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Abstract— We propose WayEx, a new method for learning
complex goal-conditioned robotics tasks from a single demon-
stration. Our approach distinguishes itself from existing imita-
tion learning methods by demanding fewer expert examples and
eliminating the need for information about the actions taken
during the demonstration. This is accomplished by introducing
a new reward function and employing a knowledge expan-
sion technique. We demonstrate the effectiveness of WayEx,
our waypoint exploration strategy, across six diverse tasks,
showcasing its applicability in various environments. Notably,
our method significantly reduces training time by ∼50%
as compared to traditional reinforcement learning methods.
WayEx obtains a higher reward than existing imitation learning
methods given only a single demonstration. Furthermore, we
demonstrate its success in tackling complex environments where
standard approaches fall short. Appendix is available at:
https://waypoint-ex.github.io.

I. INTRODUCTION
Humans have a natural ability to learn tasks by observing

a single demonstration which they can follow step-by-step.
For instance, we can watch a video and grasp how to open
a vault, then practice until we succeed without requiring
further instructions. Drawing inspiration from this ability, the
combination of learning from demonstrations and reinforce-
ment learning techniques has become a popular and potent
approach for training robots [1, 2, 3, 4]. However, com-
pared to humans who can learn simple tasks from a single
demonstration, robots require a multitude of diverse expert
instances. For example, to learn how to open a vault, the
robot must observe successful demonstrations for different
views and locations of the vault handle with respect to the
robot’s location. Moreover, each demonstration must contain
information about the location of the vault (state), the precise
joint rotations (action) to reach the vault, and knowledge
about how close it is to completing the task (reward). Hence,
most common methods in learning from demonstrations,
such as Imitation learning [5, 6, 4] and Inverse reinforcement
learning [7, 8, 9] require a set of expert demonstrations, with
a defined state, action and reward space. Collecting all the
data in real time and computing the definitive action and
reward space is impractical and inefficient. Therefore, in this
work, we strive to reduce these inefficiencies by using only
a single demonstration for training. Additionally, our setup
does not require knowledge about the action space, relying
on just the state space and a corresponding reward function.

Prior works identify key states (waypoints [6, 5]) along
the robot’s trajectory, to help it navigate towards the goal.
We also employ waypoints to solve the task, without having
access to the action space. Each observation within the
demonstration is defined as an individual waypoint. While
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(a) Other Methods: multiple demonstrations with defined (state, action) space

(b) WAYEX: single demonstration without access to (state, action) space

Fig. 1. A comparison of our approach to general imitation learning
techniques. (a) Traditional Imitation learning approaches require multiple
expert trajectories with a known action space for training (4 shown here).
(b) For our proposed method WayEx we use only one expert trajectory, and
expand knowledge from this one trajectory to learn how to solve the task.
During training with a single initial state (s0) and a single goal state (g0),
our model learns to navigate back to the expert trajectory from points that are
not part of the trajectory (all dotted states, which can be a combination of 4
expert trajectories shown on the top). This enables the model to successfully
reach the goal state. We further introduce additional start and goal states
([s1, g1],[ s2, g2], [s3, g3]).

other approaches [6] need access to waypoints during the
testing phase, WayEx only requires waypoints during train-
ing. This prevents the need for training a model to predict
the waypoints during inference. We leverage the waypoints
during training via an augmented reward structure based on
the known Q-Values [10] associated with each waypoint.

A common approach to solving a task without a dataset
of expert trajectories is to use dense rewards, based on the
key steps of a task. Existing studies in the field of reinforce-
ment learning acknowledge that employing dense rewards
is difficult since it requires practitioners to engineer specific
reward functions for each task. Additionally these rewards, if
ill-designed, can lead to unforeseen behavior. To circumvent
these challenges, we assume a sparse reward structure when
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determining the new reward. With sparse rewards, the robot
receives a reward of 0 if the actions lead to a goal state;
otherwise, the reward is -1. Acquiring this reward solely
through the process of exploration can prove to be highly
challenging, making certain tasks unachievable with sparse
rewards alone [11]. Our approach strikes a balance, allowing
the model to receive frequent rewards without exposing it to
the typical risks associated with dense rewards.

By utilizing this new reward structure, our model can solve
tasks that closely resemble the demonstration setup. How-
ever, despite its ability to learn from a single example, our
approach still encounters a common limitation of learning
from demonstrations. If the robot encounters a state beyond
the scope of what it has previously encountered it will not
know how to proceed. To overcome this challenge, the robot
needs to acquire experience beyond the confines of the pro-
vided demonstrated space. A commonly employed method
to achieve this is to integrate learning from demonstrations
with conventional model-free reinforcement learning algo-
rithms [12, 13]. Strict model-free reinforcement learning
involves learning optimal state-action pairs through trial and
error rather than relying on expert trajectories. We combine
model-free reinforcement learning with our waypoint reward
and introduce an additional expansion method that further
enhances the model’s knowledge.

In this work, we propose WayEx, derived from Waypoint
Exploration, a novel approach that enables the training of a
reinforcement learning model using a single expert demon-
stration and without any prior knowledge of the action space.
It can serve as a wrapper around any reinforcement learning
algorithm, facilitating its applicability as the field advances.
Our primary technical contributions are: (1) the introduction
of a new reward function based on sparse rewards, which
provides additional rewards without introducing unforeseen
consequences, and (2) a method for expanding knowledge
beyond a single demonstration to encompass the entire
spectrum of both the state and goal spaces. We demonstrate
that our approach enables faster learning of tasks compared
to previous reinforcement learning methods while requiring
minimal additional information.

II. RELATED WORK

Goal-Conditioned Reinforcement Learning. We are in-
terested in investigating tasks that involve a robot reaching
a specific end state specified by an initial “goal.” In the
reinforcement learning (RL) community, these problems are
known as Goal-Conditioned Tasks. Prior works have studied
how to use RL in many different ways in order to solve these
tasks [14, 15, 16, 17, 18, 19]. Early works such as [15, 18]
show that it is possible to use standard RL methods such
as [12, 13, 20], but it can be time-consuming, and there
are some types of tasks that these methods alone cannot
solve. To combat this, other works have suggested the use of
hindsight re-labeling [14, 21], which speeds up the process,
but still requires a large amount of data to reach a successful
trajectory [15].
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Fig. 2. Visualization of Grid World Toy Example. (a) shows the
environment setup with a sparse reward. (b) shows the reward for each
state once the entire environment has been solved using the bellman
equation [22]. (c) represents WayEx where with a single demonstration,
we compute a close approximation of the reward for each state along the
path to the goal.

Imitation Learning. Learning from demonstrations, also
known as imitation learning, is a common approach for
solving goal conditioned tasks. Our approach uses ideas
similar to prior works such as [5, 4, 2, 3, 1, 23]. These works
take recorded successful episodes of a task and use them to
aid in training the RL model. Several of these papers operate
by adding successful demonstrations to the replay buffer [1,
23]; however, these papers require accurate knowledge of
the action space. This type of information is only accessible
in datasets specifically designed for robot training. In order
to learn from other sources, such as videos, the field must
evolve past this method. Additionally, aside from [5, 2], these
works all require a large number of demonstrations. [5]
can use a smaller number, but needs a task-specific reward
function. [2] only uses one example, but requires different
start states. [4] proposes pre-training the model and then fine
tuning for each individual task, but their pre-training is data
intensive and not always generalizable.

Inverse Reinforcement Learning. Another closely related
area, Inverse Reinforcement Learning (IRL), uses a model to
predict the reward values based on the state and action space.
Methods such as [7, 9, 8], employ a hybrid approach involv-
ing both IRL and adversarial learning to solve a task with
limited demonstrations. Similar to our method, IRL methods
are useful because they do not require a defined reward
function. Nonetheless, despite their claim of using a small
number of demonstrations, these methods still require at least
50 demonstrations. Additionally, these methods struggle to
generalize beyond the initial demonstrations. Our approach
differs from IRL approaches because we do not require the
training of a model to define our generalized reward, which
leaves less room for error and requires less data.

Modified Sparse Reward. Several methods [24, 25, 26,
27] attempt to modify the sparse reward function in different
ways to make learning more efficient. Despite employing a
similar reward structure to ours and looking at the maximum
of two different functions, [24] still requires a large number
of demonstrations as well as access to the action space.
Another way to learn with sparse rewards is to split multi-
step tasks into several different tasks [25]. This allows the
sparse rewards to be more frequent, but requires a precise
definition of each auxiliary task which makes creating a



generalized model more difficult.

III. METHOD

A. Preliminaries

We formulate our problem as a Markov Decision Process
(MDP) consisting of an [n]-tuple (S,A,R, τD, γ). The ele-
ments of this tuple are the state space S, the action space
A, the reward function R : S × A → R, the demonstration
trajectory τD : (s∗0, . . . , s

∗
N ) and the discount factor γ. We

will refer to a random episode trajectory as τ , where τ =
(s0, a0, . . . , sN , aN ). N is the total number of states and
actions to reach every state. A policy is represented as
πθ : S → A, with parameters θ. We use a sparse reward
paradigm for our method, where the action space is unknown.
A sparse reward is defined as a reward function R that
receives a reward of 0 when in the goal state, g. At all other
times the reward is −1. If g represents the goal state, and
sn and an are the nth state and action respectively, then the
sparse reward function R can be represented as

R(sn, an) =

{
0 if sn = g,

−1 if sn ̸= g.
(1)

B. Overview

In this section, we describe our method WayEx for learn-
ing goal-conditioned skills from a single demonstration with
no information about the demonstration’s action space. An
illustrative overview of our method is provided in Figure 2,
which shows a much simpler grid world demonstration. The
leftmost grid in Figure 2 represents the environment, where
an agent must traverse the boxes to find the goal, which
gives a sparse reward of 0. The middle grid shows the
reward for each box using a bellman equation [22], which
requires access to rewards for all states. Finally, the right
grid shows our approach which traverses a single path and
then recursively determines the reward of each state along the
path. Access to one successful demonstration allows WayEx
to determine the pseudo ground truth rewards for each box
along the path.

WayEx uses a sparse reward, along with bellman’s equa-
tion to compute the value for each waypoint along the
demonstration path. During exploration, a new state obtains
a reward if its distance from a known waypoint is less than
a threshold dthresh (captured by is prox wp()). We use
Nearest Neighbors to determine the waypoint the new state is
compared to. After training and achieving some success, we
improve our method’s ability to generalize to unseen start
and goal states, by expanding on possible start and goal
states. We present an algorithmic overview of WayEx in
Algorithm 1, followed by a comprehensive breakdown of
each step for a clearer understanding.

C. Proximal Waypoint

Each state of the environment can be represented as si =
{p1, p2, . . . , pK}, ∀ i ∈ (1, . . . , N), where pk represents an
environmental parameter such as object pose and gripper
velocity and K represents the number of environmental

parameters. Note that each parameter, pk, is a relative value,
with respect to the object’s location, instead of an absolute
value with respect to the world coordinate system. This
ensures better generalizability of our method. We use our
policy πθ to determine an action that allows us to reach
an unseen state se. Following other reinforcement learning
algorithms [13, 12], we add random noise to the action
space, in order to increase the amount of exploration done
during training. Once we have reached se we will determine
if it is within close proximity of a waypoint along our
demonstration trajectory τD. To do this we first use the
Nearest Neighbor function to find the waypoint with the
smallest total L2 distance between the parameters in the
waypoint and the parameters in se as

s∗t = NN(se, τD) = argmin
∀s∗i ∈τD

∥se − s∗i ∥2 , (2)

where s∗t ∈ τD is the closest state to (or the proximal
waypoint for) se from the states within the expert trajectory
τD. For an agent to receive a reward at state se, the distance
between the parameters of se and s∗t should be less than
a threshold. For instance, if dthresh = {d1, d2, . . . , dK} is
the corresponding threshold for parameters between se =
{p1, p2, . . . , pK} and s∗t = {p∗1, p∗2, . . . , p∗K}, then we com-
pute the Boolean hasProxWP as

is prox wp(se, s
∗
t ) =

{
True, if ∥p∗i − pi∥ ≤ di, ∀i ∈ K,

False, otherwise.

We define one dthresh for each of the waypoints in τD.
For instance s∗t has its own threshold, d∗t , and when s∗t is
the nearest neighbor to se, we use d∗t as the threshold. In
order to encourage progression, if hasProxWP is False 10
consecutive times for a waypoint s∗t , then we increase d∗t by
ϵ (= 0.001). We repeat this until we explore a point that
falls within the threshold of the waypoint s∗t .

Algorithm 1 WayEx, prior to expanding knowledge
1: τD = (s∗0, . . . , s

∗
T ) : A successful demonstration

2: πθ : The policy that we will follow and update
3: while true do
4: τ ← (s0, a0, . . . , sN , aN ) : an episode roll out
5: for all sn, an ∈ τ do
6: s∗t ← NN(sn, τD), where s∗t ∈ τD
7: hasProxWP ← is prox wp(se, s∗t )
8: r ← reward(hasProxWP, t, lD, lmax)
9: R← max(r, γ ∗ critic(sn+1))

10: end for
11: end while

D. New Reward Function

Given the nearest neighbor waypoint, s∗t , and the boolean
result, hasProxWP, we can solve for the reward function,
r, for our state action pair (se, ae). lmax represents the
maximum length of an episode, lD represents the length of



(a) Pick and Place (b) Peg Assembly (c) Open Door (d) Peg Insertion (e) RS-Open Door (f) RS-Lift 

Fig. 3. The environments that we experimented on with WayEx. We show results on 4 different tasks: (a) pick and place, (b) peg assembly, (c) open
door and (d) peg insertion. These tasks are ideal because they have a clear definition of success and therefore a clear sparse reward. However, most of
these tasks cannot be solved with sparse rewards alone.

(a) Door Open (b) Peg Insertion (c) Peg Assembly (d) Pick and Place

Fig. 4. (a,b,c) shows the results of the Meta World [28] environments when trained using SAC [13] and a batch size of 2048. (a) Open Door Task, (b)
Peg Insertion Task, (c) Peg Assembly Task. (d) Pick and Place task is from OpenAI [15].

TABLE I
REQUIREMENTS FOR DIFFERENT BASELINES AND WAYEX IN TERMS OF STATE, ACTION AND NUMBER OF EXPERT DEMONSTRATIONS.

Pre-requisites SAC (S) SAC (D) HER SAC + RB SAC + MCAC AWAC AWAC + MCAC WayEx

Requires Action Space ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗
Requires Pre-training ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
# Expert Demonstrations 0 0 0 1 or 100 1 or 100 1 or 100 1 or 100 1

the demonstration τD and t represents the time at which s∗t
occurs. We compute the proposed reward, r as

r =


lD−t∑
i=0

−γi hasProxWP,

lmax∑
i=1

−γi not hasProxWP.

(3)

If hasProxWP is false, we still want to account for the
possibility that our state, se, is on a successful trajectory.
To do this, we say that the final reward R = max(r, γ ∗
critic(se+1)). In order for this to work we need to warm up
the critic. We do this by training it for 1000 time steps on just
r before we include the critic reward. For more information
on actor critic methods please refer to [13, 12].

E. Expanding Knowledge

Following the demonstration, WayEx teaches the policy
how to solve the task from a fixed start and goal state. We
now need to expand to every possible start and goal location.
To achieve this, we slowly increase the number of possible
start locations and goal locations, by adding random noise
to the initial state space.

Given our current demonstration trajectory τD with states
s∗0 and goal g∗, let N ∗(µ∗, σ∗) be the distribution represent-

ing the amount of noise we will add to the start state and
goal state. We will set the mean, µ∗, to 0 and only increase
the standard deviation σ∗.

At the start of training σ∗ is set to 0. σ∗ uses a modification
strategy applied every 25 episodes. The updated value of σ∗

is described as σ′, where:

σ′ =

{
σ∗ + 0.001, if success rate ≥ 0.05,

σ∗, otherwise.
(4)

IV. EXPERIMENTS AND RESULTS

A. Environment Setup

We use MuJoCo [31] to simulate our tasks. The implemen-
tation of our reinforcement learning algorithms was based
on modified versions of the open-source code provided by
stable-baselines3 [32] and our baselines were based on [24].
Although we used only one demonstration for each task,
we varied the starting demonstration across different seeds
to demonstrate the adaptability of our method to different
initial demonstrations. To ensure robustness, we conducted
each experiment four times with different seeds and present
the mean and standard deviation of these seeds in our
graphs. Each epoch consists of 40,000 simulated timesteps
in MuJoCo. The pick and place environment, the robosuite



(a) Peg Assembly (b) Open Door (c) Peg Insertion

(d) RS-Open Door (d) RS-Lift

WayEx (Ours)

SAC + RB

SAC + MCAC
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Fig. 5. This figure shows the results of several baselines when the are given one expert demonstration (a,b,c) shows the results of the Meta World [28]
environments when trained using AWAC [29], MCAC [24], SAC + RB and AWAC + MCAC. (d,e) shows the results of these same baselines on the
robosuite tasks [30]

door environment and the robosuite lift environment have 50
time steps per episode, and the remaining environments have
150 time steps per episode. We pre-train AWAC for 25000
timesteps.

B. Tasks
WayEx is trained on six distinct tasks, each designed to

showcase the robot’s capability to accomplish simple goal-
conditioned objectives. The pick and place environment is
from the OpenAI Fetch tasks [15], the next three (open
door, peg insertion, and peg assembly) tasks are from Meta
World [28]. The final two tasks, Robosuite (RS)-Open Door
and RS-Lift come from [30]. Images of these tasks can be
seen in Figure 3. Our tasks are: (a) Pick and Place: The task
is to grasp a box and move it towards a goal in the air. (b) Peg
Assembly: The task is to pick up a round nut and then place
the round part over a peg. (c) Open Door: The task is to
grasp a door handle and then open the door until it reaches a
goal location. (d) Peg Insertion: The task is to pick up a peg
and insert it into a hole. (e) RS-Open Door: The task is to
grasp a door handle and then open the door very slightly. (f)
RS-Lift: The task is to pick up a block and lift it into the air.

C. Baslines
We test our method (Table I) against following baselines:
• SAC. This baseline uses the Soft Actor Critic (SAC)

algorithm [13] as the reinforcement learning algorithm.
It can be initialized in three ways: (1) Sparse Reward
(SAC (S)), (2) Dense Reward (SAC (D)), (3) SAC +
Replay Buffer (SAC + RB): we initialize the replay
buffer with expert demonstrations.

• Hindsight Experience Replay (HER) is a well known
technique [14], which uses the previous experiences to
learn overtime.

• SAC+MCAC. This baseline uses the soft actor critic
(SAC) algorithm [13] as well as Monte Carlo aug-
mented Actor-Critic [24].

• Advantage Weighted Actor Critic (AWAC) follows
the methods described in [29].

• AWAC+MCAC uses [29] along with a modified reward
as describe in [24].

D. Results

We evaluate several different combinations of baselines
each of which have different requirements in comparison to
our method.

1) No Action Space: First we look at methods that do not
require access to the action space of an expert demonstration
in order to learn. In Figure 4(d), we analyze the performance
of our method compared to other conventional reinforcement
learning algorithms for the pick and place task. These graphs
reveal two significant observations: (1) WayEx exhibits a
remarkable acceleration in the learning process with just a
single demonstration, over SAC. (2) WayEx demonstrates a
considerably lower standard deviation compared to the other
algorithms. We hypothesize that in general, methods relying
on sparse rewards requires a degree of luck. For that, the
environment must be explored extensively until a reward is
obtained, allowing the method to learn the task. However,
WayEx circumvents this by guiding the agent towards the
goal, irrespective of the initial start point.

In Figure 4(a,b,c), we examine the outcomes of training
three Meta World environments [28] using the SAC algo-
rithm. These results are compared against a sparse reward
and an episode-specific dense reward. Notably, we encoun-
tered difficulties in implementing hindsight experience replay
with these environments. The Figure 4(a) represents the
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Fig. 6. This figure shows the results of several baselines when they are given one hundred expert demonstrations (a,b,c) shows the results of the Meta
World [28] environments when trained using AWAC [29], MCAC [24], SAC + RB and AWAC + MCAC. (d,e) shows the results of these same baselines
on the robosuite tasks [30]. Our method continues to use only one demonstration.

results of the open door task, (b) displays the results of the
peg insertion task, and (c) showcases the peg assembly task.
Across all these environments, we observed that SAC was
unable to solve the tasks effectively when utilizing sparse
rewards. For the open door and peg insertion task WayEx
performs similar or better than the dense reward. The dense
rewards have been finely tuned to each task and can require
a lot of trial and error to finalize, while WayEx is a general
reward that can be applied to any method. Regarding the
peg assembly task, we discovered that SAC was unable to
solve the task even with the dense reward during the training
period. This is due to increased complexity of the task,
which results in a noisier reward signal. This task is more
difficult because there are a greater number of objectives to
be accomplished. However, our method proved capable of
swiftly solving the task despite these challenges.

2) One Expert Demonstration: Next, we look at our
method compared to baselines that require just 1 example.
We compare against AWAC, AWAC + MCAC, SAC + RB
and SAC + MCAC when just one expert demonstration is
used. The results of this are shown in Figure 5. We find that
for the three meta world tasks our approach significantly
outperforms the other approaches. AWAC and AWAC +
MCAC work in the Peg Assembly and Door Open tasks,
but they are not able to solve the problem as well as our
approach is. For the RS-Door Open task, we find that our
approach performs very similar to all other baselines. This
is likely because the task is very easy and requires only a
small amount of data. The RS-Lift task results look similar
to the MetaWorld results where our method significantly
outperforms the others. This task was more difficult than
others due to the rotation of the block being different in each
episode, but our method is able to handle it nonetheless.

3) 100 Expert Demonstrations: Finally, we look at our
method compared to the same baselines when the baselines
use 100 expert demonstrations. The results are shown in Fig-
ure 6. Note that AWAC, which is the method that performs
the best in these scenarios has to be pre-trained in addition to
the online training. We find that although our method takes
more online training time with just one demonstration, versus
100 demonstrations, our method performs equal to or better
than the baselines in all of the tasks.

V. CONCLUSION

We present WayEx, a new approach that enables training
reinforcement learning models using a single demonstration.
Unlike other imitation learning methods, which typically rely
on multiple demonstrations and access to detailed action in-
formation, WayEx can operate with limited information and
single demonstration. In order to achieve this, we introduce
a novel universal reward function and leverage a knowledge
expansion technique that extends beyond initial start and goal
states. This makes it highly suitable for learning tasks with
minimal information across different environments. We show
that WayEx is faster than standard reinforcement learning
models, in cases where the rewards are sparse or dense, and
showcase its ability to succeed where other approaches fall
short. Additionally, we show that WayEx performs similar
to or better than a variety of imitation learning methods
when these methods use either one or one hundred expert
demonstrations. In future research, we aim to explore the
use of expansion for non-linear states and investigate the
utilization of image-based state spaces rather than joint
locations.
Acknowledgements: This work was partially supported by
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