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ABSTRACT

In this paper, we consider a distributed optimization prob-

lem. A network of n agents, each with its own local loss

function, aims to collaboratively minimize the global aver-

age loss. We prove improved convergence results for two re-

cently proposed random reshuffling (RR) based algorithms,

D-RR and GT-RR, for smooth strongly-convex and noncon-

vex problems, respectively. In particular, we prove an addi-

tional speedup with increasing n in both cases. Our experi-

ments show that these methods can provide further commu-

nication savings by carrying multiple gradient steps between

successive communications while also outperforming decen-

tralized SGD. Our experiments also reveal a gap in the theo-

retical understanding of these methods in the nonconvex case.

Index Terms— distributed optimization, gradient track-

ing, random reshuffling, stochastic gradient methods

1. INTRODUCTION

This paper considers the problem of collaboratively optimiz-

ing the average of n local cost functions, each owned by in-

dividual agents connected in a network. The local function at

each agent depends on the corresponding local dataset. Math-

ematically, the problem is as follows:

min
x∈Rd

f(x) ≜
1

n

n∑

i=1

1

m

m∑

j=1

fi,j(x)

︸ ︷︷ ︸

fi(x)

, (1)

where n is the number of agents, fi is the local loss of agent

i ∈ [n] ≜ {1, 2, . . . , n}, m is the local dataset size, and fi,j
is the loss corresponding to the j-th sample at the i-th agent.

This problem has applications in signal processing and ma-

chine learning (ML), and has been studied for decades [1, 2,

3]. However, modern applications also face an explosion in

the amount of data available at the edge devices. This addi-

tional challenge precludes the usage of classical algorithms

like gradient descent [4], that require full gradient computa-

tion at each step. In this situation, distributed stochastic gra-

dient methods emerge as simple yet powerful alternatives.
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Stochastic gradient descent (SGD) is one of the most pop-

ular methods in modern ML. Consequently, its decentralized

versions have also been extensively studied in the literature

[5, 6]. When minimizing smooth objective functions, decen-

tralized SGD (D-SGD) eventually achieves the same conver-

gence as that of centralized SGD, implying network indepen-

dence of the convergence error [7]. Subsequent work has fo-

cused on proposing more sophisticated algorithms to further

improve the performance of D-SGD. Such methods include

gradient tracking (GT) [8] and exact diffusion (ED) [9, 10].

The theoretical analysis of vanilla SGD assumes with-

replacement sampling at each step to compute the gradient

estimate [11]. However, in practice, without replacement

sampling is observed to perform better. A commonly used

SGD variant, called Random Reshuffling (RR), is used in

deep-learning packages like PyTorch and TensorFlow. RR

permutes the dataset at the beginning of each epoch, and

computes gradient estimates using mini-batches sampled

from the permuted sequence. Recent work [12, 13] has

theoretically shown the benefits of RR compared to SGD.

Specifically, given the dataset size N 1 and number of epochs

T , for smooth strongly-convex problems RR achieves (for

large enough T ) a convergence of O(1/(NT 2)), compared

to O(1/(NT )) for SGD. For smooth nonconvex objectives,

RR achieves O(1/(NT 2)1/3), compared to O(1/
√
NT )

for SGD. These benefits of RR over SGD naturally call for

exploring RR in the decentralized setting.

The initial works that studied RR in the decentralized set-

ting [14, 15] do not show any superiority over decentralized

SGD. Subsequent work in [16, 17] proposed decentralized

algorithms to solve smooth strongly-convex and nonconvex

problems. Ignoring network dependence terms, the achieved

convergence rates are O(1/(mT 2)) in the strongly-convex,

and O(1/(mT 2)1/3) in the nonconvex case. These outper-

form D-SGD in certain parameter regimes (see Table 1).

However, two crucial questions remain unanswered.

1. Can decentralized RR methods (D-RR and GT-RR) achieve

convergence speedup with increasing network size n?

2. How to design RR-based algorithms that achieve network

independent asymptotic convergence?

1These results are in the centralized setting. Comparing with the dis-

tributed setting in (1), N = mn.
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In this paper, we answer the first question in the affirma-

tive, and highlight some interesting empirical observations

that might help answering the second question.

Table 1: Comparison of the convergence rates of different de-

centralized algorithms. We omit the higher-order terms. Oλ

indicates that the dominant terms have network dependence

that has been omitted for simplicity.

Work Strongly Convex Nonconvex

D-SGD O
(

1
mnT

)

O

(

1
√

mnT

)

D-RR [16] Oλ

(

1
mT2

)

Oλ

(

1

T2/3

)

GT-RR [17] Oλ

(

1
mT2

)

Oλ

(

1

(mT2)1/3

)

Our work
With D-RR

Oλ

(

1
n

+ 1
m

mT2

)

With GT-RR

Oλ

(

1

(mnT2)1/3
+ 1

(mT )2/3

)

Contributions

We perform a refined analysis of two existing decentral-

ized random reshuffling based algorithms: D-RR [16] for

smooth strongly-convex, and GT-RR [17] for smooth non-

convex problems. Compared to existing results in [16, 17],

we achieve an additional speedup in terms of the number of

agents n (see Table 1) in both the cases.

Further, our experiments reveal some interesting observa-

tions. First, D-RR (and GT-RR) achieves a smaller error than

D-SGD even if the agents in the former communicate signifi-

cantly less often, with agents taking multiple stochastic gradi-

ent steps between successive communications. Second, in the

nonconvex case, we discover a gap in the existing theoretical

analysis and the empirical results. The convergence results

in this case (in [16, 17], as well as ours) bound ∥∇f(x̄)∥2,

where x̄ is the global average of iterates, and have network

dependence (see [17, Table 1] and Theorem 2). However, our

experiments in Figure 2 suggest that ∥∇f(x̄)∥2 is indepen-

dent of the network across different topologies. On the other

hand, the convergence of 1
n

∑n
i=1 ∥∇f(xi)∥2 (often bounded

in the analysis of D-SGD and related methods) does indeed

depend on the underlying network.

2. ALGORITHM AND THEORETICAL RESULTS

We reproduce below the D-RR algorithm from [16], and refer

the reader to [17] for the GT-RR algorithm. Next, we intro-

duce the assumptions needed in our theoretical results.

2.1. Assumptions

We assume the agents in the network are connected via a

graph G = (N , E), where N = [n] denotes the set of agents,

and E ¦ N ×N denotes the set of edges. We denote the set

of neighbors of agent i by Ni = {j ∈ N : (i, j) ∈ E}. The

edges of G have associated weights W = [wij ] ∈ R
n×n.

Algorithm 1 Distributed Random Reshuffling (D-RR) [16]

1: Input: initialization xi,0 for agents i ∈ [n], weight ma-

trix W = [wij ] ∈ R
n×n, step-size sequence {αt}

2: for Epoch t = 0, 1, . . . T − 1 do

3: for Agent i ∈ [n] in parallel do

4: Independently sample permutation {πi
0, . . . , π

i
m−1}

of [m]
5: Set x0

i,t = xi,t

6: for j = 0, . . . ,m− 1 do

7: Update x
j+ 1

2
i,t = xj

i,t − αt∇fi,πi
j
(xj

i,t)

8: Send x
j+ 1

2
i,t to neighbors k ∈ Ni. Receive x

j+ 1
2

k,t

from neighbors k ∈ Ni.

9: Update xj+1
i,t =

∑

k∈Ni
wikx

j+ 1
2

k,t

10: end for

11: Set xi,t+1 = xm
i,t

12: end for

13: end for

14: Output {xi,T }

Assumption 1 (Network Weight Matrix). The network graph

G is undirected and connected, i.e., there exists a path between

any two nodes in G. There is a direct link between nodes i
and j (i ̸= j) if and only if wij > 0 and wji > 0; other-

wise, wij = wji = 0. The mixing matrix is nonnegative,

symmetric, and stochastic, i.e., W = W¦ and W1 = 1.

We denote by λ the spectral norm of matrix W − 11
¦/n.

By Assumption 1, λ < 1. Next, we discuss the assumptions

on the loss functions in (1).

Assumption 2 (Smoothness). Each local component function

fi,j is bounded from below and L-smooth, i.e.,

∥∇fi,j(x)−∇fi,j(y)∥ f L ∥x− y∥ , for all x, y ∈ R
d.

Assumption 3 (Strong Convexity). Each local function fi,j
is µ-strongly convex, i.e., for all i, j and x, y ∈ R

d

ï∇fi,j(x)−∇fi,j(y), x− yð g µ ∥x− y∥2 .

The above assumption can be relaxed to PL condition on

the global function f [17], but we retain it here for simplicity.

Next, we state and discuss our convergence results.

2.2. Convergence Results

Theorem 1 (Strongly Convex Case). Suppose Assumptions

1, 2 and 3 hold. If we choose αt =
θ

mµ(t+K) with θ > 12 and

appropriately chosen K, we have

1

n

n∑

i=1

E

[∥
∥x0

i,T − x∗
∥
∥
2
]

f O
(

1

(1− λ)mnT 2

)

+O
(

1

(1− λ)3m2T 2

)

+ higher order terms

(2)
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Remark 1. Theorem 1 improves the bound O
(

1
(1−λ)3m2T 2

)

in [16, Theorem 1], with an addition speedup with respect to

the number of agents n in the first term and improving the

dependence on the number of component functions m in the

second term. In settings with n < m and well-connected un-

derlying graphs (such that 1
1−λ is independent of n), the first

term dominates, and the convergence becomes almost net-

work independent, recovering the performance of centralized

RR (C-RR) [18]. For example, in Figure 1c, with exponential

graphs, both D-RR and C-RR show similar convergence.

The improved bound in Theorem 1 results from a tighter

bound on the shuffling variance σ2
shuffle, defined in [16, Defi-

nition 1], which we state next.

Lemma 2.1. Under Assumption 2, we have

σ2
shuffle f

α2
tLm

4n
σ̃2
∗, (3)

where σ̃2
∗ ≜ 1

nm

∑n
i=1

∑m
j=1 ∥∇fi,j(x

∗)−∇fi(x
∗)∥2.

Remark 2. The bound in (3) has an extra 1/n factor that is

missing in the corresponding bound in [16, Lemma 6], and

results in the linear speedup in the number of agents n in

Theorem 1. Note that σ̃2
∗ defined in Lemma 2.1 is different

from σ2
∗ in [16], where σ2

∗ ≜ 1
nm

∑n
i=1

∑m
j=1 ∥∇fi,j(x

∗)∥2.

However, it is easy to see that σ̃2
∗ f 4σ2

∗ .

Next, we state the convergence of GT-RR, a gradient

tracking-based method proposed in [17], for smooth noncon-

vex problems. It is proved in [17] that GT-RR has better

network dependence compared to D-RR.

Theorem 2 (Nonconvex Case). Suppose Assumptions 1, 2,

and [17, Assumption 2.1] hold. Then, with appropriately cho-

sen step-sizes {αt}, iterates generated by GT-RR satisfy

min
t=0,1,...,T−1

E
∥
∥∇f(x̄0

t )
∥
∥
2 f O

(

1

((1− λ)mnT 2)
1/3

)

+O
(

1

((1− λ)m2T 2)
1/3

)

+ higher order terms, (4)

where x̄0
t = 1

n

∑n
i=1 x

0
i,t.

Remark 3. Our bound above improves the corresponding

bound O
(

1
(mT 2(1−λ2))1/3

)

in [17, Theorem 4.1], by again

achieving an addition speedup with respect to the number of

agents n in the first term, and improving the dependence on

the number of component functions m in the second term.

Remark 4. We state the result in Theorem 2 in terms of
E
∥
∥∇f(x̄0

t )
∥
∥
2

for direct comparison with the corresponding
results in [16, 17]. However, there are two limitations of the
current bound. First, the bound does not explicitly quantify
how different the individual iterates {x0

i,t}ni=1 are. Therefore,

many existing works [6, 10] bound 1
n

∑n
i=1

∥
∥∇f(x0

i,t)
∥
∥
2
. To

see the benefit of the latter quantity, note that

1

n

n
∑

i=1

∥

∥∇f(x0

i,t)
∥

∥

2

f 2
∥

∥∇f(x̄0

t )
∥

∥

2

+
2L2

n

n
∑

i=1

∥

∥x
0

i,t − x̄
0

t

∥

∥

2

,

which follows from Assumption 2. Second, our experiments

suggest (see Figure 2 and the accompanying discussion) that
∥
∥∇f(x̄0

t )
∥
∥
2

for both GT-RR and D-RR is independent of the

network topology, and matches the performance of central-

ized RR. This suggests that the 1
1−λ factor in (4) might be an

artifact of the analysis. On the other hand, Figure 2 shows

that
∥
∥ 1
n

∑n
i=1 ∇fi(x

0
i,t)
∥
∥
2

is indeed network dependent.

3. EXPERIMENT RESULTS

We evaluate the numerical performance of D-RR and GT-

RR algorithms on the same binary classification problems

on CIFAR10 dataset [19], as those considered in [17], but

uncover some interesting observations. Centralized-RR and

SGD serve as the baselines in all our experiments. All the

curves have values averaged over 5 independent trials. The

per agent batch-size for decentralized algorithms is 10 (for the

centralized algorithms, it is 10 × n). In the strongly-convex

case, we solve the following optimization problem.

min
x∈Rd

f(x) =
1

n

n∑

i=1

fi(x),

fi(x) ≜
1

m

∑

j∈Di

log
(
1 + exp(−x¦ujvj)

)
+

ρ

2
∥x∥2 ,

(5)

where Di(i = 1, . . . , n) denotes the local dataset for agent i,
such that m = |Di| for all i. ρ is set as 0.2.

In Figure 1, we compare the performance of D-RR and

GT-RR with that of D-SGD over a network of n = 16
agents connected in a ring, grid, and exponential graph.

Centralized-RR (C-RR) and SGD serve as respective base-

lines. We plot the average iterate distance from the optimum
1
n

∑n
i=1

∥
∥x0

i,t − x∗
∥
∥
2
. As discussed in Theorem 1 and Re-

mark 1, the error floor for D-RR has network dependence.

This is evident from the worse error floors of D-RR and

GT-RR. However, if the graph is well-connected, as with

exponential graph (Figure 1c), the difference is negligible.

We also explore the impact of changing the communica-

tion frequency. As communication becomes more infrequent

(increasing value of C) the error floor worsens. However,

for well-connected networks, D-RR can still achieve a sig-

nificantly better error floor than D-SGD (with C = 1). For

exponential graphs, we can choose C as large as 25 and

still outperform D-SGD. This suggests that decentralized

RR-based methods with multiple gradient steps between suc-

cessive communications can be beneficial in communication-

constrained settings and require further exploration. The

special case with C = m has been studied in [15].
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Fig. 1: Comparison of decentralized random reshuffling based algorithms: D-RR and GT-RR with centralized-RR, D-SGD

and SGD for solving the strongly-convex binary classification problem (5) on CIFAR10 dataset, over networks with n = 16
agents. The step-size is 0.001. C quantifies the frequency of communication relative to gradient computation. For C g 1, C
consecutive stochastic gradient steps are followed by one round of communication with the neighboring agents. For C < 1,

each stochastic gradient step is followed by 1/C rounds of communication.
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Fig. 2: Comparison of decentralized random reshuffling based algorithms: D-RR and GT-RR with centralized-RR, D-SGD and

SGD for solving the strongly-convex binary classification problem (5) on CIFAR10 dataset, over networks with n = 16 agents.

C is fixed at 1. The step-size is sequentially set as 0.02, 0.004 and 0.001.

At the other extreme, in some cases, communication

might be cheaper than gradient computation. This case is

represented by the C < 1 case, where each gradient com-

putation is followed by 1/C rounds of communication. As

expected, more communication results in improved consen-

sus error, hence better convergence.

In the nonconvex case, we again solve a binary classifica-

tion problem, but with a different regularizer, which leads to

the following optimization problem.

min
x∈Rd

f(x) =
1

n

n∑

i=1

fi(x), (6)

fi(x) ≜
1

m

∑

j∈Di

log
(
1 + exp(−x¦ujvj)

)
+

η

2

d∑

q=1

x2
q

1 + x2
q

,

where xq denotes the q-th element of x ∈ R
d. We set η = 0.2.

In Figure 2, we fix the communication frequency to

C = 1. We plot both the gradient norm at the average it-

erate
∥
∥∇f(x̄0

t )
∥
∥
2
, as well as the average of gradient norms at

individual iterates 1
n

∑n
i=1

∥
∥∇f(x0

i,t)
∥
∥
2
. For both ring and

exponential graphs, the convergence of
∥
∥∇f(x̄0

t )
∥
∥
2

seems

independent of the network. This observation points to the

need for an improved theoretical analysis, which removes the

network dependence from the leading terms in Theorem 2.

On the other hand, 1
n

∑n
i=1

∥
∥∇f(x̄0

i,t)
∥
∥
2

has network depen-

dence. GT-RR improves the error floor compared to D-RR

but does not eliminate the network dependence completely.

4. CONCLUSION

We presented improved analyses of two existing random-

reshuffling based decentralized algorithms, D-RR and GT-

RR. We show that the convergence of the two algorithms

improves with increasing network size. Experimental results,

while corroborating our theory, also point out some gaps

in the current theoretical understanding of the nonconvex

case, which requires further investigation. Other pertinent

directions for future work include proposing algorithms that

achieve network-independent convergence and shorter tran-

sient times. Corresponding work on D-SGD like methods

[7, 10] can possibly provide some insights in this direction.
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