
MA-LMM: Memory-Augmented Large Multimodal Model
for Long-Term Video Understanding

Bo He1,2* Hengduo Li2 Young Kyun Jang2 Menglin Jia2 Xuefei Cao2

Ashish Shah2 Abhinav Shrivastava1 Ser-Nam Lim3

1University of Maryland, College Park 2Meta 3University of Central Florida
https://boheumd.github.io/MA-LMM/

Abstract

With the success of large language models (LLMs), inte-
grating the vision model into LLMs to build vision-language
foundation models has gained much more interest recently.
However, existing LLM-based large multimodal models (e.g.,
Video-LLaMA, VideoChat) can only take in a limited number
of frames for short video understanding. In this study, we
mainly focus on designing an efficient and effective model
for long-term video understanding. Instead of trying to pro-
cess more frames simultaneously like most existing work, we
propose to process videos in an online manner and store
past video information in a memory bank. This allows our
model to reference historical video content for long-term
analysis without exceeding LLMs’ context length constraints
or GPU memory limits. Our memory bank can be seam-
lessly integrated into current multimodal LLMs in an off-the-
shelf manner. We conduct extensive experiments on various
video understanding tasks, such as long-video understand-
ing, video question answering, and video captioning, and
our model can achieve state-of-the-art performances across
multiple datasets.

1. Introduction

Large language models (LLMs) have gained significant pop-
ularity in the natural language processing field. By pre-
training on large-scaled textual data, LLMs (e.g. GPT [1–4],
LLaMA [5, 6]) have demonstrated remarkable abilities to
perform both generative and discriminative tasks with a uni-
fied framework. Recently, there has been a growing interest
in utilizing LLMs on multimodal tasks. By integrating LLMs
with visual encoders, they can take images and videos as
input and show incredible capabilities in various visual un-
derstanding tasks, such as captioning, question answering [7–
13], classification, detection, and segmentation [14–20].

*Work done during Bo’s internship at Meta.
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Figure 1. (a) We propose the long-term memory bank to auto-
regressively store and accumulate past video information, different
from previous methods directly feeding the visual encoder’s outputs
into the querying transformer. (b) GPU memory and token number
v.s. video frame length of multimodal methods and MA-LMM
during inference. Circle sizes represent the number of text tokens.

To handle video inputs, some prior large multimodal mod-
els [7, 9] directly feed the concatenated query embeddings
of each frame along the temporal axis into LLMs. However,
the inherent context length limitation of LLMs and GPU
memory consumption restrict the number of video frames
that can be processed. For example, LLaMA has a context
length limitation of 2048 while large multimodal models like
LLaVA [8] and BLIP-2 [7, 9] take in 256 and 32 tokens per
image respectively. Therefore, this design is not practical
and feasible when video duration is much longer (e.g. movies
and TV shows). To address these issues, a naive solution is
to apply average pooling along the temporal axis like Video-
ChatGPT [21], but this leads to inferior performances as it
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lacks explicit temporal modeling. An alternative method
involves adding a video modeling component to capture
temporal dynamics, as seen in Video-LLaMA [12], which
employs an extra video querying transformer (Q-Former) to
obtain video-level representation. However, this design adds
model complexities, increases the training parameters, and
is not suitable for online video analysis.

With these in mind, we introduce a Memory-Augmented
Large Multimodal Model (MA-LMM), aiming for effi-
cient and effective long-term video modeling. MA-LMM
adopts a structure similar to existing large multimodal mod-
els [7, 9, 12], which comprise a visual encoder to extract
visual features, a querying transformer to align the visual and
text embedding spaces, and a large language model. As illus-
trated in Figure 1(a), as opposed to directly feeding visual
encoder outputs to the querying transformer, we opt for an
online processing approach that takes video frames sequen-
tially and stores the video features in the proposed long-term
memory bank. This strategy of sequentially processing video
frames and leveraging a memory bank significantly reduces
the GPU memory footprint for long video sequences. It also
effectively addresses the constraints posed by the limited
context length in LLMs as demonstrated in Figure 1(b). Our
design provides a solution for long-term video understanding
with large multimodal models with great advantages over
prior approaches [7, 9, 12, 13, 21] which consume huge GPU
memory and require a large number of input text tokens.

The core contribution of our approach is the introduction
of a long-term memory bank that captures and aggregates
historical video information. Specifically, the memory bank
aggregates past video features in an auto-regressive manner,
which can be referenced during subsequent video sequence
processing. Also, our memory bank is designed to be com-
patible with the Q-Former, where it acts as the key and value
in the attention operation for long-term temporal modeling.
As a result, it can be seamlessly integrated into existing
large multimodal models in an off-the-shelf manner to en-
able long-term video modeling ability. To further enhance
efficiency, we propose a memory bank compression method
that maintains the length of the memory bank constant rel-
ative to the input video length. By selecting and averaging
the most similar adjacent frame features, it can preserve all
the temporal information while significantly reducing the
temporal redundancies in long videos.

We summarize our main contributions as follows:
• We introduce a novel long-term memory bank design to

enhance existing large multimodal models, equipping
them with long-term video modeling capability.

• Our model significantly reduces the GPU memory us-
age and addresses LLMs’ context length limitations by
processing video sequences in an online fashion.

• Our approach has achieved new state-of-the-art per-
formances on various downstreaming video tasks, in-

cluding long-term video understanding, video question
answering, and video captioning.

2. Related Work

Image-language models. Inspired by the success of pow-
erful language models [1–6], recent image-language mod-
els tend to incorporate pre-trained language models with
image encoders to support the multimodal reasoning abil-
ity [7–10, 22]. Flamingo [22] proposes to connect power-
ful pre-trained vision-only and language-only models and
achieve state-of-the-art performance in few-shot learning
tasks. BLIP-2 [7] introduces a lightweight querying trans-
former to bridge the modality gap between the frozen pre-
trained image encoder and frozen LLMs. Despite having
significantly fewer trainable parameters, it performs well
on various multimodal tasks. LLaVA [8] employs a simple
linear layer to project image features into the text embedding
space and efficiently finetunes LLMs [23] for better per-
formance. Building upon BLIP-2, MiniGPT-4 [10] collects
a large-scale high-quality dataset of image-text pairs and
achieves better language generation ability. VisionLLM [15]
leverages the reasoning and parsing capacities of LLMs, pro-
ducing strong performance on multiple fine-grained object-
level and coarse-grained reasoning tasks.

Video-language models. Previous image-language models
such as Flamingo [22] and BLIP-2 [7, 9] can also support
video inputs. They simply flattened the spatio-temporal fea-
tures into 1D sequences and then fed them into the language
models for video inputs. However, these approaches can
not effectively capture the temporal dynamics of videos.
Based on this motivation, Video-LLaMA [12] enhances
BLIP-2 structure by adding an additional video querying
transformer to explicitly model the temporal relationship.
Similarly, building on LLaVA [8], Video-ChatGPT [21] sim-
ply average pools the frame-level features across spatial and
temporal dimensions to generate video-level representation.
VideoChat [13] utilizes perception models to generate action
and object annotations, which are then forwarded to LLMs
for further reasoning. Despite the advancements, these mod-
els are primarily designed for short videos. Inspired by the
Token Merging [24] which averages highly similar tokens to
reduce the computation cost, we propose an extension of this
idea to video data, specifically along the temporal axis. This
extension aims to mitigate the challenges posed by extensive
token numbers and computational cost associated with pro-
cessing long video inputs. Several concurrent works [25–27]
have also explored similar strategies of merging akin tokens
for video inputs. Please refer to the supplementary material
for more detailed discussions.

Long-term video models. Long-term video understand-
ing methods focus on capturing long-range patterns in long
videos, which typically exceed 30 seconds. To mitigate
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Figure 2. (a) Framework overview. MA-LMM auto-regressively processes video frames in an online manner. Two long-term memory banks
are designed to store the raw visual features and learned queries at each timestep, which are used for future reference. The Q-Former is
composed of several cascaded blocks, indexed by l. LLM outputs text for various video understanding downstream tasks. The snowflake
icon indicates components with fixed parameters, while the flame icon denotes parts of the model that are fine-tuned. (b) Illustration of the
memory bank compression technique, which is applied to maintain the length of the memory bank constant.

the computational demands of processing long videos, a
prevalent approach involves using pre-extracted features,
sidestepping the need for joint training of backbone archi-
tectures [28–32]. Alternatively, some research works aim to
devise sparse video sampling methods [33, 34], reducing the
number of input frames by only preserving salient video con-
tent. Other works like Vis4mer [35] and S5 [36] leverage the
streamlined transformer decoder structure of S4 [37] to en-
able long-range temporal modeling with linear computation
complexity. Inspired by the memory bank design [38–41],
we propose to integrate the long-term memory bank with
large multimodal models to enable efficient and effective
long-term temporal modeling capabilities.

3. Method
We introduce MA-LMM, a memory-augmented large mul-
timodal model for long-term video understanding. Instead
of processing more frames simultaneously as most video
understanding methods [31, 42–49], we propose to auto-
regressively process video frames in an online manner, which
draws inspiration from the online processing fashion with
long-term memory design presented in MeMViT [41]. Fig-
ure 2(a) illustrates the overview of our MA-LMM framework.
Following similar practices of large multimodal models [7–
9, 12], the overall model architecture can be divided into
three parts: (1) visual feature extraction with a frozen visual
encoder (Sec. 3.1), (2) long-term temporal modeling with

a trainable querying transformer (Q-Former) to align the
visual and text embedding spaces (Sec. 3.2), and (3) text
decoding with a frozen large language model (Sec. 3.3).

3.1. Visual Feature Extraction

This design draws inspiration from the cognitive processes
humans use to handle long-term visual information. Instead
of concurrently processing extensive duration of signals, hu-
mans process them in a sequential manner, correlate current
visual inputs with past memories for comprehension, and
selectively retain salient information for subsequent refer-
ence [41]. Similarly, our MA-LMM processes video frames
sequentially, dynamically associating new frame input with
historical data stored in the long-term memory bank, ensur-
ing that only discriminative information is conserved for
later use. This selective retention facilitates a more sustain-
able and efficient approach to video understanding, which
further allows the model to automatically support online
video reasoning tasks.

Formally, given a sequence of T video frames, we pass
each video frame into a pre-trained visual encoder and obtain
the visual features V = [v1, v2, .., vT ], vt ∈ RP×C , where
P is the number of patches for each frame and C is the
channel dimension for the extracted frame feature. Then
we inject temporal ordering information into the frame-level
features by a position embedding layer (PE) as

ft = vt + PE(t), ft ∈ RP×C . (1)
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3.2. Long-term Temporal Modeling

For aligning the visual embedding to the text embedding
space, we use the same architecture as the Querying Trans-
former (Q-Former) in BLIP-2 [7, 9]. Q-Former takes in the
learned queries z ∈ RN×C to capture video temporal infor-
mation, where N is the number of learned queries, and C is
the channel dimension. In our experiments, Q-Former out-
puts 32 tokens for each image, which is more efficient than
256 tokens produced by LLaVA [8]. Each Q-Former block
consists of two attention submodules: (1) cross-attention
layer, which interacts with the raw visual embedding ex-
tracted from the frozen visual encoder, and (2) self-attention
layer, which models interactions within the input queries.
Different from the original Q-Former in BLIP-2 that only
attends to the current frame’s embedding, we design a long-
term memory bank consisting of the visual memory bank
and the query memory bank, which accumulates the past
video information and augments the input to cross- and self-
attention layers for effective long-term video understanding.

Visual Memory Bank. The visual memory bank stores the
raw visual features of each frame extracted from the frozen
visual encoder. Specifically, for the current time step t, the
visual memory bank contains the concatenated list of past
visual features Ft = Concat[f1, f2, .., ft], Ft ∈ RtP×C .
Given the input query zt, the visual memory bank acts as the
key and value as:

Q = ztWQ, K = FtWK , V = FtWV . (2)

Then we apply the cross-attention operation as:

O = Attn(Q,K, V ) = Softmax
(
QKT

√
C

)
V. (3)

In this way, it can explicitly attend to past visual informa-
tion through the cached visual memory bank with long-term
context. Since all the cross-attention layers in the Q-Former
attend to the same visual feature, there is only one visual
memory bank that is shared across all the Q-Former blocks.

Query Memory Bank. Different from the fixed visual mem-
ory bank which stores the raw and static visual features,
the query memory bank accumulates input queries of each
timestep, represented as Zt = Concat[z1, z2, .., zt], Zt ∈
RtN×C . By storing these queries, we maintain a dynamic
memory of the model’s understanding and processing of
each frame up to the current timestep via the Q-Former. The
query memory bank also acts as key and value as:

Q = ztWQ, K = ZtWK , V = ZtWV . (4)

similar to the Eq 2. Then we apply the same attention op-
eration as Eq. 3. At each time step, zt contains the learned
important information specifically for each video till the
current timestep t. Different from the static visual memory

bank, the input queries zt evolve through cascaded Q-Former
blocks during the model training, capturing distinct video
concepts and patterns at increasing levels of abstraction. As
a result, each self-attention layer has a unique query memory
bank, where the contained input queries are updated during
the training time.

Memory Bank Compression. Given that our model directly
stores past video information in the memory banks, the GPU
memory and computational cost increase linearly as the num-
ber of past video frames. This becomes particularly challeng-
ing for long videos, and thus it is essential to further com-
press the memory bank to a smaller size. One conventional
approach to managing temporal sequences involves employ-
ing a first-in-first-out queue. Here, features from the earliest
time step are removed when the memory bank reaches a pre-
defined limit, a strategy utilized in MeMViT [41]. However,
it results in the loss of earlier historical information as new
frames are added and old features are popped to maintain
memory bank capacity. Alternatively, MeMViT employs
learnable pooling operators to compress the spatio-temporal
size of stored feature in the memory bank, albeit at the cost
of introducing additional trainable parameters.

Drawing inspiration from the effectiveness of token
merging and pruning techniques showcased in works such
as [24, 50–52], we introduce a novel Memory Bank Com-
pression (MBC) technique to exploit temporal redundancies
inherent in videos. Our proposed method aggregates and
compresses video information over time by leveraging the
similarity between adjacent features, thereby retaining early
historical information. This approach effectively compresses
repetitive information within the memory bank while pre-
serving discriminative features. Notably, several concurrent
works [25–27] have similarly embraced the token merging
strategies to reduce video redundancies.

Same as MeMViT [41], which applies feature compres-
sion at each iteration, our method applies the compression
algorithm at each auto-regressive step if the current length
of the memory bank exceeds the predefined threshold M .
Formally, given the visual memory bank containing a list
of [f1, f2, .., fM ], ft ∈ RP×C , when a new frame feature
fM+1 comes in, we need to compress the memory bank by
reducing the length by 1. At each spatial location i, we first
calculate the cosine similarity between all the temporally
adjacent tokens as

sit = cos(f i
t , f

i
t+1), t ∈ [1,M ], i ∈ [1, P ]. (5)

Then we select the highest similarity across time, which can
be interpreted as the most temporally redundant features:

k = argmaxt(s
i
t). (6)

Next, we simply average the selected token features at all
the spatial locations to reduce the memory bank length by 1:

f̂ i
k = (f i

k + f i
k+1)/2. (7)
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In this way, we can still preserve the most discriminative
features while keeping the temporal ordering unchanged as
depicted in Figure 2(b). The same procedure is adopted to
compress the query memory bank.

3.3. Text Decoding

As we process video frames in an auto-regressive manner,
the Q-Former output at the final timestep contains all histori-
cal information, which is then fed into the LLM. Therefore,
we can significantly reduce the number of input text tokens
from N ∗ T to N , addressing the context length limitation
of the current LLMs and substantially easing the GPU mem-
ory requirements. During training, given a labeled dataset
consisting of video and text pairs, our model is supervised
with the standard cross entropy loss as:

L = − 1

S

S∑
i=1

logP (wi|w<i, V ). (8)

in which V represents the input video, and wi is the i-th
ground-truth text token. During training, we update the
parameters of the Q-Former while keeping the weights of
both the visual encoder and the language model frozen.

4. Experiments
4.1. Tasks and Datasets

To validate the effectiveness of the proposed MA-LMM, we
mainly focus on the long-term video understanding task. We
also extend the evaluation to standard video understanding
tasks (e.g., video question answering, video captioning) to
further compare with existing multimodal methods.

Long-term Video Understanding. We conduct experiments
on three widely used long-term video datasets including
LVU [32], Breakfast [56], and COIN [57]. We report the top-
1 classification accuracy as the evaluation metric. The LVU
dataset contains ∼30K videos extracted from ∼3K movies,
with each video lasting 1 to 3 minutes. Given that current
large multimodal models generally perform text generation
and lack regression capability, we limit our experiments
to seven classification tasks: relationship, speaking style,
scene, director, genre, writer, and release year. The Break-
fast [56] dataset includes videos related to breakfast prepara-
tion, which consists of 1712 videos with an average length
of around 2.7 minutes. COIN [57] is a large-scale dataset
for comprehensive instructional video analysis, which com-
prises 11827 instructional videos from YouTube, covering
180 distinct tasks in 12 domains related to daily life. The
average length of a video is 2.36 minutes.

Video Question Answering. We conduct evaluation on
three open-ended video question answering datasets includ-
ing MSRVTT-QA [62], MSVD-QA [62], and ActivityNet-
QA [63]. ActivityNet-QA contains long videos with average

durations of 2 minutes, while MSRVTT-QA and MSVD-QA
consist of short videos with 10-15 seconds duration.

Video Captioning. We report the video captioning results
of METEOR [64] and CIDEr [65] metrics on three popular
datasets: MSRVTT [66], MSVD [67] and Youcook2 [68].

Online Action Prediction. We further evaluate the online
prediction capability of our model by conducting experi-
ments on the EpicKitchens-100 [69] dataset, which consists
of 700 long videos of cooking activities with 100 total hours.
It includes 97 verbs, 300 nouns, and 3807 action types. Fol-
lowing the same experimental setting in [70], we report the
top-5 accuracy and recall results on the validation dataset.

4.2. Implementation Details

For the visual encoder, we adopt the pre-trained image en-
coder ViT-G/14 [71] from EVA-CLIP [72], it can be further
changed to other clip-based video encoders. We use the
pre-trained Q-Former weights from InstructBLIP [9] and
adopt Vicuna-7B [73] as the LLM. All the experiments are
conducted on 4 A100 GPUs. More details about training and
evaluation are described in the supplementary material.

4.3. Main Results

Long-term Video Understanding. We compare MA-LMM
with previous state-of-the-art (SOTA) methods on the LVU
benchmark [32] in Table 1. Notably, MA-LMM outperforms
existing long-term video models (S5 [36], ViS4mer [35],
VideoBERT [55], and Object Transformer [32]) in both con-
tent understanding and metadata prediction tasks. This re-
sults in significant improvement in most tasks, enhancing
the average top-1 accuracy by 3.8% compared to the S5 [36]
model. Unlike previous video-based models which process
all video frames simultaneously in an offline manner and
predict probabilities for each class, our MA-LMM processes
video frames in an online fashion and directly outputs the
text label for each class type.

We also evaluate our MA-LMM on the Breakfast [56]
and COIN [57] datasets that pose a challenge for the long-
term video activity classification task. We show the results
in Table 2. Our method improves upon the previous best
method, S5[36], by 2.3% and 2.4% respectively on the top-
1 accuracy metric. This result further proves the superior
long-term video understanding capability of our approach.

Video Question Answering. To compare with existing mul-
timodal video understanding methods, we conduct experi-
ments on the open-ended video question answering datasets
in Table 3 to demonstrate the generalization ability of our
model. Given that these are mostly short videos, it is ex-
pected that our memory bank will be less effective. Interest-
ingly, we observe that our MA-LMM achieves new state-of-
the-art performances on the MSRVTT and MSVD datasets
while falling short of VideoCoCa’s performance on the Ac-
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Table 1. Comparison with state-of-the-art methods on the LVU [32] dataset. Bold and underline
represent the top-1 and top-2 results.

Model
Content Metadata

Avg
Relation Speak Scene Director Genre Writer Year

Obj_T4mer [32] 54.8 33.2 52.9 47.7 52.7 36.3 37.8 45.0
Performer [53] 50.0 38.8 60.5 58.9 49.5 48.2 41.3 49.6
Orthoformer [54] 50.0 38.3 66.3 55.1 55.8 47.0 43.4 50.8
VideoBERT [55] 52.8 37.9 54.9 47.3 51.9 38.5 36.1 45.6
LST [35] 52.5 37.3 62.8 56.1 52.7 42.3 39.2 49.0
VIS4mer [35] 57.1 40.8 67.4 62.6 54.7 48.8 44.8 53.7
S5 [36] 67.1 42.1 73.5 67.3 65.4 51.3 48.0 59.2

Ours 58.2 44.8 80.3 74.6 61.0 70.4 51.9 63.0

Table 2. Comparison on the Breakfast [56]
and COIN [57] datasets. The top-1 accu-
racy is reported here.

Model Breakfast COIN

TSN [58] - 73.4
VideoGraph [59] 69.5 -
Timeception [31] 71.3 -
GHRM [60] 75.5 -
D-Sprv. [61] 89.9 90.0
ViS4mer [35] 88.2 88.4
S5 [36] 90.7 90.8

Ours 93.0 93.2

Table 3. Comparison with state-of-the-art methods on the video
question answering task. Top-1 accuracy is reported.

Model MSRVTT MSVD ActivityNet

JustAsk [74] 41.8 47.5 38.9
FrozenBiLM [75] 47.0 54.8 43.2
SINGULARITY [76] 43.5 – 44.1
VIOLETv2 [77] 44.5 54.7 –
GiT [78] 43.2 56.8 –
mPLUG-2 [79] 48.0 58.1 –
UMT-L [80] 47.1 55.2 47.9
VideoCoCa [81] 46.3 56.9 56.1

Video-LLaMA [12] 46.5 58.3 45.5
Ours 48.5 60.6 49.8

Table 4. Comparison with state-of-the-art methods on the video caption-
ing task. METEOR (M) and CIDEr (C) results are reported.

Model
MSRVTT MSVD YouCook2

M C M C M C

UniVL [82] 28.2 49.9 29.3 52.8 – 127.0
SwinBERT [83] 29.9 53.8 41.3 120.6 15.6 109.0
GIT [78] 32.9 73.9 51.1 180.2 17.3 129.8
mPLUG-2 [79] 34.9 80.3 48.4 165.8 – –
VideoCoca [81] – 73.2 – – – 128.0

Video-LLaMA 32.9 71.6 49.8 175.3 16.5 123.7
Ours 33.4 74.6 51.0 179.1 17.6 131.2

tivityNet dataset. On the latter, it is not surprising, since
VideoCoCa [81] leverages large-scale video-text datasets for
pre-training (e.g., HowTo100M [84] and VideoCC3M [85])
while our MA-LMM uses model weights only pre-trained
on the image-text datasets.

Notably, our MA-LMM significantly outperforms the
recent LLM-based model Video-LLaMA [12] on all three
datasets. Video-LLaMA concatenates all the query embed-
dings from the frozen image Q-Former and trains an ad-
ditional video Q-Former from scratch to model temporal
dependencies, consuming too much GPU memory to be
feasible for long video inputs. In contrast, our MA-LMM
simply fine-tunes the weights from the pre-trained image Q-
Former without introducing an additional video Q-Former,
yet is able to effectively capture temporal relationships by
virtue of the long-term memory bank. This result strongly
justifies the superiority of our design on the general video
question answering task, and reveals that even a few frames
and queries captured in the memory banks can have signifi-
cant beneficial effects.

Video Captioning. To further evaluate the capabilities of
our MA-LMM in generating free-form text, we conduct
experiments on the standard video captioning datasets in-
cluding MSRVTT [66], MSVD [67] and YouCook2 [68]

Table 5. Action anticipation results on EpicKitchens-100.

Model
Accuracy@Top-5 Recall@Top-5

Verb Noun Act. Verb Noun Act.

Video-LLaMA 73.9 47.5 29.7 26.3 27.3 11.7
Ours 74.5 50.7 32.7 25.9 29.9 12.2

in Table 4. Although these datasets only consist of videos
with short duration and our model is initially pre-trained
merely on image-text dataset pairs, our MA-LMM exhibits
outstanding performances across all the metrics. It consis-
tently ranks among the top-2 positions compared to current
leading methods. Remarkably, our results also surpass the
recent Video-LLaMA [12] on these datasets, highlighting
the significant improvements our model offers in both video
captioning and question-answering tasks.

Online Action Prediction. Since our model can naturally
support the online video understanding task, we compare
our MA-LMM with Video-LLaMA on the EpicKitchens-
100 [69] dataset to investigate the online action prediction
capability. In Table 5, our MA-LMM outperforms Video-
LLaMA, achieving more accurate results in both top-5 ac-
curacy and recall measures. This highlights our model’s
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Table 6. Contribution of visual and query memory banks.

Visual Query LVU Breakfast COIN

✗ ✗ 48.3 74.6 72.3
✓ ✗ 61.5 91.8 92.4
✗ ✓ 58.0 81.4 88.5
✓ ✓ 63.0 93.0 93.2

Table 7. Contribution of the long-term memory bank (MB)
under off-the-shelf evaluation without training.

MB MSRVTT MSVD ActivityNet LVU

✗ 19.5 38.8 29.9 23.6
✓ 20.3 40.0 37.2 32.8

Table 8. Ablation of different temporal modeling methods.

Method #Frame #Token GPU LVU Breakfast COIN

Concat 60 1920 49.2 62.6 90.4 93.0
Avg Pool 100 32 21.2 57.6 80.6 87.6

ToMe 100 200 22.2 61.5 91.3 91.5

FIFO 100 32 19.1 61.3 88.5 90.4
MBC 100 32 19.1 63.0 93.0 93.2

Table 9. The comparison of using different LLMs.

LLM MSRVTT MSVD ActivityNet LVU

FlanT5-XL 46.5 57.6 48.2 62.0
Vicuna-7B 48.5 60.6 49.8 63.0

superior capacity to anticipate actions in an online manner,
showcasing its effectiveness for applications that require
real-time analytical capabilities.

4.4. Ablation Studies

Contribution of each component. To further investigate the
contribution of the visual memory bank and query memory
bank, we conduct ablation studies in Table 6. Initially, we
observe that without any memory bank module, the perfor-
mances across all three datasets are notably worse, due to the
lack of temporal context. The introduction of either memory
bank results in substantial improvements, confirming their
roles in enhancing the model’s ability to understand tempo-
ral sequences. We also find that the visual memory bank
achieves better performance than the query memory bank.
We hypothesize that the explicit method of storing historical
raw video features in the visual memory bank is more effec-
tive than the query memory bank which implicitly captures
video information through the input learned queries. And
two memory banks are complementary to each other. When
incorporating two memory banks together, our approach can
boost the final performance by 14.7%, 18.4%, and 20.9% on
the LVU, Breakfast, and COIN, respectively.

Long-term temporal modeling ablation. We compare dif-
ferent temporal modeling approaches in Table 8. In our
setup, the Q-Former outputs 32 text tokens per frame. The
most straightforward approach for temporal feature integra-
tion is either concatenating or averaging frame-level features.
However, they resulted in inferior performances. Notably,
concatenation requires a significantly higher number of text
tokens and computational cost compared to other variants,
which also introduces higher GPU memory consumption
since they need to takes in all the video frames simultane-
ously. In addition, we conduct experiments using ToMe [24]
to reduce the number of text tokens per frame from 32 to
2. However, without our auto-regressive strategy, it still re-
quires 200 text tokens for 100-frame input. The second part

1 5 10 20 40 60 80 100
Memory Bank Length

60

70

80

90

To
p-

1 
Ac

cu
ra

cy
 (%

)
LVU
Breakfast
COIN

Figure 3. Impact of different memory bank lengths.

of this table presents the performances of different memory
bank compression approaches. The first-in-first-out (FIFO)
technique removes the oldest features to main the length of
the memory bank fixed, while the memory bank compres-
sion (MBC) strategy merges temporally consecutive features
with the highest similarity, effectively reducing the most
redundant information while keeping the temporal ordering
unchanged. With this design that theoretically keeps all his-
torical information, MBC outperforms FIFO by 1.7%, 4.5%,
and 2.8% accuracy across three datasets. This experimental
result validates the superior efficiency and effectiveness of
our approach in modeling long-term temporal information.

Off-the-shelf evaluation. A key advantage of MA-LMM
is that our long-term memory bank can be inserted into
existing large multimodal models in an off-the-shelf manner,
thereby endowing them with effective temporal modeling
capabilities without retraining. As presented in Table 7, MA-
LMM can consistently boost the final performance when
incorporating the long-term memory bank to the baseline
method [9]. Particularly, on long-term video datasets like
ActivityNet and LVU, MA-LMM can largely improve the
results by 7.3% and 9.2%. This highlights the robustness of
long-term memory banks in temporal modeling under the
off-the-shelf setting.

Different language model architectures. Our MA-LMM
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(a) Video question answering Task (ActivityNet-QA)

1. What are people doing in the ground in video?
2. What color is the man with No.7 in the video?
3. How many goalkeepers are there in the video?
4. Why is the yellow team celebrating?

play football 
blue 
1 
win

play football 
red 
2 
goal

Video-LLaMA Ours

Q: What happened in the last 5 seconds? 
Video-LLaMA: A glass of water is poured 
into a glass
Ours: Eggs were poured into bowl

Q: What is the recipe of this video?
Video-LLaMA: This video shows the 
preparation of eggs in a glass dish
Ours: Scrambled eggs

Q: What will happen for the next 5 seconds?
Video-LLaMA: A person is cooking food in a 
stainless steel pan with an orange on the table
Ours: Egg will be cooked
(b) Online off-the-shelf setting with custom questions

Figure 4. Visualization results on the video question answering task and the online off-the-shelf setting.

cut potato into strips dry strips put in the oil to fry lift strips from the pan place fries onto the plate
Figure 5. Visualization of the compressed visual memory bank.

can utilize different language model architectures including
but not limited to encoder-decoder models and decoder-only
models. We experimented with two popular models FlanT5-
XL [86] and Vicuna-7B [73], and show the results in Table 9
that the Vicuna-7B marginally outperforms the FlanT5-XL
on these video tasks.

Memory bank length ablation. In Figure 3, we conduct
experiments to evaluate the effect of varying the memory
bank length. Given an input of 100 video frames, the top-1
accuracy first increases as the feature bank length becomes
larger. This rise can be attributed to the augmented storage
capacity of the memory bank, which can preserve more
historical data and consequently boost the final performance.
However, we observe that performances begin to saturate
when the memory bank length is around 10 to 20. This
supports our hypothesis that there are prevalent temporal
redundancies in long videos, and we can significantly reduce
the frame length without sacrificing the performance.

4.5. Visualization

In Figure 4, we provide a comprehensive visual comparison
between MA-LMM and Video-LLaMA [12]. In the video
question answering task, MA-LMM exhibits superior mem-

orization and recognition capabilities. Specifically, it can
accurately memorize historical information and recognize
fine-grained information, such as the color of the man with
No.7, and precisely count the number of goalkeepers who
appeared in the video. With the auto-regressive design, our
model supports online reasoning directly. This capability
is further exemplified in our experiments on off-the-shelf
evaluations using custom questions. MA-LMM can correctly
anticipate the next step of the video ("egg will be cooked")
and predict the correct recipe ("scrambled egg"). More visu-
alization examples are shown in the supplementary material.

Figure 5 provides a visualization of the compressed visual
memory bank. We set the memory bank length to 5 for this
illustration. The compressed visual memory bank appears
to group consecutive frames with similar visual content. For
instance, in the presented video, the video frames are effec-
tively grouped into five clusters, each capturing a distinct
yet semantically consistent activity, which is similar to the
effect of temporal segmentation.

5. Conclusion
In this paper, we introduce a long-term memory bank de-
signed to augment current large multimodal models, equip-
ping them with the capabilities to effectively and efficiently
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model long-term video sequences. Our approach processes
video frames sequentially and stores historical data in the
memory bank, addressing LLMs’ context length limitation
and GPU memory constraints posed by the long video inputs.
Our long-term memory bank is a plug-and-play module that
can be easily integrated into existing large multimodal mod-
els in an off-the-shelf manner. Experiments on various tasks
have demonstrated the superior advantages of our method.
We believe our MA-LMM offers valuable insights for future
research in the long-term video understanding area.
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Appendix

We present additional ablation experiments in Section A and
further qualitative results for the video captioning task in Sec-
tion B. Next, in Section C, we discuss the relations to concur-
rent works [25–27] in details. And in Sec. D, we show more
dataset-specific implementation details and hyper-parameter
settings. Finally, we address some limitations and outline
directions for future research in Section E.

A. Additional Experiments

Memory bank compression at different spatial levels.
In Table 10, we show comparison results of compressing
the memory bank at different spatial levels (frame-level vs.
token-level) on the LVU [32], Breakfast [56] and COIN [57]
datasets. For the frame-level compression, we calculate the
cosine similarity between adjacent frame features and av-
erage the frame-level features with the highest similarity.
For the token-level compression, the cosine similarity is cal-
culated between tokens at the same spatial location across
the entire temporal axis, given that each frame-level feature
contains multiple tokens at different spatial locations. The
results indicate that token-level compression consistently
surpasses frame-level compression in performance. Partic-
ularly, on the Breakfast dataset, the token-level surpasses
the frame-level by 6.5% in top-1 accuracy. This superiority
can be attributed to the importance of recognizing the object
type of breakfast in videos. And token-level compression can
help preserve much more fine-grained spatial information
and details.

Inference time v.s. video frame lengths. In Figure 6, the
inference time of MA-LMM increases linearly with respect
to the frame lengths, due to its auto-regressive design of
processing video frames sequentially. In contrast, directly
concatenating frame-level features takes much longer time
and higher GPU memory consumption, since it needs to
process all video frames simultaneously.

B. More Qualitative Results

Our model’s enhanced capabilities in video captioning are
further showcased through additional visualization results
in Figure 7. Here, our MA-LMM significantly outperforms
Video-LLaMA [12] in generating detailed and accurate sen-
tence descriptions. For instance, in the first video, our model
precisely describes the action as "remove the onion rings
and place them on the paper towel," capturing the entire
action steps, while Video-LLaMA’s description lacks this
completeness, notably missing the crucial action of remov-
ing the onion rings. In the second video example, our model
distinguishes itself by accurately identifying subtle details
such as specific ingredients: chili powder, salt, and garlic

Table 10. Memory bank compression at different spatial levels.

Spatial Level LVU Breakfast COIN

Frame-level 61.8 86.5 91.1
Token-level 63.0 93.0 93.2
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Figure 6. Inference time vs. input frame length.

powder, which Video-LLaMA overlooks. This highlights
the enhanced capability of our MA-LMM in recognizing and
describing fine-grained details.

C. Relations to Concurrent Works
In this section, we compare and discuss the relations be-
tween our MA-LMM with the concurrent works including
TESTA [25], MovieChat [26] and Chat-UniVi [27]. All of
these methods focus on utilizing the idea of token merg-
ing [24] to reduce video redundancies.

Temporal Modeling. Temporal modeling across these
methodologies falls into three categories. Chat-UniVi [27] di-
rectly feed visual tokens into large language models (LLMs)
without explicit temporal modeling, utilizing LLMs’ inher-
ent sequence processing for video understanding. In con-
trast, TESTA [25] and MovieChat [26] employ global self-
attention; TESTA captures interactions along spatial and tem-
poral dimensions, whereas MovieChat processes long videos
in segments, compresses these into short-term memories,
then concatenates and models global temporal interactions
using a video Q-Former. Differently, our MA-LMM adopts
causal self-attention, restricting each frame’s feature access
to prior video information only. Such a design naturally
endows our MA-LMM with the capability to support online
video applications in robotics, AR/VR, and video streaming.

Token Merging Application. Building on the token merg-
ing [24] strategy, four methodologies have adopted and mod-
ified this approach to reduce video data redundancy. Each
uses the core concept of merging similar tokens but dif-
fers in implementation. TESTA [25] utilizes a cascaded
module for spatial and temporal aggregation, progressively
shortening video length and decreasing tokens per frame.
In contrast, Chat-UniVi’s [27] modules operate in parallel,
merging tokens across both dimensions before LLM rea-
soning. MovieChat [26] employs a selective strategy to
merge similar adjacent frames, reducing the number of video
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add garlic powder chili powder paprika salt cayenne pepper buffalo wing sauce to the wings and mix
coat the chicken wings with the sauce
add chili powder salt garlic powder onion powder and paprika to the chicken and mix

Ground-Truth:
Video-LLaMA:

Ours:

remove the onions and place on paper towel
fry the onion rings in oil
remove the onion rings from the oil and place them on a paper towel

Ground-Truth:
Video-LLaMA:

Ours:

Figure 7. Visualization results on the video captioning task.

frames. Similarly, our MA-LMM conducts token merging
along the temporal dimension to condense video length but
at a more fine-grained spatial level. It independently com-
presses visual and query tokens across different spatial areas,
enhancing performance as evidenced in Table 10.

Based Model. Both TESTA [25] and Moviechat [26] are
built upon the video-based multimodal model. TESTA inte-
grates TimeSFormer [47] as its video encoder, facilitating
long-range video modeling. Meanwhile, MovieChat adopts
the Video-LLaMA [12] framework, combining an image Q-
Former with a video Q-Former to effectively manage long-
term temporal relationships. On the contrary, another group
involves adapting image-based multimodal models for video
understanding. Chat-UniVi [27] leverages the LLaVA [8]
architecture, feeding concatenated visual tokens along the
temporal axis into LLMs. Our MA-LMM builds on Instruct-
BLIP [9] as a plug-and-play module that significantly boosts
long-term temporal modeling. Demonstrated in Table 7, our
memory bank module greatly excels over InstructBLIP under
the off-the-shelf setting without video-specific pre-training
or introducing additional parameters.

Memory Bank Design. The integration of memory banks to
enhance long-term video understanding has been thoroughly
explored [38, 39, 41, 87, 88]. Building on these studies,
MovieChat [26] and our MA-LMM both employ memory
bank designs. MovieChat primarily uses memory banks
to consolidate raw and static visual features. In contrast,
our MA-LMM innovates with an additional query memory
bank that captures dynamic memory, reflecting the evolving
understanding of past video frames. The effectiveness of our
query memory bank is evidenced in Table 6.

D. Experiment Details

We build our MA-LMM on top of InstructBlip [9], fol-
lowing the codebase [89]. We show the details of hyper-
parameters in the following table for different tasks and
datasets. For all the experiments, we use a cosine learning
rate decay. Table 11 shows the hyper-parameters for the
long-term video understanding task. For the LVU dataset,
we follow the same practice in [35, 36], we sample 100
frames of 1 fps for each video clip. For the Breakfast [56]
and COIN [57], we uniformly sample 100 frames from
the whole video. Table 12 shows the hyper-parameters on
the MSRVTT-QA [62], MSVD-QA [62], and ActivityNet-
QA [63] datasets for the video question answering task while
Table 13 presents the hyperparameters on the MSRVTT [66],
MSVD [67], YouCook2 [68] datasets for video captioning.

E. Limitation and Future Work

Since our model takes in video frames in an online manner,
leading to reduced GPU memory usage, but at the cost of
increased video processing time. This trade-off becomes
particularly noticeable with extremely long videos, where
processing times can become significantly prolonged. To
mitigate this issue, we suggest a hierarchical method to
process extremely long-term video sequences. This strategy
involves dividing extensive videos into smaller segments
and then processing each segment sequentially in an auto-
regressive fashion as we present in the main paper. Then
we can employ additional video modeling techniques to
model inter-segment relationships. This method aims to
strike a balance between memory efficiency and processing
speed, making it a practical solution for long-term video
understanding.
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For the future work, there are several potential aspects
to further enhance the model’s capabilities. First, replac-
ing the existing image-based visual encoder with a video
or clip-based encoder can naturally enhance the model’s
ability to capture short-term video dynamics. This provides
a better representation of the video’s temporal dynamics.
Second, the model’s overall performance in understanding
videos can substantially benefit from the pre-training stage
on large-scale video-text datasets. This approach is a com-
mon practice in existing research and has proven effective in
enhancing generalization capabilities. Finally, the flexibility
inherent in our model’s architecture allows for the incorpora-
tion of a more advanced LLM as the language decoder. This
integration offers a clear opportunity for boosting the final
performance, making our model more effective in interpret-
ing and responding to complex video content.

Table 11. Hyperparameters of different datasets on the long-term
video understanding task.

Dataset LVU Breakfast COIN

LLM Vicuna-7B
Epochs 20
Learning rate 1e-4
Batch size 64
AdamW β (0.9, 0.999)
Weight decay 0.05
Image resolution 224
Beam size 5
Frame length 100
Memory bank length 20

Prompt

“What is the
{task} of the
movie?”

“What type
of breakfast
is shown in
the video?”

“What is the
activity in
the video?”

Table 12. Hyperparameters of different datasets on the video ques-
tion answering task.

Dataset MSRVTT MSVD ActivityNet

LLM Vicuna-7B
Epochs 5
Learning rate 1e-4
Batch size 128
AdamW β (0.9, 0.999)
Weight decay 0.05
Image resolution 224
Beam size 5
Frame length 20
Memory bank length 10
Prompt “Question: {} Short Answer:”

Table 13. Hyperparameters of different datasets on the video cap-
tioning task.

Dataset MSRVTT MSVD YouCook2

LLM Vicuna-7B
Epochs 10
Learning rate 1e-5 1e-5 1e-4
Batch size 128
AdamW β (0.9, 0.999)
Weight decay 0.05
Beam size 5
Image resolution 224
Frame length 80
Memory bank length 40
Prompt “what does the video describe?”
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