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ARTICLE INFO ABSTRACT

Edited by: Dr. F. Moynier Clues to unraveling the origin and history of terrestrial volatiles lie in the noble gas record of Earth’s mantle.
However, the low abundance of heavy noble gases (Ar-Kr-Xe) in mantle-derived rocks presents a major analytical
challenge that limits our understanding of mantle volatile evolution. Here, we employ a new technique of ul-
trahigh precision dynamic mass spectrometry to measure Ar-Kr-Xe isotopes in mantle-derived gas collected from
Mt. Etna (Italy) and Eifel (Germany), which both tap depleted convecting mantle reservoirs. We find that the
fractions of primordial Kr-Xe from accretionary sources (< 7 % of non-radiogenic, non-fissiogenic isotopes) and
244py_derived 3°Xe (< 9.8 + 9.3 % of total fissiogenic Xe) are both markedly lower than previously estimated.
For Mt. Etna, we find an apparent lack of detectable primordial Xe, which could reflect an additional contri-
bution from recycled atmospheric volatiles from nearby subduction. In addition, slight excesses of 233U-derived
fissiogenic Xe relative to the upper mantle composition may reflect the contribution of a crustal component
related to the occurrence of a HIMU (“high p” where p = 233U/204Pb)-type source in Mt. Etna volcanic products.
The low primordial heavy noble gas and 2**Pu-derived Xe contents of Earth’s convecting mantle, as derived from
these new data, requires extensive volatile loss during terrestrial accretion, followed by long-term degassing and
pervasive overprinting of primordial heavy noble gases by subduction recycling. In addition, we suggest that
quantitative incompatible element (including Pu, U) extraction to the Hadean crust and subsequent reintro-
duction of U via subduction could have contributed to lowering the ultimate fraction of 2**Pu-derived '*°Xe in
the upper mantle. The differences observed between this study and other upper mantle Xe studies may reflect
mantle source heterogeneities (e.g. due to the heterogeneous overprinting of mantle volatiles by subduction) but
could also result from analytical inconsistencies and/or subsurface isotope fractionation in natural systems.
Future studies are crucial to gain insight into the origin of these different results.
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1. Introduction Furthermore, the relative proportions of 2°Xe derived from radioactive

decay of extinct 1291 (t1,2=16 Myr) and 136xe from fission of extinct

Since planetary accretion, primordial (accretionary) and secondary
(radiogenic and fissiogenic) noble gas isotopes have been preserved and
accumulated within Earth’s mantle, respectively (Mukhopadhyay and
Parai, 2019). Being inert, highly volatile, and showing resolvable iso-
topic and elemental compositions between different accretionary sour-
ces (e.g., solar, chondritic, cometary; Bekaert et al., 2020), noble gases
represent key tools for understanding the origin of volatiles on Earth.

24py (t1,,=80 Myr) as well as extant 238U (t;,,=4.46 Gyr) provide
crucial timestamps for mantle volatile loss to the atmosphere (Pepin and
Porcelli, 2006). Given that 244py became extinct ~500 Myr after Solar
System formation, whilst 22U remains extant, the fraction of fissiogenic
136%e originating from 244py (hereafter 1*®Xep,/ *®Xery, where TF refers
to "total fission") provides diagnostic information about the timing and
extent of degassing experienced by distinct mantle reservoirs (Parai
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et al.,, 2019), including the deep (primitive) and convecting upper
(depleted) mantle. Variations in mantle Xe isotopes have been used to
suggest that the convecting mantle experienced extensive degassing to
the atmosphere within the first 100 Myr of planetary evolution, and has
remained isolated from the more primitive lower mantle sampled by
mantle plumes for most of Earth’s history (Parai et al., 2019; Mukho-
padhyay, 2012). In addition, 129%e1/13%Xep, variations across the solid
Earth are considered to potentially reflect (i) accretionary heterogene-
ities (i.e., predominant accretion of volatile-poor differentiated plane-
tesimals followed by later addition of volatile-rich (high I/Pu) material
(Liu et al., 2023)), (ii) sequestration of I from the lower mantle into the
core (Jackson et al., 2018), and/or (iii) rapid degassing of mantle vol-
atiles to the surface (Clay et al., 2017). However, measuring heavy noble
gas isotopes from mantle-derived rocks and minerals is inherently
challenging due to the low concentrations of gas available for analysis.
These analyses are further complicated by the widespread occurrence of
subduction-derived atmospheric volatiles, thought to account for ~80 %
of non-radiogenic heavy noble gases in the depleted mantle (Parai and
Mukhopadhyay, 2021; Holland and Ballentine, 2006; Bekaert et al.,
2021). To achieve sufficient analytical precision, gas accumulation
techniques have recently been employed (Péron and Moreira, 2018), but
re-analyses of the same basaltic glass sample (e.g., popping rock 2] [D43;
Parai and Mukhopadhyay, 2021) with different techniques have yielded
inconsistent 136Xepu/l%XeTF estimates for the upper mantle, ranging
from U-dominated (Parai and Mukhopadhyay, 2021) to Pu-dominated
(Péron and Moreira, 2018) compositions. These discrepancies leave
major open questions about the Xe isotope composition of distinct
mantle reservoirs, highlighting the need for new constraints that inform
our understanding on the evolution of volatile elements within Earth’s
interior.

One promising method to overcome sample size limitations is the
analysis of volcanic gas emissions (hereafter, “volcanic gas” refers to any
free gas of mantle origin), which provide a practically limitless supply of
mantle-derived noble gases. However, this approach is not without its
own challenges. Volcanic gas emanations often inherit atmosphere-
derived noble gases from physical interaction with groundwater sys-
tems, making it difficult to disentangle mantle-derived from
atmosphere-derived heavy noble gas signals at the analytical precision
of traditional static noble gas mass spectrometers. Although repeat
analysis of the same gas sample may help improve the analytical pre-
cision, the accurate detection of mantle-derived heavy noble gas signals
(e.g., 136Xepu/l%XeTF) remains challenging (Bekaert et al., 2019).
Marked enrichments in light Xe isotope have been observed in
mantle-derived samples and attributed to the occurrence of a chondritic
primordial component (Holland and Ballentine, 2006; Péron and Mor-
eira, 2018; Caffee et al., 1999; Caracausi et al., 2016; Broadley et al.,
2020). Distinguishing between an asteroidal and a solar-like origin of
primordial Xe in mantle-derived samples could have far-reaching im-
plications for our understanding of the origin of volatiles (e.g., water,
nitrogen) on Earth. However, the identification of primordial Xe within
mantle-derived samples is challenging due to all potential cosmochem-
ical sources of terrestrial Xe being highly enriched in light Xe isotopes
relative to the present-day atmosphere, as a result of atmospheric Xe’s
protracted isotope evolution during the Hadean and Archean eons
(Avice et al., 2017). The extrapolation of mantle-derived Xe isotope data
towards potential cosmochemical precursors induces large uncertainties
that do not allow firmly distinguishing between chondritic, solar, and
cometary sources. Difficulties in precisely defining the composition of
chondritic (e.g., average carbonaceous chondrites, AVCC) and
solar-derived (Meshik et al., 2020) end-members may also lead to var-
iable conclusions depending on the "choice" of the primordial
end-member compositions. In addition, some studies (Caracausi et al.,
2016) have shown a propensity for analytical bias during repeat gas
analysis via static noble gas mass spectrometry (Bekaert et al., 2019),
leading to contentious interpretations regarding the heavy noble gas
composition of distinct mantle domains and the detection of primordial
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heavy noble gas components within the solid Earth. Recently, we
demonstrated that subsurface fractionation of noble gases in hydro-
thermal systems can also generate light noble gas isotope enrichments
(Bekaert et al., 2023), mimicking potential primordial Xe contributions,
requiring high-precision measurements of multiple Ar, Kr, and Xe iso-
topes to robustly identify and correct for this subsurface fraction.

One way of overcoming this challenge is to investigate primordial Kr
isotope systematics. This is because the Kr isotopic signatures of chon-
dritic and solar endmembers are heavier and lighter than atmosphere
respectively, therefore constituting a powerful tool for distinguishing
between chondritic and solar volatile sources in the terrestrial mantle
(Péron and Moreira, 2018; Broadley et al., 2020; Holland et al., 2009;
Péron et al., 2021). For example, previous analyses of Bravo Dome well
gas (Holland and Ballentine, 2006) show marked enrichments in light Xe
isotopes paired with enrichments in heavy Kr isotopes. These opposite
isotopic enrichments cannot be explained by mass dependent fraction-
ation (which would similarly affect Kr and Xe isotopes by causing either
light or heavy isotope enrichments), thus requiring mixing between at
least two components (primordial and atmospheric). While the pri-
mordial Kr isotope component identified in gas samples from the upper
(Holland et al., 2009) and lower (Broadley et al., 2020)) mantle broadly
resemble AVCC, the extent to which potential fractionation processes in
volcanic gas (Bekaert et al., 2023) could obscure primordial signals and
led to contentious interpretation remains to be explored. Based on
basaltic glass analyses, the exact isotopic composition of Kr in the solid
Earth has also been suggested to exhibit an exotic (i.e., *Kr-depleted)
signature, tentatively attributed to the occurrence of a nucleosynthetic
anomaly (Péron et al., 2021). Accurately determining the primordial
origin of Kr and Xe isotopes in the mantle therefore has the potential to
unlock vital information on the origin of volatiles on Earth as well as the
different processes that have modified the mantle volatile budget
throughout Earth’s history.

To overcome some of the intrinsic limitations associated with the
analysis of mantle-derived heavy noble gases by static mass spectrom-
etry, we have developed a new analytical procedure to precisely and
accurately measure noble gases in volcanic and magmatic gas samples
by dynamic dual-inlet isotope-ratio mass spectrometry (DMS) (Seltzer
and Bekaert, 2022; Bekaert et al., 2023). This technique enables
high-precision gas isotope ratio measurements via rapid switching be-
tween reference and sample gas streams (McKinney et al., 1950),
resulting in a substantial improvement in analytical precision compared
to classical techniques for volcanic noble gas geochemistry. The DMS
method is also anchored by rigorous evaluations of two external stan-
dards (air and air-saturated water) with markedly different elemental
ratios, but similar and well-established noble gas isotopic composition,
providing a crucial check on high measurement accuracy, in addition to
precision (Seltzer et al., 2023). Here, we present the Ar-Kr-Xe isotope
compositions of pristine volcanic gases collected from Victoriaquelle (n
= 1, Eifel, Germany) and the Naftia well (n = 3, Mt. Etna, Sicily, Italy)
using the Giggenbach method (Giggenbach, 1975) and analyzed by DMS
(Seltzer and Bekaert, 2022; Bekaert et al., 2023). Information about the
geological contexts of both sampling locations is provided as part of the
Supplementary Information. On the one hand, the Eifel volcanic province
is located in a continental rift fed by the melting of convecting, upper
mantle material with potential contributions from upwelling mantle
plumes (Brauer et al., 2013; Bekaert et al., 2019). On the other hand, Mt.
Etna, the largest and most active volcano in Europe (Caracausi et al.,
2003), is located in a complex subduction zone setting (Supplementary
Information). Even if Mt. Etna volcano is not subduction-related in the
sense that it is not part of the magmatic arc, its activity could result from
the “suction” of mantle material associated with the slab rollback that is
produced at the corner between the African and European tectonic
plates (Gvirtzman and Nur, 1999). Despite these specific geological
contexts, both volcanic sources have been shown to exhibit clear
geochemical affinities with the convecting (depleted) upper mantle,
with, for example, Ne isotope systematics that are indistinguishable
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from Mid-Ocean Ridge Basalts (MORBs) (Bekaert et al., 2019; Nakai
etal., 1997). The pristine nature of these volcanic gases thus represents a
unique opportunity to document the heavy noble gas isotope composi-
tion of the upper mantle. While some studies have reported Ar and Xe
isotope data for Eifel and Mt. Etna gas using conventional static mass
spectrometry (SMS), no data exist in the literature for the Kr isotope
compositions of either volcanic gas sources, thus offering an opportunity
to provide new insight into the origin and evolution of volatiles within
the convecting mantle.

2. Material and methods
2.1. Sample collection

We collected volcanic gas from the Victoriaquelle well in Germany
(August 2021; (Bekaert et al., 2019)) and the Naftia well in Sicily, Italy
(November 2021), the latter having previously been analyzed by Nakai
etal. (1997). The volcanic gas at the Naftia well, located 40 km south of
Mt. Etna, displays the same small-scale temporal variation in He isotopes
(in the range 6.2-6.7 R,, where R, refers to the atmospheric 3He/*He) as
volcanic emissions from the Mt. Etna flanks and crater fumaroles Car-
acausi et al. (2003), Paonita et al. (2021) suggesting they are fed from
the same magmatic source beneath Mt Etna. In contrast to the crater
fumarole, the Naftia samples exhibit consistently high *“°Ar/*¢Ar. We
used 1.5 L Giggenbach bottles, following the sampling method presented
by Bekaert et al.,, (2019). These large-volume sample vessels are
pre-evacuated glass flasks equipped with double Teflon stopcocks and
partially filled with 250 mL of 5N NaOH solution (Giggenbach, 1975).
This procedure of gas sampling vastly increases both the "purity" and
total amount of volcanic noble gas available for analysis (by about three
orders of magnitude), since most reactive species (Ho0, CO3, SO2, HsS,
HCl, HF) are removed from the pristine gas by reacting with the NaOH
solution. As there is no practical limit on the size of Giggenbach bottles,
a virtually unlimited amount of clean gas can be collected for analysis,
which is ideally suited for DMS measurements.

2.2. Analytical approach

Giggenbach samples were analyzed using a recently developed
technique for DMS analysis (Seltzer and Bekaert, 2022) in the Seltzer
Lab at Woods Hole Oceanographic Institution. This analytical technique
(Seltzer and Bekaert, 2022) takes advantage of the fact that >99.8 % of

Table 1
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all the heavy noble gases in volcanic gas is “°Ar by matching *CAr ion
beam intensities between sample and reference gases to ensure that the
total pressure is balanced during analysis. In other words, Kr and Xe
isotopes can be analyzed with an assurance of balanced pressure, in-
dependent of the Kr/Ar and Xe/Ar (which can vary widely in volcanic
gases). Corrections for instrumental non-linearity and matrix effects are
thus key to the new technique (Seltzer and Bekaert, 2022).

3. Results and discussion
3.1. Radiogenic and fissiogenic excesses

Analyses of Ar isotopes from Eifel (“OAr/36Ar = 10,177.38 £ 0.89)
and Mt. Etna (**Ar/%°Ar = 1881.44 + 0.13,1911.58 + 0.12, 1921.43 +
0.12; Table 1) gases show large 40Ar excesses relative to air (“()Ar/e""Arair
=298.56 + 0.31 (Lee et al., 2006)) due to the decay of 40K in the mantle,
in line with previous investigations (Bekaert et al., 2019’ Nakai et al.,
1997). Because of issues with the isobaric interference of 38Ar and 3°Ar
by the low energy “°Ar tail, 3®Ar/3%Ar data are not presented in this
study (see Seltzer and Bekaert 2022) for a detailed explanation of the
40Ar tail issue for high “°Ar/36Ar samples)

Xenon isotope spectra show clear radiogenic (e.g., 12°I-derived Xe,
hereafter 129XeI; t1/2=16 Myr) and fissiogenic (131'136Xe-n:) isotope ex-
cesses originating from the convecting mantle (Fig. 1a—c). Comparing
the relative ratios of fissiogenic Xe isotope excesses in Eifel and Naftia
samples to the fission yields of 238U and 2**Pu indicates a clear upper
mantle affinity with 238U fission, with no requirement for a significant
contribution of 2**Pu fission (Fig. 1d). Fig. 2 further illustrates this point
by showing a comparison of Xe isotope systematics for some previously
published (SMS) and ultrahigh precision (DMS) mantle noble gas data
with the isotopic trends for 238U and 2**Pu fission. For both Mt. Etna and
Eifel, new Xe isotope data acquired by DMS show a marked improve-
ment in analytical precision compared to previously available data ac-
quired by SMS (Fig. 1a,c). This improvement in analytical precision is
further illustrated by extrapolating all the measured Xe isotope com-
positions of Eifel and Mt. Etna gas to the 5'2°Xe/'*%Xe of the MORB
source (Parai and Mukhopadhyay, 2021; Péron and Moreira, 2018),
which is considered as representative of the convecting mantle (Fig. 3).
The MORB mantle source and extrapolated Eifel compositions have
identical magnitudes of 5'*°Xe/'3*Xe excesses, confirming that the Eifel
mantle source represents the convecting upper mantle, with limited (if
any) addition of 238U-derived fissiogenic Xe from the crust. Basically, the

Mt. Etna and Eifel volcanic noble gas isotope data, measured by dynamic mass spectrometry, reported in delta notation relative to air (Ozima and Podosek, 2002).

Sample “OAr/3Ar +1o 5 84Kr/3°Ar 5 132Xe/*°Ar

(a) Mt. Etna 1 1880 21 876.7 2.9 2886.1 12.574
Mt. Etna 2 1910 21 875.2 2.9 2878.1 12.581
Mt. Etna 3 1920 21 868.9 2.9 2863.8 12.587
Eifel 10,177 112 557.0 3.1 2433.8 15.879

852Kr/3*Kr +1o 5%°Kr/3*Kr +1o 5%0Kr/5%Kr +1o
(b) Mt. Etna 1 -0.182 0.088 0.406 0.075 0.589 0.106
Mt. Etna 2 -0.302 0.090 0.420 0.076 0.723 0.108
Mt. Etna 3 -0.206 0.091 0.453 0.077 0.659 0.109
Eifel -0.193 0.508 -0.136 0.431 0.057 0.605

5128Xe/13%e +1o 5129%Xe/13%Xe +1o 5131Xe/13%Xe +1o
(©) Mt. Etna 1 0.048 0.322 11.279 0.116 0.427 0.131
Mt. Etna 2 -0.315 0.325 11.254 0.118 0.174 0.133
Mt. Etna 3 0.042 0.327 11.502 0.118 0.335 0.134
Eifel 1.523 0.896 71.510 0.514 2.148 0.632

5132Xe/1%%%e +1o 5134Xe/1%%Xe +1o 5130Xe/1%Xe +1o
Mt. Etna 1 2.538 0.116 9.862 0.144 14.055 0.131
Mt. Etna 2 2.296 0.118 9.712 0.146 13.799 0.133
Mt. Etna 3 2.612 0.118 10.072 0.147 14.373 0.134
Eifel 13.778 0.514 49.767 0.594 70.248 0.608
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(b) Mt. Etna (Sicily)
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Fig. 1. Xenon isotope systematics of Mt. Etna and Eifel volcanic gas. (a) Comparison of Naftia well gas Xe isotope compositions measured by static-vacuum (Nakai
et al., 1997) and dynamic (this study) mass spectrometry. (b) Ultrahigh precision Xe isotopic spectrum of Mt. Etna volcanic gas with 12°Xe excess from '2°I radiogenic
decay (**°Xe)) and 1311%6Xe excesses from 228U (Xey) and 2**Pu (Xep,) fission. The crustal fissiogenic contribution derived by assuming a 129%6/136Xe of MORB
(Péron and Moreira, 2018) is shown in light blue and labeled "crustal Xey". (c) Ultrahigh precision Xe isotopic spectrum of Eifel gas (this study) and comparison with
literature data (Bekaert et al., 2019). (d) Spectra of fissiogenic Xe isotopes in Mt. Etna and FEifel gas (this study) compared with the fission spectra for fission of 2*U
(orange area) and 2**Pu (purple area). The spectrum of fissiogenic Xe isotopes in popping rock 2zD43 from Péron and Moreira (2018) is also shown for comparison.

Uncertainties are 1c.

1291 derived 12°Xe/fissiogenic 1*®Xe ratio of the convecting mantle is
close to that of the atmosphere (Pepin and Porcelli, 2006). However at a
finer scale, some disparities exist between the Xe composition of Eifel,
measured in this study, and previous determination of Xe in MORB
samples (Péron and Moreira, 2018), particularly for 5131Xe/13%%e and
5132Xe/"3%%e (Fig. 3).

Extrapolating the measured Xe isotope compositions of Mt. Etna to
the 5'2°Xe/1%%Xe of the MORB source (Parai and Mukhopadhyay, 2021;
Péron and Moreira, 2018) yields an extrapolated 5'%°Xe/!3Xe greater
than that of the MORB mantle source or extrapolated Eifel compositions
(Fig. 3b). If Eifel, Mt. Etna and MORBs were to tap a common convecting
mantle reservoir, then they should exhibit comparable excesses of
radiogenic 2°Xe and fissiogenic '*®Xe relative to air. Comparing the
Eifel Xe isotope composition with MORBs indicates that only a minimal
fraction (4 + 3 %) of the fissiogenic 136xe excesses in Eifel may reflect an
addition of crustal 23®U-derived Xe. For Mt. Etna, ~19 % of fissiogenic
136Xe excesses could correspond to an addition of crustal 2%®U-derived
Xe (Figs. 1-3). The amount of crustal 238(_derived ®Kr is estimated by

using the average '°Xe/%Kr production ratio (6.45) for the sponta-
neous fission of 228U (Ballentine and Burnard, 2002), thus allowing for
the amount of crustal 228U-derived 8*Kr to be derived from the 8*Kr/%Kr
fission production ratios (Ballentine and Burnard, 2002). The pro-
portions of fissiogenic %°Kr estimated for our samples with this approach
are minor, resulting in small corrections to the measured ®°Kr/®*Kr
(Fig. 4.

3.2. Lack of significant primordial Kr and Xe signatures

DMS data for Eifel gas reveal a Kr isotope signature that is indistin-
guishable from air within the sub-per mil analytical uncertainty (Fig. 4).
While the elevated “°Ar/°Ar and 5'%°Xe/'3%Xe of this Eifel sample
suggest that >25 % of Ar and ~50 % of Xe in the measured gas is directly
sourced from the mantle (Bekaert et al., 2019), its air-like Kr isotope
signature (Fig. 4) implies an absence of detectable chondritic Kr
component, within uncertainty, in the Eifel mantle source. Note that the
final uncertainties on the Eifel Kr data are larger than for Etna, due to
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Fig. 3. Xenon isotope composition of the Eifel (a) and Mt. Etna (b) mantle sources obtained by extrapolation of the measured Xe isotopes to the 5'2?Xe/!*°Xe of the
upper mantle (**Xe/13%%Xe = 7.41, corresponding to 812%Xe/130%e = 141 %o; Parai and Mukhopadhyay, 2021; Péron and Moreira, 2018) (orange dashed line). The
MORB mantle source Xe composition derived from popping rock analysis (Péron and Moreira 2018) is shown for comparison (red area). Uncertainties are 1c.

intrinsic characteristics of the analytical approach. In particular, due to
the pressure balancing of reference and sample gas on “CAr beams,
samples with high “°Ar/%Ar (i.e., high “°Ar/Kr and “°Ar/Xe) are
analyzed with proportionally lower Kr and Xe beams, therefore invari-
ably reducing counting statistics for Kr and Xe isotope determination.
Thus, samples with high “°Ar/3¢Ar tend to have comparatively larger
uncertainties on heavy noble gas isotope measurements.

For Mt. Etna, our DMS analyses reveal only slight heavy Kr isotope
enrichments, potentially compatible with either (i) a minor contribution
from primordial, AVCC-like Kr, or (ii) gravitational enrichment of the
atmospheric (groundwater-derived) Kr fraction (Fig. 4). This latter
process relates to isotopic fractionation via gravitational settling in the

unsaturated zone above groundwater systems, whereby physical heavy-
isotope enrichment of ~0.004%o u~ ! m ! are transferred to groundwater
by equilibrium dissolution at the water table (Seltzer et al., 2019). Given
the small magnitude of the resulting isotope fractionation, this process is
typically not considered in classical studies of volcanic gas emissions by
SMS. However, such a process rises well above analytical noise at the
level of precision of DMS. Here, heavy Kr isotope enrichments in Mt.
Etna volcanic gas relative to air-equilibrated water (AEW) are broadly
consistent with a signal of gravitational settling at a depth of ~30 m
(with minor contributions from thermal diffusion and diffusion against
constant fluxes of other gas species (Severinghaus et al., 1996)),
potentially consistent with observations of water table levels in the
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region (Fan et 2013) (Fig. 4). Assuming that deep
groundwater-derived noble gases were degassed into a volcanic gas
phase via COy stripping (Bekaert et al., 2023), most of the
non-radiogenic heavy noble gas isotope signals detected in Mt. Etna
volcanic gas could thus correspond to a deep groundwater signal.
Ar-Kr-Xe elemental ratios indeed suggest limited (if any) contributions
from unfractionated air (Fig. S1).

Although 5!%*Xe/'*%Xe and 5'?°Xe/'*°Xe determination by DMS is
not yet available (due to analytical challenges associated with low signal
sizes), our data consistently show only minor '28Xe excesses relative to
the atmospheric composition (Figs. 1, 3): the average 5%8Xe/!**Xe of
Mt. Etna samples (-0.08 + 0.21%o; 10) is indistinguishable from air at the
sub-permil level, and the 5128Xe/'3%e (+1.52 0.90%o; 10) of the Eifel
sample is only slightly positive. Importantly, the occurrence of heavy
isotope enrichment due to gravitational settling would tend to slightly
lower §'28Xe/130Xe values, potentially masking primordial signals.
However, when translating the inferred gravitational settling Kr isotope
signal (i.e., ~0.12%0 amu ! for a water table depth of 30 m) to Xe iso-
topes, the 8'28Xe/!%Xe corrected for gravitational settling remain
within error of the atmospheric composition (Fig. S2). This supports the
absence of a detectable primordial Xe component in Mt. Etna volcanic
gases, regardless of any assumption about the potential effect of gravi-
tational settling. For Eifel, the lack of resolvable heavy Kr isotope en-
richments relative to air precludes potential identification of a
gravitational settling signal.

al.,

3.3. Subsurface fractionation in hydrothermal systems

Subsurface isotope fractionation is a globally pervasive process that
can cause significant (per mil-level) light noble gas isotope enrichments
(i.e., positive 5128Xe/!3%Xe) within hydrothermal systems (Bekaert et al.,
2023). Here, we cannot exclude the possibility that the Eifel gas sample
measured in this study was marginally affected by subsurface isotope
fractionation (as previously observed for other Eifel samples (Bekaert

et al., 2023)), hence producing the slightly positive 5!28Xe/!3%Xe rela-
tive to Mt. Etna samples. Thus, the estimated proportion of primordial
Xe in the Eifel mantle source is a maximum value. Because Mt. Etna gas
samples were directly collected from a well, they likely avoided the
processes of subsurface isotope fractionation (Bekaert et al., 2023)
potentially affecting Eifel data.

For the sake of clarity and transparency, we emphasize that attrib-
uting the slightly positive 5'22Xe/*3%Xe observed for Eifel to subsurface
isotope fractionation would affect Kr isotope systematics for this sample.
For illustrative purposes, we carried out a correction of Eifel Kr isotope
data for potential subsurface isotope fractionation following the
approach of Bekaert et al. (2023), assuming an extreme scenario
whereby the positive 5'28Xe/13*Xe observed for Eifel arises from diffu-
sive transport fractionation (DTF) (i.e., complete absence of a chondritic
Xe component in Eifel gas). We find that, in this case, the Kr isotope
composition of Eifel (corrected for potential DTF, propagating all po-
tential sources of uncertainty) is in agreement with previous
mantle-derived data (including Bravo Dome samples BDO7 and BD04,
with *°Ar/%Ar akin to that of the Eifel sample analyzed in this study;
Fig. S3), suggesting a potential contribution from an AVCC-like Kr
component within Earth’s mantle. However, the occurrence of this
chondritic Kr component only arises when the 5'28Xe/'3%Xe of the Eifel
sample is assumed to be ~0%o (i.e., complete overprinting of mantle Xe
by recycling of atmosphere-derived components), thus necessitating the
original (chondritic) Kr isotope composition of the upper mantle to have
been far less extensively overprinted by subduction than Xe isotopes.
Such an extreme scenario is considered highly unlikely. Therefore, while
we cannot exclude the possibility that the heavy Kr isotope compositions
of Mt. Etna and DTF-corrected Eifel samples reflect slight contributions
from a chondritic, AVCC-like component, our data require a smaller
contribution of primordial (chondritic or solar) Xe within Earth’s con-
vecting mantle than was identified in previous analyses of upper
mantle-derived Xe by SMS (Holland and Ballentine, 2006; Péron and
Moreira, 2018; Bekaert et al., 2019; Caffee et al., 1999).
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3.4. Mantle source composition estimates

A correction for surficial contamination by atmosphere-derived
components is carried out for both site locations by extrapolating the
measured Xe isotope spectra to the surmised mantle source §'2°Xe/13%Xe
(Parai and Mukhopadhyay, 2021; Péron and Moreira, 2018) (Figs. 3, 5).
For Mt. Etna, the extrapolated 5128%Xe/13%%e (5'28Xe/ 3 %Xepxtp) are so
close to air that they encompass negative values that should only be
regarded as indicating that the mantle source §'28Xe/**°Xe of Mt. Etna is
essentially air-like. At face value (i.e., not considering the potential for
light Xe isotope enrichment due to secondary processes), the
5128Xe /1% epxp of Eifel gas appears slightly positive, being potentially
greater than the air-like 5!1%8Xe /13 epyrp of Mt. Etna. This positive
6128Xe/130XeEXTp of Eifel gas indicates that the fraction of
non-radiogenic, non-fissiogenic upper mantle Xe from a chondritic
source is < 7 %. Interestingly, trace element and radiogenic isotope data
for MORBs show the convecting mantle has been heterogeneously
overprinted by subduction of surface-derived materials (e.g., Hofmann
2003), which appears supported by the suggestion that *°Ar/36Ar vari-
ations across different mantle domains reflect variable extents of over-
printing by subduction-derived (atmospheric) argon (e.g., Parai et al.
2012, Péron et al. 2019, Bekaert et al. 2024). Given that Xe is likely to be
more efficiently recycled to the mantle than Ar, one may expect even
greater heterogeneity in the extent of Xe recycling across the convecting
mantle than presently observed from Ar isotope systematics. Thus, we

rock data { /\ Popping rock Galapagos Iceland
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cannot exclude the possibility that slight differences in 5128Xe /1% epyrp
exist between the different convecting mantle reservoirs sampled at
mid-ocean ridges, Eifel, Mt. Etna, and other well gases (Parai and
Mukhopadhyay, 2021; Holland and Ballentine, 2006; Péron and Mor-
eira, 2018; Bekaert et al., 2019; Caffee et al., 1999). We also cannot
exclude the possibility of an even greater extent of Xe overprinting by
recycled atmospheric gases in the mantle source of Mt. Etna compared to
Eifel, potentially related to the addition of recycled atmospheric vola-
tiles from nearby subduction (Supplementary Information). Recent
alkaline magmas indeed suggest an increase in HoO/CO- of the mantle
source of Mt. Etna through time (Bragagni et al., 2022), potentially
related to a greater contribution of water-rich subducting fluids that
partially overprint the older, carbonatite-like signature. However,
because the 6128Xe/13°XeEXTp of Eifel and Mt. Etna remain indistin-
guishable from one another within uncertainty, these Xe isotope data are
discussed together to provide a best estimate for the upper mantle’s
composition based on DMS analyses. In doing so, our data suggest that
the fraction of primordial Xe within the upper mantle is < 3 % (Fig. 5), in
contrast with previous suggestions of primordial Xe contributions on the
order of ~20 % (Parai and Mukhopadhyay, 2021).

The fissiogenic Xe budgets of Eifel and Mt. Etna mantle sources
appear largely dominated by 233U-fission. In order to more precisely
estimate the proportion of 2**Pu-derived Xe in both mantle sources, we
carry out Monte Carlo linear least square deconvolutions of extrapolated
Xe isotope data (Parai and Mukhopadhyay, 2015) (Supplementary
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Information). Crucially, the exact proportions of primordial (in this case
AVCCQC), atmospheric, 238(7.fission Xe and 2**Pu-Xe in Mt. Etna and Eifel
mantle sources may still vary depending on the choice of the mantle
source '2°Xe/!%%Xe and inclusion or not of '?®Xe in the calculation
(Tables S1 and S2). However, they are generally consistent with only a
minimal contribution from 136Xepu, corresponding to 136Xepu/136XeTF
lower than previously-derived estimates for convecting (31 + 11 %) and
lower (~97 %) mantle sources (Parai et al., 2019) (Fig. 6; Table S3).
Considering a mantle source 12°Xe/!3%Xe of 7.41 and excluding '?®Xe
suggests that the upper mantle >*Xep,/!*®Xerr derived from Eifel data is
between 4 and 17%, with a mean value of 9 % (Fig. 6; Table S1). For Mt.
Etna, including 12®Xe in the Monte Carlo linear least square deconvo-
lution generates even lower 136X epu/ 30Xerr values close to 0 (i.e.,
virtually no Xepy; Table S2), in line with the direct comparison of fis-
siogenic Xe isotopes excesses and fission spectra for fission of 233U and
244py (Fig. 1d). These 136X epy/ 3®Xerr should however only represent
minimal values due to the surmised addition of fissiogenic Xe from
crustal 238U (Fig. 1b). The occurrence of this crustal component in Mt.
Etna volcanic gas could potentially relate to (i) fissiogenic Xe production
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Fig. 6. 136%en/1%%Xerr (2) and 12°Xe;/13%Xep, (b) variations for Mt. Etna and
Eifel mantle sources (this study), popping rock 2][D43 (Parai and Mukho-
padhyay, 2021 (1, in blue); Péron and Moreira, 2018 (2, in red)), and com-
parison with MORB mantle and plume-influenced averages (Parai et al., 2019).
Our samples were corrected for surficial atmospheric Xe contribution by
extrapolation of the measured Xe isotope data towards the upper mantle source
12956 /13%%e of 7.41 (Fig. 2). For comparison with previous studies, the initial
(primordial) Xe isotope composition of the mantle is AVCC, the recycled at-
mosphere component is taken to have a modern-like isotopic composition, and
128¥e is excluded. Changing one or several of these assumptions (e.g., upper
mantle source 1?°Xe/'*%Xe or including 128%e) would affect the face value of
these Monte Carlo outputs (Tables S1 and S2) without changing our
conclusions.
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in the crust beneath Mt. Etna, or (ii) the occurrence of
subduction-derived material in the Mt. Etna mantle source (e.g.,
Tonarini et al. 2001). The latter point may also reflect the occurrence of
a long-lived recycled component, potentially consistent with the pro-
posed affinity of Mt. Etna volcanic products with both HIMU- ((“high-p”;
1=28U/20pb) and depleted "upper" mantle-type end-members (Cor-
reale et al., 2014). Note that N isotope systematics have been used to
suggest that the Eifel mantle could have been metasomatized by sub-
ducted volatiles (Labidi et al. 2020), but we see no evidence for the
occurrence of such a component (i.e., no absolute excess of fissiogenic
Xe relative to MORBs) based on Xe isotope systematics in this study.

For such low 136Xepu samples, difficulties in resolving the Xep,
component can generate spuriously high 12°Xe;/136Xep, that may not be
representative of the mantle source composition (Parai and Mukho-
padhyay, 2015). Nonetheless, our data consistently point towards
greater mantle source '2°Xe;/!*®Xep, than previously determined values
(Fig.6). Monte Carlo linear least square deconvolutions also support our
previous conclusion of minimal contributions from the primordial
(AVCC) component, confirming that the non-radiogenic and
non-fissiogenic Xe isotopes within the mantle sources of Eifel and Mt.
Etna vastly derive from recycled atmosphere (Tables S1 and S2).
Considering a mantle source '2°Xe/13%Xe of 7.41, excluding '2®Xe, and
considering the average composition of our three Mt. Etna gas mea-
surements indicates that only 3.3 + 1.1 % of non-radiogenic, non--
fissiogenic Xe in the upper mantle derives from AVCC, with the
remaining fraction (96.7 + 1.1 %) deriving from recycled atmosphere.
Remarkably, Monte Carlo linear least square deconvolutions of Eifel
data excluding '?%Xe consistently yield negligible (~0 %) contribution
from AVCC, regardless of the assumed mantle source *°Xe/!3%Xe
(Table S1). Including '28Xe yields slightly higher (several percent)
proportions of AVCC, which should only be regarded as maximum
values given the potential for light Xe isotope enrichments to have
emerged as a result of sub-surface isotope fractionation.

3.5. Implications and open questions

The low primordial heavy noble gas (accounting for <3 % of non-
radiogenic, non-fissiogenic Xe) and low 2*Pu-derived Xe
(*36Xep,/1%Xerr ~ 9.8 + 9.3 %) contents of Earth’s convecting mantle
sampled at Eifel and Etna, have important implications for our under-
standing of terrestrial volatile evolution, therefore warranting detailed
discussion and careful comparison with previously published mantle
noble gas data.

3.5.1. Early planetary volatile loss

Our study indicates that the fraction of primordial Xe within the
mantle sources of Eifel and Mt. Etna (~3.3 + 1.1 % of non-radiogenic,
non-fissiogenic Xe) may be too low to allow for an identification of
terrestrial Xe’s precursor(s). The possibility that Mt. Etna and DTF-
corrected FEifel data point to an apparent chondritic Kr component
within Earth’s mantle cannot be completely discarded. Crucially, the Kr
AVCC composition was recently redefined using the average and stan-
dard error of Kr isotope compositions from a subset of carbonaceous
chondrites (Péron et al., 2021), leading to a more precise estimate of the
AVCC composition than was previously proposed (Pepin, 2000)
(Fig. S3). The authors argued that small deviations from an AVCC
end-member should represent mantle Kr nucleosynthetic anomalies,
with far reaching implications for the accretionary history of our planet
(Péron et al., 2021). In light of the fact that there is large variability in
bulk carbonaceous chondrite Kr isotope data (Fig. S3), we caution
against overinterpreting Kr isotope deviations from this precisely
defined AVCC end-member as truly reflecting mantle source Kr nucle-
osynthetic anomalies (Péron et al., 2021).

The low 136Xepu/136XeTF of the upper mantle can be regarded as
resulting from the extensive, long-term degassing of the upper mantle.
However, the occurrence of 129%e from short-lived '2°1 (t1/2=16 Myr)
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within Eifel and Mt. Etna mantle sources implies that the apparent lack
of chondritic Xe cannot be ascribed to a complete loss of mantle volatiles
through long-term degassing. One possibility is that accretionary heavy
noble gases were mostly lost from planetary building blocks, prior to the
main stage of terrestrial accretion and 12°Xe build-up via 12°I radioactive
decay. As suggested by the absence of significant trapped “planetary”
noble gas components in the 4,565-My-old andesitic meteorite Erg
Chech 002 (Barrat et al., 2021), primordial heavy noble gases could
have been lost during degassing of early-formed planetesimals that
accreted to form our planet. Such a scenario has recently been proposed
for water (Newcombe et al., 2023), suggesting that substantial amounts
of water (and, by extension, primordial heavy noble gases) could only
have been delivered to Earth by means of unmelted material, rather than
differentiated (and efficiently degassed) planetesimals. The undisputa-
ble occurrence of primordial light noble gases (He, Ne) within Earth’s
mantle (Mukhopadhyay and Parai, 2019), however, precludes the pos-
sibility that Earth initially accreted devoid of primordial volatiles, and
rather calls for a pervasive overprinting of primordial heavy noble gases
(in particular Xe) by subduction of surface-derived components. Such a
scenario appears compatible with the present-day global mass balance
of volatile element transport between Earth’s surface and interior,
pointing to a net ingassing regime of heavy noble gases — as opposed to a
net outgassing regime for light noble gases (Bekaert et al., 2021).

3.5.2. Pu/U systematics of the early Earth and the potential role of the
hadean crust

Our data suggest that the total fissiogenic 13¢Xe from 2**Pu-Xe (9.8 +
9.3 %) in the convecting mantle sampled at Eifel and Mt. Etna may be
lower than previous estimates suggest (31 + 11 %, Parai et al., 2019)
(Fig. 6), supporting the interpretation of a greater extent of upper mantle
long-term degassing relative to the plume mantle (Pepin and Porcelli,
2006; Parai and Mukhopadhyay, 2021). As discussed by Mukhopadhyay
(2012), the exact 136Xepu/ 136X15\Tp of a given mantle reservoir is however
difficult to quantify and may also depend on the assumptions under-
lining the extrapolation of measured data towards the mantle source
composition (Tables S1 and S2). Estimates of the total amount of long
term degassing based on 3®Xep, /1 36Xer systematics also depend on the
initial Pu/U of Earth’s mantle, which remains a critical yet poorly
constrained parameter, widely taken as the accepted chondritic value of
0.0068 (Hudson et al., 1989). There is a strong case for revising this
value, which was inferred from two samples of the LL6 St Severin
meteorite (Hudson et al., 1989) by combining temperature steps
exhibiting a factor 4 variation in Pu/U, and then applying decay cor-
rections based on whole-rock I-Xe ages (Turner et al., 2007). Other es-
timates of the initial chondritic Pu/U have yielded lower values (in the
range 0.004-0.005) (Jones, 1982) than commonly assumed. Lowering
this parameter would directly reduce the amount of Pu expected to have
decayed within Earth’s mantle.

In addition, most models of terrestrial Xe evolution have considered
that the progressive extraction of U and Pu from the mantle to shallow
crustal reservoirs occurred over the Archean and Proterozoic eons (Parai
and Mukhopadhyay, 2018), i.e., after mantle Pu had gone extinct. Evi-
dence for a primordial (4.407533 Gyr-old; Morino et al., 2017) and
large-scale mantle-crust differentiation event is yet provided by the
ubiquitous presence of both positive and negative *4>Nd anomalies in
the Archean rock record (Liou et al., 2024). Coupled 142143Nq chro-
nometry demonstrates a virtually synchronous differentiation of the
terrestrial and lunar mantle Morino et al. (2017), suggesting that early
crust formation was driven by magma ocean crystallization following
the giant impact (Korenaga, 2021; Liou et al., 2024). In line with the
detection of Xep, in Hadean zircons (Turner et al., 2007), we speculate
that a sizeable fraction of Pu decay on Earth could have occurred within
the Hadean crust, rather than in the mantle (potentially consistent with
some of the latest scenarios explored by Zhang et al. (2023). Extensive
reworking of the Hadean crust via bombardments, thermal processing,
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and early geodynamics would have caused the degassing of crustal Xepy
to the atmosphere, in line with the fissiogenic component of atmospheric
Xe’s precursor being almost exclusively derived from Pu (Pepin and
Porcelli, 2006; Bekaert et al., 2020). How much Pu (and U) would have
been extracted from the mantle to the Hadean crust is however un-
known. Although comparisons between meteorite (Hudson et al., 1989)
and Hadean zircon (Turner et al., 2007) Xe data generally suggest that
Pu/U fractionation during aqueous and magmatic processes associated
with Earth’s formation and early evolution was likely limited (i.e.,
within a factor 2), the exact geochemical behavior of Pu on the early
Earth remains highly uncertain (see literature review on this topic in
Supplementary Information).

Our knowledge of the global volume and composition of the Hadean
crust is extremely limited.

In general, the Hadean crust is assumed to form from the residual
melt of magma ocean crystallization. Magmatic-thermomechanical
models of Hadean geodynamics (Fischer and Gerya, 2016) suggest a
crustal thickness of up to 40 km (i.e., total volume of ~2.03x10° m3),
lying on top of the asthenospheric mantle. This early crust would have
been less dense than the average mantle composition (Jordan, 1988),
thus forming a buoyant, long-lasting lithosphere, in the form of a stag-
nant lid (Caro et al., 2017) (Debaille et al., 2013). In order to tentatively
evaluate the amount of mantle U (and, by extension, Pu) potentially
extracted to the Hadean crust during magma ocean crystallization, we
used a model of U partitioning adapted from previous work by Morino
et al. (2018) and Caracas et al. (2019) (see model description in Supple-
mentary Information). These models show that the amount of mantle U
ultimately extracted to the Hadean crust depends on a series of param-
eters including (i) the amount of Ca-perovskite at pressures >22 GPa,
and (ii) the fraction of entrapped melt in cumulates. However, these
simple calculations show that the Hadean crust and basal magma ocean
(BMO) potentially contained up to ~50 % and ~40 % of U in the Bulk
Silicate Earth (BSE), respectively. In this case, the convecting mantle (i.
e., 78 vol.% of the BSE) would have been left with only 8-27 % of its U
budget (and, by extension, a similar fraction of its Pu budget) after
crustal extraction (see Supplementary Information for additional dis-
cussion). The preservation of depleted Nd signatures (i.e., positive 1*>Nd
anomalies) in the mantle until the Neo-Archean (Debaille et al., 2013)
and widespread observation of negative **>Nd anomalies in Archean
crust samples worldwide (Caro et al., 2017; Guitreau et al., 2019;
Reimink et al., 2018; O’Neil et al., 2008; Schneider et al., 2018) further
indicate preservation of the Hadean crust on the timescale of ~1 Gyr.
Over that period, the reintroduction of crustal components into the
mantle via crustal recycling would have been inefficient due to the
widespread melting of the early crust, laden with heat-producing ele-
ments, such that a sizeable fraction of Pu decay on Earth would indeed
have occurred within the crust, rather than in the mantle. The possibility
that substantial incompatible element extraction to the crust occurred
within the lifetime of 2**Pu thus suggests that differences between the
136Xepu/l%XeTp and 129Xel/136Xepu of deep and convecting mantle res-
ervoirs do not solely reflect the outcomes of accretionary and long-term
degassing processes, as has been conventionally assumed. Furthermore,
the occurrence of significant 12°I-derived 12°Xe but not 2**Pu-derived
136%e suggests that either I is less incompatible than Pu during melting,
or 12°T was largely exhausted prior to the major extraction event into the
crust (compatible with a 4.40%393 Gyr-old, large-scale mantle-crust
differentiation event (Morino et al., 2017)).

3.5.3. Pervasive overprinting of the upper mantle by subduction

The fact that the fractions of recycled atmospheric Xe (and poten-
tially Kr) within the Eifel and Mt. Etna mantle sources are larger (~97
%) than previously considered (~80 %) suggests potential local en-
hancements of mantle volatile overprinting by subduction, reinforcing
the prominent role of subduction in overprinting the global mantle
volatile budget (Holland and Ballentine, 2006). Furthermore, the
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modern-like composition of the recycled atmospheric Xe component
implies that efficient transport of surface-derived Xe into the mantle by
subduction started over the past 2.5 Gyr (Parai and Mukhopadhyay,
2018), i.e., once the atmosphere had reached its present-day Xe isotope
composition (Avice et al., 2017). Around the same time as efficient
volatile recycling to the mantle started to occur, the large-scale oxida-
tion of Earth’s surface likely caused a significant change in the pre-
dominant surface oxidation state of U, which became soluble within
oxidizing environments at the Earth’s surface (Nielsen, 2010). This
could have facilitated its transport from continents to the altered oceanic
crust and ultimately back into the mantle, potentially causing the U
content of the depleted mantle to have increased over Earth’s history
because of U subduction and convective mixing. Such a scenario would
be consistent with the present-day influx of subducted U in oceanic crust
(~3.1x107 mol/yr; Nielsen, 2010) being greater than the outflux of U
emitted at mid ocean ridges (~1.1x10” mol/yr; computed by consid-
ering that about 20 km® of oceanic crust with 50 ppb U is emitted at
mid-ocean ridges every year). This first-order mass balance calculation
suggests that the total amount of U in the convecting mantle could be
increasing through time, at a present-day rate of ~2x10” mol of U per
year. Assuming this flux has remained constant over the 3 billion years
of subduction would indicate that up to 5.9x10'® mol of U could have
been added to the mantle since the onset of modern-style subduction.
When compared to the total mass of the convecting upper mantle
(3.1x10% g), this amount of U (1.4x10"° g) would correspond to 4.5
ppb U, compatible with the actual U content of the depleted mantle (5.4
+ 1.3ppb; Arevalo et al., 2009) (Supplementary Information). Impor-
tantly, we do not argue here that all of the U in the present-day upper
mantle is recycled, as independent constraints from U stable isotopes
and radiogenic Pb isotopes suggest it is unlikely that the majority of
upper mantle U originates from subduction (Andersen et al., 2015).
Instead, we suggest that the total amount of U introduced within the
solid Earth of the last 3 billion years of subduction could have, at least to
some extent, impacted the general U budget of the convecting mantle.
How the combination of early and quantitative incompatible element (U
and Pu) extraction to the Hadean crust and subsequent reintroduction of
U (after Pu decay) via subduction (Fig. 7) modified (i.e., lowered) the
ultimate 136Xepu/l%XeTp of the upper mantle is currently unknown and
unaccounted for in state-of-the-art models of mantle Xe isotope
evolution.

3.5.4. Discrepancy with previously published data?

At face value, the observation of marked light Xe isotope enrich-
ments in several upper mantle-derived samples analyzed previously by
SMS appears incompatible with the lack of significant primordial isotope
signature in Eifel and Mt. Etna mantle sources. For free gas samples,
there is a possibility that some of the light Xe isotope enrichments re-
ported in the literature could - at least in part — result from analytical
artifacts (i.e., mass-dependent isotope fractionation during sample
preparation, Xe separation from Ar, purification, and/or analysis) and/
or subsurface isotope fractionation in natural systems (Bekaert et al.,
2023). As displayed on Fig. 5, previous analyses of mantle-derived heavy
noble gases do not plot along a single mantle line in 5'2%Xe/**°Xe versus
512°Xe/13%e space, suggesting that some of the observed variability
could also arise from physical processes of fractionation. However, it is
clear that light Xe isotope enrichments paired with heavy Kr isotope
enrichments, as observed in well gases Bravo Dome (Holland and Bal-
lentine, 2006), cannot easily be explained by mass dependent fraction-
ation. These data require a contribution from a chondritic-like
component that is enriched in light Xe isotopes and heavy Kr isotopes.
Why distinct portions of the convecting mantle would retain such var-
iable fractions of primordial components remains to be explained. One
possibility is that the observed differences between the proportions of
primordial heavy noble gases across different convecting mantle reser-
voirs (as sampled at mid-ocean ridges, Eifel, Mt. Etna, and other well
gases; Fig. 5) primarily reflect mantle source heterogeneities due to the
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Giant impact GoR®a®
Proto-Earth ~44Ga s v

4.5 Ga

(a)

(b)

Modern-style subduction

<3 G ; Hadean crust
(d)

(Pu- and U-rich)
Pu geochemistry?

Upper mantle Magma Ocean

(Pu- and U-depleted)

Fig. 7. Conceptual cartoon summarizing the main sources of uncertainty
regarding Pu/U systematics of the Hadean mantle, emphasizing the possibility
that a sizeable fraction of Pu decay on Earth occurred within shallow, crustal
levels, rather than in the mantle. (a) At 4.5 Gyr ago, the proto-Earth would have
primarily formed from extensively degassed planetesimals (with highly uncer-
tain Pu/U), and initiated its differentiation. (b) The Moon-forming impact then
caused extensive mantle degassing and volatile loss. (c) Following the giant
impact, a Hadean crust would have formed rapidly, thereby concentrating a
significant fraction of incompatible elements at Earth’s surface for up to ~1
Gyr. (d) Around 3 Gyr ago, the emergence of modern-style subduction would
have led to the onset of efficient incompatible element recycling within the
solid Earth, long after Pu had gone extinct. The protracted oxidation of Earth’s
surface caused a significant change in the predominant surface oxidation state
of U, which became soluble within oxidizing environments at the Earth’s sur-
face, facilitating its transport from continents to the altered oceanic crust and
ultimately, by subduction, back into the mantle.

heterogeneous overprinting of mantle volatiles by subduction.

For mantle-derived rock samples, it is worth mentioning that, within
uncertainty, the extrapolated Xe isotope spectrum of the popping rock
mantle source (Péron and Moreira, 2018) is not incompatible with a low
primordial Xe contribution, as suggested by our study (Fig. 3). In fact, Xe
isotope data for mantle-derived rock samples (as well as volcanic gas
data presented here) would be consistent with an absence of a chondritic
components in Earth’s upper mantle at the 2-sigma level. Notably,
re-analyses of the same rock sample (e.g., popping rock 2][D43) in
different laboratories have yielded inconsistent 136X epu/ *Xerr esti-
mates (Parai and Mukhopadhyay, 2021; Péron and Moreira, 2018).
Interestingly, the occurrence of Xe isotopic fractionation in favor of the
light isotopes would tend to both (i) bias the deconvolution of 2381_ and
244pyi.derived Xe towards the 2**Pu-Xe end-member (Bekaert et al.,
2019), and (ii) overestimate the contribution of primordial components
in the mantle source reservoir.

The recent finding that popping rock 2] [D43 (MORB) and Oceanic
Island Basalts (OIBs) are indistinguishable in 6129Xe/136Xeai, VvSs.
5130Xe /13X, space (Parai and Mukhopadhyay, 2021) (Fig. 8) has
important implications for our understanding of Earth’s volatile evolu-
tion. Namely, this isotope space was historically used to suggest that
small Xe isotopic differences between OIB and MORB mantle sources
cannot be related solely through recycling atmospheric Xe or by adding
fissiogenic 136Xe to MORB Xe (Mukhopadhyay, 2012). To have OIB and
MORB reservoirs now overlapping in this isotope space may call into
question the reliability of Xe isotopes as a means to document the con-
trasted evolutionary histories of volatile elements in the upper
(depleted) and deep (primitive) mantle reservoirs. In 51%°Xe/ 136Xeair VvSs.
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Fig. 8. Compilation of 5'%°Xe/'3¢Xe,;, vs. 5'°°Xe/'0Xe,;, systematics for previously published mantle noble gas (static mass spectrometry) data and Mt. Etna
(dynamic mass spectrometry, this study) data. This classical plot has been used to argue that small Xe isotopic differences between OIB and MORB mantle sources
cannot be related solely through recycling atmospheric Xe or by adding fissiogenic 1®Xe to MORB Xe. However, the recent finding that popping rock and Iceland
plume data overlap in this isotopic space (Parai and Mukhopadhyay, 2021) may cast doubt on the interpretation that these small differences truly reflect primordial

heterogeneities. Uncertainties are 1c.

5130xe/136Xe,;. space, Eifel data reported in this study are compatible
with previous analyses of Eifel gas (Bekaert et al., 2019) and popping
rock 2] [D43 (Péron and Moreira, 2018), but inconsistent with a recent,
careful re-analysis of this MORB sample (Parai and Mukhopadhyay,
2021). Whether these disparities truly reflect upper mantle source het-
erogeneities (Parai and Mukhopadhyay, 2021), some extent of isotope
fractionation associated with sample processing, or both, remains
uncertain.

4. Conclusions and perspectives

The analysis of Ar-Kr-Xe isotopes by ultrahigh precision DMS in
mantle-derived gas collected from Mt. Etna (Italy) and Eifel (Germany)
reveals lower fractions of primordial Kr-Xe from accretionary sources (<
7 % of non-radiogenic, non-fissiogenic isotopes) and 2**Pu-derived Xe
(< 9.8 £+ 9.3 % of total fissiogenic 136Xe) than previously estimated for
the convecting mantle, from which they are yet considered to primarily
derive. These observations require early and extensive volatile loss
during terrestrial accretion, followed by long-term degassing and
pervasive overprinting of primordial heavy noble gases by subduction
recycling. Quantitative incompatible element (including Pu, U) extrac-
tion to the Hadean crust and subsequent reintroduction of U via sub-
duction could also have contributed to further lowering the ultimate
fraction of 2**Pu-derived *®Xe in the upper mantle.

In essence, the observed discrepancies with previously published
upper mantle results could primarily reflect upper mantle source het-
erogeneities (e.g. due to the heterogeneous overprinting of mantle vol-
atiles by subduction). Some of the literature data could also have
suffered from analytical inconsistencies and/or subsurface isotope
fractionation in natural systems. Future studies (e.g., analysis of Bravo
Dome well gas by DMS) are required to gain insight into the origin of
these different results. As of today, the analysis of the two rarest Xe
isotopes (124Xe and 126Xe) by DMS is not yet available. The analysis of
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these isotopes by DMS will represent a critical analytical development to
help us better quantify the fractions of primordial heavy noble gases
within Earth’s mantle reservoirs.

Despite a clear variability within each category, the plume and
MORB mantle Xe signatures have been established as distinct, with
plume mantle-derived rock samples exhibiting a higher proportion of
244py fission-derived Xe consistent with less processing by partial
melting over Earth’s history relative to the upper mantle (Parai, 2022).
The advent of volcanic gas analysis by DMS offers a promising avenue to
evaluate current mantle noble gas models underpinning our under-
standing of how planetary processes (e.g., giant impact-induced
degassing, core-mantle segregation, mantle convection and subduc-
tion) have shaped the heterogeneous nature of terrestrial volatiles.
These developments go hand in hand with current, gradual analytical
developments to improve the quality and reliability of noble gas ana-
lyses by multi collector SMS.
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