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information with which to infer the values of 𝜎𝑖 . Thus, while inde-

pendent, the observations in different dimensions are often called

łentangled.ž When 𝑑 = Ω(log(𝑛)), [4] attain estimation error of

Θ

(

√︂

1
∑𝑛

𝑖=2
1

𝜎2
𝑖

)

for each dimension with high probability. Note that

this is nearly identical to the classical known-variance rate, other

than missing the dependence on 𝜎1. These results prompted subse-

quent work to focus on the more challenging small dimensional or

one-dimensional settings for which it is more difficult or impossible

to accurately recover the 𝜎𝑖 ’s.

In the one-dimensional setting, [4] attains a guarantee with

respect to the 𝑂 (log(𝑛)) smallest 𝜎𝑖 , giving an algorithm with ex-

pected error E[|𝜇 − 𝜇 |] = min
2≤𝑘≤log(𝑛)

𝑂̃ (𝑛1/2(1+1/(𝑘−1) )𝜎𝑘 ). More-

over, they showed lower bounds that demonstrated how the known-

variance rates can be polynomially better than an optimal estimator

that does not know the variances.

Subsequent works, [6, 7, 20, 22, 23, 26], which we discuss below,

improve upon this in various regimes: their upper and lower bounds

in the case of the Subset-of-Signals setting, together with our results,

are depicted in Figure 1.

The work of Pensia, Jog, and Loh (preliminarily [22] and later

[23]) develops machinery for analyzing the performance of classic

estimators in this setting: the modal estimator, 𝑘-closest estimator,

and the median. Using this, they show guarantees for a hybrid

estimator and give complementary lower bounds that illustrate

how under some conditions on 𝜎1, . . . , 𝜎𝑛 their estimator is near-

optimal.2 They also investigate the setting of heteroskedastic linear

regression, as well as showing guarantees for their algorithm in

𝑑 > 1 dimensions. Moreover, their results generalize from Gaussian

distributions to radially symmetric and unimodal distributions.

The work of Devroye, Lattanzi, Lugosi, and Zhivotovskiy (prelim-

inarily [6] and later [7]) also develops tools for sharp analysis of the

sample median and modal estimator. In order to provide an adaptive

algorithm requiring no parameter tuning, they employ subroutines

that yield confidence intervals which they eventually intersect. Our

algorithm will utilize a similar paradigm of intersecting confidence

intervals obtained by (different) subroutines.

The works of Liang and Yuan [20, 26] provide estimation guaran-

tees for the iterative trimming algorithm (a widely used heuristic).

Importantly, they also introduce the Subset-of-Signals model, where

𝑚 samples have variance bounded by 1, and it is desired to know

the optimal estimation guarantee as a function of 𝑛 and𝑚. This

framing is particularly helpful because the closed-form guarantees

of various related work can otherwise be difficult to directly com-

pare. In Fig. 1, we show the guarantees of related work in terms of

the Subset-of-Signals model. Finally, Liang and Yuan show lower

bounds for the optimal estimation error in this model.

We also highlight an alternative avenue (that we do not employ)

for approaching heteroskedastic mean estimation. Consider the

similar (but slightly different) task of receiving 𝑛 i.i.d. samples from

a mixture of 𝑛 Gaussians, each with mean 𝜇 and variance 𝜎2𝑖 . It

appears plausible, for example, to analyze the Fisher information of

this distribution, which would classically imply a lower bound and

2We later observe in Fig. 1 that its guarantees can be polynomially suboptimal in a
natural setting.

asymptotic guarantees. However, we are not aware of tools that

would readily enable the desired finite-sample guarantees for this

setting. For example, recent works of [11ś13] obtain guarantees

in terms of a distribution’s smoothed Fisher information, yet such

smoothing would result in suboptimal guarantees for this setting.
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Figure 1: Guarantees of our upper bound and those of prior

work for mean estimation in the Subset-of-Signals model,

where one observes 𝑛 independent Gaussian random vari-

ables with a commonmean, and an unknown subset of𝑚 ≤ 𝑛

samples have variance at most 1, with no assumptions on

the variance of the remaining 𝑛 −𝑚. The 𝑥-axis denotes𝑚,

the number of samples with variance bounded by 1, and

the 𝑦-axis denotes the estimation error. Our upper bound

matches the known lower bound up to logarithmic factors,

and improves the estimation error by polynomial factors

when𝑚 = 𝑛𝑐 for 0 < 𝑐 < 1. (Figure based on plot from [20]).

RelatedWork Beyond Heteroskedastic Mean Estimation: The previ-

ously mentioned work of [23] studied heteroskedastic linear regres-

sion where the variance of each observation’s noise is arbitrary but

independent of the covariates. Heteroskedastic linear regression has

also been studied in the fundamentally different setting where noise

variance is a rank 1 quadratic function of the covariates [5]. There

have been several lines of work exploring property testing, estima-

tion, and learning in settings with independent, but non-identical

samples. These models span a large spectrum in terms of howmuch

heterogeneity is present, relative to the sample size. On one extreme,

there is a large volume of work on learningmixture models (of Gaus-

sians, linear regressions, etc., see e.g. [1, 9, 14, 17, 21]). Typically,

in these settings there are a small number (often just a constant

number) of distributions, and each datapoint is drawn i.i.d. from

one of these. Comparatively fewer works explore the other extreme,

where a single sample (or small batch of samples) is drawn from

each distributionÐtypically too little to learn the distributionÐand

the goal is to estimate some property of the set of distributions.
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This includes the property testing work of Levi et al. [19], and work

on estimating properties of populations of parameters, such as esti-

mating the multiset of coin biases given a small number of tosses

of each coin (e.g. [24, 25]).

1.2 Our Contributions

In our work, we design new algorithms for heteroskedastic mean

estimation with polynomially-better error guarantees than prior

work, explicitly answering the open problem of [20] (see Fig. 1):

Given samples of 𝑛 independent Gaussians with a common mean,

and with an unknown subset of𝑚 samples having variance bounded

by 1, what is the best possible estimation error?

Theorem 1.1 (Optimal Subset-of-Signals). Consider observing

𝑛 Gaussian samples with a common mean 𝑋𝑖 ∼ 𝑁 (𝜇, 𝜎2𝑖 ), where
𝜎1 ≤ · · · ≤ 𝜎𝑚 ≤ 1, the variances are unknown to the algorithm,

and samples are presented in an arbitrary order. For any constant 𝛿 ,

there exists a constant 𝐶 such that with probability at least 1 − 1
𝑛𝛿

,

Algorithm 2 attains:

• 𝑂̃
(

𝑛
𝑚4

)1/2
error if 𝐶 log(𝑛) ≤ 𝑚 ≤ 𝑛1/4

• 𝑂̃
(

𝑛
𝑚4

)1/6
error if 𝑛1/4 ≤ 𝑚 ≤ 𝑛

As our algorithm is scale-invariant and translation-invariant,

this also enables the closed-form:

Corollary 1.2. Consider observing 𝑛 Gaussian samples with a com-

mon mean 𝑋𝑖 ∼ 𝑁 (𝜇, 𝜎2𝑖 ), where 𝜎1 ≤ · · · ≤ 𝜎𝑛 , the variances are

unknown to the algorithm, and samples are presented in an arbitrary

order. For any constant 𝛿 , there exists a constant 𝐶 such that with

probability at least 1 − 1
𝑛𝛿

, Algorithm 2 attains error

𝑂̃

(

min

(

min
𝐶 log(𝑛)≤𝑖≤𝑛1/4

𝜎𝑖 ·
(

𝑛
𝑖4

)1/2
, min
𝑛1/4≤𝑖≤𝑛

𝜎𝑖 ·
(

𝑛
𝑖4

)1/6
))

Our techniques also naturally extend to the 𝑑 > 1 dimensional

setting, resolving the implicit open problem of [4]: How large does

the dimension 𝑑 need to be to nearly attain the error rate that would

be achievable if the variances were known? We show that even when

𝑑 = 2, this known-variance rate can nearly be attained, improving

upon the prior guarantee of [4] that required 𝑑 = Ω(log(𝑛)):

Theorem 1.3. Consider observing 𝑛 2-dimensional Gaussian sam-

ples with a common mean 𝑋𝑖 ∼ 𝑁 (𝜇, 𝜎2𝑖 𝐼 ), where 𝜎1 ≤ · · · ≤ 𝜎𝑛 ,

the variances are unknown to the algorithm, and samples are pre-

sented in an arbitrary order. There exits an algorithm that attains

error 𝑂̃

(

√︂

1
∑𝑛

𝑖=2
1

𝜎2
𝑖

)

with probability 1 − 𝑜 (1).

1.3 Preliminaries

Let 𝜌 (𝑙, 𝑟 ) denote the random variable corresponding to the number

of samples with value ∈ [𝑙, 𝑟 ]. 𝑓D (·) is the density function of

distribution D. For 𝑑 = 1, in instances where we must refer to the

samples in order of realized value, we refer to them by𝑌1 ≤ · · · ≤ 𝑌𝑛 .

Meaning, we realize 𝑋1, . . . , 𝑋𝑛 with 𝑋𝑖 ∼ 𝑁 (𝜇, 𝜎2𝑖 ), and observe

𝑌1 ≤ · · · ≤ 𝑌𝑛 where the 𝑌𝑖 ’s are the 𝑋𝑖 ’s sorted in non-decreasing

order. We use 𝑂̃ (·) to suppress logarithmic factors in 𝑛.

2 OVERVIEW OF OUR TECHNIQUES

In this section, we provide the high-level intuition for our approach

and results, and describe the key lemmas that facilitate our anal-

ysis. Finally, we discuss how our approach and analysis can be

furthered to attain results for multi-dimensional heteroskedastic

mean estimation.

2.1 Intuition and Existing Estimators

As discussed earlier, mean estimation and even heteroskedastic

mean estimation has been studied by a variety of prior works

that leverage different algorithmic ideas. Here, we provide a brief

overview to give intuition into the challenges of the problem, and

motivate our main algorithmic ideas.

The two most basic estimators are the empirical mean and the

empirical median. Neither of these, however, adequately leverage

the heterogeneity in the quality of samples in settings where some

variances are significantly larger than others. In the case of return-

ing the empirical mean, 𝑋1+...𝑋𝑛

𝑛 , even if all but one sample has

variance 1 and a single sample has arbitrarily large variance, the

empirical mean also will have large variance. While the median

of the 𝑋𝑖 ’s has some robustness to such settings, it also fails to

leverage heterogeneityÐthis is especially easy to see in the fact

that the median is blind to settings where ≪
√
𝑛 samples have

significantly smaller variance than the rest. For example, suppose

𝑋1, . . . , 𝑋𝑛1/2−𝜀 ∼ 𝑁 (𝜇, 1) and 𝑋𝑛1/2−𝜀 , . . . , 𝑋𝑛 ∼ 𝑁 (𝜇,∞). The me-

dian will incur unbounded expected error, while alternative algo-

rithms, such as one that looks for the tightest cluster of 𝑛1/2−𝜀

points and then takes the average of the cluster, would incur ex-

pected error of Θ( 1√
𝑛1/2−𝜀 ).

These settings where there are a small number of very good sam-

ples motivate creating estimators that search for tightly-clustered

sets of samples, and return a statistic of the samples in the cluster.

This intuitively reflects that if there are few low-variance samples,

we would prefer our estimate to rely almost purely on those good

samples if we could identify them. The 𝑘-closest estimator, and

the łmodalž estimator are two estimators that leverage this in-

tuition. The 𝑘-closest estimator looks at the 𝑘-closest points and

returns their midpoint. The łmodalž estimator returns the value 𝜇

containing the most samples within [𝜇 −𝑤, 𝜇 +𝑤]. The parame-

ters 𝑘 and 𝑤 are chosen so as to isolate an appropriate scale that

focuses on the high-quality samples. As one might expect, these

estimators are quite similar, and there is nearly a bijection between

the 𝑘-closest estimator and the modal estimator with parameter

𝑤 = argmin𝑤 (max𝜇 𝜌 (𝜇 −𝑤, 𝜇 +𝑤) ≥ 𝑘). These estimators have

been at the core of the previously-best guarantees for heteroskedas-

tic mean estimation. Despite this, their shortcomings are illustrated

even in the homoskedastic case where all samples have equal vari-

ance: when all samples 𝑋1, . . . , 𝑋𝑛 ∼ 𝑁 (𝜇, 1) there is no choice

of 𝑘 or 𝑤 for which the modal or 𝑘-closest estimators yield ex-

pected error better than Θ(𝑛−1/3) [3, 16], despite expected error

𝑂 (1/
√
𝑛) being achievable by the mean or median.3 Prior works

have obtained guarantees demonstrated in Fig. 1 by leveraging

3For variants of the 𝑘-closest estimator that return the mean or median of the 𝑘-closest
points, rather than their midpoint, this can behave similarly to the mean or median
for sufficiently large 𝑘 , although they are still suboptimal in the heteroskedastic case.
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hybrid estimators (e.g. [4] uses the 𝑘-closest estimator consistent

with the confidence interval quantiles of the empirical median).

2.2 A łBalancedž Modal Estimator

At its core, our estimator behaves similarly to a modal estimator,

that returns the estimate 𝜇 which maximizes the number of samples

in the range [𝜇 −𝑤, 𝜇 +𝑤], with the additional condition that this

range be łbalancedž in the sense that the number of samples in

the interval [𝜇 −𝑤, 𝜇] is approximately the same as the number of

samples in the interval [𝜇, 𝜇 +𝑤] .
Before discussing how 𝑤 is chosen, we describe the intuition

for this balanced condition. Returning to the homoskedastic case

where all variances are 1, suppose we are trying to decide whether

to return the true mean, 𝜇, versus a slightly offset version of it,

𝜇 + Δ. The standard modal estimator with parameter 𝑤 = 1 is

trying to decide whether there is more probability mass in the

interval [𝜇 − 1, 𝜇 + 1] versus the interval [𝜇 − 1 + Δ, 𝜇 + 1 + Δ].
This depends on the difference between the mass in the intervals

[𝜇 − 1, 𝜇 − 1+Δ] and [𝜇 + 1, 𝜇 + 1+Δ]. The difference in expectation

is roughly the derivative of the probability density function of the

standard Gaussian, evaluated at 1 times the square of Δ, namely

𝑂 (Δ2𝑛), while the standard deviation of the difference is roughly

𝑂 (
√
Δ𝑛). The signal of the truemean overpowers the variance when

Δ ≫ 𝑛−1/3, matching classical guarantees for the modal estimator.

In contrast, when evaluating the balance condition at 𝜇 + Δ, the
relevant quantity is the difference between the densities in the

intervals [𝜇 + Δ − 1, 𝜇 + Δ] and [𝜇 + Δ, 𝜇 + Δ + 1]. The difference
in expectation is roughly the difference in the standard Gaussian

density in the interval [𝜇, 𝜇 + Δ] and the interval [𝜇 + 1, 𝜇 + 1 + Δ].
In particular, this quantity is linear in the offset Δ, as opposed to

quadratic.We obtain a difference in expectation that is𝑂 (Δ𝑛), while
the standard deviation is 𝑂 (

√
𝑛). Hence, we can detect imbalance

when Δ ≫ 𝑛−1/2, yielding more accurate estimates that match the

best guarantees for homoskedastic estimation.

This łbalancedž modal estimator attains nearly-optimal error for

homoskedastic mean estimation in a way that seems amenable to

zooming into scales that would leverage heteroskedasticity, unlike

the median or mean. We will see that (perhaps surprisingly), this

balanced modal estimator can also provide a near-optimal estimator

from heteroskedastic observations if the perfect width𝑤 to use was

known. To address this caveat that we do not know which width,𝑤 ,

to use, we propose a similarly-intuited approach we call the balance-

finding algorithm. Oversimplifying, this algorithm will enable us to

accomplish something similar to looking for the information of the

balanced modal estimator at multiple scales of𝑤 simultaneously.

Balance finding.Our primary algorithmic technique is to search

for the phenomenon of a particular kind of balance that implies

a high-probability confidence interval for the mean. We will look

for such balance at many scales (similar to trying many values of

𝑤 ) and intersect our obtained confidence intervals to determine

our final estimate. To illustrate this phenomenon, consider count-

ing the number of samples that are slightly less than 𝜇, and the

number of samples slightly larger than 𝜇. If we use łslightlyž to

mean within an interval of size𝑤 , we are considering 𝜌 (𝜇 −𝑤, 𝜇)
and 𝜌 (𝜇, 𝜇 +𝑤) respectively (recall that 𝜌 (𝑙, 𝑟 ) denotes the number

of samples within [𝑙, 𝑟 ]). Naturally, as our density is symmetric,

we expect 𝜌 (𝜇 − 𝑤, 𝜇) ≈ 𝜌 (𝜇, 𝜇 + 𝑤), meaning these terms are

Θ̃(
√︁

𝜌 (𝜇 −𝑤, 𝜇 +𝑤)) apart. For appropriately chosen 𝑤 and any

estimate 𝜇, an observation that 𝜌 (𝜇 −𝑤, 𝜇) ≈ 𝜌 (𝜇, 𝜇 +𝑤) can be

roughly interpreted as evidence that either |𝜇 − 𝜇 | is small, or that

[𝜇 −𝑤, 𝜇 +𝑤] corresponds to a relatively flat region of the density

curve.

This illuminates the desire to distinguish between estimates near

𝜇 and estimates far from 𝜇 but in flat regions of the density curve.

Intuitively, in the case that our estimate is merely in a flat region,

we expect to still see this balance if we perturb our estimate. More

concretely, suppose we perturb our flat-region 𝜇 by a term Δ, we

still expect to see 𝜌 ((𝜇 + Δ) − 𝑤, 𝜇 + Δ) ≈ 𝜌 (𝜇 + Δ, (𝜇 + Δ) + 𝑤).
On the other hand, we do not expect to see this balance when 𝜇

is near 𝜇. If we move our estimate Δ to the left then we expect to

see many more samples to its right, or 𝜌 ((𝜇 − Δ) − 𝑤, 𝜇 − Δ) ≪
𝜌 (𝜇 − Δ, (𝜇 − Δ) +𝑤). Similarly, if we move the estimate Δ to the

right we expect 𝜌 ((𝜇 + Δ) − 𝑤, 𝜇 + Δ) ≫ 𝜌 (𝜇 + Δ, (𝜇 + Δ) + 𝑤).
This motivates searching for a meaningful type of balance, where

the balance is not observed for the perturbed estimates, and thus

resembling the case where |𝜇 − 𝜇 | is small. Observing imbalance in

the correct directions with both perturbations is actually sufficient,

so our algorithm does not need to test that there is balance centered

at 𝜇.

Finding balance can be defined with respect to the estimate

𝜇, the perturbation Δ, the width 𝑤 , and a confidence parameter

that determines thresholds for ≪,≫ as used above. In this sec-

tion, assume the confidence parameter is defined such that the

probability of ever finding a false-positive meaningful balance is

inverse-polynomially small. We will then more precisely describe a

balance as a (𝑤,Δ, 𝜇)-balance. We claim that, with high probability,

there will be no (·,Δ, 𝜇)-balance where |𝜇 − 𝜇 | > Δ: yielding a con-

fidence interval of 𝜇 ∈ [𝜇−Δ, 𝜇 +Δ]. Accordingly, our strategy is to
test many carefully-chosen tuples of (𝑤,Δ, 𝜇)-balance and intersect
the confidence intervals we obtain. In Algorithm 1, we outline our

subroutine for testing a (𝑤,Δ, 𝜇)-balance.
What remains is to design an algorithm that tests the correct

balances that yield sufficiently small and correct confidence inter-

vals. Algorithmically, we remark that for a given𝑤 and Δ, we can

use a sweep-line method to find all ranges of 𝜇 where there exists

(𝑤,Δ, 𝜇)-balance in 𝑂̃ (𝑛) time. Thus, we may obtain an 𝑂̃ (𝑛) time

algorithm if we can select 𝑂̃ (1) pairs of (𝑤,Δ) to consider, and can

show that testing just balances with these parameters will obtain

our desired estimation error. While we do not fully motivate it until

later, we provide our approach in Algorithm 2.

2.3 Analyzing Estimation Error

Near-optimal guarantees for simplified Subset-of-Signals.

We will now informally show that finding balance is sufficient for

obtaining near-optimal guarantees in a simplified version of the

Subset-of-Signals model where at least 𝑚 samples have 𝜎𝑖 ≤ 1,

and the remaining samples all have the same value of 𝜎𝑖 = 𝜎∗ (this
additional assumption is only to permit a cleaner explanation here).

More sophisticated techniques will later enable us to show the

same guarantees for (unsimplified) Subset-of-Signals, and results

for more general settings.
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Algorithm 1 Testing (𝑤,Δ, 𝜇)-balance

Input: width𝑤 , shift Δ, and potential mean 𝜇

Output: PASS (it likely holds that the true mean

𝜇 ∈ [𝜇 − Δ, 𝜇 + Δ]), or FAIL (insufficient evidence or evidence

against 𝜇 ∈ [𝜇 − Δ, 𝜇 + Δ])
Description: This test will PASS if the number of samples in the

intervals [𝜇 −𝑤, 𝜇] and [𝜇, 𝜇 +𝑤] are approximately equal, yet

after shifting these intervals by ±Δ the halves become significantly

unbalanced (evidencing a higher density of samples near 𝜇 versus

𝜇 ±𝑤 ).

1: procedure Test(𝑤,Δ, 𝜇):

2: 𝐿shift-right ← 𝜌 (𝜇 + Δ −𝑤, 𝜇 + Δ) ⊲ Count samples within

[𝜇 + Δ −𝑤, 𝜇 + Δ].
3: 𝑅shift-right ← 𝜌 (𝜇 + Δ, 𝜇 + Δ +𝑤) ⊲ Count samples within

[𝜇 + Δ, 𝜇 + Δ +𝑤].
4: 𝑇shift-right ← 𝜌 (𝜇 + Δ −𝑤, 𝜇 + Δ +𝑤) ⊲ Count samples

within [𝜇 + Δ −𝑤, 𝜇 + Δ +𝑤].
5: if 𝐿shift-right − 𝑅shift-right ≤

√︃

𝐶𝛿false-pos log(𝑛)𝑇shift-right or
𝑇shift-right < 𝐶𝛿false-pos log(𝑛) then

return FAIL

6: end if

7: 𝐿shift-left ← 𝜌 (𝜇 − Δ −𝑤, 𝜇 − Δ) ⊲ Count samples within

[𝜇 − Δ −𝑤, 𝜇 − Δ].
8: 𝑅shift-left ← 𝜌 (𝜇 − Δ, 𝜇 − Δ +𝑤) ⊲ Count samples within

[𝜇 − Δ, 𝜇 − Δ +𝑤].
9: 𝑇shift-left ← 𝜌 (𝜇 − Δ −𝑤, 𝜇 − Δ +𝑤) ⊲ Count samples

within [𝜇 − Δ −𝑤, 𝜇 − Δ +𝑤].
10: if 𝑅shift-left − 𝐿shift-left ≤

√︃

𝐶𝛿false-pos log(𝑛)𝑇shift-left or

𝑇shift-left < 𝐶𝛿false-pos log(𝑛) then
return FAIL

11: end if

return PASS

12: end procedure

The existence of (𝑤,Δ, 𝜇)-balance will typically imply that our

algorithm obtains𝑂 (Δ) error with high probability. This will follow
from showing that: (i) with high probability there is no (·,Δ′, 𝜇)-
balance where |𝜇 − 𝜇 | > Δ

′, and (ii) our algorithm will test suffi-

ciently similar tuples that find a (·,Δ′, ·)-balance with Δ
′
= 𝑂 (Δ).

Accordingly, if there exists a (𝑤,Δ, 𝜇)-balance, then we expect our

algorithm to find a balance yielding a correct confidence interval

of width 𝑂 (Δ) containing 𝜇. This motivates our focus on studying

the conditions under which (𝑤,Δ, 𝜇)-balance exists:

Informal Claim 2.1. (𝑤,Δ, 𝜇)-balance will exist with high probabil-
ity if E[𝜌 (𝜇, 𝜇+Δ)−𝜌 (𝜇+𝑤, 𝜇+𝑤+Δ)]2 ≥ 𝐶1 log(𝑛) ·E[𝜌 (𝜇, 𝜇+𝑤)].

This follows from how the imbalance after shifting will be much

larger than the standard deviation of the difference between cor-

rectly balanced halves centered at 𝜇. We will use the simple condi-

tion of Claim 2.1 to obtain desired estimation error. As seen in Fig. 1,

the optimal rate for Subset-of-Signals undergoes a phase transition

at𝑚 = 𝑛1/4. We obtain this rate up to logarithmic factors:

Algorithm 2 Estimation-Algorithm

Input: 𝑌1 ≤ · · · ≤ 𝑌𝑛
Output: Range Cconf (can choose any arbitrary value in this range

as the estimate 𝜇)

1: procedure Sweep-Test(𝑤,Δ):

return 𝑆𝑤,Δ ⊲ Returns set 𝑆𝑤,Δ of 𝑂 (𝑛) intervals of 𝜇
that PASS Test(𝑤,Δ, 𝜇)

2: end procedure

3: procedure Generate-Tests(𝑌1 ≤ · · · ≤ 𝑌𝑛):

4: 𝑆params ← {∞}
5: for 𝑖 ∈ [⌊log(𝑛)⌋] do
6: 𝑟2𝑖 ← min𝑗 𝑌𝑗+2𝑖 − 𝑌𝑗 ⊲ 𝑟2𝑖 is the gap between the

closest 2𝑖 samples

7: for 𝑗 ∈ {−⌈𝐶𝛿param log(𝑛)⌉, . . . , ⌈𝐶𝛿param log(𝑛)⌉ do
8: 𝑆params ← 𝑆params ∪ 𝑟2𝑖 · 2𝑗 ⊲ Approximating 𝜎2𝑖

by powers of 2 near 𝑟2𝑖 .

9: end for

10: end for

return 𝑆params ⊲ Returns 𝑆params, including∞ and

approximations of 𝜎2𝑖
11: end procedure

12: procedure Estimation-Algorithm(𝑌1 ≤ · · · ≤ 𝑌𝑛):

13: Cconf ← [−∞,∞] ⊲ Interval we are confident 𝜇 is within

14: 𝑆params ← Generate-Tests(Y) ⊲ Determine values of𝑤,Δ

15: for𝑤,Δ ∈ 𝑆params do

16: 𝑆𝑤,Δ ← Sweep-Test(w,∆) ⊲ Values of 𝜇 that Pass

Test(𝑤,Δ, 𝜇).
17: if 𝑆𝑤,Δ ≠ ∅ then
18: Cconf ← Cconf ∩min𝜇∈𝑆𝑤,Δ

[𝜇 − Δ, 𝜇 + Δ]
19: Cconf ← Cconf ∩max𝜇∈𝑆𝑤,Δ

[𝜇 − Δ, 𝜇 + Δ] ⊲

Intersect confidence intervals.

20: end if

21: end for

return Cconf ⊲ Can estimate 𝜇 as any arbitrary value in

Cconf.
22: end procedure

Lemma 2.2. When𝑚 ∈ [𝑛1/4, 𝑛], with high probability there exists

a (𝑤,Δ, 𝜇)-balance with Δ = 𝑂̃
(

𝑛
𝑚4

)1/6
.

Proof. We will consider evaluating two types of balance, and

conclude that at least one of these balances must exist with the

desired Δ.

By Claim 2.1, we can find (1,Δ, 𝜇)-balance if (𝑚 · Δ)2 ≥ 𝑂 (1) ·
𝐶1 log(𝑛) ·E[𝜌 (𝜇−1, 𝜇+1)]. Meaning, if we do not find such balance,

Δ ≤ 𝑂 (1) ·
√︃

𝐶1 log(𝑛)E[𝜌 (𝜇−1,𝜇+1) ]
𝑚2 .

Intuitively, if this is an undesirable bound on Δ, then E[𝜌 (𝜇 −
1, 𝜇 + 1)] must be large, meaning many of the 𝑛 −𝑚 samples of

standard deviation 𝜎∗ must be realized in [−1, +1], and thus 𝜎∗

must not be too large. In other words, either we are able to find

balance from our𝑚 łgoodž points, or our remaining 𝑛 −𝑚 łbadž

points must not actually be too bad. For our other type of balance,

we will notice how (∞,Δ, 𝜇)-balance behaves similarly to classical
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high-probability guarantees for the median. We will find such a

balance if E[𝜌 (𝜇 − Δ, 𝜇 + Δ)] ≥ 𝑂 (1) ·
√︁

𝐶1 log(𝑛)𝑛.
Combining both restrictions, if we cannot find either balance

then Δ ≤ 𝑂 (1) ·
√︃

𝐶1 log(𝑛)E[𝜌 (𝜇−1,𝜇+1) ]
𝑚2 ≤ 𝑂 (1)·

√︃

𝐶1 log(𝑛)E[𝜌 (𝜇−Δ,𝜇+Δ) ]
Δ𝑚2 ≤ 𝑂 (1) ·

√︂

𝐶1 log(𝑛)
√
𝐶1 log(𝑛)𝑛

Δ𝑚2 . This im-

plies Δ ≤ 𝑂 (1) · (𝐶3/2
1 log3/2 (𝑛))1/3 · ( 𝑛

𝑚4 )1/6 = 𝑂 (
√︁

log(𝑛) ·
( 𝑛
𝑚4 )1/6) = 𝑂̃ (( 𝑛

𝑚4 )1/6)).
□

Lemma 2.3. When 𝑚 ∈ [𝐶′ log(𝑛), 𝑛1/4], with high probability

there exists a (𝑤,Δ, 𝜇)-balance with Δ = 𝑂̃
(

𝑛
𝑚4

)1/2
.

Proof. Wewill again consider evaluating a pair of balances, and

conclude that at least one of these values must exhibit balance with

the desired Δ.

By Claim 2.1, we can find (1, 12 , 𝜇)-balance if𝑚2 ≥ 𝑂 (1)·
𝐶1 log(𝑛)·E[𝜌 (𝜇−1, 𝜇+1)]. Since our guarantees forΔ in this lemma

are super-constant, finding this balance would be sufficient. If we do

not find such balance, then𝑚2 ≤ 𝑂 (1)·𝐶1 log(𝑛)·E[𝜌 (𝜇−1, 𝜇+1)] ≤
𝑂 (1) ·𝐶 log(𝑛) 𝑛𝜎∗ =⇒ 𝜎∗ ≤ 𝑂 (1) · 𝐶𝑛 log(𝑛)

𝑚2 .

Similar to Lemma 2.2, our inability to find balance from the

𝑚 samples implies 𝜎∗ cannot be too large. We will then find the

median-like balance of (∞,Δ, 𝜇)-balance if E[𝜌 (𝜇 − Δ, 𝜇 + Δ)] ≥
√︁

𝐶1 log(𝑛)𝑛. Finally, this implies we find (∞,Δ, 𝜇)-balance for a

Δ ≤ 𝑂 (1) ·
√
𝐶1 log(𝑛)𝑛

E[𝜌 (𝜇−1,𝜇+1) ] ≤ 𝑂 (1) · 𝜎
∗√log(𝑛)√

𝑛
≤ 𝑂 (1) ·

√
𝑛 log1.5 (𝑛)

𝑚2 =

𝑂̃ (( 𝑛
𝑚4 )1/2).

□

Accordingly, one may obtain desired rates for simplified Subset-

of-Signals by just testing the collection of tuples we discussed in

the proofs of Lemmas 2.2 and 2.3.

Additional considerations.Wewill need additional non-trivial

considerations for proving our unsimplified results. Some include:

(Unsimplified) Subset-of-Signals. If the 𝑛 −𝑚 remaining samples

are allowed to have any value of 𝜎𝑖 , then checking just the tuples

of balances in Lemmas 2.2 and 2.3 will not be sufficient to find the

desired balance. This is roughly because there may be groups of 𝜎𝑖
that interfere with balance at the scale of 1, while still not helping

produce a good median. With some nuance, we later show (i) there

still must exist some scale at which to find desired balance, and

(ii) we can choose a set of 𝑂̃ (1) tuples which will test something

sufficiently close to discover said desired balance.

Choosing testing tuples. The previous point touches on how

we require some way of testing the correct collection of balances.

Moreover, it would be desirable if our estimator was scale-invariant

so that if𝑚 samples have 𝜎𝑖 ≤ 𝜈 , then we could attain the analogous

Subset-of-Signals guarantee scaled by 𝜈 . One may expect that if

we are looking for balance driven by 𝑘 good samples, the correct

Δ and𝑤 to test may be within a polynomial factor of the distance

between the 𝑘-closest points (𝑟𝑘 ). Later, we will show it is sufficient

to consider pairs of𝑤 and Δ that are powers of 2 and polynomially-

close to a 𝑟2𝑖 for 𝑖 ∈ [1, log(𝑛)], giving 𝑂̃ (1) tuples to test in a

scale-invariant manner.

2.4 Multi-Dimensional Estimation

In this section, we focus on estimation with 𝑑-dimensional observa-

tions. Each𝑋𝑖 ∼ 𝑁 (𝜇, Σ𝑖 ), where 𝜇 is a 𝑑-dimensional vector and Σ𝑖
is a 𝑑 ×𝑑 covariance matrix. If each Σ𝑖 can be an arbitrary diagonal

covariance matrix, then observations in different dimensions are

unrelated and thus there is nothing possible beyond considering

𝑑 independent instances of 1-dimensional estimation. However,

if Σ𝑖 = 𝜎2𝑖 𝐼 , then each sample has the same variance in every di-

mension, and high dimensional observations are extremely helpful.

[4] initiated the study of this problem and obtained (in Theorem

5.2) an algorithm that with probability 1 − Θ(1/𝑛), it holds that

E[|𝜇𝑖 − 𝜇𝑖 |] = 𝑂

(

√︂

1
∑𝑛

𝑗=2
1

𝜎2
𝑗

)

when 𝑑 = Ω(log(𝑛)). Note how this

quantity is exactly the error for estimation with known-variances,

other than the removal of the term depending on 𝜎1. The crux of

their approach leverages that with 𝑑 = Ω(log(𝑛)) dimensions, one

can approximate 𝜎2𝑖 + 𝜎
2
𝑗 well for every pair of 𝑖 ≠ 𝑗 .

Interestingly, we will obtain similar guarantees while only re-

quiring 𝑑 ≥ 2. We provide a high-level overview focusing on the

most interesting case of 𝑑 = 2. Let us denote the known-variance

error ignoring 𝜎1 as 𝑅(𝜎) ≜
√︂

1
∑𝑛

𝑖=2
1

𝜎2
𝑖

. We note its relation to a

simpler closed-form:

Lemma 2.4. min2≤𝑖≤𝑛
𝜎𝑖√
𝑖
≤ 𝑂̃ (𝑅(𝜎)).

Establishing this simpler closed-form as our goal, we sketch an

approach based on balance-testing that may hope to obtain error

near 𝜎𝑖√
𝑖
:

• Consider a guess for the mean 𝜇 = 𝜇1, 𝜇2.

• Filter all 𝑋 𝑗 whose observation in the first dimension is

farther than 𝜎𝑖 from 𝜇1.

• With the filtered points in the second dimension, perform

balance testing around 𝜇2.

Informally, consider how often a sample 𝑋 𝑗 with large 𝜎 𝑗 would

łinterferež with a balance test at the scale of 𝜎𝑖 in the 1-dimensional

setting: it would land in [𝜇−𝜎𝑖 , 𝜇+𝜎𝑖 ] with probabilityΘ( 𝜎𝑖𝜎 𝑗
). How-

ever, in the 2-dimensional setting, this probability is much smaller

given our filtering, and is accordingly Θ

(

(

𝜎𝑖
𝜎 𝑗

)2
)

. This difference

will be enough to obtain known-variance rates. Algorithmically, we

will try all 𝑂 (𝑛2) possible filterings, each creating an instance of

1-dimensional estimation, and we will intersect all the confidence

intervals yielded from each instance to obtain an estimate.

For some intuition regarding why we obtain known-variance

rates, consider the case where 𝑖∗ = argmin𝐶′ log2 (𝑛)≤𝑖≤𝑛
𝜎𝑖√
𝑖
. We

claim that (after some calculation) the conditions of Claim 2.1 under

which we expect to find balance are satisfied when Δ ≥ log(𝑛)𝜎𝑖∗√
𝑖∗

.

Accordingly, there exists a 𝐶′ such that if 𝑖∗ ≥ 𝐶′ log2 (𝑛) then we

obtain error 𝑂̃ ( 𝜎𝑖∗√
𝑖∗
) with high probability. Handling other cases

where 𝑖∗ < 𝐶′ log2 (𝑛) involve other considerations that ultimately

yield:

Theorem 1.3. Consider observing 𝑛 2-dimensional Gaussian sam-

ples with a common mean 𝑋𝑖 ∼ 𝑁 (𝜇, 𝜎2𝑖 𝐼 ), where 𝜎1 ≤ · · · ≤ 𝜎𝑛 ,
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the variances are unknown to the algorithm, and samples are pre-

sented in an arbitrary order. There exits an algorithm that attains

error 𝑂̃

(

√︂

1
∑𝑛

𝑖=2
1

𝜎2
𝑖

)

with probability 1 − 𝑜 (1).
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