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ABSTRACT

In this paper, we consider a distributed optimization prob-
lem. A network of n agents, each with its own local loss
function, aims to collaboratively minimize the global aver-
age loss. We prove improved convergence results for two re-
cently proposed random reshuffling (RR) based algorithms,
D-RR and GT-RR, for smooth strongly-convex and noncon-
vex problems, respectively. In particular, we prove an addi-
tional speedup with increasing n in both cases. Our experi-
ments show that these methods can provide further commu-
nication savings by carrying multiple gradient steps between
successive communications while also outperforming decen-
tralized SGD. Our experiments also reveal a gap in the theo-
retical understanding of these methods in the nonconvex case.

Index Terms— distributed optimization, gradient track-
ing, random reshuffling, stochastic gradient methods

1. INTRODUCTION

This paper considers the problem of collaboratively optimiz-
ing the average of n local cost functions, each owned by in-
dividual agents connected in a network. The local function at
each agent depends on the corresponding local dataset. Math-
ematically, the problem is as follows:

min f(x) = %Z%wa(w% (1)

z€ER4

where n is the number of agents, f; is the local loss of agent
i € [n] £ {1,2,...,n}, mis the local dataset size, and f; ;
is the loss corresponding to the j-th sample at the ¢-th agent.
This problem has applications in signal processing and ma-
chine learning (ML), and has been studied for decades [1, 2,
3]. However, modern applications also face an explosion in
the amount of data available at the edge devices. This addi-
tional challenge precludes the usage of classical algorithms
like gradient descent [4], that require full gradient computa-
tion at each step. In this situation, distributed stochastic gra-
dient methods emerge as simple yet powerful alternatives.
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Stochastic gradient descent (SGD) is one of the most pop-
ular methods in modern ML. Consequently, its decentralized
versions have also been extensively studied in the literature
[5, 6]. When minimizing smooth objective functions, decen-
tralized SGD (D-SGD) eventually achieves the same conver-
gence as that of centralized SGD, implying network indepen-
dence of the convergence error [7]. Subsequent work has fo-
cused on proposing more sophisticated algorithms to further
improve the performance of D-SGD. Such methods include
gradient tracking (GT) [8] and exact diffusion (ED) [9, 10].

The theoretical analysis of vanilla SGD assumes with-
replacement sampling at each step to compute the gradient
estimate [11]. However, in practice, without replacement
sampling is observed to perform better. A commonly used
SGD variant, called Random Reshuffling (RR), is used in
deep-learning packages like PyTorch and TensorFlow. RR
permutes the dataset at the beginning of each epoch, and
computes gradient estimates using mini-batches sampled
from the permuted sequence. Recent work [12, 13] has
theoretically shown the benefits of RR compared to SGD.
Specifically, given the dataset size N' and number of epochs
T, for smooth strongly-convex problems RR achieves (for
large enough T') a convergence of O(1/(NT?)), compared
to O(1/(NT)) for SGD. For smooth nonconvex objectives,
RR achieves O(1/(NT?)'/?), compared to O(1/v/NT)
for SGD. These benefits of RR over SGD naturally call for
exploring RR in the decentralized setting.

The initial works that studied RR in the decentralized set-
ting [14, 15] do not show any superiority over decentralized
SGD. Subsequent work in [16, 17] proposed decentralized
algorithms to solve smooth strongly-convex and nonconvex
problems. Ignoring network dependence terms, the achieved
convergence rates are O(1/(mT?)) in the strongly-convex,
and O(1/(mT?)"/3) in the nonconvex case. These outper-
form D-SGD in certain parameter regimes (see Table 1).
However, two crucial questions remain unanswered.

1. Candecentralized RR methods (D-RR and GT-RR) achieve
convergence speedup with increasing network size n?

2. How to design RR-based algorithms that achieve network
independent asymptotic convergence?

IThese results are in the centralized setting. Comparing with the dis-
tributed setting in (1), N = mn.
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In this paper, we answer the first question in the affirma-
tive, and highlight some interesting empirical observations
that might help answering the second question.

Table 1: Comparison of the convergence rates of different de-
centralized algorithms. We omit the higher-order terms. O)
indicates that the dominant terms have network dependence
that has been omitted for simplicity.

Work Strongly Convex Nonconvex
D-SGD O (57) 0 ()

D-RR [16] O, (ﬁ) N (ﬁ

GT-RR [17] ox () N e
With D-RR With GT-RR

Our work 1,1
O <1'1TT2"> N ((mnTl%l/"* + (mT1>2/3)

Contributions

We perform a refined analysis of two existing decentral-
ized random reshuffling based algorithms: D-RR [16] for
smooth strongly-convex, and GT-RR [17] for smooth non-
convex problems. Compared to existing results in [16, 17],
we achieve an additional speedup in terms of the number of
agents n (see Table 1) in both the cases.

Further, our experiments reveal some interesting observa-
tions. First, D-RR (and GT-RR) achieves a smaller error than
D-SGD even if the agents in the former communicate signifi-
cantly less often, with agents taking multiple stochastic gradi-
ent steps between successive communications. Second, in the
nonconvex case, we discover a gap in the existing theoretical
analysis and the empirical results. The convergence results
in this case (in [16, 17], as well as ours) bound ||V f ()|,
where Z is the global average of iterates, and have network
dependence (see [17, Table 1] and Theorem 2). However, our
experiments in Figure 2 suggest that ||V f(z)||” is indepen-
dent of the network across different topologies. On the other
hand, the convergence of 1 Y7 | ||V f(z;) |? (often bounded
in the analysis of D-SGD and related methods) does indeed
depend on the underlying network.

2. ALGORITHM AND THEORETICAL RESULTS

We reproduce below the D-RR algorithm from [16], and refer
the reader to [17] for the GT-RR algorithm. Next, we intro-
duce the assumptions needed in our theoretical results.

2.1. Assumptions

We assume the agents in the network are connected via a
graph G = (N, &), where N = [n] denotes the set of agents,
and £ C N x N denotes the set of edges. We denote the set
of neighbors of agent i by N; = {j € N : (i,5) € £}. The
edges of G have associated weights W = [w;;] € R"*".

Algorithm 1 Distributed Random Reshuffling (D-RR) [16]

1: Input: initialization x; o for agents ¢ € [n], weight ma-
trix W = [w;;] € R"*", step-size sequence {c; }

2: for Epocht=0,1,...7T —1do

3. for Agenti € [n] in parallel do

4: Independently sample permutation {7}, ..., 7% ;}

of [m)]
5: Set x%t =it

forj=0,...,m—1do

jt3 j j
7: Update 2, * =z, — atVfi,ﬂ;; (z],)
i+ . o dty
8: Send x; , ? to neighbors k& € N;. Receive ;>
from neighbors k € N;.
. Upd J+1 _ i+3

9: pdate 27 ;™ =3 e, Wik
10: end for
11: Set Tit41 = l‘?ft
122 end for
13: end for

14: Output {z; 1}

Assumption 1 (Network Weight Matrix). The network graph
G is undirected and connected, i.e., there exists a path between
any two nodes in G. There is a direct link between nodes ¢
and j (¢ # j) if and only if w;; > 0 and w;; > 0; other-
wise, w;; = wj;; = 0. The mixing matrix is nonnegative,
symmetric, and stochastic, i.e., W = WT and W1 =1.

We denote by ) the spectral norm of matrix W — 117 /n.
By Assumption 1, A < 1. Next, we discuss the assumptions
on the loss functions in (1).

Assumption 2 (Smoothness). Each local component function
fi.; is bounded from below and L-smooth, i.e.,

IV fij(x) = Vil < Lz —yl|, forall z,y € R

Assumption 3 (Strong Convexity). Each local function f; ;
is p-strongly convex, i.e., for all 4, j and z,y € R?

2
(Vfij(@) = Vfijy)z—y) > pllz—yl".
The above assumption can be relaxed to PL condition on
the global function f [17], but we retain it here for simplicity.
Next, we state and discuss our convergence results.

2.2. Convergence Results

Theorem 1 (Strongly Convex Case). Suppose Assumptions
1, 2 and 3 hold. If we choose oy = with 0 > 12 and

appropriately chosen K, we have

1 n . 9 1
3 et =1 <0 ()

1
+ O <(1—)\)37’)7,2/I’2> —|—hlgher order terms

R
mp(t+K)

2
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Remark 1. Theorem 1 improves the bound O (O—MW)

in [16, Theorem 1], with an addition speedup with respect to
the number of agents n in the first term and improving the
dependence on the number of component functions m in the
second term. In settings with n < m and well-connected un-
derlying graphs (such that ﬁ is independent of n), the first
term dominates, and the convergence becomes almost net-
work independent, recovering the performance of centralized
RR (C-RR) [18]. For example, in Figure 1c, with exponential
graphs, both D-RR and C-RR show similar convergence.

The improved bound in Theorem 1 results from a tighter
bound on the shuffling variance 03, defined in [16, Defi-
nition 1], which we state next.

Lemma 2.1. Under Assumption 2, we have

2
9 a;Lm _,
ashufﬂe < An O (3)

where & 0

nm Zz 12] 1||vf’hj( )_Vfl(x*)HZ

Remark 2. The bound in (3) has an extra 1/n factor that is
missing in the corresponding bound in [16, Lemma 6], and
results in the linear speedup in the number of agents n in
Theorem 1. Note that 52 defined in Lemma 2.1 is different
from o2 in [16], where 02 £ -L S S |V f; ()|,
However, it is easy to see that 52 < 402,

Next, we state the convergence of GT-RR, a gradient
tracking-based method proposed in [17], for smooth noncon-
vex problems. It is proved in [17] that GT-RR has better
network dependence compared to D-RR.

Theorem 2 (Nonconvex Case). Suppose Assumptions 1, 2,
and [17, Assumption 2.1] hold. Then, with appropriately cho-
sen step-sizes {a }, iterates generated by GT-RR satisfy

.....

1
((1 = \ymnT2)"/?
1
He (((1 — \m272)1?

) + higher order terms, @)

1
where &) = L 3" @,

Remark 3. Our bound above improves the corresponding

1
bound O (W)
achieving an addition speedup with respect to the number of
agents n in the first term, and improving the dependence on
the number of component functions m in the second term.

in [17, Theorem 4.1], by again

Remark 4. \%Ve state the result in Theorem 2 in terms of
E HV f(z9) H for direct comparison with the corresponding
results in [16, 17]. However, there are two limitations of the
current bound. First, the bound does not explicitly quantify
how different the individual iterates {«,}7", are. Therefore,

many existing works [6, 10] bound £ 37 | ||V f(?,) H2 To
see the benefit of the latter quantity, note that '

*ZHW I +72ku :

which follows from Assumption 2. Second, our experiments
suggest (see Figure 2 and the accompanying discussion) that
|V f(xD) H2 for both GT-RR and D-RR is independent of the
network topology, and matches the performance of central-
ized RR. This suggests that the {— factor in (4) might be an
artifact of the analysis. On the other hand, Figure 2 shows

that || " |V fi(a?,) ||2 is indeed network dependent.

<2HVf

3. EXPERIMENT RESULTS

We evaluate the numerical performance of D-RR and GT-
RR algorithms on the same binary classification problems
on CIFARI10 dataset [19], as those considered in [17], but
uncover some interesting observations. Centralized-RR and
SGD serve as the baselines in all our experiments. All the
curves have values averaged over 5 independent trials. The
per agent batch-size for decentralized algorithms is 10 (for the
centralized algorithms, it is 10 X n). In the strongly-convex
case, we solve the following optimization problem.

min f(x) = %Zfl(x),

z€Rd :
= )

L % Z log (1 + exp(—z " u;v;)) +
J€D;

fi(z)

2 alf?,
2

where D;(i = 1,...,n) denotes the local dataset for agent 4,
such that m = |D;| for all 4. p is set as 0.2.

In Figure 1, we compare the performance of D-RR and
GT-RR with that of D-SGD over a network of n = 16
agents connected in a ring, grid, and exponential graph.
Centralized-RR (C-RR) and SGD serve as respective base-
lines. We plot the average iterate distance from the optimum
DD H:v?t “||%. As discussed in Theorem 1 and Re-
mark 1, the error floor for D-RR has network dependence.
This is evident from the worse error floors of D-RR and
GT-RR. However, if the graph is well-connected, as with
exponential graph (Figure 1c), the difference is negligible.

We also explore the impact of changing the communica-
tion frequency. As communication becomes more infrequent
(increasing value of C') the error floor worsens. However,
for well-connected networks, D-RR can still achieve a sig-
nificantly better error floor than D-SGD (with C' = 1). For
exponential graphs, we can choose C' as large as 25 and
still outperform D-SGD. This suggests that decentralized
RR-based methods with multiple gradient steps between suc-
cessive communications can be beneficial in communication-
constrained settings and require further exploration. The
special case with C' = m has been studied in [15].
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Fig. 1: Comparison of decentralized random reshuffling based algorithms: D-RR and GT-RR with centralized-RR, D-SGD
and SGD for solving the strongly-convex binary classification problem (5) on CIFAR10 dataset, over networks with n = 16
agents. The step-size is 0.001. C' quantifies the frequency of communication relative to gradient computation. For C' > 1, C'
consecutive stochastic gradient steps are followed by one round of communication with the neighboring agents. For C' < 1,

each stochastic gradient step is followed by 1/C rounds of communication.
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Fig. 2: Comparison of decentralized random reshuffling based algorithms: D-RR and GT-RR with centralized-RR, D-SGD and
SGD for solving the strongly-convex binary classification problem (5) on CIFAR10 dataset, over networks with n = 16 agents.
C'is fixed at 1. The step-size is sequentially set as 0.02,0.004 and 0.001.

At the other extreme, in some cases, communication
might be cheaper than gradient computation. This case is
represented by the C' < 1 case, where each gradient com-
putation is followed by 1/C rounds of communication. As
expected, more communication results in improved consen-
sus error, hence better convergence.

In the nonconvex case, we again solve a binary classifica-
tion problem, but with a different regularizer, which leads to
the following optimization problem.

1 n
) = 1S o, )
min f(0) =5 2 5i(o) ©
filz) & e Z log (1 + exp(—z " u;v;)) + n Z 7
3 ij'D, V) 2 q:1 1 +$37

where ., denotes the ¢-th element of z € R?. We setn = 0.2.
In Figure 2, we fix the communication frequency to
C = 1. We plot both the gradient norm at the average it-

erate HV f (j?)’ 2, as well as the average of gradient norms at
individual iterates £ Y% | ||V f (ac?t)H2 For both ring and

exponential graphs, the convergence of ||V f ()2?)|}2 seems
independent of the network. This observation points to the
need for an improved theoretical analysis, which removes the
network dependence from the leading terms in Theorem 2.
On the other hand, 2 3" | ||V f(x?,) H2 has network depen-
dence. GT-RR improves the error floor compared to D-RR
but does not eliminate the network dependence completely.

4. CONCLUSION

We presented improved analyses of two existing random-
reshuffling based decentralized algorithms, D-RR and GT-
RR. We show that the convergence of the two algorithms
improves with increasing network size. Experimental results,
while corroborating our theory, also point out some gaps
in the current theoretical understanding of the nonconvex
case, which requires further investigation. Other pertinent
directions for future work include proposing algorithms that
achieve network-independent convergence and shorter tran-
sient times. Corresponding work on D-SGD like methods
[7, 10] can possibly provide some insights in this direction.
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