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Abstract—Erasure-coded computing has been successfully used
in cloud systems to reduce tail latency caused by factors such
as straggling servers and heterogeneous traffic variations. A
majority of cloud computing traffic now consists of inference
on neural networks on shared resources where the response
time of inference queries is also adversely affected by the same
factors. However, current erasure coding techniques are largely
focused on linear computations such as matrix-vector and matrix-
matrix multiplications and hence do not work for the highly
non-linear neural network functions. In this paper, we seek to
design a method to code over neural networks, that is, given
two or more neural network models, how to construct a coded
model whose output is a linear combination of the outputs of
the given neural networks. We formulate the problem as a KL
barycenter problem and propose a practical algorithm COIN
that leverages the diagonal Fisher information to create a coded
model that approximately outputs the desired linear combination
of outputs. We conduct experiments to perform erasure coding
over neural networks trained on real-world vision datasets and
show that the accuracy of the decoded outputs using COIN is
significantly higher than other baselines while being extremely
compute-efficient.

I. INTRODUCTION

Modern machine learning (ML) jobs are deployed on large-
scale cloud-based computing infrastructure. With training be-
ing a one-time event, an overwhelming majority of cloud
computing traffic now constitutes ML inference jobs, in par-
ticular, inference on neural network models. Inference queries
are highly time-sensitive because delays and time-outs can
directly impact the quality of service to users. However, the
ML models in question are often foundation models trained on
diverse large-scale datasets and fine-tuned for different specific
downstream tasks [1]. Due to the size and computational com-
plexity of these models, there can be significant variations in
the time taken to process inference queries. Guaranteeing low
inference latency is all the more challenging because applica-
tions now host multiple neural network models on the same
shared infrastructure. Issues such as resource contention in
multi-tenant clusters [2], network constraints [3] or hardware
unreliability [4] can result in straggling servers. The straggler
problem is even worse in ensemble inference scenarios [5],
where the desired inference output is a combination of the
outputs of an ensemble of models, because delays in the output
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of any one model in the ensemble can bottleneck the entire
query. Heterogeneous traffic for different models hosted on
the same infrastructure can also be a major issue affecting
latency. In many applications, inference queries are routed to
one of the several expert models based on the features of the
query [6], [7]. For example, an object detection application
may use specialized models for indoor and outdoor images or
day and nighttime images. In such scenarios, the query traffic
for each model can vary unpredictably over time [8] and it
can be negatively correlated across models, i.e., if the volume
of queries to one model is high, it is low for another model.

Techniques to handle stragglers and unpredictable traffic
variations include launching redundant queries [9], [10], also
referred to as speculative execution and replication of mod-
els to meet the highest possible traffic demand. These lead
to inefficient execution of queries and idling of resources
respectively. Erasure coding, which is a generalization of
replication, is an effective solution for straggler mitigation
in matrix computations [11]-[13] and handling heterogeneous
traffic [14]-[16]. As an illustrative example, we look at a
linear inference task of matrix computation consisting of
models Aj,As,...,Ay. Consider an ensemble inference
query, represented by vector @, that requires outputs of all
the N models and can be bottlenecked by straggling of any
one of the outputs. If we create coded linear combinations
of the N models, they can allow us to recover the N outputs
even when one of the uncoded models slows down. To see the
benefit of coding in handling heterogeneous traffic, consider
an application scenario that routes the query x to one of
the models A;, Ay, ... Ay, and the output required to be
computed is A;zx. If the server storing A; is congested or
fails, the query routed to two servers one with A; and one
with coded A; + A; and the outputs can be combined to
recover the desired output A;x. The coded server thus acts as
a flexible model that can effectively be used to serve queries
of both types or enable retrieval if one of the servers is slow.

Main Contributions.

A key missing element in previous works is that erasure
coding is inherently linear and does not work for non-linear
functions. Thus, it cannot be directly used for neural network
inference. In this work, we consider the question of how to
erasure code neural networks. In Section III, we define the



coding objective that seeks to construct a coded network whose
output is a linear combination of two or more neural networks.
In Section IV we reduce our coding objective to the equivalent
KL barycenter problem and propose a practical solution COIN
that approximately produces the desired linear combination of
outputs. Finally in Section V, we measure the accuracy of the
decoded outputs using COIN on neural networks trained on
real-world vision datasets and highlight its improvement over
several competing baselines. To the best of our knowledge,
COIN is one of the first works to do erasure coding for non-
linear neural network functions in a compute-efficient manner.

II. RELATED WORK

Erasure codes have been extensively studied and applied to
distributed storage and computing. Effective solutions for both
straggler mitigation and latency reduction use principles of
replication and erasure codes [11]-[13]. Other works including
[17]-[20] use erasure codes for straggler-resistant computation
for convex optimization and gradient descent. In [14]-[16],
the authors proposed the idea of using coded servers to
handle variations in skewed traffic for efficient reduction of
the response time of queries. However, the codes in the above
works are for linear function computations and do not work
in general for non-linear functions like neural networks.

There is very little work on employing erasure codes for
non-linear functions and neural networks, some of which
include the following relevant work. [21] decomposes non-
linear functions into inexpensive linear functions and pro-
poses rateless sum-recovery codes to alleviate the problem of
stragglers in distributed non-linear computations. For inference
on an ensemble of neural networks, [22] proposes learning
a ‘parity’ network that is trained to transform erasure-coded
queries into a form that enables a decoder to reconstruct slow
or failed predictions. A major drawback of this, however,
is that it requires training the parity model from scratch,
which is expensive in both compute and data requirements.
Another orthogonal line of work aims to learn the encoder
and decoder neural networks that enable erasure coding in
communication over noisy channels [23], [24]. The goal of
this line of work is different and complementary to ours —
they construct codes using deep neural networks while we are
using codes to improve the reliability and latency performance
of neural network inference.

A recent relevant line of work in ML has investigated the
problem of ‘model fusion’, i.e., combining the weights of two
or more independent neural networks into a single network that
broadly speaking inherits the properties of the fused networks
[25]-[28]. In this aspect, model merging is closer to multi-task
learning [29] where the goal is to learn a single model that can
perform well on all tasks. Our goal on the other hand is strictly
to produce a model whose output is a linear combination of the
given neural networks; we do not care about the performance
of the coded model on individual tasks. The closest work to
ours is [28] which also proposes to use the diagonal Fisher
when merging models. Nonetheless, we believe our motivation
for using the Fisher information for erasure coding is novel

as discussed in Section III along with our experiments in Sec-
tion V which show that our proposed approach significantly
improves decoding accuracy compared to approaches which
are adopted from model merging literature. We discuss other
related works on model merging in Section V.

III. PROBLEM FORMULATION AND PRELIMINARIES

In the rest of the paper, we use lowercase bold letters, e.g.
x, to denote vectors and use x; to denote the i-th element of
the vector . We use ||-||, to denote the Ly norm, R to denote
the set of real numbers and [N] to denote the set of numbers
{1,2,..., N}. Probability density functions are represented by
p(x). We use KL(p(x)||g(x)) to denote the KL divergence
between two densities p(x) and g(x).

Multi-Model Inference Setup. We consider a multi-
model inference setup with N neural networks denoted by
fo,(), fo,(x),. .., fon (x) where 8; € R? parameterizes the
weights of the i-th neural network. Each neural network takes
an input * € R® (e.g., an image) and produces an output
y € RE (e.g., image label). To simplify our discussion
and also allow comparison with other baseline methods in
Section V, we assume that these neural networks have the
same architecture.

Erasure Coding Objective.

We consider a class of erasure codes called systematic max-
imum distance separable (MDS) codes [30], [31] that take N
source symbols (/V neural networks in our case) and produce
N, coded symbols such that using the N, coded symbols
and any subset of (N — N,.) source symbols, we can recover
the other NV, source symbols. In this paper, we focus on the
N, =1 case and leave extensions to general k as future work.
That is, given N neural networks fg, (x), fo, (), ..., for(x),
our goal is to produce a coded neural network fg(x) that can
be used to recover the output of fg,(x) for any ¢ using the
output of the remaining (N — 1) neural networks. To do so, we
want to express fo(x) as a convex combination of fg,(x)’s:

fol@) ~ i, Bife, () (1)

where 3; > 0, vazl Bi =1 are the coding weights.
Given such a coded neural network fg(x), it is easy to
approximately recover fg,(x) using the other N — 1 networks
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Joi(@) = 5 | fol@) ~ > Bife, () | = fo,(x). ()
¢ J=1,j#i
The quality of the decoded approximation can be measured

by the mismatch between fg, () and ngﬂ'(:B) for all x € R*®
and i € [N], which we define using the squared loss function:
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where the last equality follows from substituting Equation (2)
in Equation (3) and defining 3 = (Zfil 1/B2)/N. Since the
distribution g(x) over « is typically unknown, we only assume
access to P samples x1, s, ..., xp drawn from ¢(x).

Given these P samples and the neural networks
fo,(x), fo,(x), -, fo, (x), we can define the following em-
pirical coding loss

B P N
= ?g ;@fei(l'z)

We now discuss a baseline approach to minimize the empirical
objective, followed by our proposed approach in Section IV.

Ensemble Distillation Baseline.

From Equation (5), we see that we want the output of
our coded neural network fg(x) to match the output of
the ‘ensemble’ of neural networks given by Zivzl Bife,(xy).
This idea has been well studied in the context of ensemble
distillation [32]-[34] where the goal is to distill the knowledge
from an ensemble of models or ‘teachers’ into a single model
or ‘student’.

Treating the output Zf\il Bife, (x) as a pseudo-label g, for
every [ € [P], we see that our objective becomes exactly the
same as squared loss regression and can be optimized with
standard gradient-based techniques. However, there are some
drawbacks to this approach. Firstly performing such a gradient
based optimization step imposes a significant computation
cost. Secondly, it is not easy to modify the coded network
to account for changes in the coding weights ;s or add a
new neural network fg, ., () to our coding setup. We would
need to re-train the coded network in such cases. Lastly, in
the case where the number of samples P is small, there is a
serious risk of overfitting. We demonstrate this in our exper-
iments where we show that the coded network obtained via
ensemble distillation generalizes poorly for samples outside
of the training set. Standard regularization techniques such as
early stopping and weight decay are also unable to help with
the overfitting as we show in the Appendix.
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IV. COIN: CODED INFERENCE OF NEURAL NETWORKS

In this section we show how the problem of minimizing
the objective in Equation (3) can be reformulated to get an
equivalent problem known as the KL barycenter problem [35].
Next we discuss how to get an approximate solution to the KL
barycenter problem in our setup and how we can practically
implement this solution.

Neural Network as a Statistical Model. To motivate our
proposed solution, we use the idea of a neural network as
a parameterized statistical model that defines a probability
density function pg(x,y) over all input-label pairs (xz,y) in
R**X_ In particular, we define pg(z,y) = q(x)pe(y|z) =

a@)exp (~ |y — fo(@)[3) /v2r where @ ~ q(x) is the
input distribution over R?, which is independent of parameters
0. This is a standard idea in statistical learning that draws
an equivalence between minimizing the squared loss and
maximizing the log likelihood of the observed data under a

Gaussian model since —logpe(x,y) = |fo(x) —yl + ¢,
where ¢ is some constant which does not depend on 6.

Reduction to KL Barycenter Problem. Expanding the
norm in Equation (4) and since Zf\il B; =1, we get

i o [Ilfo.(@)

L1(0)

N’\Q\

~ fol@)|3]

l\')\ﬁ;\

where 3; = B; ijl ﬁj. Since the second term in Equation (6)
does not depend on the coded model’s parameters 6, we focus
on minimizing just the first term L4 (0):

Ea [[l10. (@)~ fo, @3] ©

Zﬁz (10, () = fo(=)]3] )
N —

= BB [KL(po, (ylz)llpe(yl2))] ()
N

= AKL(po. (@, y)llpo(w,y)) 9)

where Equation (8) follows from our definition of pg(y|x)
above and uses the fact that KL(N (p1, )|V (e, X)) =
|1 — pall5 /2. Thus we see that minimizing L, (8) is equiva-
lent to finding the density function pg(x, y) that is a weighted
average (in the KL divergence sense) of the density functions
pe, (z,y) with weights proportional to (3;. This is known as
the KL barycenter problem and has been studied in previous
work in the context of clustering [36] and model-fusion [35].

Solving the KL Barycenter Problem. In the case where
pe, (x,y) belongs to the exponential family of distributions
with natural parameter 6, it is known that there exists an
analytical expression for the parameters 8 of the distribution
pe(x,y) that minimizes Equation (9) [35]. However, this is
not the case in our setup because pg(y|x) in Equation (8) is
Gaussian with respect to fg(-) and not 8 itself. Thus, we need
to resort to some approximations to get a analytical solution.
We use the following approximation for the KL divergence
between pg, (,y) and pg(x,y) [37],

KL(pBi (il:, y)||p9(w>y)) ~ (0 - ai)TFGz‘ (0 - 02)

where Fp, is the Fisher information matrix of 8; defined as
follows

(10)

Fo, = Eg [Eyrpy(|z) [logpe(x, y)Ve 10gpe($7y)T]]9:97.

(1D
=Eqs [Vofo(z)Vefo(x) ], (12)
This approximation comes from treating

KL(pe, (z,y)||pe(x,y)) as a function of @ and taking
a second order Taylor expansion around 6; (zeroth and first
order terms are zero). As is the case with Taylor expansions,
the quality of the approximation degrades as the distance
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Fig. 1: Illustration of how our proposed method COIN (see Algo-
rithm 1) computes the coded model’s parameters 6. such that its
output fo.(x) ~ Bifo,(x) + B2fo,(x), a linear combination of
the outputs of fp, (x) and fo, (). Unlike ensemble distillation, the
parameters 6. are computed without requiring training the model
from scratch.

Algorithm 1 COIN

1: Input: neural networks fg, (), fo, (), ..., fo () to be
coded, coding weights 31, (o, ..., BN, input data samples
T1,Ts,...,Tp, penalty parameter A

2: For i € [N] do:

3: Compute f3; = f3; Zjvzl Bj

Compute

Fo, = diag <% ZzP:l[Vofo(wz)vefe(wz)T]e:ei)

5. Return 0, = (XN, Bi(Fo, + D) ' 2N, Bi(Fo, +
A)O;.

|6 — 6; H; increases. To capture this we also propose to add a
penalty term A |0 — 07||§ ,A > 0 to this approximation. With
this, our new objective G(0) is given by,

G(6)

350

Ly(0)

Q

13)

)" Fo,(6 — ) +AZBZ||9 05

i=1

(14)

We see that G(6) is a strongly convex function whose global
minimizer is given by,

0" = argmin G(0)

9cRrd
N -1y

= [Zﬁi(ﬂh +AD)| D Bi(Fo, + A0;.  (15)
=1 i=1

Thus given the parameters of our uncoded networks 6;,
Equation (15) outlines how in theory, we can compute 0*
such that fo-(z) ~ YN | Bife, ().

Practical Solver. In practice, computing the exact Fisher
Fp, for all ¢ € [N] in Equation (15) is challenging since
it involves O(d?) operations, with d being in the order of
millions for neural networks. Also recall that we only have
access to P samples x1,x2,...,xp from the distribution
g(x). Thus in order to get a fast and tractable solution, we
propose to approximate the true Fisher Fy, with the diagonal

of the empirical Fisher as done in several other works dealing
with computing the Fisher [38], [39]. In other words we have,

P

(Vo fo(xi)Vefo(xi) lo=s,
3 )

- 1
ng ’R‘,ng :dlag <
Pl:l

(16)
With this approximation, the parameters of our coded model

6. are given by,

N
0. = (Z Bi(ﬁbi + /\I

=1

N
Z Bi(Fa, + \)O A7)
We find that using the diagonal Fisher is sufficient to provide a
consistent improvement over other coding baselines including
ensemble distillation as shown in Section V. Furthermore it
also overcomes other limitations of the ensemble distillation
baseline - it is simple and cheap to compute, effectively taking
only O(d) operations and can be modified easily to incorporate
changes in the coding weights §; or 6; without needing an
expensive retraining step. It has also been shown that the
empirical approximation of the Fisher is sample-efficient [40];
we only choose P to be about 200 to get a good approximation
to the true Fisher in our experiments.

V. EXPERIMENTS

In this section we demonstrate the effectiveness of COIN
for erasure coding on neural networks trained on real-world
vision datasets. To do so, we first introduce the metric that we
use in our experiments.

Normalized Decoding Accuracy. Recall in Section III we
use fg,(x) to denote the outputs of the i-th neural network
and fg,i(m) to denote the decoded outputs for network 7 for
some given coded model 6 (see Equation (2)). Let S be
the test data associated with neural network . We define the
Normalized Decoding Accuracy (NDA) for the i-th network
as follows:

2w yyese | {arg max (fe,i(w)) = y}

100 x
> () e I {arg max (fo, (@) = y}

(18)

where I{-} is the indicator function. We see that the numerator
of Equation (18) measures the accuracy of the decoded outputs
while the denominator measures the accuracy of the original
network fp, (+). For linear models since fg,i(m) = fo,(x), this
ratio would always be 100; however for non-linear networks,
due to the approximations introduced in the coding step, i.e.,
fo.i(®) ~ fo,(), this ratio is usually less than 100. Thus,
(100 — NDA) gives us a measure of the error introduced by
the approximate erasure coding over non-linear models.
Baselines. We compare COIN with 4 other baselines includ-
ing 3 which are adopted from the model merging literature.
Vanilla Averaging [25] is the first and most common baseline
in model merging literature where the merged/coded model
is constructed by a simple weighted average of the parameter
vectors of the individual models, i.e., @ = Z?:l 53i0;. Next,
we compared with Task Arithmetic [26], where the coded



TABLE I: Normalized Decoding Accuracy results when coding over experts trained on different partitions of the same dataset. COIN shows
a significant improvement in performance compared to baselines while being compute-efficient.

MNIST FashionMNIST CIFARI10
Algorithm Split 1~ Split 2 Avg. Split 1 Split 2 Avg. Split 1 Split 2 Avg.
Vanilla Averaging [25]  95.61 83.52  89.56 | 98.75  92.21 95.48 | 94.28 86.09 90.19
Task Arithmetic [26] 96.82 83.56  90.19 | 98.73  92.21 95.47 | 95.19 86.70 90.94
RegMean [27] 95.36 83.91 89.63 | 96.50  89.37  92.93 | 91.05 85.05 88.05
Ensemble Distillation 97.19 97.06  97.12 | 92,98 84.63  88.80 | 85.33 90.86 88.09
COIN(ours) 98.72 97.56 98.14 | 97.68 97.39 97.54 | 97.63 98.30 97.96

TABLE II: Normalized Decoding Accuracy results when coding over experts trained on different datasets. COIN shows a significant
improvement in performance compared to baselines while being compute-efficient.

MNIST + FashionMNIST

CIFAR10 + FashionMNIST CIFAR10 + MNIST

Algorithm MNIST  FashionMNIST Avg. CIFAR10  FashionMNIST Avg. CIFAR10  MNIST Avg.

Vanilla Averaging [25] 42.33 73.27 57.80 66.65 80.12 73.39 86.08 68.84 77.46
Task Arithmetic [26] 52.96 80.99 66.98 76.83 84.25 80.54 86.08 68.84 77.46
RegMean [25] 73.18 78.83 76.00 87.01 86.62 86.81 83.20 69.40 76.30
Ensemble Distillation 82.63 75.27 78.95 62.44 70.38 66.41 65.56 87.29 76.42
COIN(ours) 80.36 83.99 82.17 89.12 85.86 87.49 92.89 84.34 88.62

model is constructed as @ = 6y + a > ,(0; — 6p) with 6
being our base foundation model and « being a hyperparam-
eter which is tuned using validation data. RegMean [27] is a
recently proposed state-of-the-art model fusion method which
uses the Gram matrices of the data for model fusion. Lastly,
we also compare with the Ensemble Distillation baseline, as
outlined in Section III.

Experimental Setup. We use a ResNet50 pretrained on Im-
ageNet as our foundation model. The datasets we consider are
MNIST, FashionMNIST and CIFAR10, all of which consist
of 10 classes, i.e., K = 10. In all experiments, we set the
number of coded models n = 2 and coding coefficients to be
B1 = 0.5 and B2 = 0.5 for simplicity. Now to simulate n = 2
experts, each of which specializes in a particular type of query,
we consider the following two settings. In the first case we
consider experts that are trained on different partitions of the
same dataset. We split the given dataset into two partitions
S1 and S; where S; consists of all the data corresponding to
labels {1,2,...,5} and S, consists of the data corresponding
to labels {6,7...,10} and fine-tune a neural network on
each partition. In the second case, we consider experts that
are fine-tuned on different datasets itself, for e.g., where S
is the CIFAR-10 dataset and S is the MNIST dataset. For
algorithms which require access to data to create the coded
model (RegMean, Ensemble Distillation, COIN), we sample
P’ =100 datapoints from both S; and S, giving us P = 200
datapoints in total, which is less than 1% of the total data in
S1 and Sp. Additional details and an ablation study evaluating
the effect of P on the normalized decoding accuracy can be
found in the Appendix.

Discussion. Table I shows the normalized decoding accu-
racy results when coding over experts trained on different
partitions of the same dataset while Table II shows the results
of coding over experts trained on different datasets for different
combinations of datasets. In all cases we see that COIN
achieves the highest average normalized decoding accuracy

while avoiding any expensive computational procedures such
as distillation (Ensemble Distillation) or computing the Gram
matrix of data (RegMean). Specifically for Table I we see
that COIN is the only algorithm which consistently achieves
greater than 97.5% average normalized decoding accuracy
which implies that there is a less than 2.5% loss in accuracy
compared to the individual models. In Table II we see that
there is a larger drop in accuracy when coding over models
trained on different datasets which can be attributed to the
greater data heterogeneity used to fine-tune the respective
models. Nonetheless, COIN continues to outperform baselines
with almost 10% in some cases like CIFAR10+MNIST.

VI. CONCLUDING REMARKS

In this paper, we propose COIN, an algorithm that leverages
erasure coding for multi-model neural network inference using
an equivalence with the KL barycenter problem in its design.
Our solution is both efficient in resource utilization (needs
less than 1% of training data) and avoids any expensive
computational procedures such as ensemble distillation. We
demonstrate via experiments over that our method significantly
improves decoding accuracy compared to baselines when
coding over neural networks trained on real-world vision
datasets in various settings. Directions for future work include
characterizing the performance on a wider range of model
architectures such as transformers and coding over a larger
set of models.
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Appendix

VII. ADDITIONAL EXPERIMENTAL DETAILS

We use PyTorch to run all our experiments. For fine-tuning we use the AdamW optimizer with a learning rate of 1075,
batch size of 128 and weight decay 0.1. For MNIST dataset we fine-tune for 1 epoch, for FashionMNIST we fine-tune for 5
epochs and for CIFAR10 we fine-tune for 3 epochs. During fine-tuning, we freeze the BatchNorm parameters of the model.
We find that while this does not affect the fine-tuning accuracy it significantly improves the normalized decoding accuracy
for all algorithms. A more extensive evaluation on the effect of using BatchNorm for erasure coding is left as future work.
For Task Arithmetic we use the available P samples as the validation data and tune « in the range [0.05,0.1,0.15,...,1.0]
to find the o which achieves the highest normalized decoding accuracy on the validation data. For COIN, we similarly tune
A in the range [1075,107%,...,1] using the P samples as validation data. To implement RegMean we use the code publicly
available on the official repository on Github. For Ensemble Distillation we again use the AdamW optimizer with a learning
rate of 1077, batch size of 8, weight decay 0.1 and run the optimization for 20 epochs.

VIII. ADDITIONAL EXPERIMENTS AND RESULTS

We conduct additional experiments in the setting where we are coding over neural networks fine-tuned on CIFAR-10 and
MNIST respectively to showcase the overfitting behavior of the Ensemble Distillation baseline and the effect of the number
of datapoints P on the decoding accuracy. Figure 2(a) shows the average normalized decoding accuracies computed on the
train set and test set for the Ensemble Distillation baseline as we train the coded model. We see that while the decoding
accuracy for the train set quickly reaches close to 100, the accuracy for the test set saturates close to 75, implying that the
coded model is clearly overfitting the training set. Note that we are using a weight decay of 0.1 in the optimization procedure
which is a standard technique to prevent overfitting. Figure 2(b) shows the average normalized decoding accuracy for COIN,
RegMean and Ensemble Distillation as a function of the number of datapoints P. We see that as P increases, the performance
of Ensemble Distillation improves significantly, which is expected since the coded model is less likely to overfit as the size
of the training data increases. Nonetheless, we note that the cost of computing the coded model using Ensemble Distillation
also grows significantly as P increases. On the other hand there is only a slight improvement in the accuracy for COIN which
reinforces the data efficiency and implicit computational ease of our proposed method. RegMean also sees an improvement as
we increase the number of samples P which can be attributed to a more accurate estimation of the Gram matrices of the data.
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Fig. 2: (a) shows the average normalized decoding accuracies computed on the train set and test set for the Ensemble Distillation baseline
as a function of the number of optimization epochs when coding over networks trained on CIFAR-10 and MNIST. The accuracy on the
train set reaches close to 100 but accuracy on test set saturates close to 75, implying overfitting. (b) shows the average normalized decoding
accuracy for COIN, RegMean and Ensemble Distillation in the same setting as a function of the number of datapoints P. We see only a
slight increase in the accuracy of COIN as we increase P, which demonstrates the data-efficiency of our approach.
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