
Neural Informed RRT*: Learning-based Path Planning with Point

Cloud State Representations under Admissible Ellipsoidal Constraints

Zhe Huang, Hongyu Chen, John Pohovey, and Katherine Driggs-Campbell

Abstract— Sampling-based planning algorithms like Rapidly-

exploring Random Tree (RRT) are versatile in solving path

planning problems. RRT* offers asymptotic optimality but

requires growing the tree uniformly over the free space,

which leaves room for efficiency improvement. To accelerate

convergence, rule-based informed approaches sample states in

an admissible ellipsoidal subset of the space determined by

the current path cost. Learning-based alternatives model the

topology of the free space and infer the states close to the

optimal path to guide planning. We propose Neural Informed

RRT* to combine the strengths from both sides. We define

point cloud representations of free states. We perform Neural
Focus, which constrains the point cloud within the admissi-

ble ellipsoidal subset from Informed RRT*, and feeds into

PointNet++ for refined guidance state inference. In addition,

we introduce Neural Connect to build connectivity of the

guidance state set and further boost performance in challenging

planning problems. Our method surpasses previous works

in path planning benchmarks while preserving probabilistic

completeness and asymptotic optimality. We deploy our method

on a mobile robot and demonstrate real world navigation

around static obstacles and dynamic humans. Code is available

at https://github.com/tedhuang96/nirrt_star.

I. INTRODUCTION

Path planning is the task of finding a path for a robot to tra-
verse from a start to a goal safely and efficiently [1]–[3]. An
effective path planning algorithm should be (1) complete and
optimal: a solution is guaranteed to be found if one exists,
and the optimal solution is guaranteed to be achieved with
sufficient run time; (2) efficient in optimal convergence: the
solution should be quickly improved towards near optimal;
and (3) versatile and scalable: the implementation should be
modified with minimal effort to generalize across different
problems, environments, and robots.

Multiple branches of planning algorithms have been de-
veloped to meet these requirements, including grid-based
search, artificial potential field, and sampling-based algo-
rithms [7]–[11]. Sampling-based algorithms are popular due
to their versatility, scalability, and formal properties of
probabilistic completeness and asymptotic optimality [4]. To
accelerate convergence to the optimal path, various sampling
strategies are introduced to replace the default uniform
sampling [4]. The rule-based informed strategy enforces
sampling in an admissible ellipsoidal subset of states which
are more promising to improve the current path solution [5],

Z. Huang, H. Chen, J. Pohovey, and K. Driggs-Campbell are with
the Department of Electrical and Computer Engineering at the University
of Illinois at Urbana-Champaign. emails: {zheh4, hongyuc5, jpohov2,
krdc}@illinois.edu

This work was supported by the National Science Foundation under Grant
No. 2143435.

Fig. 1: Solutions of a 2D random world found by RRT* [4],
Informed RRT* (IRRT*) [5], Neural RRT* with Grid-based Net-
work Guidance (NRRT*-GNG) [6], and Neural Informed RRT*
with Point-based Network Guidance (NIRRT*-PNG). NIRRT* ef-
fectively integrates IRRT* and point-based network, so IRRT* helps
point-based network focus guidance state inference on the important
region for solution improvement, and point-based network helps
IRRT* sample critical states in the admissible ellipsoidal subset for
convergence acceleration.

[12]. The learning-based methods harness grid-based neural
networks to make inference of states close to the optimal
path, and bias sampling towards these states, which we define
as guidance states [6], [13]–[19].

While these works improve performance, we observe three
limitations. First, learning-based methods encode whole state
space to generate guidance states without iterative improve-
ment, where inference speed and accuracy are affected by
modeling features of irrelevant region or obstacles. Second,
rule-based informed sampling does not favor topologically
critical states in the ellipsoidal subset (e.g., narrow corridors).
Finally, learning-based methods do not consider connectivity
of the guidance state set, which severely affects the conver-
gence rate in complex planning problems.

We introduce Neural Informed RRT* (NIRRT*) to address
these limitations (Figure 1). We represent free states with a
point cloud, and apply PointNet++ [20] to classify guidance
states. Sampling from the guidance states is mixed with the
random sampling step of Informed RRT* (IRRT*) [5]. Using
a point cloud instead of an occupancy grid allows us to

2024 IEEE International Conference on Robotics and Automation (ICRA)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 8742

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
79

-8
-3

50
3-

84
57

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

57
14

7.
20

24
.1

06
11

09
9

Authorized licensed use limited to: University of Illinois. Downloaded on January 31,2025 at 16:15:34 UTC from IEEE Xplore. Restrictions apply.

perform Neural Focus: constraining the point clouds by the
admissible ellipsoidal subset of the free space, from which
the critical states are inferred by PointNet++. The quality of
the guidance states is continually improved during iteration,
because the inference is always made on the informed subset
created by an improved path cost. In addition, we build
connectivity of the guidance state set by following a Neural
Connect scheme similar to RRT-Connect [21], where the
point-based network is called to solve a subproblem with
a closer pair of start and goal states.

In short, our contributions are threefold: (1) we use a
Point-based Network (PointNet++) to directly take free states
as point cloud input to generate multiple guidance states
in one run; (2) we present Neural Informed RRT*, by
introducing Neural Focus to integrate Point-based Network
and Informed RRT*; and (3) we propose Neural Connect to
address the connectivity issue of inferred guidance state set.

II. RELATED WORK

Grid-based search methods like A* [7] and D* [8] guar-
antee to find the optimal path in a discretized state space
if a solution exists, at the cost of poor scaling with the
problem complexity. Sampling-based algorithms like prob-
abilistic roadmap (PRM) [10] and RRT [11] guarantee to
find a feasible path solution if one exists as the number of
iterations approaches infinity. PRM* and RRT* [4] provide
asymptotic optimality, which requires exploring the planning
domain globally. Informed RRT* and Batch Informed Trees
improve the convergence rate by constraining the sampling
space to a ellipsoidal subset based on start state, goal state,
and current best path cost [5], [12].

Another line of works accelerates path planning by inves-
tigating the search space of the problem, such as Vonoroi
bias [22], [23], evolutionary algorithms [24], and A* ini-
tialization [25]. Neural RRT* represents the square-shaped
search space of 2D planning problems by images and uses
U-Net [26] to predict a probabilistic heatmap of states used
for guiding RRT* [6]. MPNet voxelizes environment point
cloud and feed into 3D Convolution Neural Networks to
make recursive inference for path generation [15]. Grid-
based neural networks are prevalent in previous works to
encode the search space [6], [13]–[15], [19], which requires
discretization operations and the results are dependent on
resolution. Previous works use PointNet to encode the point
cloud of obstacle states [27], [28], but modeling the obstacle
interior is inefficient for finding a path in the free space.
Recent works apply graph neural networks to a sampled
random geometric graph in configuration space, and select
edges from the graph to build a near-optimal path [29],
[30]. However, the path feasibility and path quality are
highly dependent on the sampled graph, while continuous
improvement is not discussed in these works.

III. METHOD

A. Problem Definition
We define the optimal path planning problem similar to

related works [4]–[6]. The state space is denoted as X ✓

Rd. The obstacle space and the free space are denoted as
Xobs and Xfree. A path � : [0, 1] ! Xfree is a sequence of
states. The set of paths is denoted as ⌃. The optimal path
planning problem is to find a path �⇤ which minimizes a
given cost function c : ⌃ ! R�0, connects a given start
state xstart 2 Xfree and a given goal state xgoal 2 Xfree, and
has all states on the path in free space. Formally:

�⇤ =argmin
�2⌃

c (�)

s.t. �(0) = xstart,�(1) =xgoal, 8s 2 [0, 1],�(s) 2 Xfree

(1)

B. Neural Informed RRT*

We present NIRRT* in Algorithm 1, where the unhigh-
lighted part is from RRT*, the blue part is from IRRT*,
and the red part is our contribution. We track the best path
solution cost cibest through each iteration, which is initialized
as infinity (line 3). We initialize update cost cupdate with the
value of c0best (line 4). We call the neural network to infer
an initial guidance state set Xguide based on the complete
free state space (line 5). As better solutions are found, the
guidance state set Xguide may be updated by the neural
network calls depending on how much the path cost has been
improved, and random samples xrand are sampled using both
Xguide and informed sampling (line 8).
PointNetGuidedSampling: When the current best

path cost ccurr is less than the path cost improvement ratio
↵  1 of cupdate, the neural network is called to update
Xguide, and cupdate is updated by ccurr. The random sample
xrand is sampled with a mixed strategy: if a random number
Rand() 2 (0, 1) is smaller than 0.5, we use the sampling
strategy of IRRT* to sample xrand; otherwise, we sample xrand
uniformly from Xguide. Similar to [6], [15], [18], our mixed
sampling strategy guarantees probabilistic completeness and
asymptotic optimality by implementing the sampling proce-
dure of IRRT* with a non-zero probability.

Note the frequency of calling neural networks for guidance
state inference is controlled by the path cost improvement
ratio ↵. If we do not update Xguide after initial inference, and
remove IRRT* components, NIRRT* is reduced to NRRT*.
While NIRRT* is generic in that any neural network that in-
fers guidance states can fit into the framework, we emphasize
the use of a point-based network. In the next subsection, we
discuss the details of Point-based Network Guidance (PNG),
and explain the preference of point representations over grid
representations.

C. Point-based Network Guidance

Point-based Network. We represent the state space by
a point cloud Xinput = {x1, x2, . . . , xN} ⇢ Xfree. The
density of point cloud should allow a reasonable amount
of neighbors around each point in radius of step size ⌘.
We oversample points uniformly from Xfree, and perform
minimum distance downsampling to obtain the point cloud
with even distribution. We create a one-hot vector for each
point, indicating whether the point is within radius ⌘ of xstart
or xgoal. We concatenate the one-hot vectors with normalized
point coordinates to generate point cloud representations of

8743

Authorized licensed use limited to: University of Illinois. Downloaded on January 31,2025 at 16:15:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Neural Informed RRT*

1: V {xstart};E ?;
2: Xsoln ?;
3: c0best 1;
4: cupdate c0best;
5: Xguide PointNetGuide(xstart, xgoal, c0best, Xfree);
6: for i = 1 to n do

7: cibest minxsoln2Xsoln{Cost(xsoln)};
8: xrand,Xguide,cupdate PointNetGuidedSampling

(Xguide, xstart, xgoal, cupdate, cibest, Xfree);
9: xnearest Nearest(G = (V,E), xrand);

10: xnew Steer(xnearest, xrand);
11: if CollisionFree(xnearest, xnew) then

12: Xnear Near(G = (V,E), xnew, rRRT⇤);
13: V V [{xnew};
14: xmin xnearest;
15: cmin Cost(xnearest) + c(Line(xnearest, xnew));
16: for all xnear 2 Xnear do

17: if CollisionFree(xnear,xnew)^Cost(xnear)
+c(Line(xnear, xnew))<cmin then

18: xmin xnear;
19: cmin Cost(xnear)+c(Line(xnear,xnew));
20: end if

21: end for

22: E E [{(xmin, xnew)};
23: for all xnear 2 Xnear do

24: if CollisionFree(xnew,xnear)̂ Cost(xnew)
+c(Line(xnew, xnear))<Cost(xnear) then

25: xparent Parent(xnear);
26: E (E\{(xparent,xnear)})[{(xnew,xnear)};
27: end if

28: end for

29: if InGoalRegion(xnew) then

30: Xsoln Xsoln [{xnew};
31: end if

32: end if

33: end for

34: return G=(V, E);

the free states. The processed point cloud X̄input is fed into
a point-based network f . The network f maps each point to
a probability pi 2 [0, 1], where the points with probability
greater than 0.5 form the set of guidance states Xguide.
Formally,

{p1, p2, . . . , pN} = f(X̄input), Xguide = {xi|pi > 0.5}. (2)

We implement PointNet++ [20] as the model architecture
of the point-based network. Since PointNet++ is originally
designed for 3D point cloud, we set z coordinates as zero
for 2D problems. We collect 4,000 2D random worlds as the
training dataset. For each random world, we run A* in pixel
space with step size of unit pixel and clearance of 3 pixels
to generate the pixel-wise optimal path. We generate a point
cloud of number N = 2048, and generate guidance state
labels by checking whether each point is around any point
of the pixel-wise optimal path in radius of ⌘, which is set

Algorithm 2 PointNetGuidedSampling(Xguide, xstart,
xgoal, cupdate, ccurr, Xfree)

1: if ccurr < ↵ cupdate then

2: Xguide PointNetGuide(xstart, xgoal, ccurr, Xfree);
3: cupdate ccurr;
4: end if

5: if Rand() < 0.5 then

6: if ccurr <1 then

7: xrand InformedSampling(xstart, xgoal, ccurr);
8: else

9: xrand UniformSampling(Xfree);
10: end if

11: else

12: xrand UniformSampling(Xguide);
13: end if

14: return xrand, Xguide, cupdate;

as 10 pixels. We train PointNet++ by Adam optimizer [31]
with an initial learning rate of 0.001 and batch size of 16
for 100 epochs. We use the trained model across all types of
2D planning problems. For 3D random world problems, we
follow a similar scheme, but the clearance is set as 2 voxels.

Neural Focus. Informed RRT* outperforms RRT* by
proposing a heuristic ellipsoidal subset of the planning
domain Xfocus in terms of the current best solution cost ccurr,
in order to sample xrand which is more likely to improve the
current solution. The reasoning behind this sampling strategy
is that for any state xrejected from X\Xfocus, the minimum cost
of a feasible path from xstart to xgoal through xrejected is greater
than ccurr:

Xfocus = {x 2 X
�� ||x� xstart||2 + ||x� xgoal||2  ccurr} (3)

Neural Focus is to constrain the point cloud input to
the point-based network inside the Xfocus, which is equiv-
alent as changing the domain of oversampling from Xfree
to Xfocus \ Xfree. Since we normalize point coordinates
when processing point cloud inputs, the trained point-based
network can handle point clouds sampled from domains
at different scales. With the same number of points N , a
smaller volume of Xfocus leads to a denser point cloud, which
describes important regions with finer details. For example,
Figure 3(b) shows that Neural Focus fills the narrow passage
with a large number of points, which is captured by the
point-based network to produce more effective inference on
guidance states compared to Figure 3(a).

Neural Connect. The points close to xstart or xgoal are
usually classified as guidance states with greater probabilities
than the points around midway of the path (e.g., Figure 3(d)).
When the distance between xstart and xgoal gets longer, the
guidance state set Xguide is more likely to be separated
into disconnected “blobs”. This phenomenon of probability
polarization is reported in NRRT* work [6]. Our experiments
show lack of connectivity limits the performance in large and
complex planning problems.

We address this issue by introducing Neural Connect,
which is inspired by RRT-Connect [21]. We initialize Xguide

8744

Authorized licensed use limited to: University of Illinois. Downloaded on January 31,2025 at 16:15:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Guidance state inference by point-based network. Red is start, yellow is goal, blue is free states, and orange is guidance states.

Fig. 3: (a-b) Neural Focus in a 2D narrow passage and (c-h) Neural Connect in a 2D random world. Green dots denote states visited by
Breadth First Search (BFS). Circles of larger size around green dots denote boundary points. The colors of circles denote the heuristic
scores, where brighter colors represent higher scores. The boundary point which is xi+1

start or xi+1
goal has a blue marker on the circle. The

orange line denotes the path found by BFS which represents the connectivity of Xguide.

as an empty set, x1
start as xstart, and x1

goal as xgoal. During
iteration, we first call the point-based network with xi

start and
xi

goal as start and goal, and add inferred guidance states to
Xguide. Second, We run Breadth First Search (BFS) from xstart
to xgoal through the guidance states in Xguide. The neighbor
radius of BFS is set as ⌘, and no collision check is performed.
After BFS is finished, connectivity of Xguide is confirmed
if xgoal is reached. Otherwise, we find the boundary points
Xbound of the states visited by BFS by checking whether any
points in Xinput\Xguide are around the visited state of radius
⌘/2. We select xi+1

start from Xbound which is one of the states
heuristically the furthest from xstart and one of the states
to reach xgoal with minimum total heuristic cost. Third, we
perform the same operation as the second step, with the start
of BFS as xgoal, and the goal of BFS as xstart. We obtain
xi+1

goal if connectivity is negative. We perform the iteration
until connectivity is built or the limit of iteration nguide is
reached, which we set as 5 in practice. We illustrate Neural
Connect in Figure 3(c-h). Note the orange path found by
BFS in Figure 3(h) does not go through collision check, so
the path is not a feasible solution but a visual demonstration
on the connectivity of Xguide.

PointNetGuide: We apply both Neural Focus and

Neural Connect to the point-based network, and obtain the
complete module of Point-based Network Guidance, which
is presented in Algorithm 3.

Point versus Grid. We prefer using points over grids to
represent state space due to compatibility with geometric
constraints and convenience of extension to different prob-
lems. To apply Neural Focus to a CNN, grid representations
require masking of the complement set of the ellipsoidal
subset, where the mask quality depends on grid resolution.
CNN also has to process the irrelevant masked region within
the rectangular/box grid input. In contrast, point represen-
tations naturally confine states within arbitrary geometry by
modifying the sampling domain, and the point-based network
only needs to model free states. Moreover, while the point-
based network just needs adjustment of the input format to
extend to different dimensions, changing input dimensions
usually requires redesign of CNN architecture.

IV. EXPERIMENTS

A. Simulation Experiments
Planning Problems. We conduct simulation experiments

on 2D center block, 2D narrow passage, 2D random world,
and 3D random world problems. The center block and
the narrow passage problems are defined similar to IRRT*

8745

Authorized licensed use limited to: University of Illinois. Downloaded on January 31,2025 at 16:15:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 PointNetGuide(xstart, xgoal, ccurr, Xfree)

1: x1
start xstart;

2: x1
goal xgoal;

3: Xguide ?;
4: if ccurr <1 then

5: Xfocus InformedSubset(xstart, xgoal, ccurr);
6: Xinput PointCloudSampling(Xfocus \Xfree);
7: else

8: Xinput PointCloudSampling(Xfree);
9: end if

10: for j = 1 to nguide do

11: X̄input AddOneHotFeatures(Xinput,x
j
start,x

j
goal);

12: X̄input NormalizeCoordinates(X̄input);
13: Xguide Xguide [PointBasedNetwork(X̄input);
14: connectivity, xj+1

start BFS(Xguide, xstart, xgoal, ⌘);
15: if connectivity then

16: return Xguide;
17: end if

18: connectivity, xj+1
goal BFS(Xguide, xgoal, xstart, ⌘);

19: if connectivity then

20: return Xguide;
21: end if

22: end for

23: return Xguide;

work [5] (Figure 4). The center block problem examines the
efficiency of planners to sample states relevant to the problem
in a wide free space. The narrow passage problem studies
the capability of planners to focus sampling in topologically
critical area. The random world problems evaluate versatility
and scalability of planners.

In the center block problems, we specify 5 different map
sizes with respect to a fixed start-goal distance, and set
the block width randomly for 100 independent runs. In the
narrow passage problems, we specify 5 different gap heights,
and set random positions of the passage for 100 independent
runs. We generate 500 random worlds for each 2D and 3D
cases for evaluation. Note we use clearance of 3 pixels for
2D random world, zero clearance for 2D center block and
2D narrow passage, and 2 voxels for 3D random world. The
default size of 2D planning problems is 224⇥ 224, and the
default size of 3D planning problems is 50⇥ 50⇥ 50.

Metrics. For the center block problems, we measure the
number of iterations to reach within a path cost threshold,
which is some percentage above the optimal cost. For the nar-
row passage problems, we measure the number of iterations
to find a path through the passage. For the random world
problems, we examine the iterations each planner spends on
finding the initial solution, and path cost improvement after
certain numbers of iterations.

Baselines. We compare NIRRT* to RRT* [4], IRRT* [5],
NRRT*-GNG [6], and variants of our method across the
experiments. NIRRT*-PNG(FC) is our complete algorithm,
where F is Neural Focus and C is Neural Connect.
NIRRT*-PNG(F) removes Neural Connect from the com-

Fig. 4: Center block and narrow passage experiments.

plete version. NRRT*-PNG is Neural RRT* with the point-
based network. NRRT*-PNG(C) uses Neural Connect in ad-
dition to NRRT*-PNG. We train a U-Net [26] with pretrained
ResNet50 weights [32] for NRRT*-GNG for 2D problems.

Experiment Results. The center block experiments show
in Figure 5(b) that NIRRT*-PNG(FC) outperforms IRRT*
in terms of the speed to find near-optimal paths across
different problem sizes. The point-based network is able to
infer guidance states from the informed subset which are
the most promising to converge the path solution to opti-
mum. Both Figure 5(a)(c) show that NIRRT*-PNG(FC) and
NIRRT*-PNG(F) have similar performance. The informed
subset effectively constrains the region of the point cloud to
be around the center block, and significantly simplifies the
task of guidance state inference. Therefore, the point-based
network performs well even without Neural Connect. Similar
to the claim by [6] that initial path solution cost of NRRT*
is better than RRT*, we see in Figure 5(c) that NRRT*-PNG
and NRRT*-PNG(C) are faster than RRT* in terms of
reaching within a more relaxed threshold above optimal cost
such as 7-10%. However, the convergence speeds of NRRT*
variants tend to be slow and are often worse than RRT*
when approaching a tighter bound such as 2-4%. In contrast,
NIRRT* variants work consistently better than IRRT* across
thresholds of optimal cost, since the informed subset allows
the point-based network to provide finer distribution of the
guidance states to continuously refine the path towards the
optimal solution.

In the narrow passage setting, NIRRT*-PNG(FC) finds a
difficult path through the passage faster and more frequently
than IRRT*, as represented in Figure 5(f). The convergence
speed of NIRRT*-PNG(FC) outperforms all baselines as
shown in Figure 5(e). NIRRT*-PNG(F) performance is sim-
ilar to IRRT* because the guidance state set usually ends up
separated on left and right sides of the gap without Neural
Connect, whereas NIRRT*-PNG(FC) is able to connect the
guidance state set together through the gap, which helps
sampling critical states inside the gap. Both NRRT*-GNG
and NRRT*-PNG are worse than RRT*, but NRRT*-PNG(C)
works consistently better than RRT*, which indicates the
effectiveness of Neural Connect in planning problems with
critical states. Note we collect the training dataset for point-
based network with optimal paths which requires clearance
of 3 pixels, which is equivalent to 7 pixels of the gap height.
Figure 5(e) demonstrates that our point-based network gener-
alizes well to planning problems with clearances tighter than
training distribution by Neural Focus and Neural Connect,
while the CNN model is sensitive to clearance [6].

8746

Authorized licensed use limited to: University of Illinois. Downloaded on January 31,2025 at 16:15:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Experiment results. Center block: (a) The average number of iterations to find a path within 2% of the optimal cost for different
map widths; (b) Comparison of the number of iterations IRRT* and NIRRT*-PNG(FC) take to find a path within 2% of the optimal cost
for each center block problem; (c) The average number of iterations to find a path within the specified tolerance of the optimal cost.
3D Random world: (d) The average path cost relative to the initial solution of RRT* at different numbers of iterations after finding an
initial solution. Narrow passage: (e) The average number of iterations to find a path better than flanking the obstacle for different gap
heights; (f) Comparison of the number of iterations IRRT* and NIRRT*-PNG(FC) take to find a path better than flanking the obstacle
for each narrow passage problem. 2D Random world: (g) The average path cost relative to the initial solution of RRT* at different
numbers of iterations after finding an initial solution; (h) Comparison of the number of iterations IRRT* and NIRRT*-PNG(FC) to find
an initial solution for each random world problem. Error bars denote 95% confidence interval. The error bars are not plotted for random
worlds for clarity of figures. NRRT*-GNG is not implemented for center block and random world 3D due to incompatible grid sizes and
incompatible number of dimensionality.

Fig. 6: Visualization on planning in 3D random world at 500
iterations. Left: NRRT*-PNG. Right: NIRRT*-PNG(FC).

For each random world problem, we record the cost of
path solution at certain number of iterations after the initial
solution is found, and plot these costs relative to the cost
of the initial path solution from RRT*. The 2D and 3D
results are presented in Figure 5(g) and (d) respectively, and
planning in 3D random worlds are visualized in Figure 6.
We observe NRRT*-GNG has the best initial solution in 2D
since the grid representations are denser than point represen-
tations in terms of the whole state space. However, NIRRT*
variants converge faster due to continuous improvement of
the guidance states. We find that both Neural Connect and
Neural Focus contribute to improvement of convergence
speed in both 2D and 3D cases. Figure 5(h) shows that
NIRRT*-PNG(FC) is faster than IRRT* in terms of finding
initial path solution.

B. Real World Deployment
We deploy our method and the model trained in 2D

random world to a TurtleBot 2i. The demonstration of real
world navigation with static obstacles and dynamic humans
is available at https://sites.google.com/view/
nirrt-star.

V. CONCLUSIONS

We present Neural Informed RRT* approach to accelerate
optimal path planning by incorporating a point-based net-
work into Informed RRT* for guidance state inference. We
introduce Neural Focus to naturally bridge the point-based
network and the informed sampling strategy with point cloud
representations of free states. We propose Neural Connect
to improve quality of the inferred guidance state set by
enforcing connectivity. Our simulation experiments show that
Neural Informed RRT* outperforms RRT*, Informed RRT*,
and Neural RRT* in terms of convergence rate towards
optimal solutions in planning problems with varying sizes,
critical states, and randomized complicated patterns.

In future work, we want to study how to further improve
our algorithm when the planning problem sizes are signif-
icantly different from the training distribution. We would
like to explore the effectiveness of our work in higher-
dimensional problems. It is also interesting to study if we
can denoise the guidance state set inferred by the point-based
network to offer an end-to-end option for generating feasible
and near-optimal paths [33], [34].

8747

Authorized licensed use limited to: University of Illinois. Downloaded on January 31,2025 at 16:15:34 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[2] H.-y. Zhang, W.-m. Lin, and A.-x. Chen, “Path planning for the mobile
robot: A review,” Symmetry, vol. 10, no. 10, p. 450, 2018.

[3] B. Patle, A. Pandey, D. Parhi, A. Jagadeesh, et al., “A review: On
path planning strategies for navigation of mobile robot,” Defence
Technology, vol. 15, no. 4, pp. 582–606, 2019.

[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[5] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 2997–
3004.

[6] J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural
rrt*: Learning-based optimal path planning,” IEEE Transactions on
Automation Science and Engineering, vol. 17, no. 4, pp. 1748–1758,
2020.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[8] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in IEEE International Conference on Robotics and
Automation. IEEE, 1994, pp. 3310–3317.

[9] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The International Journal of Robotics Research, vol. 5, no. 1,
pp. 90–98, 1986.

[10] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[11] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The International Journal of Robotics Research, vol. 20, no. 5,
pp. 378–400, 2001.

[12] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (bit): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in IEEE Inter-
national Conference on Robotics and Automation. IEEE, 2015, pp.
3067–3074.

[13] N. Pérez-Higueras, F. Caballero, and L. Merino, “Learning human-
aware path planning with fully convolutional networks,” in IEEE
International Conference on Robotics and Automation. IEEE, 2018,
pp. 5897–5902.

[14] B. Ichter, E. Schmerling, T.-W. E. Lee, and A. Faust, “Learned
critical probabilistic roadmaps for robotic motion planning,” in IEEE
International Conference on Robotics and Automation. IEEE, 2020,
pp. 9535–9541.

[15] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion
planning networks: Bridging the gap between learning-based and
classical motion planners,” IEEE Transactions on Robotics, vol. 37,
no. 1, pp. 48–66, 2020.

[16] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural path planning:
Fixed time, near-optimal path generation via oracle imitation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2019, pp. 3965–3972.

[17] R. Kumar, A. Mandalika, S. Choudhury, and S. Srinivasa, “Lego:
Leveraging experience in roadmap generation for sampling-based
planning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2019, pp. 1488–1495.

[18] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in IEEE International Conference on
Robotics and Automation. IEEE, 2018, pp. 7087–7094.

[19] N. Ma, J. Wang, J. Liu, and M. Q.-H. Meng, “Conditional generative
adversarial networks for optimal path planning,” IEEE Transactions
on Cognitive and Developmental Systems, vol. 14, no. 2, pp. 662–
671, 2021.

[20] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in Neural
Information Processing Systems, vol. 30, 2017.

[21] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, vol. 2. IEEE, 2000, pp. 995–1001.

[22] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle, “Dynamic-
domain rrts: Efficient exploration by controlling the sampling domain,”
in IEEE International Conference on Robotics and Automation. IEEE,
2005, pp. 3856–3861.

[23] J. Wang and M. Q.-H. Meng, “Optimal path planning using generalized
voronoi graph and multiple potential functions,” IEEE Transactions on
Industrial Electronics, vol. 67, no. 12, pp. 10 621–10 630, 2020.

[24] S. R. Martin, S. E. Wright, and J. W. Sheppard, “Offline and online
evolutionary bi-directional rrt algorithms for efficient re-planning in
dynamic environments,” in IEEE International Conference on Automa-
tion Science and Engineering. IEEE, 2007, pp. 1131–1136.

[25] M. Brunner, B. Brüggemann, and D. Schulz, “Hierarchical rough
terrain motion planning using an optimal sampling-based method,” in
IEEE International Conference on Robotics and Automation. IEEE,
2013, pp. 5539–5544.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Con-
ference on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, 2015, pp. 234–241.

[27] R. Strudel, R. G. Pinel, J. Carpentier, J.-P. Laumond, I. Laptev,
and C. Schmid, “Learning obstacle representations for neural motion
planning,” in Conference on Robot Learning. PMLR, 2021, pp. 355–
364.

[28] K. Sugiura and H. Matsutani, “P3net: Pointnet-based path planning
on fpga,” in International Conference on Field-Programmable Tech-
nology. IEEE, 2022, pp. 1–9.

[29] C. Yu and S. Gao, “Reducing collision checking for sampling-based
motion planning using graph neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 4274–4289, 2021.

[30] R. Zhang, C. Yu, J. Chen, C. Fan, and S. Gao, “Learning-based motion
planning in dynamic environments using gnns and temporal encoding,”
Advances in Neural Information Processing Systems, vol. 35, pp.
30 003–30 015, 2022.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the International Conference on Learning
Representations, vol. 1412, 2015.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[33] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in Neural Information Processing Systems, vol. 33,
pp. 6840–6851, 2020.

[34] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” in International Conference
on Machine Learning. PMLR, 2022, pp. 9902–9915.

8748

Authorized licensed use limited to: University of Illinois. Downloaded on January 31,2025 at 16:15:34 UTC from IEEE Xplore. Restrictions apply.

