for N € {5,6,7, 8} for such a codebook, as
shown in Fig. 7.

While the upper bound derived in Theorem 1 holds for any
N > 3, we seek to compare the optimal version of the encoders
presented in this letter (i.e., those with N = 6) to known lower
bounds. The simulation results of both policies for N = 6 are
shown in Fig. 8 and compared to the upper bound derived in
Section III-C and to the continuous time information-distortion
(CTID) lower bound given in Theorem 1 of [14]. We state
the implication of that result as it pertains to this example for
convenience.
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Fig. 8.  Rate-distortion comparison of escape argument quantizer

and dithered argument quantizer against the upper bound derived in
Theorem 1 and the CTID lower bound presented in Corollary 1.

Corollary 1: Suppose a sampling policy 7 (N, r) observing
a 2-dimensional Weiner process is restricted to observing the
process at discrete instances of time: {Afr, 2At,3A¢t, ..., }.
Suppose additionally that D(w (N, r)) = Dg. Then
1 .
R((N,r) > Kté’_l(AlI‘(Do)),

where 6(x) := x + (1 4+ x)log, (1 +x) — xlog,(x) and

Y I
.t (1 X) 20,

Tr(X) = Do,

Tr(Y)
n s
X>0,Y>0 21n2

(Do) =

where [ is the 2-dimensional identity matrix.

Note that this lower bound depends on Af, so the smallest
and thus most conservative At used across all simulations was
selected to plot the lower bound. These results demonstrate
that for N = 6, the performance of these policies is nearly the
same. Although the upper bound from Section III-C appears
to be fairly loose, the similarity in performance between both
policies suggests that if an analytical expression for distortion
of the dithered argument quantizer could be derived, one would
have an accurate expression for the rate-distortion curve of
that policy and thus an accurate estimate of the rate-distortion
performance of the escape argument quantizer.

V. CONCLUSION AND FUTURE WORK

In this letter, we analyzed quantized threshold sampling
policies to estimate a Wiener process in two dimensions and
found an upper bound on their performance. While this letter
is limited to an achievability result for a Wiener process in two
dimensions, the analysis herein serves as a bridge to analyzing
similar sampling policies for richer source processes in higher
dimensions.

This letter was restricted to two dimensions in part due to
the loss of symmetry for N points uniformly distributed around
a sphere in higher dimensions. However, in n-dimensional
space for n > 2 there always exists a uniform, symmetric
arrangement of N points about a sphere for N € {n +
1, 2n, 2"}, as there exist regular polytopes with those vertex
counts in those dimensions [17]. We can utilize the symmetry
of these special cases to extend the quantized sampling

policy presented in this letter to monitor higher dimensional
Brownian motion while still maintaining analytical tractabil-
ity. Furthermore, simulating the performance of a quantized
threshold sampling policy in higher dimensions can allow us
to compare the performance of this policy to existing rate-
distortion lower bounds like those presented in [14]. Spherical
codes are well-studied, and databases of optimized spherical
codes are readily available, such as [18] which can facilitate
the development of simulations in higher dimensions.

Finally, we wish to explore the optimal quantization of a
sampling policy with a fixed event threshold when a linear
drift term is introduced in the source process. Such an
investigation would provide insight into the design of sampling
schemes to optimize rate-distortion performance for more
complex processes such as the event camera discussed in the
introduction.
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