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ABSTRACT

Given data drawn from a collection of Gaussian variables with a
common mean but different and unknown variances, what is the
best algorithm for estimating their common mean? We present an
intuitive and efficient algorithm for this task. As different closed-
form guarantees can be hard to compare, the Subset-of-Signals
model serves as a benchmark for “heteroskedastic” mean estimation:
given n Gaussian variables with an unknown subset of m variables
having variance bounded by 1, what is the optimal estimation
error as a function of n and m? Our algorithm resolves this open
question up to logarithmic factors, improving upon the previous
best known estimation error by polynomial factors when m =
n¢ for all 0 < ¢ < 1. Of particular note, we obtain error o(1)
with m = O(n'/*) variance-bounded samples, whereas previous
work required m = Q(n!/2). Finally, we show that in the multi-
dimensional setting, even for d = 2, our techniques enable rates
comparable to knowing the variance of each sample.

CCS CONCEPTS

+ Theory of computation — Design and analysis of algo-
rithms; - Mathematics of computing — Probability and sta-
tistics.
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1 INTRODUCTION

Over the past decade, there has been a significant effort from the
theoretical computer science and machine learning communities to
reexamine fundamental learning and statistical estimation problems
in non-ii.d. settings. Many of these efforts have focused on relaxing
the independence assumption. This includes the large body of work
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on robust statistics, where a portion of the data are assumed to be
drawn ii.d. from a fixed distribution and no assumptions are made
about the remainder of the data. On the TCS side, work in robust
statistics began by considering the problem of mean estimation in
the Gaussian setting [8, 18], and then built up to considering more
complex problems of learning or optimization (e.g [2, 10]).

Here, we instead consider the heterogeneous data setting, where
samples are drawn independently, but from non-identical distribu-
tions. Even for some of the most fundamental problems, such as
the problem of mean estimation with Gaussian data that we con-
sider, much is still unknown about both the information theoretic
and computational landscapes in this heterogeneous but indepen-
dent setting. This is despite the practical importance of accurately
extracting information from datasets whose contents have been
gathered from heterogeneous sources (e.g. sourced from different
workers, contributed by different hospitals or doctors, scraped from
different websites, etc.).

Concretely, we consider the setting where we observe n indepen-
dent heteroskedastic (meaning having different variances) Gaussian
random variables that have a common mean: X; ~ N (g, 0%), e
Xn ~ N(u, 0',%), and our goal is to estimate their common mean,
. Crucially, the variances aiz are unknown. This problem was ex-
plored in both the d = 1 and higher dimensional settings in the
work of Chierichetti, Dasgupta, Kumar, and Lattanzi [4]. In the
case where the variances are known, the unbiased estimator that
weights X; proportionally to 1/ al.z is easily shown to achieve opti-

mal error ©(1/,/> 1/ al.z) [15]'. When the variances are unknown,
however, both the problem and the optimal rates seems to change
fundamentally.

In an effort to expose the core challenges of this problem, Liang
and Yuan [20] introduced the Subset-of-Signals variant, parameter-
ized by two numbers, m, n: as above, one observes n independent
Gaussian random variables with a common mean, Xj, ..., X}, with
the assumption that m have variance at most 1, and one makes
no assumptions about the variances of the remaining n — m. Our
results address the more general formulation, though are easier to
interpret in this Subset-of-Signals setting, for which our approach
achieves the known lower bounds, up to logarithmic factors.

1.1 Related Work

As mentioned above, this problem of heteroskedastic mean estima-
tion was considered by Chierichetti, Dasgupta, Kumar, and Lattanzi
in the d = 1 dimensional and (isotropic) high dimensional setting
where X; ~ N(u, criZI) [4]. Note that in this formulation, mean
estimation becomes easier as d becomes larger, as there is more

1Theorem 3.1 of [4] also contains a short proof of this.
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information with which to infer the values of ;. Thus, while inde-
pendent, the observations in different dimensions are often called
“entangled” When d = Q(log(n)), [4] attain estimation error of

©| [<zL+ | for each dimension with high probability. Note that

i=2 7
this is nearlly identical to the classical known-variance rate, other
than missing the dependence on oy. These results prompted subse-
quent work to focus on the more challenging small dimensional or
one-dimensional settings for which it is more difficult or impossible
to accurately recover the o;’s.

In the one-dimensional setting, [4] attains a guarantee with
respect to the O(log(n)) smallest g;, giving an algorithm with ex-
pected error E[|u — fi|]] = min é(n1/2(1+1/(k_1))0'k). More-

2<k<log(n)
over, they showed lower bounds that demonstrated how the known-
variance rates can be polynomially better than an optimal estimator
that does not know the variances.

Subsequent works, [6, 7, 20, 22, 23, 26], which we discuss below,
improve upon this in various regimes: their upper and lower bounds
in the case of the Subset-of-Signals setting, together with our results,
are depicted in Figure 1.

The work of Pensia, Jog, and Loh (preliminarily [22] and later
[23]) develops machinery for analyzing the performance of classic
estimators in this setting: the modal estimator, k-closest estimator,
and the median. Using this, they show guarantees for a hybrid
estimator and give complementary lower bounds that illustrate
how under some conditions on o1, ..., 0, their estimator is near-
optimal. They also investigate the setting of heteroskedastic linear
regression, as well as showing guarantees for their algorithm in
d > 1 dimensions. Moreover, their results generalize from Gaussian
distributions to radially symmetric and unimodal distributions.

The work of Devroye, Lattanzi, Lugosi, and Zhivotovskiy (prelim-
inarily [6] and later [7]) also develops tools for sharp analysis of the
sample median and modal estimator. In order to provide an adaptive
algorithm requiring no parameter tuning, they employ subroutines
that yield confidence intervals which they eventually intersect. Our
algorithm will utilize a similar paradigm of intersecting confidence
intervals obtained by (different) subroutines.

The works of Liang and Yuan [20, 26] provide estimation guaran-
tees for the iterative trimming algorithm (a widely used heuristic).
Importantly, they also introduce the Subset-of-Signals model, where
m samples have variance bounded by 1, and it is desired to know
the optimal estimation guarantee as a function of n and m. This
framing is particularly helpful because the closed-form guarantees
of various related work can otherwise be difficult to directly com-
pare. In Fig. 1, we show the guarantees of related work in terms of
the Subset-of-Signals model. Finally, Liang and Yuan show lower
bounds for the optimal estimation error in this model.

We also highlight an alternative avenue (that we do not employ)
for approaching heteroskedastic mean estimation. Consider the
similar (but slightly different) task of receiving n i.i.d. samples from
a mixture of n Gaussians, each with mean y and variance al.z. It
appears plausible, for example, to analyze the Fisher information of
this distribution, which would classically imply a lower bound and

2We later observe in Fig. 1 that its guarantees can be polynomially suboptimal in a
natural setting.
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asymptotic guarantees. However, we are not aware of tools that
would readily enable the desired finite-sample guarantees for this
setting. For example, recent works of [11-13] obtain guarantees
in terms of a distribution’s smoothed Fisher information, yet such
smoothing would result in suboptimal guarantees for this setting.

Our upper bound

___Upper bound by Liang and Yuan (2020), Devroye,
Lattanzi, Lugosi, and Zhivotovskiy (2020)

— Lower bound by Liang and Yuan (2020)

Upper bound by Pensia, Jog, and Loh (2019)

error Lower bound by Chierichetti, Dasgupta,
Kumar, and Lattanzi (2014)
nl2
n0
-2 m
n0 /4 2 n

Figure 1: Guarantees of our upper bound and those of prior
work for mean estimation in the Subset-of-Signals model,
where one observes n independent Gaussian random vari-
ables with a common mean, and an unknown subsetof m < n
samples have variance at most 1, with no assumptions on
the variance of the remaining n — m. The x-axis denotes m,
the number of samples with variance bounded by 1, and
the y-axis denotes the estimation error. Our upper bound
matches the known lower bound up to logarithmic factors,
and improves the estimation error by polynomial factors
when m = n€ for 0 < ¢ < 1. (Figure based on plot from [20]).

Related Work Beyond Heteroskedastic Mean Estimation: The previ-
ously mentioned work of [23] studied heteroskedastic linear regres-
sion where the variance of each observation’s noise is arbitrary but
independent of the covariates. Heteroskedastic linear regression has
also been studied in the fundamentally different setting where noise
variance is a rank 1 quadratic function of the covariates [5]. There
have been several lines of work exploring property testing, estima-
tion, and learning in settings with independent, but non-identical
samples. These models span a large spectrum in terms of how much
heterogeneity is present, relative to the sample size. On one extreme,
there is a large volume of work on learning mixture models (of Gaus-
sians, linear regressions, etc., see e.g. [1, 9, 14, 17, 21]). Typically,
in these settings there are a small number (often just a constant
number) of distributions, and each datapoint is drawn i.i.d. from
one of these. Comparatively fewer works explore the other extreme,
where a single sample (or small batch of samples) is drawn from
each distribution—typically too little to learn the distribution—and
the goal is to estimate some property of the set of distributions.
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This includes the property testing work of Levi et al. [19], and work
on estimating properties of populations of parameters, such as esti-
mating the multiset of coin biases given a small number of tosses
of each coin (e.g. [24, 25]).

1.2 Our Contributions

In our work, we design new algorithms for heteroskedastic mean
estimation with polynomially-better error guarantees than prior
work, explicitly answering the open problem of [20] (see Fig. 1):

Given samples of n independent Gaussians with a common mean,
and with an unknown subset of m samples having variance bounded
by 1, what is the best possible estimation error?

THEOREM 1.1 (OPTIMAL SUBSET-OF-SIGNALS). Consider observing
n Gaussian samples with a common mean X; ~ N(p, aiz), where
01 £ -+ < o, < 1, the variances are unknown to the algorithm,
and samples are presented in an arbitrary order. For any constant §,
there exists a constant C such that with probability at least 1 — n—lfs,
Algorithm 2 attains:

(o}

1/2
(%) error if Clog(n) <m < nl/4

. 1/6
O(#) errorifnl/4§m§n

As our algorithm is scale-invariant and translation-invariant,
this also enables the closed-form:

Corollary 1.2. Consider observing n Gaussian samples with a com-
mon mean X; ~ N(y, oiz), where o1 < --- < oy, the variances are
unknown to the algorithm, and samples are presented in an arbitrary
order. For any constant §, there exists a constant C such that with
probability at least 1 — #, Algorithm 2 attains error
")
i4

@)

( 1/2
min min oj - (%) ,
Clog(n)<i<n'/4 !

Our techniques also naturally extend to the d > 1 dimensional
setting, resolving the implicit open problem of [4]: How large does
the dimension d need to be to nearly attain the error rate that would
be achievable if the variances were known? We show that even when
d = 2, this known-variance rate can nearly be attained, improving
upon the prior guarantee of [4] that required d = Q(log(n)):

min oj -
nl/4<i<n

THEOREM 1.3. Consider observing n 2-dimensional Gaussian sam-
ples with a common mean X; ~ N(p, O'izl), where 01 < -+ < oy,
the variances are unknown to the algorithm, and samples are pre-
sented in an arbitrary order. There exits an algorithm that attains

error O nl T
i=2 2
1

) with probability 1 — o(1).

1.3 Preliminaries

Let p(I, r) denote the random variable corresponding to the number
of samples with value € [l r]. fp(-) is the density function of
distribution . For d = 1, in instances where we must refer to the
samples in order of realized value, we refer to themby V1 < --- < Yj,.
Meaning, we realize X1, ..., X, with X; ~ N(g, aiz), and observe
Y; < -+ £ Y, where the Y;’s are the X;’s sorted in non-decreasing
order. We use O(+) to suppress logarithmic factors in n.
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2 OVERVIEW OF OUR TECHNIQUES

In this section, we provide the high-level intuition for our approach
and results, and describe the key lemmas that facilitate our anal-
ysis. Finally, we discuss how our approach and analysis can be
furthered to attain results for multi-dimensional heteroskedastic
mean estimation.

2.1 Intuition and Existing Estimators

As discussed earlier, mean estimation and even heteroskedastic
mean estimation has been studied by a variety of prior works
that leverage different algorithmic ideas. Here, we provide a brief
overview to give intuition into the challenges of the problem, and
motivate our main algorithmic ideas.

The two most basic estimators are the empirical mean and the
empirical median. Neither of these, however, adequately leverage
the heterogeneity in the quality of samples in settings where some
variances are significantly larger than others. In the case of return-
ing the empirical mean, )%, even if all but one sample has
variance 1 and a single sample has arbitrarily large variance, the
empirical mean also will have large variance. While the median
of the X;’s has some robustness to such settings, it also fails to
leverage heterogeneity—this is especially easy to see in the fact
that the median is blind to settings where < +/n samples have
significantly smaller variance than the rest. For example, suppose
X1 Xpijz-e ~ N(p, 1) and Xp12-e5 - Xn ~ N(p, 00). The me-
dian will incur unbounded expected error, while alternative algo-
rithms, such as one that looks for the tightest cluster of nl/2-¢
points and then takes the average of the cluster, would incur ex-
pected error of O( ﬁ).

These settings where there are a small number of very good sam-
ples motivate creating estimators that search for tightly-clustered
sets of samples, and return a statistic of the samples in the cluster.
This intuitively reflects that if there are few low-variance samples,
we would prefer our estimate to rely almost purely on those good
samples if we could identify them. The k-closest estimator, and
the “modal” estimator are two estimators that leverage this in-
tuition. The k-closest estimator looks at the k-closest points and
returns their midpoint. The “modal” estimator returns the value fi
containing the most samples within [fi — w, i + w]. The parame-
ters k and w are chosen so as to isolate an appropriate scale that
focuses on the high-quality samples. As one might expect, these
estimators are quite similar, and there is nearly a bijection between
the k-closest estimator and the modal estimator with parameter
w = argmin,, (maxy p(fi = w, fi + w) > k). These estimators have
been at the core of the previously-best guarantees for heteroskedas-
tic mean estimation. Despite this, their shortcomings are illustrated
even in the homoskedastic case where all samples have equal vari-
ance: when all samples X1,...,X, ~ N(g, 1) there is no choice
of k or w for which the modal or k-closest estimators yield ex-
pected error better than e(n~1/3) [3, 16], despite expected error
O(1/+/n) being achievable by the mean or median.? Prior works
have obtained guarantees demonstrated in Fig. 1 by leveraging

3For variants of the k-closest estimator that return the mean or median of the k-closest
points, rather than their midpoint, this can behave similarly to the mean or median
for sufficiently large k, although they are still suboptimal in the heteroskedastic case.
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hybrid estimators (e.g. [4] uses the k-closest estimator consistent
with the confidence interval quantiles of the empirical median).

2.2 A “Balanced” Modal Estimator

At its core, our estimator behaves similarly to a modal estimator,
that returns the estimate i which maximizes the number of samples
in the range [ — w, fi + w], with the additional condition that this
range be “balanced” in the sense that the number of samples in
the interval [fi — w, [i] is approximately the same as the number of
samples in the interval [f, i+ w].

Before discussing how w is chosen, we describe the intuition
for this balanced condition. Returning to the homoskedastic case
where all variances are 1, suppose we are trying to decide whether
to return the true mean, y, versus a slightly offset version of it,
1+ A. The standard modal estimator with parameter w = 1 is
trying to decide whether there is more probability mass in the
interval [p — 1, u + 1] versus the interval [g — 1+ A, p+ 1+ A].
This depends on the difference between the mass in the intervals
[g—1,p—1+A] and [p+1, p+1+A]. The difference in expectation
is roughly the derivative of the probability density function of the
standard Gaussian, evaluated at 1 times the square of A, namely
O(A?n), while the standard deviation of the difference is roughly
O(VAn). The signal of the true mean overpowers the variance when
A > n~1/3, matching classical guarantees for the modal estimator.
In contrast, when evaluating the balance condition at y + A, the
relevant quantity is the difference between the densities in the
intervals [p+ A — 1,p+ A] and [p+ A, g+ A + 1]. The difference
in expectation is roughly the difference in the standard Gaussian
density in the interval [y, g + A] and the interval [p+ 1, p+ 1+ A].
In particular, this quantity is linear in the offset A, as opposed to
quadratic. We obtain a difference in expectation that is O(An), while
the standard deviation is O(+/n). Hence, we can detect imbalance
when A > n~1/2, yielding more accurate estimates that match the
best guarantees for homoskedastic estimation.

This “balanced” modal estimator attains nearly-optimal error for
homoskedastic mean estimation in a way that seems amenable to
zooming into scales that would leverage heteroskedasticity, unlike
the median or mean. We will see that (perhaps surprisingly), this
balanced modal estimator can also provide a near-optimal estimator
from heteroskedastic observations if the perfect width w to use was
known. To address this caveat that we do not know which width, w,
to use, we propose a similarly-intuited approach we call the balance-
finding algorithm. Oversimplifying, this algorithm will enable us to
accomplish something similar to looking for the information of the
balanced modal estimator at multiple scales of w simultaneously.

Balance finding. Our primary algorithmic technique is to search
for the phenomenon of a particular kind of balance that implies
a high-probability confidence interval for the mean. We will look
for such balance at many scales (similar to trying many values of
w) and intersect our obtained confidence intervals to determine
our final estimate. To illustrate this phenomenon, consider count-
ing the number of samples that are slightly less than y, and the
number of samples slightly larger than p. If we use “slightly” to
mean within an interval of size w, we are considering p(u — w, i)
and p(u, pt + w) respectively (recall that p(l, r) denotes the number
of samples within [/, r]). Naturally, as our density is symmetric,
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we expect p(u — w, 1) = p(y, ¢t + w), meaning these terms are
O(+/p(i — w, i + w)) apart. For appropriately chosen w and any
estimate /I, an observation that p(ji — w, i) = p(fi, i + w) can be
roughly interpreted as evidence that either |y — fi| is small, or that
[fi — w, fi + w] corresponds to a relatively flat region of the density
curve.

This illuminates the desire to distinguish between estimates near
4 and estimates far from g but in flat regions of the density curve.
Intuitively, in the case that our estimate is merely in a flat region,
we expect to still see this balance if we perturb our estimate. More
concretely, suppose we perturb our flat-region /i by a term A, we
still expect to see p((fi+A) —w, i+ A) = p(fi+ A, (i +A) +w).
On the other hand, we do not expect to see this balance when /i
is near p. If we move our estimate A to the left then we expect to
see many more samples to its right, or p((7 — A) —w, i — A) <
p(fi— A, (i — A) + w). Similarly, if we move the estimate A to the
right we expect p((1+ A) —w, i+ A) > p(f+ A (i +A) +w).
This motivates searching for a meaningful type of balance, where
the balance is not observed for the perturbed estimates, and thus
resembling the case where |y — fi] is small. Observing imbalance in
the correct directions with both perturbations is actually sufficient,
so our algorithm does not need to test that there is balance centered
at /1.

Finding balance can be defined with respect to the estimate
[i, the perturbation A, the width w, and a confidence parameter
that determines thresholds for <, > as used above. In this sec-
tion, assume the confidence parameter is defined such that the
probability of ever finding a false-positive meaningful balance is
inverse-polynomially small. We will then more precisely describe a
balance as a (w, A, fi)-balance. We claim that, with high probability,
there will be no (-, A, fi)-balance where |u — fi| > A: yielding a con-
fidence interval of p € [ —A, i+ A]. Accordingly, our strategy is to
test many carefully-chosen tuples of (w, A, fi)-balance and intersect
the confidence intervals we obtain. In Algorithm 1, we outline our
subroutine for testing a (w, A, j1)-balance.

What remains is to design an algorithm that tests the correct
balances that yield sufficiently small and correct confidence inter-
vals. Algorithmically, we remark that for a given w and A, we can
use a sweep-line method to find all ranges of /i where there exists
(w, A, i)-balance in O(n) time. Thus, we may obtain an O(n) time
algorithm if we can select O(1) pairs of (w, A) to consider, and can
show that testing just balances with these parameters will obtain
our desired estimation error. While we do not fully motivate it until
later, we provide our approach in Algorithm 2.

2.3 Analyzing Estimation Error

Near-optimal guarantees for simplified Subset-of-Signals.
We will now informally show that finding balance is sufficient for
obtaining near-optimal guarantees in a simplified version of the
Subset-of-Signals model where at least m samples have o; < 1,
and the remaining samples all have the same value of o; = o* (this
additional assumption is only to permit a cleaner explanation here).
More sophisticated techniques will later enable us to show the
same guarantees for (unsimplified) Subset-of-Signals, and results
for more general settings.



Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Algorithm 1 Testing (w, A, ji)-balance

Algorithm 2 Estimation-Algorithm

Input: width w, shift A, and potential mean /i
Output: PASS (it likely holds that the true mean
p € [fi—A, fi+Al]), or FAIL (insufficient evidence or evidence
against g € [1— A, i+ A])
Description: This test will PASS if the number of samples in the
intervals [fi —w, ] and [, i + w] are approximately equal, yet
after shifting these intervals by +A the halves become significantly
unbalanced (evidencing a higher density of samples near /i versus
[+ w).
1: procedure TEST(w, A, fi):
2 Lehift-right < p(fi + A —w,fi+A) » Count samples within
[A+A—-wa+A]
3 Rshift-right < p(fi + A, fi+ A +w) > Count samples within
[A+A g+ A+w].
4 Tshift-right < p(A+A—w, i+ A+w)
within [+ A —w, i+ A+ w].
5: if Lepift-right — Rshift-right < \/Cafalse_pos log () Tshift-right ©F
Tshift-right < cc?false,pos log(n) then
return FAIL
6: end if
70 Lehifttet < p(i—A—w,i—A)
[a—=A—=w,ji-Al
8 Rpiftteft — p(A—Afi=A+w)
[a-Ap—A+wl].
9 Tnifleft < p(A—=A—w,i—=A+w)
within [ —A—w,i— A+ w].
if Rshifi-left — Lohift-left < \/Cafalse,pos log(n) Tyhif-left OF
Tohift-left < Cpyee pos 108(n) then
return FAIL
end if
return PASS
end procedure

> Count samples

> Count samples within
> Count samples within

> Count samples

10:

11:

12:

The existence of (w, A, u)-balance will typically imply that our
algorithm obtains O(A) error with high probability. This will follow
from showing that: (i) with high probability there is no (-, A’, j)-
balance where |p — i| > A’, and (ii) our algorithm will test suffi-
ciently similar tuples that find a (-, A’, -)-balance with A’ = O(A).
Accordingly, if there exists a (w, A, pr)-balance, then we expect our
algorithm to find a balance yielding a correct confidence interval
of width O(A) containing p. This motivates our focus on studying
the conditions under which (w, A, pr)-balance exists:

Informal Claim 2.1. (w, A, pi)-balance will exist with high probabil-
ity if B[ p(u, p+A) = p(p+w, p+w+A)]? = C1 log(n)-E[p(, p+w)].

This follows from how the imbalance after shifting will be much
larger than the standard deviation of the difference between cor-
rectly balanced halves centered at y. We will use the simple condi-
tion of Claim 2.1 to obtain desired estimation error. As seen in Fig. 1,
the optimal rate for Subset-of-Signals undergoes a phase transition

1/4

at m = n'/*. We obtain this rate up to logarithmic factors:
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Input: V1 <--- <Y,
Output: Range C.opf (can choose any arbitrary value in this range
as the estimate i)
1: procedure SWEEP-TEST(w, A):
return S,,A > Returns set Sy, o of O(n) intervals of /i
that PASS Test(w, A, 1)
: end procedure
: procedure GENERATE-TESTS(Y; < --- < Yp):
Sparams < {co}
for i € [[log(n)]] do
roi <= min; Y0 — Y

AN AN

> ryi is the gap between the
closest 2! samples

7 for j € {—[Cgparam log(n)], ..., |'C5Param log(n)] do

8: Sparams < Sparams U Tyi - 2/ v Approximating oy
by powers of 2 near ry;.

9: end for

10: end for

return Sparams

approximations of gyi
end procedure
procedure ESTIMATION-ALGORITHM(Y; < -+ < Vp):

Ceonf < [—00,00] » Interval we are confident y is within

Sparams < Generate-Tests(Y) » Determine values of w, A

for w, A € Sparams do

Sw,a < Sweep-Test(w, A)

Test(w, A, f1).

> Returns Sparams, including co and

11:
12:
13:
14:
15:

16: > Values of /i that Pass

17: if S\, A # 0 then
18: Ceonf < Ceonf N minﬁesw,A [i-A p+A]
19: Cconf — Cconf n maXjes,,a [ﬁ - A, /2 + A] >

Intersect confidence intervals.
end if
end for
return C.on¢f > Can estimate I as any arbitrary value in

Ceonf-
end procedure

20:
21:

22:

Lemma 2.2. When m € [n'/*,n], with high probability there exists
. 1/6
a (w, A, p)-balance with A = O (%) .

Proor. We will consider evaluating two types of balance, and
conclude that at least one of these balances must exist with the
desired A.

By Claim 2.1, we can find (1, A, y)-balance if (m - A)%? > O(1) -
C1log(n)-E[p(p—1, p+1)]. Meaning, if we do not find such balance,
A<O(1)- \/C1 log(n)]EEgz(p—l,pﬂ)] )

Intuitively, if this is an undesirable bound on A, then E[p(y —
1, 4 + 1)] must be large, meaning many of the n — m samples of
standard deviation ¢* must be realized in [-1,+1], and thus ¢*
must not be too large. In other words, either we are able to find
balance from our m “good” points, or our remaining n — m “bad”
points must not actually be too bad. For our other type of balance,
we will notice how (oo, A, pi)-balance behaves similarly to classical
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high-probability guarantees for the median. We will find such a
balance if E[p(u — A, u+ A)] = O(1) - 4/Cq log(n)n.
Combining both restrictions, if we cannot find either balance

then A < 0(1) - | SREMELG-LitD] ¢ gy,

\/Cl log(n)E[p(u—A,u+A)] <0(1)- Cylog(n)+/Cy log(n)n This im-
Am? = V Am? :

plies A < 0(1) - (€2 1log*2 ()3 - ()V/6 = O(y/log(n) -
(£0)16) = O((Z)0)).

O

Lemma 2.3. When m € [C’log(n),n'/*], with high probability
. ' . 1/2
there exists a (w, A, pr)-balance with A = O (%)

Proor. We will again consider evaluating a pair of balances, and
conclude that at least one of these values must exhibit balance with
the desired A.

By Claim 2.1, we can find (1, %,,u)—balance if m? > 0(1)-

C1 log(n)-E[p(p—1, p+1)]. Since our guarantees for A in this lemma
are super-constant, finding this balance would be sufficient. If we do
not find such balance, then m? < 0(1)-Cy log(n)-E[p(p—1, u+1)] <
0(1) - Clog(n) & = o* < 0(1) - Srlogn)

Similar to Lemma 2.2, our inability to find balance from the
m samples implies ¢* cannot be too large. We will then find the
median-like balance of (oo, A, p)-balance if E[p(u — A,z + A)] >
4/C1 log(n)n. Finally, this implies we find (eo, A, p1)-balance for a

Cilog(n)n o"y/log(n nlog! (n
A <0(1)- oL < 0(1). TYPE < o(r) Vo)
O((En)1/2).
O

Accordingly, one may obtain desired rates for simplified Subset-
of-Signals by just testing the collection of tuples we discussed in
the proofs of Lemmas 2.2 and 2.3.

Additional considerations. We will need additional non-trivial
considerations for proving our unsimplified results. Some include:

(Unsimplified) Subset-of-Signals. If the n — m remaining samples
are allowed to have any value of o;, then checking just the tuples
of balances in Lemmas 2.2 and 2.3 will not be sufficient to find the
desired balance. This is roughly because there may be groups of o;
that interfere with balance at the scale of 1, while still not helping
produce a good median. With some nuance, we later show (i) there
still must exist some scale at which to find desired balance, and
(ii) we can choose a set of 0(1) tuples which will test something
sufficiently close to discover said desired balance.

Choosing testing tuples. The previous point touches on how
we require some way of testing the correct collection of balances.
Moreover, it would be desirable if our estimator was scale-invariant
so that if m samples have o; < v, then we could attain the analogous
Subset-of-Signals guarantee scaled by v. One may expect that if
we are looking for balance driven by k good samples, the correct
A and w to test may be within a polynomial factor of the distance
between the k-closest points (7). Later, we will show it is sufficient
to consider pairs of w and A that are powers of 2 and polynomially-
close to a ry: for i € [1,log(n)], giving O(1) tuples to test in a
scale-invariant manner.
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2.4 Multi-Dimensional Estimation

In this section, we focus on estimation with d-dimensional observa-
tions. Each X; ~ N(y, 2;), where y is a d-dimensional vector and 3;
is a d X d covariance matrix. If each X; can be an arbitrary diagonal
covariance matrix, then observations in different dimensions are
unrelated and thus there is nothing possible beyond considering
d independent instances of 1-dimensional estimation. However,
if¥; = al.zI , then each sample has the same variance in every di-
mension, and high dimensional observations are extremely helpful.
[4] initiated the study of this problem and obtained (in Theorem
5.2) an algorithm that with probability 1 — ®(1/n), it holds that

E[lfi —mil]l =0 [%) when d = Q(log(n)). Note how this
j=2 52
J

quantity is exactly the error for estimation with known-variances,
other than the removal of the term depending on o. The crux of
their approach leverages that with d = Q(log(n)) dimensions, one

can approximate O'iz + sz. well for every pair of i # j.

Interestingly, we will obtain similar guarantees while only re-
quiring d > 2. We provide a high-level overview focusing on the
most interesting case of d = 2. Let us denote the known-variance
error ignoring o1 as R(o) = o

2 57
1

We note its relation to a
simpler closed-form:
Lemma 2.4. miny<;<p % < O(R(0)).

1

Establishing this simpler closed-form as our goal, we sketch an
approach based on balance-testing that may hope to obtain error

Oi.
N
o Consider a guess for the mean i = fiy, fl2.
e Filter all X; whose observation in the first dimension is
farther than o; from fi.
o With the filtered points in the second dimension, perform
balance testing around fiy.

near

Informally, consider how often a sample X; with large o; would
“interfere” with a balance test at the scale of ¢; in the 1-dimensional
setting: it would land in [y —o;, pi+0;] with probability ©( g—; ). How-
ever, in the 2-dimensional setting, this probability is much smaller

2
given our filtering, and is accordingly © ((g—;) ) This difference

will be enough to obtain known-variance rates. Algorithmically, we
will try all O(n?) possible filterings, each creating an instance of
1-dimensional estimation, and we will intersect all the confidence
intervals yielded from each instance to obtain an estimate.

For some intuition regarding why we obtain known-variance
rates, consider the case where i* = arg min,, log? (n) <i<n f—ﬁ We
claim that (after some calculation) the conditions of Claim 2.1 under
which we expect to find balance are satisfied when A > M.
Accordingly, there exists a C” such that if i* > C’ log®(n) then we
obtain error O(%) with high probability. Handling other cases

where i* < C’ log?(n) involve other considerations that ultimately
yield:

THEOREM 1.3. Consider observing n 2-dimensional Gaussian sam-
ples with a common mean X; ~ N(y, O'l-ZI), where oy < -+ < op,



Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances

the variances are unknown to the algorithm, and samples are pre-
sented in an arbitrary order. There exits an algorithm that attains

1

error O with probability 1 — o(1).
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