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This paper addresses the task of sensor selection over a finite time horizon for systems modeled via discrete-time,
linear state-space representations. Our method for this general linear setting accommodates both spatial and
temporal noise correlations. To our best knowledge, this is the first work to do so. Scheduling policies are designed
to limit sensor usage and minimize a minimum-mean-square-error-based criterion with time-varying weights to
accommodate different user scenarios (e.g., prioritizing certain state elements at certain times or performing linear
quadratic Gaussian control). The approach is also nonmyopic since the effects of sensor activations on all time steps
are incorporated. A new but algebraically equivalent formulation of the scheduling model is introduced that readily
accounts for colored noise sequences. This lends a closed-form expression for the error covariance that is explicit in all
scheduling variables. Such an expression had been considered intractable for filtering in bothwhite and colored noise
regimes. This expression is leveraged to develop a well-motivated surrogate objective function that is shown to be
submodular, thus enabling the use of an efficient greedy algorithm accompanied by performance guarantees with
respect to the surrogate objective. Numerical examples are provided to demonstrate the effectiveness of the proposed
methodology.

I. Introduction

L ARGE collections of sensors are ubiquitous in modern estima-
tion and control endeavors, but the ability to leverage these

resources under finite power, energy, and computing constraints is
driven by practical and intelligent sensor management. Some appli-
cations include space object tracking [1], persistent surveillance, and
wireless sensor networks. Although modern applications generally
enjoy increased computational power, the amount of data available
can quickly overwhelm the ability to locally process it as the problem
complexity increases over time and the number of data sources.
Sensor selection refers to the class of problems concerned with
optimally selecting subsets of available sensing resources in order
to best perform an estimation task.
This work considers sensor selection for discrete, linear systems

over a finite horizon subject to additive Gaussian noises (which need
not be white). Based on known measurement models, the user must
select a subset of resources such that minimum-mean-square-error
(MMSE) estimation is achieved given a cardinality constraint on the
sensing subset. Linear combinations of the statemay be the subject of
the estimation task. This results in the ability to optimize the mean
square error (MSE) with respect to specific time steps and/or linear
functions of the state most relevant to the estimation or control
application. This problem setting is most closely related to [2], but
we importantly accommodate both spatially correlated (dependence
across sensors) and temporally correlated (colored) noise sequences.

There exist few papers considering dependent measurement noise
across sensors [2–5] and, to the authors’ knowledge, no work that
considers temporal dependence. Nontrivial correlations may be
reasonably expected across large collections of sensors. In [3], it
was demonstrated that schedulers that neglect strong correlations
between sensors or approximate them as weak will show signifi-
cantly degraded performance. Though correlationmodelsmay not be
explicitly known across every sensor pair, those that are known may
significantly improve scheduling performance if intelligently incor-
porated. Colored noises are similarly possible for practical distrib-
uted sensor networks [6,7]. Common positioning systems such as
GPS are often subject to time-correlated noise. Certainly,methods are
well known for adapting the standard Kalman filtering framework to
account for colored noise, e.g., state augmentation [8] or measure-
ment differencing [9,10]. These only apply once a set of sensing
resources has been selected.
A key reason that nearly all existing sensor selection routines hinge

on the assumption of uncorrelated noises [11–17] is the complicated
evolution of the covariance matrices in terms of the schedules. It has
been generally accepted that explicit expressions for the covariance
(or information)matrices in terms of all schedules over timewould be
infeasible to obtain [3] in the presence of noise correlations. This is
likely attributed to the tendency in the literature to work with the
recursiveKalman filter, which by definition obscures the schedules at
previous timeswithin the recursion. For example, a recursive solution
for covariance Ptjt at time step t is an explicit function of covariance
Pt−1jt−1 at time step t − 1, measurementmodelmatrices at time step t,
and scheduling variables at time step t. All previous scheduling
variables are implicitly represented within the term Pt−1jt−1. Efforts
to expand the recursion for the purpose of exposing explicit depend-
ence on all past schedules amount to reconstruction of the batch
solution. This holds in the case of colored noise with the use of the
augmented state Kalman filter. For this reason we choose to work
with the equivalent, batch linear MMSE (LMMSE) equations.
Though this means that the scheduling algorithm invokes terms from
batch updates, a user is not required to operate a batch filter in
execution. As a bonus feature, this solution easily lends itself to
applications employing smoothers and those containing correlations
betweenmeasurement and process noises. Note that batch estimation
was considered in [15,16] but for a fundamentally different problem:
estimation of the entire state history !xT1 : : : xTt "T using the entire
measurement history !yT1 : : : yTt "T (smoothing). In addition to piv-
oting to the batch form,we also construct a new but equivalent update
based on the binary scheduling variables. Without loss of generality,
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the schedules act on both the measurement model (what we process)
and the filter itself (how we process). In Sec. III, these choices result
in the closed-form expression for the covariance matrices thought to
be unattainable.
This expression is crucial to our solution avenue for multiple

reasons. We first use it to classify the problem as a mixed-integer
semidefinite programming (MISDP) problem in Sec. IV. It is known
that MSE-based scheduling problems are NP-hard, with no
polynomial-time solution having a constant factor approximation
[18,19]. In [2], a semidefinite programming (SDP) relaxation was
adopted for the white noise case. Although potentially suitable
for certain smaller-scale applications, SDP relaxation methods are
recognized to scale poorly in both computational complexity and
estimation performance as the number of available schedules
increases [20]. A greedy-algorithm-based restriction to the prior
information matrix was provided in [21]. We again leverage our
analytical expression for MSE to pursue the greedy optimization
avenue in Sec. V.
Our developed surrogate objective function is directly motivated

by the explicit form of scheduling variables in the cost. The greedy
algorithm may then be applied with well-known polynomial time
guarantees [22] and performance bounds (with respect to the surro-
gate). This avenue is similar to that taken inRefs. [3,14,20,23,24].All
objectives for these approaches were proposed for specializations of
the most general problem and designed without the benefit of the
explicit MSE scheduling expression. In Sec. VII, a comparison with
some of thesemethods is presented. Alternatively, in [20], the authors
explicitly formulate the objective function using the Fisher informa-
tion matrix and demonstrate a randomized greedy solution to alle-
viate computational burdens. The randomized greedy algorithm is
further investigated in [24] to address the scenarios involving budget
or performance constraints. However, these approaches are restricted
toweak-modular objective functionswith upper-bounded curvatures.
The contributions of this paper are as follows:
1) Few solutions exist for nonmyopic sensor scheduling with

spatially correlated sensors. To our best knowledge, none exist for
those with temporal correlation (i.e., colored noise). Difficulty has
been attributed to the absence of a closed-form expression for the
estimation error covariance in terms of the binary scheduling varia-
bles. We provide this result in Theorem 1, which enables a solution
accommodating both spatially and temporally correlated noise.
2) Time- and sensor-specific weights are incorporated to address

application priorities.
3) The performance of the proposed greedy algorithm is proved

with respect to the surrogate objective. Performance with respect to
the true objective is compared in simulation against direct extensions
of popular methods for the independent noise case. Our solution
compared favorably, particularly when application-specific weights
are imposed.
4) This work may be summarized as advancing the colored noise

case from omission to analogy with popular approaches (MISDP and
submodular surrogate greedy) in the greatly studied independent
noise case. Following the state of that area, we anticipate using
Theorem 1 to develop a stochastic greedy approach and investigate
weak submodularity of the pure greedy solution. Finally, we expect
and hope this theorem’s result enables other authors to make addi-
tional advancements.

II. Problem Statement
The n-dimensional state vector at time step t to be estimated,

denoted xt, is assumed to be governed by the following general,
discrete-time linear dynamics:

x1 ∼ N#μ1j0; P1j0$ (1a)

xt%1 & Atxt % Btut %wt (1b)

for ∀t ∈ f1; 2; : : : ; tf − 1g. Matrices At are assumed to be invertible.
This is commonly satisfied when the discrete dynamics in Eq. (1b)
are derived from a continuous system. In that case, At is the state

transition matrix [25] carrying the property of invertibility. Tracking
scenarios, like that explored in Sec. VII.B, often fall in this category
[26,27]. The notationPijj indicates the error covariancematrix for the
state at time step i using all measurements up to and including time
step j, i.e., Pijj & Ef!xi − x̂ijj"!xi − x̂ijj"Tg, where x̂ijj is the estimate
of x with the given measurements up to and including time step j at
time step i. Note that hereafter we ignore control input ut without
loss of generality since the system is linear and only state covariance
matrices and not state estimates themselves are optimized in sched-
uling. The process noise autocovariance is defined to beEfwiw

T
j g &

δi;jWi. Here δi;j represents the Kronecker delta. The collection of all
potential observations (measurements) at each time step, yt, is

yt &
Ct;1xt

..

.

Ct;mt
xt

%
vt;1
..
.

vt;mt

& Ctxt % vt (2)

for ∀t ∈ f1; : : : ; tfg. Note that mt is the total number of available
sensors at time step t ≤ tf. Matrix Ct;i is the measurement mapping
matrix for sensor i at time step t. An augmented matrix Ct &
!CT

t;1 · · · CT
t;mt

"T is the collection of all available mapping matri-
ces at time step t. Similar notation is used for measurement noises vt;i
and the augmented measurement noise vector vt. Note that vector
observations are allowed. The measurement noise sequences are
assumed to be zero-mean and Gaussian but not necessarily white
or independent between “sensors” (which, as previously stated, may
literally correspond to different sensors or rather different potential
sensing placements or modes of operation). The collection of mea-
surements noise is

vt ∼ N#0; Vt$ (3)

Note that matrix Vt is allowed to have off-diagonal entries, which
capture any spatial correlations. The following common model [6]
can be applied for any sensor or process exhibiting colored noise:

vt%1;i & Ψv
t;ivt;i % ξvt;i; wt%1 & Ψw

t wt % ξwt (4)

whereΨv
t;i andΨw

t are any real, conformablematrices for all time steps
∀t ∈ f1; 2; : : : ; tf − 1g and sensors ∀i ∈ f1; 2; : : : ; mtg. The process
fξt;ig

tf
t&1 is a Gaussian white noise sequence with autocovariance

Efξj;iξTk;ig & δj;kRj such that Eq. (3) is satisfied andEfξt%1;iv
T
t;ig & 0.

Our objective is to perform the following optimization:

min
ffdt;ig

mt
i&1

g
tf
t&1

tf

t&1

tr ΘtPtjtΘT
t

s:t: dt;i ∈ f0; 1g
tf

t&1

mt

i&1

dt;i ≤ ns

(5)

where the binary scheduling variables represent

dt;i &
0 The measurement at time-step t for sensor i is not selected:
1 The measurement at time-step t for sensor i is selected

(6)

Weighting matrices Θt are determined by the user with no depend-
ence on the schedules, and covariance matrices Ptjt are implicit
functions of the schedules—these functions will be made explicit
in the next section. The natural number ns indicates the maximum
number of allowable sensor observations used. As shown in [2], this
optimization problem addresses a large number of relevant applica-
tions, including linear-quadratic-Gaussian (LQG) control [28]. More
applications are summarized in Table 1. Clearly, flexibility in the
weighting matrices enables applicability to a wide variety of sched-
uling scenarios.
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III. Derivation of the Covariance Matrices as Explicit
Functions of the Scheduling Variables

We provide an explicit expression for each Ptjt in terms of all
scheduling variables in Theorem 1. This conclusion not only aids the
development of our algorithm but also is a standalone contribution.
Theorem 1 (Covariance Functions of All Schedules): The state

covariance at each time step can be expressed in the following form:

Ptjt & Ptj0 − #Ptj0H
T
t % Ft$Gt#HtPtj0 % FT

t $

% #Ptj0H
T
t % Ft$Gt Gt %

1

αt
Dt

−1
Gt#HtPtj0 % FT

t $ (7)

where the schedules only appear in diagonal matrix Dt that is
populated by all schedules through time step t. Matrices Ht, Ft,
Gt, and scalar αt, which do not depend on the schedules, are defined
in the proof. These matrices and others used in the final algorithm are
computed recursively in Appendix B.
Proof:
1) Batch formulation. There is an equivalence between the batch

and recursive forms of the LMMSE estimator, assuming that the user
correctly modifies the filtering equations to handle colored noise
(e.g., via state augmentation or measurement differencing). This
property allows the use of the batch equations for the purpose of
the proof without loss of generality. The batch form after substituting
the dynamics in Eq. (1b) is

y1

..

.

yt

&

C1;1A
−1
1 : : : A−1

t−1

..

.

C1;m1
A−1
1 : : : A−1

t−1

..

.

Ct;1

..

.

Ct;mt

xt

%

v1;1 − C1;1#A−1
1 : : : A−1

t−1wt−1 % : : : % A−1
1 w1$

..

.

v1;m1
− C1;m1

#A−1
1 : : : A−1

t−1wt−1 % : : : % A−1
1 w1$

..

.

vt;1

..

.

vt;mt

(8)

or; ~Yt & Htxt % ~νt (9)

In the last line, the augmented vector ~Yt & ! yT1 · · · yTt "T denotes
the collection of all available measurements up to and including time
step t. The augmented matrixHt is the correspondingmapping matrix
that relates all causal measurements to the state at the current time, and
~νt is the corresponding augmented measurement noise vector. Note
that colored measurement or process noise can easily be incorporated
by substitution of Eq. (4) into Eq. (9), with the only effect being
additional correlations within ~νt. By grouping and renaming terms,
the process noise terms now appear as measurement noise. The
(correlated) noise covariance now includes both V and W terms. An
effect of process noise in batch solutions is measurement noise corre-
lations between both individualmeasurement noise terms (no diagonal
covariance) and the state (since xt is a function of w1; : : : ;wt−1).
2) Novel model for scheduling variables. Using the selection

variable dt;i, we will now introduce the scheduling matrix. For
convenience, let ηt;m denote the number of rows ofCt;m. Now, define
the scheduling matrix Dt as follows:

Dt & blkdiag d1;1Iη1;1 ; d1;2Iη1;2 ; : : : ; dt;mt−1Iηt;mt−1
; dt;mt

Iηt;mt

(10)

where blkdiag#⋅$ represents the block-diagonal matrix composed of
inputs. Furthermore, define the effective selection matrix ~Dt by
removing rows that only contain zero in Dt. Note that the two
matrices satisfy the following relations:

~Dt
~DT
t & Iη; ~DT

t
~Dt & Dt (11)

where η & t
τ&1

mt
m&1 dτ;mητ;m. Recall that the goal is the explicit

appearance of all schedules in the covariance equation. Using a
binary selection matrix ~Dt, the selected sensor output Yt can be
expressed as follows:

Yt & ~DtHtxt % ~Dt ~νt (12)

For the notational brevity, let us define the selected noise vector
νt & ~Dt ~νt. Now, the output model Eq. (12) comes with additional
specifications:

Σxtνt & Ef!xt − !xt"!νt − !νt"Tg & Ft
~DT
t (13)

Σνtνt & EfνtνTt g & αtI % ~DtSt ~D
T
t (14)

where !xt and !νt represent the mean of x and ν, respectively.MatrixFt
equals Σxt ~νt evaluated as if all measurements are included. Quantity
αt > 0 and positive definite matrix St are defined such that
αtI % St & Σ~νt ~νt . This linear algebra property ensures the invertibil-
ity of the innovation covariance for the model with schedules
included, and it was also used in [3].
3) LMMSE update. We now perform the update for Ptjt via the

usual LMMSE equations found in §3.3.2 of [29].

Ptjt & Ptj0 − ΣxtYt
Σ−1
YtYt

ΣYtxt (15)

We have

ΣxtYt
& Ef!xt − !xt"! ~DtHt#xt − !xt$ % νt"Tg (16)

& Ptj0H
T
t
~DT
t % Ft

~DT
t & #Ptj0H

T
t % Ft$ ~DT

t (17)

ΣYtYt
& Ef! ~DtHt#xt − !xt$ % νt"! : : : "Tg (18)

& ~DtHtPtj0H
T
t
~DT
t % ~DtHtFt

~DT
t % ~DtF

T
t H

T
t
~DT
t %αtI% ~DtSt ~D

T
t

(19)

& αtI % ~DtG
−1
t

~DT
t (20)

Table 1 Choice of weighting matrices for different applications

MSE cost function Corresponding weight matrices

Average over time horizon Θt &
1

tf
p In ∀t

At final time Θ1 & : : : & Θtf−1 & 0n×n;Θtf & In

LQG estimation and control Solution of a backward Riccati recursion [28]
Θt & eTi ∀t (ith unit vector in canonical basis)

Total MSE for state element
i over time or !Θt"j;k &

1 j & k & i
0 otherwise

∀t
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where

Gt & #HtPtj0H
T
t %HtFt % FT

t H
T
t % St$−1 (21)

to finally find

Ptjt & Ptj0 − Rt
~DT
t #αtI % ~DtG

−1
t

~DT
t $−1 ~DtR

T
t (22)

with Rt & #Ptj0H
T
t % Ft$. The Sherman–Woodbury–Morrison

lemma states that, for conformable matrices A;B; C;D with invert-
ible A,

#A% BCD$−1 & A−1 − A−1B#C−1 %DA−1B$−1DA−1 (23)

⟹ B#C−1 %DA−1B$−1D & A − A#A% BCD$−1A (24)

Apply the result in Eq. (24) to the term ~DT
t #αtI % ~DtG

−1
t

~DT
t $−1 ~Dt

in Eq. (22) to finally get

Ptjt & Ptj0 − Rt Gt − Gt Gt %
1

αt
~DT
t
~Dt

−1
Gt RT

t (25)

& Ptj0 − RtGtR
T
t % RtGt Gt %

1

αt
Dt

−1
GtR

T
t (26)

□

IV. Classification of the Optimization Problem
Using the expression in Eq. (7), the optimization problem (5) can

be reformulated by dropping some constant terms as follows:

min
ffdt;ig

mt
i&1g

tf
t&1

tf

t&1

tr ~Θt Gt %
1

αt
Dt

−1
~ΘT
t

s:t: dt;i ∈ f0; 1g
tf

t&1

mt

i&1

dt;i ≤ ns

(27)

where Rt & #Ptj0H
T
t % Ft$ and ~Θt & ΘtRtGt. Note that the cost for

each time step given in Eq. (27) is of a similar overall form, with the
schedules entering only as a diagonal matrix within an inverse
expression, as was found for the static problem [3,17]. Even though
the overall form is the same, the parameters involved (Gt, ~Θt, and
αt) are not the same. Directly extending the approaches outlined
in [3,17] for the static case would not have led to Eq. (27) for
the general case. However, due to the shared general form, as in
these other works, we can recognize that our optimization problem
in Eq. (5) is a member of the MISDP class of optimization
problems.
Define matrix D ≔ Dtf by Eq. (10). This becomes the diagonal

matrix containing all schedules over all times. In addition, note that
Dt & NtDNT

t , where Nt is the truncating matrix to remove schedul-
ing variables at time step t% 1 to tf. When an auxiliary symmetric
matrix Zt is introduced, Eq. (5) becomes

min
D⪰0;Zt

tf

t&1

tr#Zt$

s:t: I −D ⪰ 0

tr#D$ ≤ ns

Zt ⪰ ~Θt Gt %
1

αt
NtDNT

t

−1
~ΘT
t

(28)

for ∀t ∈ f1; 2; : : : ; tfg. Note that the second constraint in Eq. (28) can
be expressed as 1Tvec#D$, where 1 represents a vector of 1 and vec#⋅$
is the operator vectorizing diagonal elements of an input matrix. Via

Schur decomposition for the third constraint in Eq. (28), wemay then
express the optimization in Eq. (5) equivalently as

min
D⪰0;Zt

tf

t&1

tr#Zt$

s:t: I −D ⪰ 0

1Tvec#D$ ≤ ns

Zt
~Θt

~ΘT
t Gt %

1

αt
NtDNT

t

⪰ 0

(29)

for ∀t ∈ f1; 2; : : : ; tfg. One traditional approach to solve the SDP
is relaxing the domain of schedules within !0; 1", and recovering
the solution in the binary domain. Some popular mapping routines
are randomized rounding [30], semidefinite relaxation [31], and
reweighted l1 minimization [32]. It is well known that this class of
solutions scales poorlywith the number of available sensors, in terms of
both performance and computational complexity [20].
Amore recent avenuepivots fromoptimization of real values to sets.

Analogous to concavity/convexity in maximization/minimization of
real-valued functions, submodularity/supermodularity imports effi-
cient and provable solutions for maximization/minimization of set
functions [12]. A seminal result in [33] established that if an optimi-
zation problem corresponds to submodular maximization over a uni-
form matroid, then the greedy algorithm applied to this problem is
guaranteed to produce an objective valuewithin at least 1 − 1∕e of the
true maximum. However, this problem involves maximization of the
negative MSE, which is known to not be submodular [13]. This paper
follows a solution avenue similar to that inRef. [14], where a surrogate
cost function is developed to attain this property. In doing so, we
provide an algorithm that ismuchmore efficient thanMISDP solutions
and comes with a performance guarantee with respect to the surrogate
function. Though there is no similar guarantee with respect to the
original objective function, this solution retains meaning based on the
motivation of the surrogate function.

V. Development of a Surrogate Objective Function
As discussed in the previous section, a surrogate cost function

provides a suboptimal solution of the exact optimization problem, as
described in Eq. (5) or Eq. (29). In many references [13,14,16,
34–36], the surrogate function chosenwas logdet. There are a couple
of impediments when applying this method to our particular appli-
cation. First, the submodularity of logdet has not been proven for the
case of filtering problems over a time horizon with correlations
between sensors and colored measurement noise. Second, logdet
does not handle the weighting matrices well. Suppose that Θtjt are
square and nonsingular. Then,

J &
tf

t&1

ln jΘtjtPtjtΘT
tjtj &

tf

t&1

ln jΘtjtΘT
tjtj% ln jPtjtj (30)

which is equivalent to optimizing

tf

t&1

ln jPtjtj (31)

The weighting matrices, which importantly make the problem rel-
evant for certain applications, are effectively ignored. Before devel-
oping a different objective, let us restate the true objective in the set
context. The optimization problem (5) is equivalent to

max
S⊆E

−
tf

t&1

tr ΘtPtjtΘT
t

s:t: jSj ≤ ns

(32)
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where set E is the collection of all available sensors at all available
times, i.e., di;t ∈ E for ∀i ∈ f1; 2; : : : ; mtg and ∀t ∈ f1; 2; : : : ; tfg.
Note that this problem is known not to be submodular. Significantly,
we can leverage Eq. (7) to directly examine all scheduling variable
terms in the true objective, interpret their role, and provide a more
precisely motivated surrogate objective. The true objective is equiv-
alent to

F#S$ & −
tf

t&1

tr MtGt Gt %
1

αt
Dt#S$

−1
GtM

T
t (33)

& −
tf

t&1

tr Mt G−1
t % 1

αt
G−1

t Dt#S$G−1
t

−1
MT

t (34)

by using Eq. (24), whereMt & Θt#Ptj0H
T
t % Ft$.Dt#S$ is the block

diagonal matrix from before but now with the binary scheduling
variables set to 0 or 1 based on the selected subset S. This is only a
subtly different parameterization. Next we will inspect the objective
at each time step.
Denote the orthogonal eigendecomposition of the positive semi-

definite matrix asMT
t Mt & UtΛtU

T
t . The columns ofUt contain the

normalized, orthogonal eigenvectors of MT
t Mt, denoted ut;j. The

diagonal of the purely diagonal matrix Λt contains the eigenvalues
λt;j of this matrix in descending order. Define rank#MT

t Mt$ & rt and
~Gt#S$ & fG−1

t % #1∕αt$G−1
t Dt#S$G−1

t g−1 for the notational brevity.
Then the objective at time step t is

F t#S$ & −tr UtΛtU
T
t
~Gt#S$ & −tr ΛtU

T
t
~Gt#S$Ut (35)

& −tr
λt;1uTt;1

..

.

λt;qtu
T
t;qt

~Gt#S$
uTt;1
..
.

uTt;qt

T

(36)

& −
rt

j&1

λt;juTt;j ~Gt#S$ut;j (37)

We can recognize that the true objective at each time step is
equivalent to a weighted sum of projections of the matrix ~Gt#S$
along the eigendirections of MT

t Mt, with the weights being the
associated eigenvalues. This type of projection corresponds to what
is used in principal components analysis (PCA) [37] for the variance
associated with a particular direction with respect to the uncertainty
matrix ~Gt#S$. There, the projection is geometric in the sense that it
may be interpreted as taking the collection of zero-mean data (which
may be infinite) whose covariance is represented by this matrix,
orthogonally projecting all data points in the particular direction,
and evaluating the variance along that one dimension. Roughly, it is
akin to restricting uncertainty only to our particular direction by
geometrically collapsing uncertainty in all other directions. Note that
though this uncertainty matrix is obviously not equal to covariance
Ptjt, we have shown it to be the sole piece of the covariance matrix
relevant to optimization. Our surrogate function will arise from
simply utilizing a different version of projecting this uncertainty.
Our substitute notion of directional uncertainty corresponds to the

squared length of the 1 − σ ellipse for uncertaintymatrix ~Gt#S$ along
a particular direction. This is equivalent to the variance along the one
dimension once the random variable has been conditioned on all
orthogonal directions [38], and it is akin to restricting uncertainty
only to our particular direction by probabilistically collapsing uncer-
tainty in all other directions. This quantity is easily found via the
definition of error ellipses and is, for direction u,

σ2u & 1

uT G−1
t % 1

αt
G−1

t Dt#S$G−1
t u

(38)

Thus, our surrogate version is

~F t#S$ & −
rt

j&1

λt;j

uTt;j G−1
t % 1

αt
G−1

t Dt#S$G−1
t ut;j

(39)

Recall Eq. (21) and importantly notice that computing ~Ft#S$ does not
require any matrix inversion. Though the batch terms are used,
carrying out the batch solution (which would invert likely very large
matrices) is not required. We do note the computational degradation
for some large-scale applications due to solving eigendecomposi-
tions to produce the λ and u terms. In such a case, the computational
load can be relieved by adjusting the scheduling time horizon.
Without loss of generality, we can add a constant that is indepen-

dent of all scheduling variables to Eq. (39). In order to satisfy
normalization in the next section, wewill do so in the following way:

~Ft#S$ & −
rt

j&1

λt;j

uTt;j G−1
t % 1

αt
G−1

t Dt#S$G−1
t ut;j

−
λt;j

uTt;jG
−1
t ut;j

(40)

The complete objective function is then

~F #S$&−
tf

t&1

rt

j&1

λt;j

uTt;j G−1
t % 1

αt
G−1

t Dt#S$G−1
t ut;j

−
λt;j

uTt;jG
−1
t ut;j

(41)

so that our surrogate optimization is

max
S⊆E

~F #S$s:t:

jSj ≤ ns
(42)

The proposed procedure is enumerated in Algorithm 1.

VI. Submodularity of the Surrogate Objective
The submodularity of an objective function enables proven per-

formance for the greedy algorithm [33]:
Property 1: If the set function f is to be maximized subject to a

uniform matroid constraint and f is normalized, nonnegative, mono-
tone nondecreasing, and submodular, then the greedy algorithm
applied to maximization of f achieves the approximation factor
#1 − 1∕e$.
Proof that the chosen surrogate function Eq. (42) satisfies Prop-

erty 1 is a fairly simple exercise following [33].Due to the importance
of the property for our solution, it is established in Appendix A.
Therefore, the greedy solution to Eq. (42) produces an objective
function value that is no less than #1 − 1∕e$ of the true maximum.
This gap is with respect to the surrogate rather than the original
objective, for which it has been shown that no such constant factor
performance guarantee can be achieved.

Algorithm 1: Proposed algorithm

1: Compute λt;j, ut;j, G−1
t , αt for j & 1; : : : ; rt (all sensors at t) and all

t & 1; : : : ; tf . ▹ using App. B.

2: S ← ∅
3: for l & 1; : : : ; ns do

4: sl ← arg min
s∈V\S

~F #S ∪ s$ ▹ using Eq. (41) for ~F

5: S ← S ∪ sl
6: end for
7: return S
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While the approximation ratio for the original problem cannot be
established, the conceptual framework of the surrogate problem can
be discussed. The constant term introduced for normalization in
Eq. (40) is equivalent to the prenormalized surrogate described in
Eq. (39) when S & ∅, indicating that no sensors are utilized in the
measurement update. Consequently, the surrogate objective function
in Eq. (41) relates to the original objective function as follows:

~F#S$&−
tf

t&1

rt

j&1

λt;j

uTt;j G−1
t % 1

αt
G−1

t Dt#S$G−1
t ut;j

−
λt;j

uTt;jG
−1
t ut;j

(43)

≈
surrogate

−
tf

t&1

tr Mt G−1
t % 1

αt
G−1

t Dt#S$G−1
t

−1
MT

t

%
tf

t&1

tr MtGtM
T
t

(44)

Additionally, since the first two terms in Eq. (7) are independent of
the scheduling variable Dt#S$, Eq. (44) can be rewritten as

~F#S$ ≈
surrogate

tf

t&1

tr ΘtfPtjt#Dt#∅$$ − Ptjt#Dt#S$$gΘT
t

&
tf

t&1

tr ΘtfPtj0 − Ptjt#Dt#S$$gΘT
t (45)

Thus, the surrogate problem defined in Eq. (42) approximates the
problemof optimizing the expectedMSEdecrement by scheduling in
the original domain. From Eq. (45), the performance guarantee out-
lined in Property 1 provides an approximated bound for

tf
t&1 #tr!ΘtfPtj0 − Ptjt#Dt#S$$gΘT

t "$
tf
t&1 #tr!ΘtfPtj0 − Ptjt#Dt#S⋆$$gΘT

t "$
≈

surrogate

~F #S$
~F #S⋆$

≥ 1 −
1

e

(46)

where S and S⋆ represent the solution obtained from the greedy
algorithm and the optimal solution, respectively.

VII. Numerical Examples
A. Linear Quadratic Gaussian Control on a Randomized System

A six-dimensional (n & 6) state is to be simultaneously estimated
and controlled to the origin by minimizing the standard linear quad-
ratic Gaussian cost:

tf−1

t&1

E xTt Qtxt % uTt Rtut % E xTtfQtfxtf (47)

where Qt & Rt & I6 and tf & 10. Dynamics and control matrices
At; Bt ∈ R6×6 are randomly generated as independent samples of the
standard normal distribution but kept constant for each time step. The
process noise covarianceWt & 0.01I6, and the a priori covariance for
the state at the initial time is a diagonal matrix:

P1j0 & diag ! 5 1 1 2 0.4 0.4 " (48)

where diag(⋅) represents the diagonal matrix with the input diagonal
entries. Collections of five scalar measurements with mapping matri-
ces Ct that are independently drawn from distribution N#0; 1∕n$ are
available at each time step. A total of 10 sensor activations (ns & 10)
were allowed. To coincide with the standard LQG problem, meas-
urement noise in this example is taken to be white. The sensors are
spatially distributed in a 50-unit square region with the 2-D location
of sensor i defined as βi. Themeasurements are spatially correlated at

each time based on distances between sensors. Thismodel is !Vt"i;j &
σ2νe−ρspatialkβi−βjk, wherewe use ρspatial & 0.1 and σν & 1 [3]. TheLQG
problem can be expressed as the minimization of our original cost in
Eq. (5), with weighting matrices Θt ∈ R6×6 defined via [28]

Φt & ΘT
t Θt & KT

t BT
t Zt % Rt Kt (49)

Kt & − BT
t ZtBt % Rt

−1
BtZtAt (50)

Zt &
Qt t & tf
Qt % Lt t ∈ f1; : : : ; tf − 1g (51)

Lt & AT
t fZt − ZtBt#BT

t ZtBt % Rt$−1BT
t ZtgAt (52)

Both Algorithm 1 and the logdet greedy algorithm corresponding to
Eq. (31)were appliedwith the following results. Table 2 lists theMSE
costs for both methods. One might expect the observed worse per-
formance for logdet approaches to this particular problem due to the
weightingmatricesmentioned in Sec. V. Theweightingmatrices here
play a crucial role by placing special emphasis on relevant directions
in the state space and relevant time steps over the time horizon with
respect to the LQG objective. For intuition on the latter, magnitudes
of the weighting matrices over time are shown in Fig. 1. Also, the
MSEs for each state component from x1 to x6 over time are provided
in Fig. 2.
Based on Fig. 1, one would expect that a successful scheduling

policy would heavily penalize state errors in earlier time steps with
decreasing importance on time steps toward the end of the horizon.
Notice that the proposed solution does a far better job in this respect
by roughly keeping uncertainties relatively low with growth to peaks
only at the end of the time horizon. Since the logdet solution
effectively ignores the weights, it is solely concerned with minimiz-
ing covariance “sizes” (specifically, volumes) with no penalization to
any specific time step beyond its connection to covariance volumes at
the other time steps. Additionally, P1j0 is initially such that the
covariance ellipsoid volume can be drastically reduced by favoring
measurements that primarily reduce uncertainty in x1. As seen in
Fig. 2, these conditions can lead to the logdet algorithm, allowing
high uncertainties in state components other than x1 in time steps
close to the initial time—the very time steps that should be most
penalized for the LQG objective.

B. Two-Dimensional Multitarget Tracking

In the previous example, weight matrices for the LQG are dem-
onstrated. Now, selective states and time-varying weight matrices in
Table 1 will be tested in this multi-object tracking example. Compar-
isons will be made between greedy solutions to the proposed, logdet
(info greedy) and exact MSE (pure greedy) objectives. It is assumed
that five targets circle around the origin with a constant radius and
velocity, as shown in Fig. 3. The discretized dynamics of each target
are defined as follows:

x#i$t%1 &
1 0 0
0 1 dt
0 0 1

x#i$t %w#i$
t & A#i$x#i$t %w#i$

t (53)

with an initial statex#i$0 & !r#i$0 ; θ#i$0 ;ω#i$
0 "T for∀t ∈ f0; 1; : : : ; tf − dtg

and ∀i ∈ f1; 2; : : : ; 5g. Here, x#i$ represents the state vector of target i
at time step t, which consists of the radius r, azimuth angle θ, and

Table 2 Mean-square-error
performance for example A

Solution method Resulting cost in Eq. (5)
Algorithm 1 120,954.56
logdet 152,483.24
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angular velocity ω. The dynamics of target i is denoted by A#i$, and
w#i$

t is the process noise for target i at time step t.
The process fw#i$gtft&1 follows Gaussian white noise sequence

with an autocovariance defined as Efw#i$
j w#i$T

k g & δj;kQ#i$, where
Q#i$ & diag#Qr;Qθ; Qω$. The state vector xt and noise vector wt

encompass all targets, defined as xt & !x#1$Tt ; : : : ; x#5$Tt "T and wt &
!w#1$T

t ; : : : ;w#5$T
t "T , respectively. The overall dynamics matrix A

naturally becomes a block-diagonal matrix of A#i$ as follows:

A & blkdiag A#1$; : : : ; A#5$ (54)

It is important to note that the covariance of the process noisewt is a
constant diagonal matrix without any spatial or temporal correlation.
Multiple radar sensors are assumed to be installed at the origin.

These sensors are either range radar or angle radar, capable of

measuring either radius r#i$ or azimuth angle θ#i$ of all targets. The
output matrices of the range radar Cr and angle radar Ca at a specific
time step t can be expressed as follows:

Cr;t & Cr & I5 ⊗ !1 0 0" ∈ R5×15 (55)

Ca;t & Ca & I5 ⊗ !0 1 0" ∈ R5×15 (56)

for ∀t ∈ f1; : : : ; tfg, where ⊗ represents the Kronecker product.
Both spatial and temporal correlations are assumed in the measure-
ment noise. The same spatial correlation model described in the
previous example is employed and applied to the output channels
for the same target. Specifically, a spatial correlation coefficient of
ρspatial & 0.5 is utilized separately for the range and angle radars. The
coefficients β are randomly generated from a uniform distribution.
Temporal correlation is also incorporated using Ψt & 0.5 to all
sensors, as described in Eq. (4).

Fig. 1 The 2-norm of the LQG weighting matrices over time.

Fig. 2 State component mean square errors for the proposed vs logdet solution.
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The scheduling goal is to minimize MSE corresponding to the
“orbit” states of each target. The radius of all targets is the primary
state of interest, and the angular velocity is additionally considered if
a target is inside the region of interest (ROI) indicated by the red
dotted line in Fig. 3. In this example, theMSE of statesω#1$,ω#4$, and
r#i$ for ∀i ∈ f1; : : : ; 5g are to be minimized. Thus, the default weight
matrices !Θ is defined as follows:

!Θ & blkdiag diag#1; 0; 1$; diag#1; 0; 0$; diag#1; 0; 0$; diag#1; 0; 1$; diag#1; 0; 0$ (57)

Two different weight matrices will be demonstrated in the follow-
ing subsections. Simulation parameters are defined by tf & 5,
ns & 10, dt & 1, and nr & na, where nr and na are the number of
range radars and angle radars, respectively. The radius of ROI is

10 m. Prior, process noise, and measurement noise covariance are
defined as follows:

P#i$
1j0 & diag #1 m$2; #0.5 rad$2; #0.5 rad=s$2 (58)

Q#i$ & diag #0.5 m$2; #0.1 rad$2; #0.2 rad=s$2 (59)

R#j$
r & #1 m$2 (60)

R#k$
a & #0.2 rad$2 (61)

where i ∈ f1; 2; : : : ; 5g, j ∈ f1; 2; : : : ; nrg, and k ∈ f1; 2; : : : ; nag.
Similar to the overall dynamics matrixA, overall covariance matrices
can be generated by blkdiag#⋅$ of Eqs. (58–61).

1. Time-Weighted MSE

First, time-weighted matrices Θt are assumed as follows:

Θt &
1

tf − t% 1
!Θ (62)

for∀t ∈ f1; : : : ; tfg. Theweightmatrices gradually grow as time step t
approaches the final time tf. Four different solutions are compared in
Fig. 4 for nr & na ∈ f1; 2; : : : ; 10g. Note that logdet greedy applies
the greedy algorithm to objective function (31). Pure and info greedy
apply the greedy algorithm to the unmodified objective function (5)

and inverse of the objective function, i.e., the Fisher information
matrix, respectively. The proposed algorithm minimizes the time-
weightedMSEmore efficiently than logdet for all cases. Though this
is known to performwell in practice, theoretic performance bounds are

Fig. 3 Trajectory of all targets for 5 s.
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Fig. 4 Comparison of methods over a range of total sensors available at each time step with Θt in Eq. (62).
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lacking for cases beyond: restriction to a single time step with inde-
pendent sensors [20] or multiple time steps but with spatially and
temporally independent measurement noise [15].
The Gantt chart for the particular case of nr & na & 3 is presented

in Fig. 5. The first half of the sensor IDs represents range radars,while
the second half represents angle radars. Since the default weight
matrices !Θ described in Eq. (57) includes all radius states but the
azimuth angle is included only for targets 1 and 4, it is expected that
the optimal scheduler will select range radars more frequently. The
scheduling chart shows that the proposed greedy algorithm assigns
three task slots to angle radars, and the remaining to range radars.
However, logdet greedy solution fails to weigh more on radial MSE
due to its inability to account for the weight matrices, as shown in

Eq. (31). By neglecting the weigh matrix Θt, the logdet greedy
approach always chooses sensors in a scattered manner.

2. Final Time MSE

To observe the tasking behavior over time steps t instead of over
sensors, more extreme weight matrices are assumed:

Θt &
!Θ t & tf
0 otherwise

(63)

In this case, it is natural for the optimal scheduler to select measure-
ments near the final time tf tominimize theMSE at the final timewith
the aforementioned weight matrices.
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Fig. 5 Scheduling chart with six available sensors with Θt in Eq. (62).
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Fig. 6 Comparison of methods over a range of total sensors available at each time step with Θt in Eq. (63).
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A similar comparison result is shown in Fig. 6. Except the logdet
greedy solution, the remaining solutions exhibit parallel perfor-
mance. Figure 7 presents the scheduling results for the particular
case where nr & na & 3. The first half of the sensors represents
range radars, while the second half represents angle radars similarly.
It is worth noting that the scheduling result of logdet greedy in
Fig. 5 are identical to that in Fig. 7, as the weight matrices does not
affect the objective function of the logdet surrogate problem. While
the logdet greedy algorithm fails to adjust the scheduling with
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Fig. 7 Scheduling chart with six available sensors with Θt in Eq. (63).
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Fig. 8 Comparison of methods over a range of colored-noise constant Ψt.

Table 3 Mean-square-error performance for both Eq. (62)
and Eq. (63) cases with nr ! na ! 2

Solution method

Resulting cost in Eq. (5)

Case (1) Θt in Eq. (62) Case (2) Θt in Eq. (63)

Optimum 3.5641 2.3262
Algorithm 1 5.2839 2.3606
logdet 6.0076 4.4354
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respect to the weight matrices Θt, the proposed algorithm success-
fully reduces theMSE cost by distributing the schedules near the final
time tf, as well as among the first half of sensors, which corresponds
to range radars.
The total cost of Eq. (5) using the logdet greedy and the proposed

greedy, with nr & na & 2, are presented in Table 3 for both of the
weight matrices described in Eqs. (62) and (63). Compare to the
logdet surrogate, the proposed algorithm reduces the total cost more
efficiently by taking into account the time-varying weight matrices
and achieves the cost values closer to the optimal solutions than
logdet solutions.

3. Effect of Temporal Correlation

In this subsection, we demonstrate the effect of temporal correlation
on the measurement noise. The target dynamics and measurement
models remain identical to the previous example. The time-increasing
weight matrices Θt is employed, as described in Eq. (62), and the
number of range and that of angle sensors are assumed to be nr &
na & 4. We test temporal correlations over different values of
Ψt ∈ f0.01; 0.25; 0.5; 0.75; 0.99g. The scheduling performance is
illustrated in Fig. 8. In the figure, the first half of sensor IDs represents
range radars, and the rest are angle radars similarly. Note that, as the
temporal correlation gets stronger, the measurement uncertainty also
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Fig. 9 Scheduling chart with eight available sensors and Ψt ! 0.01.

1 2 3 4 5 6

Time step

1

2

3

4

5

6

7

8

Se
ns

or
 ID

Proposed Greedy
LogDet Greedy
Pure Greedy
Info Greedy

Fig. 10 Scheduling chart with eight available sensors and Ψt ! 0.5.
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increases as time step t approaches the final time tf, resulting in overall
performance degradation. In all five test cases, the proposed algorithm
consistently outperforms the logdet solutions. Figures 9–11 present
the scheduling results for the selective cases of Ψt & 0.01, 0.5, and
0.99, respectively. Unlike the previous example, the logdet solutions
yield different sensor scheduling across all test cases. This discrepancy
arises from the fact that the measurement covariance Vt varies along
with Ψt though the weight matrices Θt remain the same for all cases.
As the temporal correlation Ψt increases, both the proposed algo-

rithm and the logdet greedy solution exhibit a preference for select-
ing sensors near the initial time. The logdet solution tends to
intensively select radial sensors near the initial time while scattering
the remaining scheduling among angle radars. This behavior can be
attributed to the default measurement variance of radius Rr being
larger than that of angle Ra as shown in Eqs. (60) and (61). This
difference grows as time elapses due to the colored noise model
described in Eq. (4). Consequently, the measurement variance of
range radars becomes too large to effectively reduce MSE, and the
logdet greedy algorithm allocates more scheduling to angle radars,
which can more efficiently reduce the overall cost. Similarly, the
proposed algorithm chooses range radars near the initial time. How-
ever, it further allocates less scheduling to angle radars and favors the
selection of additional radial sensors. This behavior arises from the
capability of the proposed algorithm to adapt to time-varying weight
matrices, unlike the logdet solution, which lacks this ability.

VIII. Conclusions
The problem of nonmyopic sensor selection in Kalman filtering

applications subject to both spatially and temporally correlated meas-
urement or process noises and problem-specific linear weightings of
covariance matrices was considered. Linear estimation insights were
employed to provide the first explicit, closed-form solution for the
covariance matrices as functions of all schedules. With the benefit of
this result, a surrogate objectivewas constructed by directly examining
the role of the scheduling variables within the cost—a unique feature.
Performance guarantees were proven for the application of the greedy
algorithm to the surrogate objective. The effectiveness of the algorithm
was demonstrated for a number of simulated examples. In futurework,
it is desired to use this explicit expression to provide guarantees for the

greedy solution on the original, nonmyopic MSE objective. Further-
more, proofs for the single-step (myopic) formulation would be of
interest for applications that are heavily computationally constrained.
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Appendix A: Proof of Submodularity for the
Surrogate Objective

Submodularity is established by verifying that Eq. (42) satisfies the
conditions in Property 1. It is well known that the set domain in this
sensor scheduling problem corresponds to a uniform matroid with
respect to cardinality ns. Also, ~F is normalized by design in Eq. (40).
It only remains to be shown that ~F is non-negative, monotone non-
decreasing, and submodular.

1. Non-Negativity
Consider a single term in the double summation of ~F , i.e., a single

term at a single time step. This will be of the form

−
λt;j

uTt;jG
−1
t ut;j %

1

αt
uTt;jG

−1
t Dt#S$G−1

t ut;j

−
λt;j

uTt;jG
−1
t ut;j

& −
λt;j

uTt;jG
−1
t ut;j

1

1%

1

αt
uTt;jG

−1
t Dt#S$G−1

t ut;j

uTt;jG
−1
t ut;j

− 1 ≥ 0 (A1)
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Fig. 11 Scheduling chart with eight available sensors and Ψt ! 0.99.
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This follows from λt;j; αt > 0, positive definiteness of Gt, and pos-
itive semidefiniteness of Dt#S$.

2. Monotonicity
Let A & fs1; : : : ; slg and A ⊆ B & fs1; : : : ; sl; sl%1; : : : ; smg.

Before, indices for different sensors had been defined by ordered
pairs corresponding to time and element within the sensor collection
at that time, e.g., #t; i$. Each element in setsA andB implicitly defines
selections of these ordered pairs. We set out to show that
~F#B$ − ~F#A$ ≥ 0.

~F #B$ − ~F #A$

& −
tf

t&1

rt

j&1

λt;j

uTt;jG
−1
t ut;j %

1

αt
uTt;jG

−1
t Dt#B$G−1

t ut;j

−
λt;j

uTt;jG
−1
t ut;j

%
tf

t&1

rt

j&1

λt;j

uTt;jG
−1
t ut;j %

1

αt
uTt;jG

−1
t Dt#A$G−1

t ut;j

−
λt;j

uTt;jG
−1
t ut;j

(A2)

&
tf

t&1

rt

j&1

λt;j

uTt;jG
−1
t ut;j %

1

αt
uTt;jG

−1
t Dt#A$G−1

t ut;j

−
λt;j

uTt;jG
−1
t ut;j %

1

αt
uTt;jG

−1
t Dt#B$G−1

t ut;j

(A3)

Consider a single term at time step t. Since A and B can include
sensors for times greater than t and our problem is causal, define sets
~A & f ~s1; : : : ; ~s ~lg and ~B & f ~s1; : : : ; ~s ~l; : : : ; ~s ~mg to be the subsets ofA
and B, respectively, containing all possible sensors relevant to time
step t. Next, examine terms of the form uTt;jG

−1
t Dt#⋅$G−1

t ut;j. Define
~ut;j & G−1

t ut;j so that the form is simply ~uTt;jDt#⋅$ ~ut;j. Since Dt#⋅$ is
diagonal, this value will just be a sum of squared elements of vector
~ut;j forwhich the sensor schedules are nonzero. To define the notation
that associates the elements of vector ~ut;j to the sensors acting on it,
let function g#i$ indicate the sensor schedule acting on the ith
element, i.e., ! ~ut;j"i.
A single term for time step t is

λt;j

uTt;jG
−1
t ut;j %

1

αt
~uTt;jDt# ~A$ ~ut;j

−
λt;j

uTt;jG
−1
t ut;j %

1

αt
~uTt;jDt# ~B$ ~ut;j

&
λt;j

uTt;jG
−1
t ut;j %

1

αtg#i$∈ ~A

! ~ut;j"2i
−

λt;j

uTt;jG
−1
t ut;j %

1

αtg#i$∈ ~B

! ~ut;j"2i

(A4)

&
λt;j

uTt;jG
−1
t ut;j %

1

αtg#i$∈ ~A

! ~ut;j"2i

−
λt;j

uTt;jG
−1
t ut;j %

1

αt g#i$∈ ~A

! ~ut;j"2i %
g#i$∈f ~B\ ~Ag

! ~ut;j"2i
≥ 0 (A5)

Recall that λt;j; αt > 0 andGt is positive definite. Since all terms at all
time steps are non-negative, we have that ~F #B$ − ~F #A$ ≥ 0.

3. Submodularity
Use the above definitions for sets A;B, and let s ∈ V \ B. We set

out to show that

~F #A ∪ s$ − ~F #A$ − ~F #B ∪ s$ − ~F#B$ ≥ 0 (A6)

For a single term in the double summation of ~F , the left-hand side of
the above expression is

−
λt;j

uTt;jG
−1
t ut;j%

1

αt
~uTt;jDt#A∪ s$ ~ut;j

%
λt;j

uTt;jG
−1
t ut;j%

1

αt
~uTt;jDt#A$ ~ut;j

− −
λt;j

uTt;jG
−1
t ut;j%

1

αt
~uTt;jDt#B∪ s$ ~ut;j

%
λt;j

uTt;jG
−1
t ut;j%

1

αt
~uTt;jDt#B$ ~ut;j

(A7)

This is of the general form:

−
1

a% b
% 1

a
% 1

a% b% c
−

1

a% c
(A8)

where a, b, c ≥ 0. This is equivalent to

b

a#a% b$
−

b

#a% c$#a% b% c$

& b
#a% c$#a% b% c$ − a#a% b$
a#a% b$#a% c$#a% b% c$

≥ 0 (A9)

since !#a% c$#a% b% c$∕a#a% b$" ≥ !a% b% c∕a% b" ≥ 1.
Therefore, every term in the left-hand side of Eq. (A6) is
non-negative. □

Appendix B: Computing Batch Terms
Let us define several dimension-relevant numbers for the follow-

ing size of matrices; ηt;m represents the dimension of the measure-
ment from mth sensor at time step t. The total dimension of all
measurements at time step t is denoted by η∀;t & k&mt

k&1 ηt;k. Then,
the total dimension of all measurements from time step 1 to time
step t becomes N∀;t & i&t

i&1 η∀;i. Each state, xt, is of dimension n.
The precomputed terms in Algorithm 1 are given by the following
equations:

αt & γeigmin Σ~νt ~νTt
> 0 (B1)

Value γ & 0.2was observed to work well in the presented examples.

G−1
t & HtPtj0H

T
t %HtFt % FT

t H
T
t % St ∈ RN∀;t×N∀;t (B2)

where St & Σ~νt ~νTt
− αtI ∈ RN∀;t×N∀;t (B3)

Let λt;j and ut;j represent the singular values and right singular
vectors of the following matrix Mt, respectively:

Mt & Θt Ptj0H
T
t % Ft ∈ Rn×N∀;t (B4)

It can be seen that each equation is a function of the batch terms Ptj0,
Ht, Ft, and Σ~νt ~νTt

. Though these terms are ingredients of the batch
processor, computing them for each time step does not amount to a
full batch update at each time. Unlike the full update (when there
exists colored noise), the individual terms can be computed via
recursions over time. These recursions arise from rewriting the
concatenated measurement vector in Eq. (9) as
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~Yt & Cbig
t

Φ#1; t$

..

.

Φ#1; t − 1$
In

xt %
Cbig
t−1Πt ~wt−1

0
% ~νt (B5)

where

Cbig
t & blkdiag#C1;1; : : : ; C1;m1

; : : : ; Ct;1; : : : ; C1;mt
$$ ∈ RN∀;t×nt

(B6)

~wt−1 & !wT
1 : : : wT

t−1"T ∈ Rn#t−1$×1 (B7)

Φ#t; τ$ & At−τ ∈ Rn×n (B8)

Πt & −

Φ#1; 2$ Φ#1; 3$ : : : Φ#1; t$
0 Φ#2; 3$ : : : Φ#2; t$
..
. ..

. ..
. ..

.

0 0 0 Φ#t − 1; t$

∈ Rn#t−1$×n#t−1$

is an upper triangular matrix

(B9)

Then the necessary batch terms are then

H1 & C1 ∈ Rη∀;1×n; Ht%1 &
HtΦ#t; t% 1$

Ct%1
∈ RN∀;t%1×n

(B10)

F1 & 0n×η∀;1 ;

Ft%1 & Φ#t% 1; t$Φ0;tΠtW
aug
t−1Πt

t#C
big
t−1$T 0n;η∀;t ∈ Rn×N∀;t%1

(B11)

Σ~νt ~νTt
&

Vaug
t−1 % Cbig

t−1ΠtW
aug
t−1Πt

t#C
big
t $T 0

0 Vt

∈ RN∀;t×N∀;t

(B12)

Ptj0 & Φ#t; 1$P1j0ΦT#t; 1$ %Φ0;tΠtW
aug
t ΠT

t ΦT
0;t ∈ Rn×n (B13)

where it is defined Φ0;t & Φ#t; 1$ 0n×n#t−2$ ∈ Rn×n#t−1$

(B14)

Finally, matrices Πt, W
aug
t , and Vaug

t are given by the following
recursions. We notate concatenated Φbig

t & !ΦT#1; t% 1$ : : :
ΦT#t − 1; t% 1$".

Π2 & Φ#1; 2$ ∈ Rn×n; Πt%1 &
Πt #Φbig

t $T
0 Φ#t; t% 1$

∈ Rnt×nt

(B15)

The colored noise model in Eq. (4) is used to accommodate colored
process noise. Similarly, notate concatenated

Wbig
t &

W1#Ψw
1 $T : : : #Ψw

t $T

W2#Ψw
2 $T : : : #Ψw

t $T

..

.

Wt#Ψw
t $T

∈ Rnt×n (B16)

Waug
1 & W1 ∈ Rn×n; Waug

t%1 &
Waug

t Wbig
t

#Wbig
t $T Wt

∈ Rn#t%1$×n#t%1$

(B17)

Note that if the process noise is white, then all Ψw
i & 0, and allWaug

t

are block diagonal. Then Ptj0 can be expressed as

Ptj0 & At−1 : : : A1P1j0A1 : : : At−1 % At−1 : : : A2W1A2 : : : At−1

% At−1 : : : A3W2A3 : : : At−1 % : : : %Wt−1 (B18)

In this white process noise case, Ptj0 could also be computed recur-
sively via the usual Kalman filter propagation equation Ptj0 &
At−1Pt−1j0A

T
t−1 %Wt−1.

Colored measurement noise is also modeled via Eq. (4) but now
with matrix Ψv

i & diag#!Ψt;1 : : : Ψt;rt "$ containing colored
noise transition values for each sensor at each time step. If sensor i
has white noise, thenΨt;i & 0 for ∀t ∈ f1; : : : ; tfg. If all sensors have
white noise, then Vaug

t are block diagonal. Again we have

Vbig
t &

V1#Ψv
1$T : : : #Ψv

t $T

V2#Ψv
2$T : : : #Ψv

t $T

..

.

Vt#Ψv
t $T

∈ RN∀;t×η∀;t%1 (B19)

Vaug
1 & V1 ∈ Rη∀;1×η∀;1 ; Vaug

t%1 &
Vaug
t Vbig

t

#Vbig
t $T Vt%1

∈ RN∀;t%1×N∀;t%1

(B20)

The procedure is then advanced through each time step, computing
Eqs. (B10–B20) and corresponding Eqs. (B1–B4). This completes
the precomputed values for Algorithm 1.
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