
Adversary Detection and Resilient Control for
Multi-agent Systems

Aquib Mustafa and Dimitra Panagou

Abstract—This paper presents an adversary detection mecha-
nism and a resilient control framework for multi-agent systems
under spatiotemporal constraints. Safety in multi-agent systems
is typically addressed under the assumption that all agents
collaborate to ensure the forward invariance of a desired safe set.
This work analyzes agent behaviors based on designed behavior
metrics, and designs a proactive adversary detection mechanism
based on the notion of the critical region for the system
operation. In particular, the presented detection mechanism not
only identifies adversarial agents, but also ensures all-time safety
for intact agents. Then, based on analysis and detection results, a
resilient QP-based controller is presented with desired safety and
liveness constraints for intact agents. Finally, simulation results
validate the efficacy of the presented theoretical contributions.

Index Terms—Control barrier functions, adversary detection,
multi-agent systems, resilient control, autonomous systems.

I. INTRODUCTION

In recent years, research for safety-critical systems has
received vast recognition as safety is one of the prime re-
quirements for autonomous systems. For a given system,
safety is accomplished by ensuring forward invariance of a
safe set, which is a subset of the system’s state space. The
objective is to design a control law such that the closed-
loop system trajectories remain always in the safe set. In
the existing literature, control barrier function (CBF) based
approaches that leverage quadratic programming (QP) [1]–[5]
methods have shown impactful results for providing safety
guarantees for both single-agent [1], [2], [6] and multi-agent
systems [5], [7]–[9]. These approaches are well-suited for
online implementation as QPs can be efficiently solved in real-
time [8]–[11].

The aforementioned results generally consider that all
agents behave normally, i.e., they apply the nominally-
specified control actions. However, these systems are vulner-
able to a variety of adversaries, which aim to intentionally vi-
olate desired safety or goal-reaching constraints for normally-
behaving agents within given control constraints. Therefore, it
is of vital importance to design a proactive adversary detection
mechanism and resilient control framework that can mitigate
the effect of adversarial agents while ensuring all-time safety
for intact agents.
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In the existing literature, several remarkable results for
resilient control are presented for multi-agent systems [9],
[12]–[18]. In particular, mean-subsequence-reduced (MSR)
based resilient control protocols for multi-agent systems are
presented in [12]–[14]. Resilient algorithms for flocking and
active target tracking applications are presented in [15], [16],
respectively. An adaptive control and game-theoretic resilient
designs are presented in [17] and [18] to directly mitigate
the effect of adversaries without identifying them. However,
to our knowledge, no prior studies using CBF approaches
have considered identification of adversarial agent and resilient
design for multi-agent CBF with safety and goal reaching
objectives. Recently, authors in [19] presented adversarial
resilience for sampled-data systems under safety constraints
without any adversary identification. In [9], authors used
CBFs to ensure that the communication topology satisfies
the r-robustness property in finite time. However, the robots
in formation are assumed to apply the nominal CBF-based
controller without any adversarial misbehavior. Similarly, in
[20] a class of fault-tolerant stochastic CBF is presented that
provide probabilistic guarantees on the safety. This work is
mainly focused on solving a secure state estimation problem
by deriving geometrical conditions to resolve conflicts between
the constraints that may arise due to sensor faults or attacks.

In this paper, we present an adversary detection mechanism
as well as a resilient CBF framework for multi-agent systems.
We consider heterogeneous multi-agent systems, modeled by
control-affine dynamics, where in the presence of adversarial
agents, intact agents are subject to accomplish the following
objectives: (i) remain inside a safe set, which can be in
general time-varying, (ii) reach desired goal locations either
individually or in formation, and (iii) proactively identify
adversarial agents in their neighborhood and take resilient
action to ensure all-time safety. To achieve these objectives,
this work first analyzes agent behaviors based on metrics
that act as real-time behavior monitors, and then designs a
proactive adversary detection mechanism based on the notion
of the critical time and critical zone for the system operation.
In particular, the presented critical zone is evaluated over the
critical time window under best and worst-case control actions
corresponding to intact and adversarial agents, respectively.
Then, the augmentation of the critical zone with the desired
safety constraints provides robustness to the agent’s safe set
such that the presented detection mechanism not only identifies
adversarial agents but also acts to ensure all-time safety for
intact agents. Finally, based on the presented behavior analysis
and proactive adversary detection, a resilient QP-based con-
troller is designed to ensure all-time safety for intact agents,



in the presence of adversarial agents. The overall architecture
is shown in Figure 1.

The rest of this paper is organized as follows. Section
II provides the notations. Section III presents the problem
formulation. Section IV formulates behavior analysis and
detection mechanism. Resilient CBF mechanism is presented
in Section V. Simulation results are provided in Section VI.
Finally, concluding remarks are discussed in Section VII.

II. NOTATIONS

R and R+ represent the sets of real numbers and non-
negative real numbers, respectively. Rn denotes n-dimensional
Euclidean space. ‖x‖ denotes Euclidean norm of vector x∈Rn.
The set of integers greater than m is represented by Z>m.
The superscript (.)T denotes transposition. The cardinality of
a set S is denoted by |S|. The Lie derivative of a continuously
differentiable function V :Rn→R along a vector f :Rn→Rn

at point x ∈ Rn is represented as L fV (x) , ∂V (x)
∂x f (x). We

use ∂S to denote the boundary of a closed set S and int(S)
to denote its interior. diag(A1, . . . ,An) represents a diagonal
matrix with Ai as its diagonal entries, ∀, i ∈ [1, . . . ,n]. ∧
or
⋂

denotes conjunction/and operator. Eventual and global
temporal operators are represented by ♦ and �.

III. PROBLEM FORMULATION

Consider a group of N ∈ Z>0 agents, with the set of agents
represented by V and each agent indexed {1, . . . ,N}. The
system dynamics of each agent i ∈ V is given by

ẋi(t) = fi(xi(t))+gi(xi(t))ui(t), (1)

where the state vector is xi(t) = [pi(t) ϕi(t)] ∈ R3, with
pi(t) ∈ R2 and ϕi(t) ∈ R denoting the position vector and
orientation, respectively, of agent i with respect to a global
reference frame. The vector ui(t) ∈ Rmi denotes the control
input of agent i, respectively. The functions fi ∈ R3 and
gi ∈ R3×mi may differ among agents, but are all locally
Lipschitz. We denote f p

i ∈R2 and gp
i ∈R2×mi the sub-matrices

of fi and gi corresponding to the position-vector dynamics
in (1). The control input constraints for each input ui(t) are
represented by a nonempty, convex, compact polytope, i.e.,
ui(t) ∈ Ui(xi(t)) = {u ∈ Rmi : Ai(xi(t))u ≤ bi(xi(t))} where
the functions Ai(xi(t)) : R3→ Rqi×mi and bi(xi(t)) : R3→ Rqi

are locally Lipschitz on their respective domains. Moreover,
the collection of the position vectors and the control input
vectors are represented as ~p = [pT

1 , pT
2 , . . . , pT

N ]
T ∈ R2N and

~u = [uT
1 , uT

2 , . . . , uT
N ]

T ∈ Rm with m = ∑
N
i=1 mi, respectively.

For each agent i, the conjunction of m different safety
constraints hi

n : R2N → R, n ∈ {1, . . . ,m}, is represented by
the composite control barrier function (CBF) hs

i (~p) :R2N→R
via Boolean AND operations using the log-sum-exp (LSE)
smooth approximation to the max(.) function [5], given by

hs
i (~p) = LSE[hi

1,h
i
2, . . . ,h

i
m] = ln(

m

∑
n=1

exphi
n). (2)

We consider a set Ss
i defined as the superlevel set of

a continuously differentiable function hs
i (~p), given by Ss

i =
{~p|hs

i (~p)≤ 0}, ∂Ss
i = {~p|hs

i (~p) = 0}, int(Ss
i ) = {~p|hs

i (~p)< 0}.
In this paper, we refer Ss

i as a safe set for agent i, and
we assume that forward invariance of this set Ss

i can always

Decision variables for QP

(Section IV. B)

Proactive behavior 
monitoring

(Section IV. B)

( )ix t
( )iu t

Agent

Desired Specifications
A.1-A.5 (Section III)

Proactive monitoring and adversary detection

Behavior metrics

(Section IV. A) 

( ), ( ), ( )
i i iR R RS Gt F t t Adversarial or 

normal agent?

Resilient QP 
(Section V)

( ( )), , ( )
iij s Rx t T F t

Figure 1: Agents behavior: for desired specification without any adversary.

be ensured [1], see Lemma 1 later on. We consider two
class of safety constraints and their corresponding safe sets,
namely, inter-agent and agent-to-obstacle safety constraints.
We represent the conjunction of inter-agent safety constraints
as h̄s

i (~p) =
⋂

j∈Ni
hs

i j(pi, p j) with

hs
i j(pi, p j) = d−

∥∥pi− p j
∥∥≤ 0, (3)

where d is a desired inter-agent safety distance, and the set
Ni = { j|

∥∥pi− p j
∥∥ ≤ Rs} is the set of neighbors of agent i,

where the limited sensing radius Rs > d. Then, the inter-agent
safe set is defined as

S̄s
i = {~p|h̄s

i (~p)≤ 0}, (4)

with S̄s
i ⊃ Ss

i . Similarly, the conjunction of agent-to-obstacle
safety constraints is denoted by ĥs

i (pi) =
⋂

o j∈Oi
h

o j
i (pi) with

h
o j
i (pi) = ro j −

∥∥pi− co j

∥∥≤ 0, (5)

where co j and ro j denote the center and radius of spherical
obstacles, and Oi denotes the set of the obstacles for the agent
i. Then, the agent-to-obstacle safe set is defined as

Ŝs
i = {pi|ĥs

i (pi)≤ 0}, (6)

with Ŝs
i ⊃ Ss

i . Moreover, all pairwise safety constraints, i.e.,
inter-agent and agent-to-obstacle safety constraints can be
encoded in the augmented CBF hs

i (~p) in (2) with

Ss
i = S̄s

i ∩ Ŝs
i , (7)

where m = |Ni|+ |Oi| denotes the total number of safety
constraints. Note that while in principle one can define a CBF
hs

i that is a function of both position and orientation, here we
chose to define the inter-agent and agent-to-obstacle safety
constraints in terms of the Euclidean distance only, as they
encode that the area footprints of the agents should never
intersect for any possible orientations. Note also that, for the
dynamics in (1), the considered control action constraint in
the QP-based control design directly provides a constraint on
the rate of change of orientation.

Next, we present some preliminaries related to the perfor-
mance of the agents.

Definition 1. A continuously differentiable function V g
i (~p) :

R2N →R is called exponentially stabilizing control Lyapunov



function (ES-CLF) for the positional dynamics of (1) if there
exist β1,β2,β3 ∈ R+ such that following conditions hold

β1‖~p‖2 ≤V g
i (~p)≤ β2‖~p‖2

inf
ui(t)∈Ui

[L f p
i
V g

i (~p)+Lgp
i
V g

i (~p)ui(t)+β3V g
i (~p)]≤ 0. (8)

where f p
i ∈ R2 and gp

i ∈ R2×mi denotes the sub-matrix of fi
and gi corresponding to position vector dynamics in (1).

Reaching a goal location for agent i can be encoded via the
following candidate Lyapunov function

V g
i (pi) = ‖pi−Gi‖2 , ∀i ∈ V , (9)

where Gi ∈ R2 denotes goal point or goal region. Similarly,
goal reaching for a collaborative task among the set of agents
V f ⊆ V in the form of formation can be encoded as

V̄ g
f ( p̄) =

∥∥p̄−G f
∥∥2

, (10)

where G f ∈ R2 denotes goal point or goal region and p̄ =
1
|V f | ∑i∈V f

pi. We also consider that agents need to maintain a
formation over time such that

hFi
i (~p(t)) = lim

t→∞
‖pi(t)− p∗i (t)‖→ 0, ∀i ∈ V f , (11)

where p∗i (t) =
1
|Ni| ∑ j∈Ni (p j(t)+ c ji) and ci j denotes inter-

agent distance for the formation.
Definition 2 (Adversarial agent). We call an agent j adver-
sarial if under some adversarial control action ua

j(t), either of
the following holds:

1) It performs chasing to hit an intact agent i in some finite
time, i.e., ∃ ta <∞ such that

∥∥pi(t)− p j(t)
∥∥→ 0 as t→ ta.

2) It aims to mislead agents in the set V f so that they
converge to a location p̄(t) = 1

|V f | ∑i∈V f
pi(t) such that∥∥ p̄(t)−G f

∥∥ 6= 0 as t→ ∞.
We denote the overall set of adversarial agents by A =
As∪A f , where As and A f represent set of adversarial agents
correspond to classes 1 and 2 in definition, respectively. We
called an agent intact if it is not adversarial.We denote the set
of intact agents as V /A .
Definition 3 (Proactive adversary detection). We call an
adversary detection mechanism for agent i proactive, if de-
tection of the adversary happens at some time td < ta where
ta is given in Definition 2. In particular, adversary detection
happens before any adversarial agent k ∈ {i, j} violates the
inter-agent safety constraint in (3) (i.e., either agent i itself or
any neighbor agent j violates the inter-agent safety constraint).

We define the following as the desired objectives for the
intact agent i ∈ V /A :
A.1 Satisfy constraints on control input, ui(t) ∈ Ui(xi(t)) =
{u ∈ Rmi : Ai(xi(t))u≤ bi(xi(t))}.

A.2 Ensure the forward invariance of the safe set, pi(t) ∈ Ss
i ,

for all t > 0.
A.3 Guarantee convergence of the closed-loop trajectories to

the goal region, i.e., V g
i (pi(t))→ 0 as t→ ∞.

A.4 Maintain a formation over the time interval t ∈ [ta, tb]
such that lim

t→tb
hFi

i (~p(t))→ 0, ∀i ∈ V f .

A.5 Based on behavior metrics that capture the degree of
satisfaction of the desired objectives A.1-A.4, proactively
determine the set of adversarial agents A ⊂ V .

Please note that, in this work, we assumed that the adversar-
ial agent has the same controller constraints on control input
as mentioned in condition A.1.

Based on the objectives A.1-A.5, the problem formulation
is presented as follows.
Problem 1. Consider the desired objectives A.1-A.5. Design
control law ui(t) ∈ Ui(xi(t)) for the system (1) such that
objectives A.1-A.4 are satisfied for each intact agent i∈V /A .

A. Forward Invariance of a Set

In this subsection, under the assumption of no adversarial
agents, i.e., A = /0, we review the necessary and sufficient
conditions for guaranteeing forward invariance of a set Ss

i ,
known also as Nagumo’s Theorem.
Lemma 1. Let the solution of (1) exist and be unique in
forward time. Then, for each agent i∈ V , the set Ss

i is forward
invariant for the closed-loop trajectories of (1) for all pi(0)∈
Ss

i if and only if the following condition holds:

inf
ui(t)∈Ui

{L f p
i

hs
i (~p)+Lgp

i
hs

i (~p)ui(t)≤ 0}, ∀pi(t) ∈ ∂Ss
i , (12)

where ∂Ss
i represents the boundary of the safe set Ss

i .
Interested readers can refer to [21] for more details on

forward invariance of sets.
To ensure the feasibility of Problem 1 when A = /0, we

make the following assumption. In the existing literature, sim-
ilar assumptions have been used either explicitly or implicitly
(see e.g. [2]).
Assumption 1. The trajectories of each agent i∈V /A satisfy
the condition (12), for all pi ∈ ∂Ss

i .
Assumption 2. The interior of the set Ui(xi(t)) is nonempty
and Ui(xi(t)) is uniformly compact near xi(t).
Assumption 3. The functions fi and gi are locally Lipschitz
with Lipschitz constants b f ∈ R+ and bg ∈ R+, ∀i ∈ V ,
respectively.
Lemma 2. If the initial conditions for an agent i∈V are such
that hs

i (~p(0))< 0 and the inequality

inf
ui(t)∈Ui

{L f p
i

hS
i (~p(t))+Lgp

i
hS

i (~p(t))ui(t)≤ α(−hS
i (~p(t)))},

(13)
holds for some locally Lipschitz class-K function α for all
t ≥ 0, then for any T > 0, hs

i (xi(t))< 0, ∀0≤ t ≤ T.

B. A Quadratic Program for Safety-Control Synthesis

This subsection presents a quadratic program (QP) to com-
pute a control input ui(t) for each agent i∈V to solve Problem
1 when A = /0. Let ~z = [zT

1 ,z
T
2 , . . . ,z

T
N ]

T be a column vector
with zi = [ui,δi1 ,δi2 ,δi3 ∈ Rmi+3], ∀i ∈ V as its elements.
Consider the following optimization problem

min
ui,δi1 ,δi2 ,δi3 , i∈V

~zT H~z+F~z (14a)

s.t. Aiui ≤ bi, (14b)
L f p

i
V g

i +Lgp
i
V g

i ui ≤−δi1V
g
i , ∀i ∈ V /V f , (14c)

L f p
i

hFi
i +Lgp

i
hFi

i ui ≤−δi2 hFi
i , ∀i ∈ V f , (14d)

L f p
i

hS
i +Lgp

i
hS

i ui ≤−δi3hS
i , (14e)

where H = diag{Hi} with Hi = diag{{wi
ul
},wi

1,w
i
2,w

i
3} de-

notes a diagonal matrix with positive weights wi
ul
,wi

1,w
i
2,w

i
3 >



0 and similarly, F = diag{Fi} with Fi = [0T
mi

qi 0 0] where
qi > 0 and 0k ∈Rk denotes a column vector consisting of zeros.
Control input constraints are encoded in (14b). Performance-
based constraints, i.e., goal reaching constraints and formation
are encoded in (14c) and (14d). Similarly, safety-based con-
straints are encoded in (14e) (which can include both inter-
agent safety constraints and obstacle avoidance constraints in
conjunction form, as defined in (2)). Note that, one can refer
the set of trajectories corresponding to V g

i as a subset of the
safe set Ss

i in (7) corresponding to hs
i in (12).

IV. BEHAVIOR ANALYSIS AND DETECTION MECHANISM

A. Preliminaries

In this subsection, inspired by worst-case designs in the
CBF literature [19], [22], [23], we first introduce the notion
of the best and worst-case control actions for the intact and
adversarial agent, respectively. Then, we present the concepts
of the critical-time period and critical zone for the agent’s
operation, which are later required for proactive behavior
monitoring, adversary detection and mitigation. In order to
provide the best safety guarantee, the minimum pointwise
control action by an intact agent i ∈ V /A is defined as

umin
i (t) = argmin

ui∈Ui

L f p
i

hS
i (~p)+Lgp

i
hS

i (~p)ui, (15)

where hS
i (~p) in (2) encodes all pairwise safety constraints, i.e.,

inter-agent and agent-to-obstacle safety constraints. umin
i (t) in

(15) can be determined by solving the linear program (LP)
min
ui∈Ui

m(~p)T ui, s.t. Aiui ≤ bi, (16)

where m(~p)T = Lgp
i
hS

i (~p). Note that the pointwise minimum
control input provides the best action towards maintaining
safety, as the LP in (16) determines the pointwise minimum
control action only in terms of the safety constraints hS

i (~p)
without considering any goal reaching objective as encoded
in (14c) in terms of V g

i . Similarly, to achieve worst-case
safety behavior, the maximum pointwise control action by an
adversarial agent j ∈A is defined as

umax
j (t) = argmax

u j∈U j

L f p
j
h̄s

j(~p)+Lgp
j
h̄s

j(~p)u j, (17)

where h̄s
j(~p) in (3) encodes only agent-to-agent safety con-

straints. In similar fashion, umax
j (t) in (17) can be determined

by solving the following LP
max

u j∈U j
m(~p j)

T u j, s.t. A ju j ≤ b j, (18)

with m(p j)
T = Lgp

j
ĥs

j(p j). Note that in order to achieve de-
sired adversarial chasing behavior as defined in Definition 2,
adversarial agent j only needs to account for inter-agent safety.
umax

j (t) denotes the worst control effort by an adversarial agent
j ∈ A in order to maximize L f p

j
ĥs

j(p j) + Lgp
j
ĥs

j(p j)u j and
achieve worst-case safety (i.e., best effort to achieve unsafe
behavior). The feasibility of LP in (16) is guaranteed under
Assumption 2, see [19].

B. Critical Time and Critical Zone
Now, in order to design behavior monitors and an adversary

detection mechanism, we first present the concept of the
critical time period and critical zone for the system (1) in this
subsection. We define the critical time period Ts, and compute

Ts based on the inter-agent safety constraints set S̄s
i in (4). We

define inter-agent distance as

ri j(t) =
∥∥pi(t)− p j(t)

∥∥ , ∀t > 0. (19)

Definition 4. Ts is the critical time period of system (1) at
the time tk, if under the best-case control input (15) computed
at the time tk, i.e., ui(t) = umin

i (tk), ∀t ∈ [tk, tk +Ts], pi(tk) ∈
int(S̄s

i ) implies that pi(tk +Ts) ∈ ∂ S̄s
i .

Theorem 1. Let Assumption 3 hold. Consider the agent
dynamics (1) along with the best-case control input umin

i (tk)
at the time tk given by (15). Then, for the safe set S̄s

i in (4),
the critical time period is given by Ts = min

j∈Ni
{T j

s } with

T j
s ≥

1
(b f +bg

∥∥umin
i (tk)

∥∥) log(
1

1− ri j(tk)−d
k1(tk)

), (20)

where ri j(tk) is defined in (19), b f and bg denote the Lip-
schitz constant for functions fi(xi(t)) and gi(xi(t)) in (1), d
represents the inter-agent safety distance and

k1(tk) = ri j(tk)+
bg
∥∥p j(tk)

∥∥∥∥∥umax
j (tk)−umin

i (tk)
∥∥∥

b f +bg
∥∥umin

i (tk)
∥∥ . (21)

Proof. Define the change in function for the inter-agent safety
constraint defined in (3) over the time interval [tk, tk + t] as

ϒ(t + tk, tk) = hs
i j(pi(t + tk), p j(t + tk))−hs

i j(pi(tk), p j(tk)),
(22)

which can be written as
ϒ(t + tk, tk) = ri j(tk)− ri j(t + tk), (23)

and its derivative can be computed as

ϒ̇(t + tk, tk) =−
(pi(t+tk)−p j(t+tk))

T

‖pi(t+tk)−p j(t+tk)‖ ( ṗi(t + tk)− ṗ j(t + tk)),
(24)

where the term (pi(t+tk)−p j(t+tk))
T

‖pi(t+tk)−p j(t+tk)‖ is a unit vector and thus,

ϒ̇(t + tk, tk)≤
∥∥(ṗ j(t + tk)− ṗi(t + tk))

∥∥ . (25)

From the triangular inequality, one has
ϒ̇(t + tk, tk)≤

∥∥∥ f p
j (x j(t + tk))− f p

i (xi(t + tk))
∥∥∥

+
∥∥∥gp

j (x j(t + tk))u j(t + tk)−gp
i (xi(t + tk))ui(t + tk)

∥∥∥ ,
(26)

where f p
i ∈ R2 and gp

i ∈ R2×mi denotes the sub-matrix of fi
and gi corresponding to position vector dynamics in (1). Based
on Assumption 3, f p

i and gp
i , ∀i ∈ V , are locally Lipschitz

and are bounded by the Lipschitz constants b f ∈R+ and bg ∈
R+, respectively. Thus, under the constant best control input
evaluated at the time tk, i.e., ui(t) = umin

i (tk), ∀t ∈ [tk, tk +T j
s ],

equation (26) becomes

ϒ̇(t + tk, tk)≤ (b f +bg
∥∥umin

i (tk)
∥∥)∥∥(pi(t + tk))− (p j(t + tk))

∥∥
+∆(p j(tk)),

(27)
with ∆(p j(tk)) = bg

∥∥p j(tk)
∥∥∥∥∥umax

j (tk)−umin
i (tk)

∥∥∥. Now based
on the defined error term ϒ(t + tk, tk) in (22), one can write

ϒ̇(t + tk, tk)≤−(b f +bg
∥∥umin

i (tk)
∥∥)ϒ(t + tk, tk)

+(b f +bg
∥∥umin

i (tk)
∥∥)ri j(tk)+∆(p j(tk)).

(28)
Then, based on Comparison Lemma [24], one has following
solution



ϒ(t + tk, tk)≤ k1(tk)(1− e−(b f +bg‖umin
i (tk)‖)(t−tk)), (29)

with k1(tk) in (21). Now, with hs
i j(pi, p j) defined in (3),

we know that at the time instant t = T j
s from (22), one

has ϒ(tk +T j
s , tk) = ri j(tk)−d as hs

i j(pi(tk +T j
s ), p j(tk +T j

s ))

becomes zero as pi(tk + T j
s ) ∈ ∂ S̄s

i , i.e., d− ri j(tk +T j
s ) = 0.

Then based on (29), the bound on critical time period T j
s can

be computed as
ri j(tk)−d

k1(tk)
≤ (1− e−(b f +bg‖umin

i (tk)‖)T j
s ), (30)

which finally yields (20). This completes the proof. �
In the following theorem, we present the result for eval-

uation of the critical time period T o
s for the conjunction of

agent-to-obstacle safe set S̄s
i in (6).

Theorem 2. Let Assumption 3 hold. Consider the agent
dynamics (1) along with the worst-case control input in (17)
evaluated at the time tk. Then, for the safe set Ŝs

i in (6), the
critical time period T o

s = min
o j∈Oi
{T o j

s } with

T o j
s ≥

1
(b f +bg

∥∥umax
i (tk)

∥∥) log(
1

1− vo j
i (tk)−ro j

vo j
i (tk)+ro j

), (31)

where vo j
i (tk) =

∥∥pi(tk)− co j
∥∥ and, co j and ro j are defined in

(5). Moreover, b f and bg denote the Lipschitz constant for
functions fi(xi(t)) and gi(xi(t)) in (1).

Proof. The result follows a similar argument as given in
the proof of Theorem 1 with agent-obstacle pairwise safety
function h

o j
i (pi(t)) in (5) instead of inter-agent safety function

hs
i j(pi, p j) in (3). �

Definition 5. The critical zone η(pi(t), p j(t)) : R2 → R is
defined as

η(pi(t), p j(t)) = max
ui(t),u j(t)

∥∥∥∥∥∥
t+nTs∫

t

( ṗi(τ)− ṗ j(τ))dτ

∥∥∥∥∥∥ , (32)

which represents the maximum magnitude of the evolution of
the difference between the position trajectories of an intact
agent i and its neighbor j over the time interval [t, t + nTs],
with n ∈ Z>1 and Ts being the critical time period provided in
Definition 4.
Remark 1. Note that nTs in Definition 5 denotes the desired
sampling time for trajectory evaluation of agent i and it can
be designed such that future safety is always ensured. Based
on Theorem 1, under the best-case control input, i.e., umin

i (tk),
the agent i reaches the boundary of the safe set S̄s

i in (4) over
the time interval [tk, tk + Ts]. That’s why the critical region
η(pi(t), p j(t)) is evaluated over horizon [t, t + nTs] with the
design parameter n ∈ Z>1 and augmented with the inter-
agent safety constraints such that it that provides robustness to
actual safe region. Then, we leverage this notion to proactively
detect adversarial agent without violating safety constraints
and ensure all time safety for all i∈ V /A based on resiliency
mechanism as presented in Section IV. C and V, respectively.

Note that η(pi(t), p j(t)) can be maximized by applying best
and worst-case control input umin

i (t) in (15) and umax
j (t) in (17),

respectively, over the time interval [t, t +nTs]. Thus, based on
Definition 5, we can rewrite critical zone as

η(pi(t), p j(t)) =∥∥∥∥∥∥
t+ts∫
t

( f p
i (τ)+gp

i (τ)u
min
i − f p

j (τ)−gp
j (τ)u

max
j )dτ

∥∥∥∥∥∥ . (33)

where f p
i ∈ R2 and gp

i ∈ R2×mi denotes the sub-matrix of
fi and gi corresponding to position vector dynamics in (1).
For brevity, we denote η(pi j(t)) = η(pi(t), p j(t)) in the rest
of the paper. Also the presented formulation for the critical
zone η(pi j(t)) can be directly extended for the static obstacle
avoidance case with obstacle at fixed position, i.e.,

η(pio j(t)) =

∥∥∥∥∥∥
t+t̄s∫
t

( f p
i (τ)+gp

i (τ)u
max
i )dτ

∥∥∥∥∥∥ , (34)

where t̄s = nT o j
s with T o j

s defined in (31). The designed critical
zones η(pi j(t)) and η(pio j(t)) are leveraged in Section IV.B
for behavior monitoring and design of proactive adversary
detection mechanism.

C. Behavior Metrics for Monitoring and Proactive Adversary
Detection

In this subsection, we first introduce behavior metrics and
then design behavior monitors for the detection of adversarial
agents belongs to the set As. We present the following behav-
ior metrics: (i) Safety behavior metric, and (ii) Goal reaching
behavior metric.
Safety behavior metric: To monitor the agents behavior for

safe operation, the safety behavior metric is defined as
SRi(t) = exp(−(Γi(pi(t), p j(t)))nc), ∀t ≥ 0, (35)

where
Γi(pi(t), p j(t)) = max{gi j(pi(t), p j(t)),gio j(pi(t))}, (36)

with
gi j(pi(t), p j(t)) =

d∥∥pi(t)− p j(t)
∥∥ , ∀ j ∈Ni, (37)

and
gio j(pi(t)) =

ro j∥∥pi(t)− co j

∥∥ , ∀o j ∈ Oi, (38)

where co j and ro j co j and ro j are defined in (5). Moreover,
Oi and nc ∈ Z>1 denote the set of obstacles for the agent i
and a constant design gain, respectively. Now the following
proposition shows that how the designed safety behavior
metric SRi(t) acts as a safety monitor for an agent i.
Proposition 1. Consider the agent dynamics (1) along with
the safety behavior metric SRi(t) in (35). For the defined safe
set Ss

i in (7), if pi(t) ∈ int(Ss
i ) (pi(t) /∈ Ss

i ), then the safety
behavior metric SRi(t)→ 1 (SRi(t)→ 0) for all time t.

Proof. Note that, based on safety constraints in (3) and (5),
for any pi(t) ∈ int(Ss

i ), i.e., agent operating in safe region,
one has gi j(pi(t), p j(t))< 1 and gio j(pi(t))< 1. Similarly, for
any pi(t) /∈ Ss

i , i.e., agent operating in unsafe region, one has
gi j(pi(t), p j(t))> 1 and gio j(pi(t))> 1. Thus, based on (37),
(38) and (35), the safety behavior metric SRi(t)→ 1 (SRi(t)→
0) if pi(t) ∈ int(Ss

i ) (pi(t) /∈ Ss
i ) with a proper design constant

nc ∈ Z>1. Therefore, based on the metric SRi(t), ∀t ≥ 0, one
can employ SRi(t) as a monitor to evaluate the safe (unsafe)
behavior of the agent. �



Now, we leverage the presented critical zone in Section IV.
B and define a metric to capture worst-case safety behavior in
terms of critical zones as

Sw
Ri
(t) = exp(−Γ

w
i (pi(t), p j(t))nc), ∀t ≥ 0, (39)

where
Γ

w
i (pi(t), p j(t)) = 1−max{gw

i j(pi, p j), gw
io j
(pi)}, (40)

with
gw

i j(pi(t), p j(t)) =
η(pi j(t))∥∥pi(t)− p j(t)

∥∥ , (41)

and
gw

io j
(pi(t)) =

η(pio j(t))∥∥pi(t)− co j

∥∥ , (42)

∀i ∈ V , o j ∈ Oi, with η(pi j(t)) and η(pio j(t)) critical zones
defined in (32) and (34), respectively. We define the error
between the worst-case and nominal safety metrics as

γ
S
i (t) =

∥∥Sw
Ri
(t)−Sn

Ri
(t)
∥∥ , (43)

with Sn
Ri
(t) = 1 as the nominal safety behavior metric. Note

that Sn
Ri
(t) represents safety behavior metric SRi(t) in (35)

under nominal operation of agent i, i.e., when pi(t) ∈ int(Ss
i ).

Now, we present the first result on behavior monitoring,
and show that if the safety behavior metric value is below a
designed threshold, then one can always ensure the operation
of an agent inside the safe set Ss

i .

Theorem 3. Consider the agent dynamics (1) along with the
QP based control (14) and the safety behavior metric SRi(t)
in (35). If it holds that∥∥SRi(t)−Sn

Ri
(t)
∥∥≤ γ

S
i (t), ∀t ≥ 0 (44)

where γS
i (t) defined is (43), then pi(t) ∈ int(Ss

i ), ∀t ≥ 0.

Proof. If ∥∥SRi(t)−Sn
Ri
(t)
∥∥≤ ∥∥Sw

Ri
(t)−Sn

Ri
(t)
∥∥ , (45)

then due to the nominal safety behavior metric Sn
Ri
(t) = 1, one

has Sw
Ri
(t) ≤ SRi(t) as 0 ≤ Sw

Ri
(t),SRi(t) ≤ 1. From SRi(t) and

Sw
Ri
(t) in (35) and (39), one has

Γi(pi(t), p j(t),ui(t)))≤ Γ
w
i (pi(t), p j(t),ui(t))), (46)

which using (36) and (40) can be written as
max{gi j(pi, p j), gio j(pi)} ≤ 1−max{gw

i j(pi, p j), gw
io j
(pi)},

(47)∀ j ∈Ni and ∀o j ∈ Oi, and it further becomes
max{gi j(pi, p j)+gw

i j(pi, p j), gio j(pi)+gw
io j
(pi)} ≤ 1, (48)

as gi j(pi, p j), gw
i j(pi, p j), gio j(pi) and gw

io j
(pi) ∈ R>0 accord-

ing to (37)-(38) and (41)-(42). Then, based on gi j(pi, p j),
gw

i j(pi, p j), gio j(pi) and gw
io j
(pi), one can write (48) as

max{
d +η(pi j(t))∥∥pi(t)− p j(t)

∥∥ , ro j +η(pio j(t))∥∥pi(t)− co j

∥∥ } ≤ 1. (49)

Now, from (49), one can infer that
(d +η(pi j(t)))−

∥∥pi(t)− p j(t)
∥∥≤ 0, ∀ j ∈Ni, (50)

and
(ro j +η(pio j(t)))−

∥∥pi(t)− co j

∥∥≤ 0, ∀o j ∈ Oi, (51)
as η(pi j(t)) and η(pio j(t)) ∈ R>0 based on its definition in
(32) and (34), respectively. Then, based on (7), it implies
hS

i (~p)< 0 and thus, pi(t) ∈ int(Ss
i ), ∀t ≥ 0. �

Remark 2. Note that based on Theorem 3, we know that if
the safety behavior metric value is below a designed threshold,
then one can always ensure the operation of an agent inside
the safe set Ss

i . However, if the safety behavior metric violates
the designed threshold, then one needs to determine why the
safety of the agent is jeopardized (due to the agent’s own
behavior or neighbor’s behavior). Thus, one needs a metric
to differentiate adversarial agent trying to achieve the class 1
objective in Definition 2. Therefore, to accomplish proactive
adversary identification in terms of critical time and critical
zone, we also need to monitor goal reaching behavior to
differentiate adversarial agent which tries to violate safety
constraints. Based on the provided reasoning, we design the
proactive adversary detection mechanism in Theorem 4.
Goal reaching behavior metric: To monitor the agent’s per-
formance in terms of reaching toward the goal location, we
define the goal reaching behavior metric as

GRi(t) = exp(−(λi(pi(t), pi(0),Gi))
nc), ∀t ≥ 0, (52)

with
λi(pi(t), pi(0),Gi) =

‖pi(t)−Gi‖2

‖pi(0)−Gi‖2 = ζV g
i (pi(t)), ∀t ≥ 0,

(53)

where ζ = 1
‖pi(0)−Gi‖2

, V g
i (pi(t)) is defined in (9) and pi(0)

represents initial position of the agent i. Note that 0 ≤
λi(pi(t), pi(0),Gi) ≤ 1 under normal or desired behavior of
the agents.

In the following proposition, we analyze how the goal
reaching metric defined in (53) changes for an agent when
it starts deviating from the desired goal reaching behavior. As
explained in Remark 3, we need the result of Proposition 2
along with behavior metrics in Theorem 4 to differentiate the
adversarial agent (either agent i or its neighboring agent j)
that tries to violate safety constraints.
Proposition 2. Consider the agent dynamics (1) along with
the QP based control (14). For λi(pi(t)) defined in (53), if an
agent i satisfies

(L f p
i

λi(pi(t))+Lgp
i
λi(pi(t))ui(t)≥ 0)∧ (λi(pi(t)) 6= 0), (54)

for all t ∈ [t0, t0 + tm] with some time t0 ≥ 0, tm > 0, then the
agent i deviates from desired goal reaching behavior.

Proof. If condition provided in (54) holds true at some time
t ≥ 0 , then under (53), one has

(L f p
i
V g

i (pi(t))+Lgp
i
V g

i (pi(t))ui(t)≥ 0)∧ (V g
i (pi(t))) 6= 0),

(55)
as ζ > 0 in (53). That means the agent i has not reached
the goal point and it starts deviating from the desired goal
reaching behavior over time t ∈ [t0, t0 + tm] as L f p

i
V g

i (pi(t))+
Lgp

i
V g

i (pi(t))ui(t)≥ 0. �

In the following theorem, we present the proactive adversary
detection mechanism based on designed behavior metrics
along with the presented critical zone and critical time in
Section IV. B.
Theorem 4. Consider the agent dynamics (1) along with
SRi(t) and γS

i (t) defined in (35) and (43), respectively. If an
agent i satisfies∥∥SRi(t)−Sn

Ri
(t)
∥∥> γ

S
i (t), ∀t ∈ [t0, t0 +nTs], (56)



with some time t0 ≥ 0 then,
1) the position trajectories of agent i remain in the safe set

for a horizon (n− 1)Ts ahead, i.e., pi(t) ∈ int(Ss
i ), ∀t ∈

[t0, t0 +(n−1)Ts].
2) If in addition L f p

k
λk(pk(t))+Lgp

k
λk(pk(t))uk(t)≥ 0, ∀t ∈

[t0, t0+(n−1)Ts], where k ∈ {i, j}, j ∈Ni, then the agent
i detects any agent k (i.e., either itself i or any neighbor
agent j) as adversarial at time t = t0 +(n−1)Ts.

Proof. The equation (56) under (35) and (39) with some
mathematical simplification, reads

Γi(pi(t), p j(t),ui(t)))> Γ
w
i (pi(t), p j(t),ui(t))), (57)

which based on (36) and (40), becomes
max{gi j(pi, p j), gio j(pi)}> 1−max{gw

i j(pi, p j), gw
io j
(pi)},

(58)∀ j ∈Ni and ∀o j ∈ Oi and thus, one has
max{gi j(pi, p j)+gw

i j(pi, p j), gio j(pi)+gw
io j
(pi)}> 1, (59)

as gi j(pi, p j), gw
i j(pi, p j), gio j(pi) and gw

io j
(pi) ∈ R>0 accord-

ing to (37)-(38) and (41)-(42). Then, based on gi j(pi, p j),
gw

i j(pi, p j), gio j(pi) and gw
io j
(pi), one can write (59) as

max{
d +η(pi j(t))∥∥pi(t)− p j(t)

∥∥ , ro j +η(pio j(t))∥∥pi(t)− co j

∥∥ }> 1. (60)

Thus, one can conclude at least one of the following
conditions do not hold true, ∀t ∈ [t0, t0 +(n−1)Ts],{

(d +η(pi j(t)))−
∥∥pi(t)− p j(t)

∥∥� 0, ∀ j ∈Ni,
(ro j +η(pio j(t)))−

∥∥pi(t)− co j

∥∥� 0, ∀o j ∈ Oi,
(61)

with η(pi j(t)) and η(pio j(t)) ∈R>0 based on its definition in
(32). However, the critical zone η(pi j(t)) and η(pio j(t)) are
designed such that in worst-case scenario the agent can reach
unsafe boundary only if t ≥ t0 + nTs, i.e., when the critical
zones shrink to zero. Thus, following safety conditions are
satisfied, ∀t ∈ [t0, t0 +(n−1)Ts],{

d−
∥∥pi(t)− p j(t)

∥∥< 0, ∀ j ∈Ni,
ro j −

∥∥pi(t)− co j

∥∥< 0, ∀o j ∈ Oi,
(62)

This implies hS
i (~p) < 0 and thus, the safety for agent i is

guaranteed, i.e., pi(t) ∈ int(Ss
i ), ∀t ∈ [t0, t0 + (n− 1)Ts]. This

completes the proof of part 1.
Now we prove part 2 of the theorem. Based on the condition

in (56) and from the proof of part 1, one can conclude that at
least one of the following conditions does not hold true:{

(d +η(pi j(t)))−
∥∥pi(t)− p j(t)

∥∥� 0, ∀ j ∈Ni,
(ro j +η(pio j(t)))−

∥∥pi(t)− co j

∥∥� 0, ∀o j ∈ Oi,
(63)

for all ∀t ∈ [t0, t0 +nTs] with η(pi j(t)) and η(pio j(t)) ∈ R>0.
Note that if the conditions in (63) hold true for any j ∈Ni
or o j ∈ Oi, ∀t ≥ t0 + nTs, then the safety conditions (62) do
not satisfy ∀ j ∈Ni and ∀o j ∈Oi as the designed critical zone
η(pi j(t)) or η(pio j(t)) in (32) and (34) becomes zero at t =
t0 +nTs. Thus, pi(t) /∈ int(Ss

i ), ∀t ≥ nTs. Therefore, one needs
to detect agent i or j as adversarial at t = t0 +(n− 1)Ts and
act to ensure safety of the intact agent. However, the violation
of inter-agent safety constraints in (62) can happen either due
to the behavior of agent i or neighbor agent j. Based on
Proposition 2, if L f p

k
λk(pk(t)) + Lgp

k
λk(pk(t))uk(t) ≥ 0, ∀t ∈

[t0, t0+(n−1)Ts] is satisfied, (which shows that agent k∈{i, j}

Algorithm 1 Identification of adversarial agents in set As.

1: Initialize with design constant n ∈ Z>1.
2: procedure ∀i ∈ V /V f

3: At each time t0, compute the critical time Ts = min
j∈Ni
{T j

s }

where T j
s is defined in (20).

4: For all time t ∈ [t0, t0 + (n− 1)Ts], compute the safety
behavior metric SRi(t) in (35) and λi(pi(t)) in (53).

5: Then, evaluate the conditions in (54) and (56). If both
hold true ∀t ∈ [t0, t0 +(n−1)Ts], then agent i ∈ V /V f is
identified as adversarial at time t = t0 + (n− 1)Ts, i.e.,
i ∈As.

6: end procedure

is deviating from its desired goal-reaching behavior) along
with the condition (56), (which shows that the trajectory
of agent i is converging to the boundary of unsafe region
at t = t0 + nTs), then the agent i detects any agent k (i.e.,
either itself i or any neighbor agent j) as adversarial at time
t = t0 +(n−1)Ts. This completes the proof. �

Remark 3. Note that to ensure safety for intact neighbors,
one needs to proactively detect agent i as adversarial at
t = t0 +(n− 1)Ts if the condition in (56) and L f λi(pi(t))+
Lgλi(pi(t))ui(t) ≥ 0 are satisfied, ∀t ∈ [t0, t0 +(n−1)Ts], and
takes proactive action in time window [t0+(n−1)Ts, t0+nTs].
Otherwise, the adversarial agent i violates safety with its intact
neighbor, i.e., hS

i (~p(t))> 0, ∀t > t0 +nTs.

D. Task Behavior Metric and Proactive Adversary Detection

In this subsection, we first design a metric to capture the
behavior of neighboring agents in formation and present the
result for detection of adversarial agent among the set of
agents V f ⊆ V . Similar to λi(pi(t)) in (53), the goal reaching
behavior for a collaborative task among the set of agents
V f ⊆ V in the form of formation can also be encoded in the
following metric

λ f (p̄(t), p̄(0),G f ) =

∥∥p̄(t)−G f
∥∥2∥∥p̄(0)−G f
∥∥2 = ζ f V̄

g
f ( p̄(t)), ∀t ≥ 0,

(64)

where ζ f =
1

‖p̄(0)−G f‖2 , V g
f ( p̄(t)) is defined in (10) and p̄(0)

denotes the initial centroid position of agents in formation with
p̄(t) = 1

|V f | ∑i∈V f
pi(t). Note that 0 ≤ λ f ( p̄(t), p̄(0),G f ) ≤ 1

under normal behavior of the agents in the formation.

Proposition 3. Consider the agent dynamics (1) along with
the QP control (14). For λ f ( p̄(t)) defined in (64), if it holds
that
((L f p

i
λ f (p̄(t))+Lgp

i
λ f ( p̄(t))ui(t))≥ 0)∨ (λ f ( p̄(t)))> 1),

(65)

for all t ∈ [tk, tk + nTs], then atleast one of the agent among
the set of agents V f ⊆ V is adversarial.

Proof. The result follows a similar argument as provided in
the proof of Proposition 2. �
Task Behavior Metric: Note that the result of Proposition 3
determines that at least one of the agent among the set of



agents V f might be adversarial. However, in order to accom-
plish goal reaching for a collective task among the set of intact
agents V f /A , one needs to detect the particular adversarial
agents and reject their contribution in the formation. Thus,
we design a task behavior metric for monitoring behavior
of neighboring agents in formation and present the result for
detection of adversarial agent among the set of agents V f . The
task behavior metric is defined as:

FRi j(t) = exp(−(Θi(pi(t), p j(t)))nc), ∀t ≥ 0, (66)

where
Θi(pi(t), p j(t)) = |

∥∥pi(t)− p j(t)
∥∥− ci j| (67)

with desired formation distance ci j between agent i and its
neighbor j.

From Θi(pi(t), p j(t)) in (67), in the absence of attack, once
desired group of agents reach formation, then FRi j(t) will be
always close to one during nominal operation and it goes to
zero only if agent i or j is adversarial. Based on the result
of task behavior metric, we determine confidence value Ci(t)
in (69) for each agent i ∈ V f using Algorithm 2. Note that
the confidence value Ci(t) in (69) represents the degree of
trustworthiness of each agent i about its own information. In
particular, if an agent is adversarial, then Ci(t)→ 0, otherwise
Ci(t)→ 1. Now, we define

EFi
i (pi(t), p j(t))= |

∥∥pi(t)− p j(t)
∥∥−ci j|−Θ

w
i (pi(t), p j(t))≤ 0,

(68)
where Θw

i (pi(t), p j(t)) > 0 represents the bound on the for-
mation error for agents without considering any adversary.

Remark 4. Note that the formation error bound
Θw

i (pi(t), p j(t)) in (68) can be designed based on exponential
convergence for the formation control [25]. In particular,
Θ̄w

i (pi(t), p j(t)) = k1e−k2t(
∥∥pi(0)− p j(0)

∥∥ − ci j) where
k1 =

√
c2
c1

and k2 = λrρ

2c1
with design constant c1,c2,ρ ∈ R+

and λr as minimum singular value of rigidity matrix
corresponding to desired formation [25]. Also, for the sake of
brevity, one can select an arbitrary large enough scalar value
Θw

i (pi(t), p j(t)) such that Θw
i (pi(t), p j(t)) > Θ̄w

i (pi(t), p j(t))
for all time t.

We also define the worst-case collective behavior as

Fw
Ri j
(t) = exp(−(Θw

i (pi(t), p j(t)))nc), ∀t ≥ 0. (70)
Then, define the error between the worst-case and nominal

formation behavior metrics as

γ
F
i (t) =

∥∥∥Fw
Ri j
(t)−Fn

Ri
(t)
∥∥∥ , (71)

with Fn
Ri
(t) = 1 as the nominal task behavior metric. From

Θi(pi(t), p j(t)) in (67), in the absence of any adversary, once
desired group of agents reach formation, then FRi(t) = 1 and
that shows the nominal behavior of agents in the formation.

Based on the design of Θw
i (pi(t), p j(t)), EFi

i (pi(t), p j(t))≤
0 always holds true for each i ∈ V f if A ∩ V f = /0. Thus,
in the following result, based on the designed task behavior
metric, one can detect the adversarial agents among the set of
collaborative agents V f .
Theorem 5. Consider the agent dynamics (1) along with the
QP based control (14). For the task behavior metric FRi j(t) in
(66) and γF

i (t) in (71), if an agent i ∈ V f satisfies

Algorithm 2 Determination of confidence value Ci(t) and
identification of Adversarial Agents belong to set A f

1: procedure ∀i ∈ V f
2: for i = 1 : |V f |
3: initialize index = [], A f = []
4: for j = 1 : Ni(t)
5: From (66) and (70), evaluate FRi j(t) and Fw

Ri
(t).

6: if FRi j(t)> Fw
Ri
(t)

7: index = [index j];
8: end if
9: end for

10: Using index from step 7, evaluate confidence

Ci(t) = exp(−(2|index|
Ni(t)

)nc), ∀t ≥ 0, nc ∈ Z>1. (69)

11: if (2|index|)> Ni(t)
12: A f = [A f i];
13: end if
14: end for
15: end procedure

∥∥FRi j(t)−Fn
Ri
(t)
∥∥> γ

F
i , (72)

for more than Ni(t)
2 neighbors at some time t ≥ 0, then the

agent i is detected as adversarial among the set of agents V f .

Proof. Based on the statement of theorem, if (72) holds, then
from (71), with Fn

Ri
(t) = 1 as the nominal task behavior metric,

FRi j(t) > Fw
Ri
(t) also holds for more than Ni(t)

2 neighbors at
some time t ≥ 0. Based on task behavior metrics FRi j(t) and
Fw

Ri
(t) in (66) and (70), one has formation error in (68) as

EFi
i (pi(t), p j(t))= |

∥∥pi(t)− p j(t)
∥∥−ci j|−Θ

w
i (pi(t), p j(t))> 0,

(73)
for more than Ni(t)

2 neighbors. That means agent violates the
formation error bound with more than half of its neighbors
and this only possible if agent i itself is adversarial because
we assumed at max half of neighbors can be adversarial. Thus,
the agent i is detected as an adversarial agent. �

Remark 5. Note that, based on the result of task behavior
metric, we determine confidence value Ci(t) in (69) for each
agent i ∈ V f using Algorithm 2. The confidence value Ci(t)
captures good or bad behavior of agent. In particular, based
on Ci(t) in (69), if an agent is adversarial, then Ci(t)→ 0,
otherwise Ci(t)→ 1. In order to design confidence value Ci(t),
the condition of more than 50% of neighbors is leveraged to
identify intact and adversarial agents.

Note also that the set of adversarial agents be A =As∪A f
can be determined based on Algorithm 1 and Algorithm 2. The
set of adversarial agents As is computed based on the results
presented for safety behavior metric in Theorem 4. Similarly,
the set of adversarial agents A f is evaluated based on the task
behavior metric in Theorem 5. After identifying the set of
adversarial agents A and we leverage the adversary detection
results along with presented behavior metrics for the design
of resilient QP in the next section.



V. RESILIENT CONTROLLER DESIGN

This section presents the formulation of resilient quadratic
program (QP) to compute a control input ui(t) for each
agent i to solve Problem 1 in the presence of the set of
adversarial agent A . Let~zr = [zT

1 ,z
T
2 , . . . ,z

T
N−|A |]

T be a column
vector with zi = [ui,δi1 ,δi2 ,δi3 ,δi4 ,{δi j}]T ∈ Rmi+4+Ni with
Ni = |Ni| , ∀i ∈ V /A as its elements. Consider the following
optimization problem

min
ui,δi1 ,δi2 ,δi3 ,{δi j}, i∈V /A

~zT
r H~zr +F~zr (74a)

s.t. Aiui ≤ bi (74b)
L f p

i
V g

i +Lgp
i
V g

i ui ≤−δi1V
g
i , ∀i ∈ V /V f (74c)

L f p
i
V̄ r

f +Lgp
i
V̄ r

f ui(t)≤−δi2V̄
r
f (74d)

L f p
i

h
o j
i +Lgp

i
h

o j
i ui ≤−δi3h

o j
i , ∀o j ∈ Oi (74e)

L f p
i

h̄Fi
i +Lgp

i
h̄Fi

i ui ≤−δi4 h̄Fi
i ,∀i ∈ V f (74f)

L f p
i

h̄S
i j +Lgp

i
h̄S

i jui +π(h̄S
i j)≤−δi jh̄S

i j, ∀ j ∈Ni, (74g)

where H = diag{Hi} with Hi =
diag{{wi

ul
},wi

1,w
i
2,w

i
3,w

i
4,{wi

np}} denotes a diagonal matrix
with positive weights wi

ul
,wi

1,w
i
2,w

i
3,w

i
4,w

i
np > 0 for each

p ∈Ni, and similarly, F = diag{Fi} with Fi = [0T
mi

qi 0Ni+3 ]

where qi > 0 and 0k ∈ Rk denotes a column vector consisting
of zeros. Moreover, based on the task behavior metric FRi j(t)
in (66), the function h̄Fi

i (t) in (74f) is defined in the resilient
form as

h̄Fi
i (t) = ‖pi(t)− p̂∗i (t)‖ , (75)

with p̂∗i (t) =
1

|N F
i (t)| ∑ j∈Ni FRi j(t)(p j(t)+ c ji) and

∣∣N F
i (t)

∣∣=
∑ j∈Ni FRi j(t). Similarly, the function h̄S

i j in (74g) is defined as

h̄S
i j = hS

i j +
η(pi j)

n , (76)

and

π(h̄S
i j(t)) =

{
L f p

j
h̄S

i j +Lgp
j
h̄S

i ju j(t), i f j /∈A ,

L f p
j
h̄S

i j +Lgp
j
h̄S

i ju
max
j (t), i f j ∈A .

(77)

where umax
j (t) worst case adversarial control action defined in

(17). Also, based on the confidence value Ci(t) in (69), the
resilient CLF for collaborative goal reaching is defined as

V̄ r
f (t) =

∥∥p̄r(t)−G f
∥∥2→ 0 (78)

as t → ∞ with G f as goal point or goal region, p̄r(t) =
1

N r(t) ∑i∈V f
Ci(t)pi(t) and N r(t) = ∑i∈V f

Ci(t) for collabora-
tive goal reaching with the set of agents V f ⊆ V in the form
of formation.

Now, in the following theorem, we present the re-
sult that solves the Problem 1 with objectives A.1-A.4
for each agent i ∈ V /A . Let the solution of (74) be
represented by ~z∗r = [z∗

T

1 ,z∗
T

2 , . . . ,z∗
T

N−|A |]
T where z∗i (.) =

[u∗i (.),δ
∗
i1(.),δ

∗
i2(.),δ

∗
i3(.),δ

∗
i4(.),{δ

∗
i j(.)}]T .

Theorem 6. Consider the agent dynamics (1). Then,
1) the resilient QP in (74) is feasible for each intact agent

i ∈ V /A .
2) the resilient QP in (74) solves Problem 1 for each intact

agent i ∈ V /A .

Proof. Since, we have V̄ r
f > 0 in (78) for all p̄r

i (t) /∈ G f and
t ≥ 0. One can select ui = u∗i ∈Ui and define

δi2 =−
L fiV̄

r
f +LgiV̄

r
f u∗i (t)

V̄ r
f

, (79)

and it can be explicitly defined for all p̄r
i (t) /∈ G f , such that

(74d) satisfies the equality condition. We know that h̄S
i j < 0 for

all pi(t) ∈ int(S̄s
i ) and for all t ≥ 0, where the set S̄s

i is defined
in (4). Then, one can chose ui = u∗i ∈Ui and define

δi j =−
L f p

i
h̄S

i j +Lgp
i
h̄S

i jui +π(h̄S
i j)

h̄S
i j

, (80)

and it can be explicitly defined for all pi(t)∈ int(S̄s
i ), such that

(74g) satisfies the equality condition. Similarly, we know that
one can define slack parameters δ ∗i1 ,δ

∗
i3 ,δ

∗
i4 such that (74b) and

(74d)-(74f) are satisfied with equality condition. Therefore,
there exists z∗i (.) = [u∗i (.),δ

∗
i1(.),δ

∗
i2(.),δ

∗
i3(.),δ

∗
i4(.),{δ

∗
i j(.)}]T

all constraints in (74) are satisfied and the resilient QP in (74)
is feasible for each intact agent i ∈ V /A .

Now based on result of part 1, we present
the prove of part 2. Since the resilient QP in
(74) is feasible for all i ∈ V /A , thus there exist
z∗i (.) = [u∗i (.),δ

∗
i1(.),δ

∗
i2(.),δ

∗
i3(.),δ

∗
i4(.),{δ

∗
i j(.)}]T which

ensures (74b)-(74g) for all t > 0. Based on the confidence
value Ci(t) in (69), the resilient CLF V̄ r

f for collaborative
goal reaching in (78) discards the adversarial agent
contribution with centroid with p̄r(t) = 1

N r(t) ∑i∈V f
Ci(t)pi(t)

and N r(t) = ∑i∈V f
Ci(t) as based on Algorithm 2

Ci(t) → 0 for the adversarial agents. Since there exist
z∗i (.) = [u∗i (.),δ

∗
i1(.),δ

∗
i2(.),δ

∗
i3(.),δ

∗
i4(.),{δ

∗
i j(.)}]T for all

i ∈ V /A which satisfaction of constraint (74d), this means
centroid of intact agents among the set of agents V f
exponentially reaches the goal point. With similar argument
constraints in (74b)-(74c) and (74e)-(74g) are satisfied and
thus the resilient QP in (74) solves Problem 1 for each intact
agent i ∈ V /A . This completes the proof. �

Remark 6. Note that based on the result in Theorem 6, the
feasibility of the designed resilient QP in (74) depends on the
optimization parameters δ ∗i1(.),δ

∗
i2(.),δ

∗
i3(.),δ

∗
i4(.),δ

∗
i j(.). These

optimization parameters are similar to feasibility parameters
presented in [26]–[28] to solve the conflicts among constraints
and to ensure the feasibility of the CBF-CLF based QP’s.
Interested readers can refer to [26], [28] for more details on
feasibility analysis.

VI. NUMERICAL CASE STUDIES

In this section, we present two case studies to demonstrate
the efficacy of the presented theoretical contributions. In the
first case, we consider a multi-agent problem with objectives
to visit some regions (goal reaching) while maintaining safety
constraints (i.e., inter-agent and agent-to-obstacle safety), de-
spite the presence of an adversarial agent. In the second case,
we consider the multi-agent formation problem under some
desired specifications, where the aim is to maintain formation
among the set of collaborative agents and visit some regions



(a) (b)

Figure 2: Agents behaviors for desired specification: (a) without any adversary. (b) when
Agent 1 perform adversarial chasing toward Agent 2 for t > 800s.

while maintaining safety constraints with collaborative goal
reaching even in the presence of adversarial agents.

1) Case 1: We consider a network of three agents with the
following linearized unicycle dynamics ẏi

1
ẏi

2
θ̇ i

=

 1 0
0 1

−sin(θ i)
b

cos(θ i)
b

 [ ui
1

ui
2

]
, ∀i ∈ {1,2,3}

where yi
1 = xi + bcos(θ i) and yi

2 = yi + bsin(θ i) with[
xi yi ]T and θ i as the position vector and orientation of

agent i. For the linearized unicycle model, the control input
transformation is given by[

vi

wi

]
=

[
cos(θ i) −bsin(θ i)
sin(θ i) bcos(θ i)

]−1 [ ui
1

ui
2

]
, b > 0

Under normal operation, the multi-agent has following de-
sired specifications or objectives φ = ♦[0,800](ϒ1

G0 ∧ϒ2
G0 )∧

♦[800,2200](ϒ1
G1 ∧ ϒ2

G2) ∧ ♦[0,2200](ϒ3
G3) ∧ �[0,2200]φs with

ϒi
Gr = ‖pi−Gr‖< δr, ∀r ∈ {0,1,2,3} and φs = (

∥∥pi− p j
∥∥ >

0.1)∧(
∥∥pi− co j

∥∥ > 0.4), ∀o j ∈ {o1,o2} as desired goal reach-
ing and safety specification for agent i, respectively. δr =
0.25, ∀r ∈ {1,2,3} and δ0 = 0.75 for goal regions. In par-
ticular, the objective for Agents 1 and 2 is to eventually
reach goal location G0 and perform some task between time
duration t ∈ [0,800], then Agent 1 and Agent 2 are supposed
to reach their desired goal location G1 and G2 over time
duration t ∈ (800,2200] while maintaining inter-agent and
agent-obstacle constraints (black eclipse in Figure 2 denotes
obstacle in the environment). Similarly, Agent 3 has to reach
its desired goal location G3 over time duration t ∈ [0,2200].
Figure 2a shows the normal agent’s behavior for the desired
specification φ . Based on normalized CLF in (53) and inter-
agent safety metric in (37), the goal-reaching and inter-agent
safety behavior of agents are shown in Figures 3a and 3b,
respectively. One can see that in absence of any adversarial
agent, all intact agent follows desired behavior under control
action obtained from nominal QP (14). In Figure 2a, A0

1, A0
2

and A0
3 denote the initial positions of respective agents.

Now, we consider Agent 1 as adversarial and it per-
forms adversarial chasing after t > 800 with aim to achieve
‖x1(t)− x2(t)‖ → 0 in some finite time. Figure 2b shows the
agent’s behavior under adversarial chasing and violation of
desired specifications φ . We can see in Figure 4 how the goal
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Figure 3: (a) Normalized CLF for goal reaching behavior without adversary. (b) Inter-
agent safety behavior without adversary.
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Figure 4: Normalized CLF for goal reaching behavior under adversarial chasing.
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Figure 5: Inter-agent safety behavior under adversarial chasing.
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Figure 6: Critical zone between Agents 1 and 2.

Figure 7: Agents behavior under resilient QP in (74): when Agent 1 perform adversarial
chasing toward Agent 2 for t > 800s.

reaching behavior for Agent 1 starts growing after t = 800s
due to adversarial chasing behavior. Similarly, Figure 5 shows
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Figure 8: Inter-agent safety behavior under resilient QP in (74).
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Figure 9: Critical zone between Agents 1 and 2 under resilient QP in (74).
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Figure 10: Normalized resilient CLF for goal reaching behavior under adversarial chasing
with resilient QP in (74) .

Figure 11: Collaborative goal reaching behavior of intact agents in formation without
any adversarial agent.

(a)
(b)

Figure 12: (a) Collaborative goal reaching behavior in the presence of adversarial Agent
3 and 6.. (b) Resilient collaborative goal reaching behavior in the presence of adversarial
Agent 3 and 6.

that the inter-agent safety violation happens at t = 1116s as

the value of the safety behavior metric exceeds one, which
implies that Agent 1 violates the safety constraint and hits
the intact agent, i.e., Agent 2. Under adversarial chasing by
Agent 1, one can see in Figure 6 how the critical zone shrinks
as the adversarial agent reaches close to intact Agent 2, and
eventually goes to zero. Figure 5 shows a proactive adversary
detection happens at t = 907s by leveraging the concept of the
critical zone for an inter-agent safety violation and it follows
the result presented in Theorem 4.

Now, based on the results of presented detection mechanism,
we validate the efficacy of designed resilient QP in (74). Figure
7 illustrates the agents’ behavior under adversarial chasing
with resilient QP in (74); one can see that Agent 1 keeps trying
to hit Agent 2, but Agent 2 escapes from adversarial chasing
based on the designed resilient inter-agent safety constraint in
(74g). Similarly, Figure 8 shows that the resilient QP in (74)
guarantees all-time inter-agent safety for intact agents even
under adversarial chasing, as the safety metric is always less
then one. Also, one can see that the critical zone in Figure
9 does not shrink to zero as adversarial agent reaches close
to but does not hit intact Agent 2. Figure 10 illustrates the
goal reaching behavior for intact agent, i.e., Agents 2 and
3 eventually goes to zero and they reach their desired goal
position G2 and G3. However, for Agent 1 goal reaching
behavior grows after t = 800s due to adversarial chasing
behavior and it never reaches the specified goal location G1.

2) Case 2: In the second case, we consider a multi-
agent formation problem under some desired specifications,
where the aim is to maintain formation among the set of
collaborative agents and visit some regions, while maintaining
safety constraints with collaborative goal reaching even in the
presence of adversarial agents. In particular, we consider six
agents with linearized unicycle dynamics and the desired goal
location of formation centriod G0 = [−120 7]T . Figure 11
shows the collaborative goal reaching for the agents without
any adversarial agents, i.e., A f = /0. One can see in Figure 11
how agents maintain safety and reach desired goal location G0
over the desired time duration t ∈ [0,1000]. Then, we consider
the same scenario in the presence of multiple adversarial
agents, i.e., Agents 3 and 6 act as adversarial agents for all
t > 400 (both agents belong to class 2 type of adversarial
agent as defined in Definition 2). It is shown in Figure 12a
how adversarial agents mislead the collaborative goal reaching
behavior and thus, intact agents do not reach the desired goal
location G0, collectively over the time interval t ∈ [0,1000].
Then, based on presented Algorithm 2 and Theorem 5, we
detect the set of adversarial agents A f and mitigate their ef-
fects in collaborative goal reaching. The Figure 12b illustrates
that even in the presence of multiple adversarial agents, intact
agents achieve the desired collaborative goal reaching behavior
and reach the goal location G0 over the desired time duration
t ∈ [0,1000].

VII. CONCLUSIONS AND FUTURE DIRECTION

In this paper, we presented the proactive adversary detection
mechanism and then designed a resilient control framework for
multi-agent systems. In particular, first we analyzed agent’s



behaviors based on designed behavior metrics, and then de-
signed proactive adversary detection mechanism based on the
notion of the critical region for the system operation. The
presented detection mechanism identified adversarial agents
while ensuring all-time safety for normally behaving agents
in the presence of adversarial agents. By leveraging the
presented results for behavior analysis and adversary detection,
we designed a resilient QP-based controller for multi-agent
systems with desired safety and goal reaching constraints for
intact agents, even in the presence of the adversarial agent.
Finally, two case studies are presented to illustrate the efficacy
of the presented theoretical contributions.

A possible direction for future work is to explore the
presented framework for resilience to more sophisticated ad-
versaries with actual adversarial actions instead of worst-case
actions.
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