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Abstract

Foundation models (FMs) adapt surprisingly
well to downstream tasks with fine-tuning.
However, their colossal parameter space pro-
hibits their training on resource-constrained
edge-devices. For federated fine-tuning, we
need to consider the smaller FMs of few bil-
lion parameters at most, namely on-device
FMs (ODFMs), which can be deployed on-
device. Federated fine-tuning of ODFMs
has unique challenges non-present in standard
fine-tuning: i) ODFMs poorly generalize to
downstream tasks due to their limited sizes
making proper fine-tuning imperative to their
performance, and ii) devices have limited and
heterogeneous system capabilities and data
that can deter the performance of fine-tuning.

Tackling these challenges, we propose HET-
LORA, a feasible and effective federated fine-
tuning method for ODFMs that leverages the
system and data heterogeneity at the edge.
HETLORA allows heterogeneous LoRA ranks
across clients for their individual system re-
sources, and efficiently aggregates and dis-
tributes these LoORA modules in a data-aware
manner by applying rank self-pruning lo-
cally and sparsity-weighted aggregation at the
server. It combines the advantages of high and
low-rank LoRAs, achieving improved conver-
gence speed and final performance compared
to homogeneous LoRA. Furthermore, HET-
LORA has enhanced computation and com-
munication efficiency compared to full fine-
tuning making it more feasible for the edge.

1 Introduction

The emerging foundation models (FMs), easily
ranging from few to hundreds of billions of param-
eters (Gemini Team Google, 2024; Bommasani

*Work done while interning at Google Research. Corre-
sponding authors: {yaejeecho,luyangliu} @google.com

et al., 2022; Radford et al., 2021; Devlin et al.,
2019; OpenAl, 2023; Google, 2022; Touvron et al.,
2023; Brown et al., 2020; Google, 2022; Driess
et al., 2023), have remarkable zero/few shot learn-
ing capabilities. They often perform surprisingly
well on a variety of tasks such as text/image gen-
eration, language translation, and conversing in
natural language with fine-tuning. Such standard
FMs, however, demand costly resources for di-
rectly fine-tuning their entire parameter space. To
tackle this issue, many works have proposed differ-
ent parameter-efficient fine-tuning (PEFT) meth-
ods such as prompt tuning (Lester et al., 2021),
utilizing adapters (Houlsby et al., 2019), or low-
rank adaptation (LoRA) of the original model (Hu
et al., 2021) which freezes the original pre-trained
parameters of the FM and train additional, smaller
number of parameters instead.

Unfortunately, such PEFT methods rely on the
assumptions that i) FMs are deployed to and
trained with the data of a single client for adap-
tation to the downstream task and ii) the client
has enough resources to even fit a standard FM
of hundred billion size for, at least, inference. In
practice, more often than not we are interested
in fine-tuning FMs for on-device private data that
is distributed across multiple devices, and these
clients at the edge rarely have such resources to
even fit standard FMs for inference. One of the ex-
amples is to use FMs for downstream tasks that re-
quires training with private, non-sharable data such
as medical or law-related documents distributed
across clients (Manoel et al., 2023; Shoham and
Rappoport, 2023; Zhang et al., 2023c). In such
cases, fine-tuning of the FMs needs to be brought
to the edge that has limited system resources.

Federated Fine-Tuning & ODFMs. We con-
sider such federated fine-tuning scenarios, where
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Zero-Shot  Few-Shot  Full-Training
PaLM 2 XXS  2930.23 2541.86 23.71
PaLM 2 XS 2712.86 481.95 18.32

Table 1: Perplexity of PaLM 2 for zero-shot, few-shot (5
communication rounds), and full federated fine-tuning (200
communication rounds) for chat response on the multi-session
chat data (further experimental details are in Section 4.)

we train a set of parameters collaboratively across
clients to obtain a global set of parameters that can
be plugged in to the FM for the targeted down-
stream task. Note that federated fine-tuning is or-
thogonal to personalization of FMs in federated
learning (FL) that has been explored in other previ-
ous work (Guo et al., 2023; Wu et al., 2024), which
aims to train parameters that perform well for in-
dividual clients rather than general downstream
tasks. We also define on-device FMs (ODFMs) as
models with few billion parameters at max that are
able to fit into memory on limited capacity clients
considering current hardwares.

Challenges. Federated fine-tuning of ODFMs
entails two major challenges non-present in nei-
ther standard PEFT of FMs nor federated train-
ing of non-FMs. First, ODFMs poorly generalize
to downstream tasks. Unlike ODFMs, standard
FMs have their zero/few-shot learning capability
by their large parameter space trained on massive
data. However, as we show in Table 1 and as pre-
vious literature has shown (Kojima et al., 2022;
Lester et al., 2021), FMs’ performance deteriorates
as their sizes get smaller and federated fine-tuning
is not merely useful but inevitable for ODFMs to
perform well for on-device downstream tasks.

Second, devices have limited and heterogeneous
system capabilities and data distributions (Wang
et al., 2019; Bonawitz et al., 2016; Sahu et al.,
2020). Without suitable PEFT methods that flexi-
bly adapts to such heterogeneity across devices, we
would only have limited performance output from
federated fine-tuning of ODFMs. For instance,
with homogeneous rank deployment in LoRA that
is agnostic of system heterogeneity, the client with
the least system resource becomes the bottleneck,
forcing a smaller rank to be deployed across all
clients despite the other clients being able to han-
dle higher ranks (see Table 2 for the effect of rank
on the trainable parameter #). Additionally, data
heterogeneity causing model drifts can make the
model converge to a suboptimal point.

P1X +P2X + P3X r—‘

Server-side Sparsity-weighted Aggregatlon

Freezed ! i
Pretrained | = d — d !
Weights ' E i

2

W € Rxt Heterogeneous Ranks Across Clients 71 < 72 < 7'3

with LoRA modules By, € R4 Ay, € R™*!

Figure 1: Overview of heterogeneous rank deployment of
LoRA: the pretrained weights W are stored on-device and
heterogeneous ranks are assigned to different clients with
Tmin = 71 < T2 < T3 = Tmax. In our proposed HETLORA,
the server receives the trained heterogeneous LoRA modules
and aggregates them with sparsity-weighted aggregation to
update the global LoRA module.

Contributions. In our work, we push the limits
of federated fine-tuning of ODFMs by proposing
HETLORA that is aware of heterogeneity resid-
ing at the edge. Our main flagship results (in Ta-
ble 3 and Fig. 5), show that our proposed HET-
LORA outperforms the standard LoRA method
and achieves comparable performance with full
fine-tuning with a significantly smaller number of
trained parameters. We verify HETLORA with
PalLM 2 (Google, 2023) of XXS and XS size for
chat responses on the multi-session chat data (Xu
et al., 2021) and text summarization for the Red-
dit data (Volske et al., 2017), both real world data
from clients. Our contributions are summarized as:

* We propose HETLORA that can apply different
rank LoRA modules to different clients to cater
to the heterogeneous system capabilities and data
complexities of the clients, via utilizing rank self-
pruning and sparsity-weighted aggregation.

* We show the performance of naively applying
LoRA with homogeneous ranks across clients for
federated fine-tuning, and show that while large
ranks help in speeding-up training, they lead to
faster overfitting while smaller ranks are slower
in training but does not suffer from overfitting.

* We then evaluate our proposed HETLORA to
show that it outperforms naively applying ho-
mogeneous ranks across clients in terms of both
training speed, communication/computation effi-
ciency, and final performance.
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r=1 r=2>5

r=10

r=20 r=50 r=100 r=150 r =200

PalLM 2 XXS,PaLM 2 XS | 0.02% 0.11%

0.21%

0.42%  1.05% 2.10% 3.14% 4.19%

Table 2: Percentage of the LoRA parameters’ size for different ranks r compared to the original pre-trained ODFM’s parameter
size. Even for large ranks such as r = 200 the trainable LoRA parameters’ size compared to the original pre-trained ODFM

size is less than 5% for both PaLM 2-XS and PaLM 2-XXS.

2 Related Work

Parameter-Efficient Fine Tuning. Most PEFT
methods either train a subset of parameters within
the existing FM whilst other parameters are freezed
or introduce an additional set of trainable param-
eters whilst keeping the original FM freezed. For
the former, methods such as head or bias fine-
tuning (Wei et al., 2021; Bu et al., 2022; Lee et al.,
2019; Zaken et al., 2021) has been explored, and
for the latter, methods such as adapters (Houlsby
et al., 2019), prompt (Lester et al., 2021) or prefix-
tuning (Li and Liang, 2021), and low-rank approxi-
mation (Hu et al., 2021) has been proposed. While
these number of methods has been proven to per-
form as well as full model fine-tuning with just
a few number of parameters for the centralized
setting, it has not been thoroughly explored how
these methods would perform for a much smaller
FM such as ODFMs, in the decentralized setting
where clients’ system-capacities and data can be
heterogeneous and much limited.

Federated Fine-Tuning. Several recent work
has proposed to combine the PEFT methods de-
vised for the centralized setting to FL (Zhou et al.,
2023; Yu et al., 2023) such as training prompts or
adapters collaboratively with FL (Guo et al., 2022;
Chen et al., 2022; Zhang et al., 2023a; Shysheya
et al., 2023; Legate et al., 2023). Another line of
work has proposed to perform a few-shot or nearly
zero-shot training of FMs with FL for improved
communication-efficiency (Wortsman et al., 2023;
Zhang et al., 2023d). However, these work either
overlooks that most devices do not have the re-
source to fit standard FMs (Touvron et al., 2023;
Brown et al., 2020) even for inference or does not
consider the heterogeneous system capacities of
the clients. It is detrimental to consider these fac-
tors since FMs that actually fits to the devices in
FL are much smaller, making them weaker in the
general intelligence capabilities, and also hetero-
geneous system capacities can prohibit deploying
same sized PEFT parameters across clients.

LoRA and FL. There has been a number of
variations of LoRA (Zhang et al., 2023b; Liu et al.,
2024; Sun et al., 2024; Horvath et al., 2024) from
its first proposal (Hu et al., 2021). However, only a
few number of recent work has looked in to using
LoRA for FL. In Babakniya et al. (2023), the im-
portance of the initialization for the LoORA modules
is evaluated where they propose to train the LoRA
modules with FL and then perform singular value
decomposition (SVD) to gain a good initialization
of the LoORA modules. However, the training pro-
cess of LoRA itself is not altered to adapt to het-
erogeneous system capabilieis of devices. Another
recent work (Yi et al., 2023) has evaluated LoRA
in the context of personalized FL, but other than ap-
plying LoRA to personalization, the LoORA method
itself is, again, not changed. To the best of our
knowledge, our work is the first method to consider
both data and system heterogeneity for improving
training speed, communication/computation effi-
ciency, and final performance of ODFM’s feder-
ated fine-tuning. Contemporary approaches (Bai
et al., 2024; Anonymous, 2024) have proposed to
use SVD to decompose the full matrix to deploy
heterogeneous ranks across clients. We compare
our proposed method with using SVD for hetero-
geneous LoRA in our work and show that the per-
formance is underwhelming compared to our pro-
posed heterogeneous LoRA.

3 Federated Fine-Tuning with LoRA

3.1 Preliminaries

Formally, we define the pre-trained ODFM as
W, € R and the trainable low-rank decom-
posed matrix as AW € R%! In standard
LoRA (Hu et al., 2021) under the centralized set-
ting, the low-rank decomposition of AW is con-
structed such that AW = BA where B € R4*"
and A € R™*! are the low rank decomposition
of AW with identical rank . Now, let us con-
sider LoRA for federated fine-tuning where there
are M total clients. Each client k£ € [M] has pri-
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vate data By, and its corresponding local empiri-
cal loss function Fj,(W) = ﬁ > een, LW, E),
where ((W,¢) is the loss for model W' at data
sample £&. The optimization task for federated
fine-tuning is to collaboratively find the global
parameters which we define as B and A, given
the pretrained knowledge Wy, that can minimize
the global objective F(W) = L S | F.(W)
where W = W 4+ B A. Later in the paper, when
introducing heterogeneous LoRA we truncate the
LoRA modules’ rank dimension, for example from
B e R¥™ A eR*toB € RX' A ¢
R %! where 7/ < 1. Throughout the paper, we
denote such truncation of a matrix with the : sym-
bol for each row and column at the subscript. For
instance, for truncation to 7’ < r at the column
for the matrix B € R?*", we keep all the columns
until 7" and omit the last 7 — 7’ columns and denote
the resulting matrix it as B. ;.

3.2 Naive Case: Homogeneous LoRA

A straightforward way to perform federated fine-
tuning with LoRA is to train the LoRA mod-
ules B, A with homogeneous rank 7 across all
clients with standard FL. (McMahan et al., 2017).
Specifically, first the clients have the pre-trained
ODFM weights Wy stored in their devices prior
to training for the forward pass when training the
LoRA modules. Then, the server sends the global

LoRA modules E(t), A 10 the set of m selected
clients S®) per communication round ¢. Each se-
lected client k € S® trains the LoORA modules
on their local data for a few local iterations (usu-
ally with mini-batch SGD) and send the updated
modules B,(f), AS) back to the server. The server
then updates the global LoRA modules accord-
ingly to B = Y ohes® B,(f)/m, AUTY _
D hes® A,(f) /m and sends back to the next set of
selected clients for the next communication round.
This training process is nearly identical to the stan-
dard FL algorithm (McMahan et al., 2017) except
that the pretrained weights Wy are freezed and
locally stored in the clients’ devices and only the
LoRA moduels are trained and communicated.
Instead of such homogeneous rank deployment
across all clients, it is not only possible but even
more practical and feasible to use heterogeneous
rank deployment for federated fine-tuning (we later

show that this also improves final performance of
the ODFMs). This involves training LoORA mod-
ules with varying ranks across clients, based on
their system capabilities. This allows a more prac-
tical setting for federated fine-tuning of ODFMs
where, for instance, the client with the smallest
system capacity does not have to become the bot-
tleneck that forces deploying a smaller rank across
all clients. Instead, with heterogeneous rank de-
ployment, each client can use a rank that suits for
itself. However, heterogeneous rank deployment
poses challenges in aggregating and redistributing
the LoRA modules. To address these challenges,
we introduce a solution called HETLORA, which
pushes the limits beyond homogeneous LoRA.

3.3 Proposed Method: Heterogeneous LoRA

Overview. Our proposed heterogeneous LoRA
method, namely HETLORA, is not restricted to any
specific method to assign the ranks to the clients
and the clients can decide their respective ranks
themselves. For formality, in our paper, we for-
mulate that each client has a rank denoted as 7,
within a range of 7, € [Fmin, Tmax], V& (see Fig. 1).
HETLORA comprises three steps: 1) Distribution
via Truncation, 2) Local Training with Rank Self-
Pruning, and 3) Sparsity-Weighted Aggregation of
the LoRA modules. These steps are detailed fur-
ther in the subsequent paragraphs. An overview of
HETLORA is illustrated in Fig. 2.

1) Distribution via Truncation. At the begin-
ing of each communication round ¢, the server

holds initial global LoRA modules B, A" with
a global rank (). The value of the global rank r(*)
depends on how we aggregate the heterogeneous
rank LoRA modules which is elaborated on in step
3). The server then distributes these global LoRA
modules to a subset of selected set of clients S(*)
with heterogeneous ranks 7’,(:), k e 8 for local
training!. With the given global LoORA modules,

we consider a simple and intuitive method of frun-

. =t =t
cation where the server sends B:(,:)Tk, A:(m)m: to each
client k& with rank r,(:) for local training where we
omitted the superscript for 7, for simplicity.

2) Local Training with Rank Self-Pruning.
!"There is a superscript ¢ for the ranks r,(:) across clients
which indicates that in HETLORA these heterogeneous ranks
can be changed over the communication rounds via self-
pruning explained in step 2).
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Figure 2: Overview of the zero-padding, sparsity-weighted aggregation, and truncation method for HETLORA; (a): Zero-pad
LoRA modules with smaller ranks to rmax (clients with rank rm.x does not need padding) and calculate their sparsity by

calculating the Frobenius norm of the reconstructed model AW,(f> = B,(f)A,(:>; (b): After padding, aggregate all of the clients’

LoRA modules with the weights HSS) |/Z® calculated by AW,(:) to get the global LoRA modules; (c): Truncate the global
LoRA modules for the specific rank of the next selected client (example for client with rank r5).

After receiving LoRA modules from the server
W BEY — B, AL~ R0
keS® performs 7 local iterations of mini-batch
SGD on their local data to minimize the local ob-
jective |671k‘ > cen,, {((Br, Ay),§|Wo), and sends

(th) er(t)
back the updated LoORA modules B,"© € R**"x

and A;:’T) € R’ (o the server. This is the
same process as the standard local training step
in vanilla FedAvg (McMabhan et al., 2017). How-
ever, we improve this vanilla local training step
by adding a rank self-pruning mechanism where
clients self-prune their respective ranks depending
on the magnitude of the model parameters.

Specifically, we add a regularization
term to the original local objective to get
Hlian7 Ay ﬁ ZfGBk €(<Bk7 Ak),f‘W()) +
A ||Bk,:,rkvsrkH ”Ak,rk'y:m,:H where 7 < lis a
decay-factor that determines how aggressively we
want to prune the ranks to a smaller value. The
regularization term aims to minimize the norm of
the last few ranks, which will become smaller if
the first loss term ﬁ > een,, (Br, Ag),{[Wo)
is not very large. After training with the
new local objective we compare the norm of
the updated LoRA modules’ last few layers
1Br:riyirg | || Ak rgyirg,: || With the ones from the
initially received LoRA modules. If the former
is smaller we prune the last few layers (pruning
intensity is determined by <) and send back the
LoRA modules with a smaller rank. This means
that for the LoORA modules which incurs a small
local loss, i.e., well-trained on the clients’ local
data, the LoRA modules are more likely to be
pruned to a smaller rank.

Such pruning allows HETLORA to reduce the

each client

noise in the LoORA modules introduced by clients
having a larger rank than the actual rank that their
data complexity requires, and also reduces the com-
plexity of the LoORA modules to improve general-
ization and prevent overfitting (see Table 4). Once
the rank is pruned for a client, the client saves
the updated rank and uses it as the starting rank
if selected for future communication rounds. The
client then sends back their updated and possibly
rank-pruned LoRA modules to the server to be
processed in the aggregation step.

3) Sparsity-Weighted Aggregation. Fi-
nally, the last step of HETLORA is aggregat-
ing the received heterogenecous LoRA modules
B,(:’T), A,(f’T),k e S®. A straightforward way
to aggregate the hetergeneous LoRA modules is us-
ing zero-padding to all the received LoRA modules

with rgt) < max{r,g) |k € S} and then perform
simple averaging over the modules. However, such
naive aggregation can lead to biasing the model to-
wards higher rank clients even when these clients
may not hold valuable training information, i.e.,

having low data complexity, giving noisy updates.

In an ideal scenario where we can deploy any
rank to any client, deploying higher ranks to the
clients with higher data complexity or larger lo-
cal datasets can retrieve more informative and less
sparse updates from the clients. Conversely if we
assign higher ranks to the clients whose data com-
plexity is low, the actual rank of the full model
from the reconstructed LoRA modules can be
smaller than the assigned rank. Thus the higher
rank client’s update may be unnecessarily over-
emphasized in the naive zero padding method.

Based on this insight we propose a sparsity-
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weighted aggregation scheme where the server re-
constructs these LoORA modules to the full model
as AW,(f) = B,(f)A,(f) and gets the norm of the
singular value vectors from the full models de-
noted as S,(:) by calculating HAWE:) || 7. Note that
the costly process of performing SVD for each

of the full model AW,(f) can be avoided by sim-

ply calculating the Frobenius norm of AW,?) (see
Lemma 1.2 in (Guruswami and Kannan, 2012)).
The server then weighs the LoORA modules with
aggregation weight p,(f) which is proportional to
the norm of the singular value vectors. For-

mally, we have the the global LoRA modules up-

dated as E(tH) = Zkes(t) p;(:)B;(f), K(Hl) _

Sreso PV ALY where pl”) = (1S /2" with
normalizing factor Z(*) := D oes® ||S,(f,)|| This
way, we can de-emphasize the larger rank assigned-
clients that have rather less informative updates,
and more emphasize the smaller rank assigned-
clients that have more informative ones.

3.4 Why not Simply Reconstruct First, then
Redistribute the LoRA modules?

One might ask why not simply reconstruct each
of the LoRA modules to the full matrix and aggre-
gate them. Here we show that reconstructing the
LoRA modules and aggregating them to get the
full model results in a different full model com-
pared to when we aggregate the LoRA modules
first and then reconstruct the final model. In Sec-
tion 4 we also empirically show that reconstructing
the LoORA modules to the full model and redistribut-
ing them after truncated SVD to the corresponding
rank of the clients results in an underwhelming
performance compared to HETLORA.

Let us consider a simple case where there are 2
clients with heterogeneous rank lora modules B; €
R A € R and By € R, Ay € R2X re-
spectively for client 1 and client 2 where the former
has rank 1 and latter has rank 2. We set the nota-
tion for the LoORA modules’ i*" row and j** column
value for By, and Ay, as by, ;; and ay, ;; respectively.
Then with d = 3, [ = 2, when we reconstruct
each of the LoRA modules first and then aggregate
the full model we have its i*" row and j*" column
as (Zi:l bri0ak,05) + b2,i1a2,1; and aggregating
the LoRA modules first and then reconstructing the
model has the full model’s i*" row and j** column

as (Y1 bio) (Mg aroj) + bziaz,1;.

One can observe that the difference between the
two models are the cross-terms between the left
and right module of different client 1 and 2, i.e.,
bl’ioazoj + bQ,ioal’oj for the i'" row and jth col-
umn. In other words, when we reconstruct the
LoRA modules first and then aggregate them to get
the full model, each term in the full model are cross-
products between the left and right module of each
client and not the cross-products between clients.
Thus, reconstructing the LoRA modules loses in-
formation on the cross-relation across clients, only
retaining the knowledge on the cross-relation be-
tween the LoORA modules B and A. Such obser-
vation is also corroborated by the reconstruction
first’s underwhelming performance in Table 3.

4 Experiments

In this section, we show that our proposed HET-
LORA outperforms its baselines in terms of
training speed, computation/communication ef-
ficiency, and final achieved performance. We
first show the performance of homogeneous LoRA
to show how LoRA in general performs for low
and high rank values. Second, as our main re-
sult, we demonstrate HETLORA’s performance
for different rpi, and ry,« values comparing them
with full fine-tuning, homogeneous LoRA, and
the reconstruction-first method elaborated in Sec-
tion 3.4. We also conduct an ablation study on
HETLORA with varying decay factor ~y for the
rank self-pruning step.

Settings. We use the transformer-based lan-
guage model PaLM 2 (Google, 2023) of size XXS
and XS for our experiments which are lightweight
enough to be ODFMs (Google DeepMind, 2023)
compared to standard FMs. The tasks we consider
are the chat dialogue from the multi-session chat
(MSC) dataset (Xu et al., 2021) and the text summa-
rization task from the Reddit dataset (Volske et al.,
2017). For the MSC data we use perplexity (Zhang
et al., 2018) as the metric which has been used to
show the quality of chat responses from genera-
tive models from previous literature (Sedoc et al.,
2019). We sample 100 users uniformly at random
and partition their data for training and evalua-
tion by each previous_dialogs and dialog. The
Reddit text summarization data consists of real
users’ reddit posts and their summarization, and
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Reddit (RougeL) Multi-Session Chat (Perplexity)
PalLM 2-XXS PalLM 2-XS PalLM 2-XXS PalLM 2-XS
Full 94.56(+0.01) 94.87(1+0.04) 32.70(£0.17) 23.40(+0.36)
HOMLORA r =5 92.57(+1.56), x0.001  92.89(+0.96) 80.51(£8.32), x0.001 64.59(49.31)
HOMLORA r = 50 70.57(£2.13), x0.01 84.95(41.59) 307.96(£11.43), x0.01 167.46(+1.72)
Recon+SVD 63.28(+1.92), x0.003  75.17(£1.25)  323.89(£20.57), x0.002  215.63(+15.38)

HETLORA 7 = 0.99 94.23(£0.03), x0.003

94.41(£0.05)

53.93(£1.57), x0.002 38.76(+0.52)

Table 3: Final RougeL score for Reddit text summarization and perplexity for multi-session chat for different federated
fine-tuning methods. The blue text indicates the ratio of trained number of parameters compared to the full fine-tuning case.
HETLORA outperforms both HOMLORA and Recon+SVD method, but slightly underperforms the full fine-tuning case.
However, compared to full fine-tuning the number of trained parameter is significantly smaller.

Perplexity
Perplexity

| 10?4
10% i

0 50 100 150 200 0 50 100 150 200
Communication Rounds Communication Rounds

(a) PALM 2-XXS (b) PaLM 2-XS

Figure 3: Performance of homogeneous LoRA for different
rank r. Higher ranks achieve better performance with fewer
communication rounds than the lower ranks, but they overfit
quickly. Conversely, the lowest rank » = 1 achieves low
perplexity slower than higher ranks, but without overfitting.

we use RougeL (Lin, 2004) as the metric. We use
298 users from Reddit that have at least 100 data
samples as the training clients and use another 100
users with at least 100 data samples for evaluation.
We use mini-batch size 8 and number of local it-
erations 7 = 5 with the feature length set to 1024.
For the learning rate we perform grid search in
n = {0.1, 0.01, 0.001, 0.0001}. For each MSC
and Reddit task, we select 5 and 10 clients per
communication round respectively. The rank dis-
tribution across clients for HETLORA is set to a
truncated power-law distribution with o = 0.1 in
the range between [rmin, "max] (inclusively). All ex-
periments were ran with 3 different random seeds.

4.1 Experiment Results

Homogeneous LoRA and the Effect of Ranks r.
First, we evaluate the performance of federated
fine-tuning of the LoORA modules with homoge-
neous LoRA deployment across clients in Fig. 3 for
different ranks r € [1, 5, 20, 50]. We observe that
a higher rank r for homogeneous LoRA achieves
better perplexity floor with fewer communication
rounds than the lower ranks but quickly overfits
resulting in worse performance compared to the
lower ranks after more communication rounds. On

— Fmin=1 10° — Imin=1

-
o
W

ey fmn=5 2 Tmin =5
X x
< K
o o
T 102 3 10?
[« 10 [« W
i —a
0 100 200 0 100 200
Communication Rounds Communication Rounds
(a) rmax = 10 (b) Tmax = 50

Figure 4: Performance of HETLORA without rank pruning
or and with simple average aggregation. Similar to homoge-
neous LoRA, larger rmin leads to overfitting for heterogeneous
LoRA, but it is not as severe as homogeneous LoRA even
for larger maximum rank 7. = 50 showing that the smaller
rank LoRA modules act as a regularizer for HETLORA.

the other hand, while the lower rank cases need
more communication rounds to achieve good per-
formance, it does not have the problem of overfit-
ting as the higher ranks. Hence for homogeneous
LoRA, there is a trade-off between low and high
ranks, in terms of faster performance achievement
and overfitting. Note that these observations are
consistent with previous literature in the central-
ized setting where a higher rank does not neces-
sarily yields the best performance (Hu et al., 2021;
Zhang et al., 2023b). Subsequently, we show that
HETLORA that is not only more practical than ho-
mogeneous LoRA, but also achieves a better final
performance with fewer number of communication
rounds without the overfitting issue.

Naive Heterogeneous LoRA and the Effect
of rmin and rpax. First, we show the perfor-
mance of naive heterogeneous LoRA which is
HETLORA without self rank-pruning and with
only average aggregation instead of the sparsity-
weighted aggregation in Fig. 4. We see that similar
to homogeneous LoRA, a smaller minimum rank
rmin = 1 leads to slower training but better perfor-
mance while a larger maximum rank leads to faster
training but worse performance. However, unlike
homogeneous LoRA, the overfitting does not get
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Reddit (RougeL)

Multi-Session Chat (Perplexity)

PaLM 2-XXS PaLM 2-XS PaLM 2-XXS PalLM 2-XS
HETLORA, v = 1 92.17 (£0.08)  91.95 (£0.03)  55.07 (£0.81)  40.92 (£0.58)
HETLORA, v = 0.99 94.23 (£0.03) 94.41 (£0.05) 53.93 (£1.57)  38.76 (£0.52)
HETLORA, v = 0.95 89.62 (£1.33)  83.10 (£1.70) _ 71.10 (£1.39) _ 46.39 (£0.87)
HETLORA, v = 0.85  60.31 (£3.04)  53.28 (£2.47) 120.72 (£10.93) 59.67 (£1.98)

Table 4: Ablation study on the effect of the decaying factor v for HETLORA'’s self-rank pruning in the local training step.
While aggressive pruning can be harmful to HETLORA’s performance, pruning (v = 0.99) can outperform the case when there
is no pruning at all (v = 1) by reducing the noise introduced by large rank clients with low data complexity.
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Figure 5: Comparison of the performance across homoge-
neous LoRA, heterogeneous LoRA, and full fine-tuning. Het-
erogeneous LoRA achieves better performance than homoge-
neous LoRA with fewer number of communication rounds.

as severe for heterogeneous LoRA even with much
larger ranks such as rp,x = 50. We can imply from
this result that the smaller rank LoRA modules act
as a regularizer in heterogeneous LoRA prevent-
ing overfitting. Next, we show that by adding the
self rank-pruning and sparsity-weighted aggrega-
tion, we improve the performance such that even
with i, = 5 we are able to prevent overfitting
issues and achieve better training speed and final
performance than other baselines.

Heterogeneous LoRA compared to PEFT. Fi-
nally, we compare HETLOR A with other baselines
in Table 3 and Fig. 5. We see that HETLORA with
min = O and rmax = 50 achieves faster training
as well as better performance than homogeneous
LoRA cases with both edge cases of the ranks
r € {5,50} and reconostruction+SVD which was
explained in Section 3.4. This implies that HET-
LORA is not only practical in the sense that clients
are allowed to have their own rank values, it can
also outperform the limited case of homogeneous
LoRA where all clients have r = 7y, or the im-
practical case where all clients have 7 = 7y .

Heterogeneous LoRA compared to Full-Fine
Tuning. In Table 3, we can see that for the Red-
dit text summarization, HETLORA achieves sim-
ilar performance with full-fine tuning with only
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Figure 6: Ratio of communicated number of parameters for
different PEFT methods to full fine-tuning to achieve the
target value for the metric where it is RougeL 80 for Reddit
text summarization task and perplexity 150 for the multi-
session chat response task. The ‘X’ means that the target
metric is not achieved even after convergence.

0.003% of parameters trained compared to full-fine
tuning. For chat response, HETLORA achieves
slightly lower performance than full fine-tuning.
However, full fine-tuning requires to train a much
larger number of parameters compared to HET-
LORA, making it infeasible to train with ODFMs
in practice. We also show in Fig. 6 that to achieve
the targeted performance for both Reddit and MSC
task, HETLOR A requires significantly less num-
ber of parameters to be trained and communicated
compared to full fine-tuning. Although for Reddit,
HOMLORA has a slightly less number of param-
eters to be trained, the final achieved RougeL is
outperformed by HETLORA as shown in Table 3.

Effect of the Decaying Factor . Lastly, we
conduct an ablation study on the effect of the de-
caying factor v of HETLORAs local training step
with self-rank pruning in Table 4. We observed that
aggressive pruning hurts the performance where
v = 0.85 shows the worse performance across
the varying ~ values. On the other hand, no prun-
ing at all (v = 1) underperforms the case when
there is pruning (v = 0.99), showing that reducing
the noise introduced by large rank clients which
data complexity is actually not that high indeed
improves the performance.
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5 Discussions and Concluding Remarks

In our work, we investigated federated fine-tuning
for ODFMs by proposing HETLORA that enables
utilizing the power of FMs at the edge by taking
device system and data heterogeneity into con-
sideration. HETLORA is not only practical but
also achieves better training speed, communica-
tion/computation efficiency, and final performance
compared to other relevant baselines such as SVD-
based LoRA, homogeneous LoRA, or full fine-
tuning. Our findings in this work opens up several
questions worth investigating. For instance, if the
settings allow us to assign specific ranks to clients
what will be the effective way to assign the ranks
across clients for better convergence and perfor-
mance? Another important next step of our work
includes pursuing the theoretical convergence and
generalization of heterogeneous LoRA.

6 Limitations

In this work, we address tackling system and data
heterogeneity in federated fine-tuning of on-device
foundation models. Our work is motivated by
clients being able to carry different ranks for the
LoRA fine-tuning method depending on their avail-
able resources, and thus exploiting this character-
istic to improve federated fine-tuning with het-
erogeneous LoRA. However, our work assumes
that the rank distribution across clients (which is
analogous to how system resources are distributed
across clients) is independent to the data distribu-
tion. There can be scenarios in which this is not
necessarily the case where the rank and data dis-
tribution can be correlated. For instance, more
affluent populations can have better off devices
with larger resource capacity, and may have data
distributions different to that of less affluent pop-
ulations. Such correlation should be explored for
future work to better understand the implications
of heterogenoeus LoRA.
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