
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 12903–12913

November 12-16, 2024 ©2024 Association for Computational Linguistics

Heterogeneous LoRA for Federated Fine-tuning of
On-Device Foundation Models

Yae Jee Cho1,2∗, Luyang Liu2, Zheng Xu2, Aldi Fahrezi2, Gauri Joshi1

1Carnegie Mellon University, 2Google Research

{yaejeecho,luyangliu,xuzheng,aldifahrezi}@google.com,

gaurij@andrew.cmu.edu

Abstract

Foundation models (FMs) adapt surprisingly

well to downstream tasks with fine-tuning.

However, their colossal parameter space pro-

hibits their training on resource-constrained

edge-devices. For federated fine-tuning, we

need to consider the smaller FMs of few bil-

lion parameters at most, namely on-device

FMs (ODFMs), which can be deployed on-

device. Federated fine-tuning of ODFMs

has unique challenges non-present in standard

fine-tuning: i) ODFMs poorly generalize to

downstream tasks due to their limited sizes

making proper fine-tuning imperative to their

performance, and ii) devices have limited and

heterogeneous system capabilities and data

that can deter the performance of fine-tuning.

Tackling these challenges, we propose HET-

LORA, a feasible and effective federated fine-

tuning method for ODFMs that leverages the

system and data heterogeneity at the edge.

HETLORA allows heterogeneous LoRA ranks

across clients for their individual system re-

sources, and efficiently aggregates and dis-

tributes these LoRA modules in a data-aware

manner by applying rank self-pruning lo-

cally and sparsity-weighted aggregation at the

server. It combines the advantages of high and

low-rank LoRAs, achieving improved conver-

gence speed and final performance compared

to homogeneous LoRA. Furthermore, HET-

LORA has enhanced computation and com-

munication efficiency compared to full fine-

tuning making it more feasible for the edge.

1 Introduction

The emerging foundation models (FMs), easily

ranging from few to hundreds of billions of param-

eters (Gemini Team Google, 2024; Bommasani

∗*Work done while interning at Google Research. Corre-
sponding authors: {yaejeecho,luyangliu}@google.com

et al., 2022; Radford et al., 2021; Devlin et al.,

2019; OpenAI, 2023; Google, 2022; Touvron et al.,

2023; Brown et al., 2020; Google, 2022; Driess

et al., 2023), have remarkable zero/few shot learn-

ing capabilities. They often perform surprisingly

well on a variety of tasks such as text/image gen-

eration, language translation, and conversing in

natural language with fine-tuning. Such standard

FMs, however, demand costly resources for di-

rectly fine-tuning their entire parameter space. To

tackle this issue, many works have proposed differ-

ent parameter-efficient fine-tuning (PEFT) meth-

ods such as prompt tuning (Lester et al., 2021),

utilizing adapters (Houlsby et al., 2019), or low-

rank adaptation (LoRA) of the original model (Hu

et al., 2021) which freezes the original pre-trained

parameters of the FM and train additional, smaller

number of parameters instead.

Unfortunately, such PEFT methods rely on the

assumptions that i) FMs are deployed to and

trained with the data of a single client for adap-

tation to the downstream task and ii) the client

has enough resources to even fit a standard FM

of hundred billion size for, at least, inference. In

practice, more often than not we are interested

in fine-tuning FMs for on-device private data that

is distributed across multiple devices, and these

clients at the edge rarely have such resources to

even fit standard FMs for inference. One of the ex-

amples is to use FMs for downstream tasks that re-

quires training with private, non-sharable data such

as medical or law-related documents distributed

across clients (Manoel et al., 2023; Shoham and

Rappoport, 2023; Zhang et al., 2023c). In such

cases, fine-tuning of the FMs needs to be brought

to the edge that has limited system resources.

Federated Fine-Tuning & ODFMs. We con-

sider such federated fine-tuning scenarios, where

12903

Zero-Shot Few-Shot Full-Training

PaLM 2 XXS 2930.23 2541.86 23.71
PaLM 2 XS 2712.86 481.95 18.32

Table 1: Perplexity of PaLM 2 for zero-shot, few-shot (5
communication rounds), and full federated fine-tuning (200
communication rounds) for chat response on the multi-session
chat data (further experimental details are in Section 4.)

we train a set of parameters collaboratively across

clients to obtain a global set of parameters that can

be plugged in to the FM for the targeted down-

stream task. Note that federated fine-tuning is or-

thogonal to personalization of FMs in federated

learning (FL) that has been explored in other previ-

ous work (Guo et al., 2023; Wu et al., 2024), which

aims to train parameters that perform well for in-

dividual clients rather than general downstream

tasks. We also define on-device FMs (ODFMs) as

models with few billion parameters at max that are

able to fit into memory on limited capacity clients

considering current hardwares.

Challenges. Federated fine-tuning of ODFMs

entails two major challenges non-present in nei-

ther standard PEFT of FMs nor federated train-

ing of non-FMs. First, ODFMs poorly generalize

to downstream tasks. Unlike ODFMs, standard

FMs have their zero/few-shot learning capability

by their large parameter space trained on massive

data. However, as we show in Table 1 and as pre-

vious literature has shown (Kojima et al., 2022;

Lester et al., 2021), FMs’ performance deteriorates

as their sizes get smaller and federated fine-tuning

is not merely useful but inevitable for ODFMs to

perform well for on-device downstream tasks.

Second, devices have limited and heterogeneous

system capabilities and data distributions (Wang

et al., 2019; Bonawitz et al., 2016; Sahu et al.,

2020). Without suitable PEFT methods that flexi-

bly adapts to such heterogeneity across devices, we

would only have limited performance output from

federated fine-tuning of ODFMs. For instance,

with homogeneous rank deployment in LoRA that

is agnostic of system heterogeneity, the client with

the least system resource becomes the bottleneck,

forcing a smaller rank to be deployed across all

clients despite the other clients being able to han-

dle higher ranks (see Table 2 for the effect of rank

on the trainable parameter #). Additionally, data

heterogeneity causing model drifts can make the

model converge to a suboptimal point.

r1 r2 r3>>

d

l

rmax

r1

r2 r3

r2 r3

d

l
r1

d

l

d

l

g

d

l

p1 p2 p3× × ×+ +

Bk ∈ R
d×rk Ak ∈ R

rk×l

W0 ∈ R
d×l

Figure 1: Overview of heterogeneous rank deployment of
LoRA: the pretrained weights W0 are stored on-device and
heterogeneous ranks are assigned to different clients with
rmin = r1 < r2 < r3 = rmax. In our proposed HETLORA,
the server receives the trained heterogeneous LoRA modules
and aggregates them with sparsity-weighted aggregation to
update the global LoRA module.

Contributions. In our work, we push the limits

of federated fine-tuning of ODFMs by proposing

HETLORA that is aware of heterogeneity resid-

ing at the edge. Our main flagship results (in Ta-

ble 3 and Fig. 5), show that our proposed HET-

LORA outperforms the standard LoRA method

and achieves comparable performance with full

fine-tuning with a significantly smaller number of

trained parameters. We verify HETLORA with

PaLM 2 (Google, 2023) of XXS and XS size for

chat responses on the multi-session chat data (Xu

et al., 2021) and text summarization for the Red-

dit data (Völske et al., 2017), both real world data

from clients. Our contributions are summarized as:

• We propose HETLORA that can apply different

rank LoRA modules to different clients to cater

to the heterogeneous system capabilities and data

complexities of the clients, via utilizing rank self-

pruning and sparsity-weighted aggregation.

• We show the performance of naïvely applying

LoRA with homogeneous ranks across clients for

federated fine-tuning, and show that while large

ranks help in speeding-up training, they lead to

faster overfitting while smaller ranks are slower

in training but does not suffer from overfitting.

• We then evaluate our proposed HETLORA to

show that it outperforms naïvely applying ho-

mogeneous ranks across clients in terms of both

training speed, communication/computation effi-

ciency, and final performance.

2

12904

r = 1 r = 5 r = 10 r = 20 r = 50 r = 100 r = 150 r = 200

PaLM 2 XXS, PaLM 2 XS 0.02% 0.11% 0.21% 0.42% 1.05% 2.10% 3.14% 4.19%

Table 2: Percentage of the LoRA parameters’ size for different ranks r compared to the original pre-trained ODFM’s parameter
size. Even for large ranks such as r = 200 the trainable LoRA parameters’ size compared to the original pre-trained ODFM
size is less than 5% for both PaLM 2-XS and PaLM 2-XXS.

2 Related Work

Parameter-Efficient Fine Tuning. Most PEFT

methods either train a subset of parameters within

the existing FM whilst other parameters are freezed

or introduce an additional set of trainable param-

eters whilst keeping the original FM freezed. For

the former, methods such as head or bias fine-

tuning (Wei et al., 2021; Bu et al., 2022; Lee et al.,

2019; Zaken et al., 2021) has been explored, and

for the latter, methods such as adapters (Houlsby

et al., 2019), prompt (Lester et al., 2021) or prefix-

tuning (Li and Liang, 2021), and low-rank approxi-

mation (Hu et al., 2021) has been proposed. While

these number of methods has been proven to per-

form as well as full model fine-tuning with just

a few number of parameters for the centralized

setting, it has not been thoroughly explored how

these methods would perform for a much smaller

FM such as ODFMs, in the decentralized setting

where clients’ system-capacities and data can be

heterogeneous and much limited.

Federated Fine-Tuning. Several recent work

has proposed to combine the PEFT methods de-

vised for the centralized setting to FL (Zhou et al.,

2023; Yu et al., 2023) such as training prompts or

adapters collaboratively with FL (Guo et al., 2022;

Chen et al., 2022; Zhang et al., 2023a; Shysheya

et al., 2023; Legate et al., 2023). Another line of

work has proposed to perform a few-shot or nearly

zero-shot training of FMs with FL for improved

communication-efficiency (Wortsman et al., 2023;

Zhang et al., 2023d). However, these work either

overlooks that most devices do not have the re-

source to fit standard FMs (Touvron et al., 2023;

Brown et al., 2020) even for inference or does not

consider the heterogeneous system capacities of

the clients. It is detrimental to consider these fac-

tors since FMs that actually fits to the devices in

FL are much smaller, making them weaker in the

general intelligence capabilities, and also hetero-

geneous system capacities can prohibit deploying

same sized PEFT parameters across clients.

LoRA and FL. There has been a number of

variations of LoRA (Zhang et al., 2023b; Liu et al.,

2024; Sun et al., 2024; Horváth et al., 2024) from

its first proposal (Hu et al., 2021). However, only a

few number of recent work has looked in to using

LoRA for FL. In Babakniya et al. (2023), the im-

portance of the initialization for the LoRA modules

is evaluated where they propose to train the LoRA

modules with FL and then perform singular value

decomposition (SVD) to gain a good initialization

of the LoRA modules. However, the training pro-

cess of LoRA itself is not altered to adapt to het-

erogeneous system capabilieis of devices. Another

recent work (Yi et al., 2023) has evaluated LoRA

in the context of personalized FL, but other than ap-

plying LoRA to personalization, the LoRA method

itself is, again, not changed. To the best of our

knowledge, our work is the first method to consider

both data and system heterogeneity for improving

training speed, communication/computation effi-

ciency, and final performance of ODFM’s feder-

ated fine-tuning. Contemporary approaches (Bai

et al., 2024; Anonymous, 2024) have proposed to

use SVD to decompose the full matrix to deploy

heterogeneous ranks across clients. We compare

our proposed method with using SVD for hetero-

geneous LoRA in our work and show that the per-

formance is underwhelming compared to our pro-

posed heterogeneous LoRA.

3 Federated Fine-Tuning with LoRA

3.1 Preliminaries

Formally, we define the pre-trained ODFM as

W0 ∈ R
d×l and the trainable low-rank decom-

posed matrix as ∆W ∈ R
d×l. In standard

LoRA (Hu et al., 2021) under the centralized set-

ting, the low-rank decomposition of ∆W is con-

structed such that ∆W = BA where B ∈ R
d×r

and A ∈ R
r×l are the low rank decomposition

of ∆W with identical rank r. Now, let us con-

sider LoRA for federated fine-tuning where there

are M total clients. Each client k ∈ [M] has pri-

3

12905

vate data Bk and its corresponding local empiri-

cal loss function Fk(W) = 1
|Bk|

∑
ξ∈Bk

`(W, ξ),

where `(W, ξ) is the loss for model W at data

sample ξ. The optimization task for federated

fine-tuning is to collaboratively find the global

parameters which we define as B and A, given

the pretrained knowledge W0 that can minimize

the global objective F (W) = 1
M

∑M
k=1 Fk(W)

where W = W0 +BA. Later in the paper, when

introducing heterogeneous LoRA we truncate the

LoRA modules’ rank dimension, for example from

B ∈ R
d×r, A ∈ R

r×l to B
′ ∈ R

d×r′ , A
′ ∈

R
r′×l where r′ < r. Throughout the paper, we

denote such truncation of a matrix with the : sym-

bol for each row and column at the subscript. For

instance, for truncation to r′ < r at the column

for the matrix B ∈ R
d×r, we keep all the columns

until r′ and omit the last r−r′ columns and denote

the resulting matrix it as B:,:r′ .

3.2 Naïve Case: Homogeneous LoRA

A straightforward way to perform federated fine-

tuning with LoRA is to train the LoRA mod-

ules B, A with homogeneous rank r across all

clients with standard FL (McMahan et al., 2017).

Specifically, first the clients have the pre-trained

ODFM weights W0 stored in their devices prior

to training for the forward pass when training the

LoRA modules. Then, the server sends the global

LoRA modules B
(t)
, A

(t)
to the set of m selected

clients S(t) per communication round t. Each se-

lected client k ∈ S(t) trains the LoRA modules

on their local data for a few local iterations (usu-

ally with mini-batch SGD) and send the updated

modules B
(t)
k , A

(t)
k back to the server. The server

then updates the global LoRA modules accord-

ingly to B
(t+1)

=
∑

k∈S(t) B
(t)
k /m, A

(t+1)
=

∑
k∈S(t) A

(t)
k /m and sends back to the next set of

selected clients for the next communication round.

This training process is nearly identical to the stan-

dard FL algorithm (McMahan et al., 2017) except

that the pretrained weights W0 are freezed and

locally stored in the clients’ devices and only the

LoRA moduels are trained and communicated.

Instead of such homogeneous rank deployment

across all clients, it is not only possible but even

more practical and feasible to use heterogeneous

rank deployment for federated fine-tuning (we later

show that this also improves final performance of

the ODFMs). This involves training LoRA mod-

ules with varying ranks across clients, based on

their system capabilities. This allows a more prac-

tical setting for federated fine-tuning of ODFMs

where, for instance, the client with the smallest

system capacity does not have to become the bot-

tleneck that forces deploying a smaller rank across

all clients. Instead, with heterogeneous rank de-

ployment, each client can use a rank that suits for

itself. However, heterogeneous rank deployment

poses challenges in aggregating and redistributing

the LoRA modules. To address these challenges,

we introduce a solution called HETLORA, which

pushes the limits beyond homogeneous LoRA.

3.3 Proposed Method: Heterogeneous LoRA

Overview. Our proposed heterogeneous LoRA

method, namely HETLORA, is not restricted to any

specific method to assign the ranks to the clients

and the clients can decide their respective ranks

themselves. For formality, in our paper, we for-

mulate that each client has a rank denoted as rk,

within a range of rk ∈ [rmin, rmax], ∀k (see Fig. 1).

HETLORA comprises three steps: 1) Distribution

via Truncation, 2) Local Training with Rank Self-

Pruning, and 3) Sparsity-Weighted Aggregation of

the LoRA modules. These steps are detailed fur-

ther in the subsequent paragraphs. An overview of

HETLORA is illustrated in Fig. 2.

1) Distribution via Truncation. At the begin-

ing of each communication round t, the server

holds initial global LoRA modules B
(t)
, A

(t)
with

a global rank r(t). The value of the global rank r(t)

depends on how we aggregate the heterogeneous

rank LoRA modules which is elaborated on in step

3). The server then distributes these global LoRA

modules to a subset of selected set of clients S(t)

with heterogeneous ranks r
(t)
k , k ∈ S(t) for local

training1. With the given global LoRA modules,

we consider a simple and intuitive method of trun-

cation where the server sends B
(t)
:,:rk

, A
(t)
:rk,:

to each

client k with rank r
(t)
k for local training where we

omitted the superscript for rk for simplicity.

2) Local Training with Rank Self-Pruning.

1There is a superscript t for the ranks r
(t)
k

across clients
which indicates that in HETLORA these heterogeneous ranks
can be changed over the communication rounds via self-
pruning explained in step 2).

4

12906

0	

î

î

î

0

0	ï0

î

î

î

0			ï0

d

l

d

l

0	ïïïï0
0	ïïïï0

rmax

rmax

rmax

rmax

d

l

B ∈ R
d×rmax

A ∈ R
rmax×l

kS
(t)
k
k/Z(t)

×

kS
(t)
k+1k/Z

(t)
×

d

l

rmax

rmax ×

kS
(t)
k+2k/Z

(t)
>>

rmax

rmax

d

l

r2

r2

Figure 2: Overview of the zero-padding, sparsity-weighted aggregation, and truncation method for HETLORA; (a): Zero-pad
LoRA modules with smaller ranks to rmax (clients with rank rmax does not need padding) and calculate their sparsity by

calculating the Frobenius norm of the reconstructed model ∆W
(t)
k

= B
(t)
k

A
(t)
k

; (b): After padding, aggregate all of the clients’

LoRA modules with the weights ‖S
(t)
k

‖/Z(t) calculated by ∆W
(t)
k

to get the global LoRA modules; (c): Truncate the global
LoRA modules for the specific rank of the next selected client (example for client with rank r2).

After receiving LoRA modules from the server

as B
(t,0)
k = B

(t)
:,:rk

, A
(t,0)
k = A

(t)
:rk,:

, each client

k ∈ S(t) performs τ local iterations of mini-batch

SGD on their local data to minimize the local ob-

jective 1
|Bk|

∑
ξ∈Bk

`((Bk, Ak), ξ|W0), and sends

back the updated LoRA modules B
(t,τ)
k ∈ R

d×r
(t)
k

and A
(t,τ)
k ∈ R

r
(t)
k

×l to the server. This is the

same process as the standard local training step

in vanilla FedAvg (McMahan et al., 2017). How-

ever, we improve this vanilla local training step

by adding a rank self-pruning mechanism where

clients self-prune their respective ranks depending

on the magnitude of the model parameters.

Specifically, we add a regularization

term to the original local objective to get

minBk, Ak

1
|Bk|

∑
ξ∈Bk

`((Bk, Ak), ξ|W0) +

λ ‖Bk,:,rkγ:rk‖ ‖Ak,rkγ:rk,:‖ where γ < 1 is a

decay-factor that determines how aggressively we

want to prune the ranks to a smaller value. The

regularization term aims to minimize the norm of

the last few ranks, which will become smaller if

the first loss term 1
|Bk|

∑
ξ∈Bk

`((Bk, Ak), ξ|W0)
is not very large. After training with the

new local objective we compare the norm of

the updated LoRA modules’ last few layers

‖Bk,:,rkγ:rk‖ ‖Ak,rkγ:rk,:‖ with the ones from the

initially received LoRA modules. If the former

is smaller we prune the last few layers (pruning

intensity is determined by γ) and send back the

LoRA modules with a smaller rank. This means

that for the LoRA modules which incurs a small

local loss, i.e., well-trained on the clients’ local

data, the LoRA modules are more likely to be

pruned to a smaller rank.

Such pruning allows HETLORA to reduce the

noise in the LoRA modules introduced by clients

having a larger rank than the actual rank that their

data complexity requires, and also reduces the com-

plexity of the LoRA modules to improve general-

ization and prevent overfitting (see Table 4). Once

the rank is pruned for a client, the client saves

the updated rank and uses it as the starting rank

if selected for future communication rounds. The

client then sends back their updated and possibly

rank-pruned LoRA modules to the server to be

processed in the aggregation step.

3) Sparsity-Weighted Aggregation. Fi-

nally, the last step of HETLORA is aggregat-

ing the received heterogeneous LoRA modules

B
(t,τ)
k , A

(t,τ)
k , k ∈ S(t). A straightforward way

to aggregate the hetergeneous LoRA modules is us-

ing zero-padding to all the received LoRA modules

with r
(t)
i < max{r

(t)
k |k ∈ S(t)} and then perform

simple averaging over the modules. However, such

naive aggregation can lead to biasing the model to-

wards higher rank clients even when these clients

may not hold valuable training information, i.e.,

having low data complexity, giving noisy updates.

In an ideal scenario where we can deploy any

rank to any client, deploying higher ranks to the

clients with higher data complexity or larger lo-

cal datasets can retrieve more informative and less

sparse updates from the clients. Conversely if we

assign higher ranks to the clients whose data com-

plexity is low, the actual rank of the full model

from the reconstructed LoRA modules can be

smaller than the assigned rank. Thus the higher

rank client’s update may be unnecessarily over-

emphasized in the naive zero padding method.

Based on this insight we propose a sparsity-

5

12907

weighted aggregation scheme where the server re-

constructs these LoRA modules to the full model

as ∆W
(t)
k = B

(t)
k A

(t)
k and gets the norm of the

singular value vectors from the full models de-

noted as S
(t)
k by calculating ‖∆W

(t)
k ‖F . Note that

the costly process of performing SVD for each

of the full model ∆W
(t)
k can be avoided by sim-

ply calculating the Frobenius norm of ∆W
(t)
k (see

Lemma 1.2 in (Guruswami and Kannan, 2012)).

The server then weighs the LoRA modules with

aggregation weight p
(t)
k which is proportional to

the norm of the singular value vectors. For-

mally, we have the the global LoRA modules up-

dated as B
(t+1)

=
∑

k∈S(t) p
(t)
k B

(t)
k , A

(t+1)
=

∑
k∈S(t) p

(t)
k A

(t)
k where p

(t)
k

:= ‖S
(t)
k ‖/Z(t) with

normalizing factor Z(t) :=
∑

k′∈S(t) ‖S
(t)
k′ ‖. This

way, we can de-emphasize the larger rank assigned-

clients that have rather less informative updates,

and more emphasize the smaller rank assigned-

clients that have more informative ones.

3.4 Why not Simply Reconstruct First, then

Redistribute the LoRA modules?

One might ask why not simply reconstruct each

of the LoRA modules to the full matrix and aggre-

gate them. Here we show that reconstructing the

LoRA modules and aggregating them to get the

full model results in a different full model com-

pared to when we aggregate the LoRA modules

first and then reconstruct the final model. In Sec-

tion 4 we also empirically show that reconstructing

the LoRA modules to the full model and redistribut-

ing them after truncated SVD to the corresponding

rank of the clients results in an underwhelming

performance compared to HETLORA.

Let us consider a simple case where there are 2

clients with heterogeneous rank lora modules B1 ∈
R
d×1,A1 ∈ R

1×l and B2 ∈ R
d×1,A2 ∈ R

2×l re-

spectively for client 1 and client 2 where the former

has rank 1 and latter has rank 2. We set the nota-

tion for the LoRA modules’ ith row and jth column

value for Bk and Ak as bk,ij and ak,ij respectively.

Then with d = 3, l = 2, when we reconstruct

each of the LoRA modules first and then aggregate

the full model we have its ith row and jth column

as (
∑2

k=1 bk,i0ak,0j) + b2,i1a2,1j and aggregating

the LoRA modules first and then reconstructing the

model has the full model’s ith row and jth column

as (
∑2

k=1 bk,i0)(
∑2

k=1 ak,0j) + b2,i1a2,1j .

One can observe that the difference between the

two models are the cross-terms between the left

and right module of different client 1 and 2, i.e.,

b1,i0a2,0j + b2,i0a1,0j for the ith row and jth col-

umn. In other words, when we reconstruct the

LoRA modules first and then aggregate them to get

the full model, each term in the full model are cross-

products between the left and right module of each

client and not the cross-products between clients.

Thus, reconstructing the LoRA modules loses in-

formation on the cross-relation across clients, only

retaining the knowledge on the cross-relation be-

tween the LoRA modules B and A. Such obser-

vation is also corroborated by the reconstruction

first’s underwhelming performance in Table 3.

4 Experiments

In this section, we show that our proposed HET-

LORA outperforms its baselines in terms of

training speed, computation/communication ef-

ficiency, and final achieved performance. We

first show the performance of homogeneous LoRA

to show how LoRA in general performs for low

and high rank values. Second, as our main re-

sult, we demonstrate HETLORA’s performance

for different rmin and rmax values comparing them

with full fine-tuning, homogeneous LoRA, and

the reconstruction-first method elaborated in Sec-

tion 3.4. We also conduct an ablation study on

HETLORA with varying decay factor γ for the

rank self-pruning step.

Settings. We use the transformer-based lan-

guage model PaLM 2 (Google, 2023) of size XXS

and XS for our experiments which are lightweight

enough to be ODFMs (Google DeepMind, 2023)

compared to standard FMs. The tasks we consider

are the chat dialogue from the multi-session chat

(MSC) dataset (Xu et al., 2021) and the text summa-

rization task from the Reddit dataset (Völske et al.,

2017). For the MSC data we use perplexity (Zhang

et al., 2018) as the metric which has been used to

show the quality of chat responses from genera-

tive models from previous literature (Sedoc et al.,

2019). We sample 100 users uniformly at random

and partition their data for training and evalua-

tion by each previous_dialogs and dialog. The

Reddit text summarization data consists of real

users’ reddit posts and their summarization, and

6

12908

Reddit (RougeL) Multi-Session Chat (Perplexity)

PaLM 2-XXS PaLM 2-XS PaLM 2-XXS PaLM 2-XS

Full 94.56(±0.01) 94.87(±0.04) 32.70(±0.17) 23.40(±0.36)
HOMLORA r = 5 92.57(±1.56),×0.001 92.89(±0.96) 80.51(±8.32),×0.001 64.59(±9.31)
HOMLORA r = 50 70.57(±2.13),×0.01 84.95(±1.59) 307.96(±11.43),×0.01 167.46(±1.72)
Recon+SVD 63.28(±1.92),×0.003 75.17(±1.25) 323.89(±20.57),×0.002 215.63(±15.38)
HETLORA γ = 0.99 94.23(±0.03),×0.003 94.41(±0.05) 53.93(±1.57),×0.002 38.76(±0.52)

Table 3: Final RougeL score for Reddit text summarization and perplexity for multi-session chat for different federated
fine-tuning methods. The blue text indicates the ratio of trained number of parameters compared to the full fine-tuning case.
HETLORA outperforms both HOMLORA and Recon+SVD method, but slightly underperforms the full fine-tuning case.
However, compared to full fine-tuning the number of trained parameter is significantly smaller.

0 50 100 150 200
Communication Rounds

102

103

Pe
rp

le
xi

ty

r= 1
r= 5

r= 20
r= 50

(a) PaLM 2-XXS

0 50 100 150 200
Communication Rounds

102

103

Pe
rp

le
xi

ty

r= 1
r= 5

r= 20
r= 50

(b) PaLM 2-XS

Figure 3: Performance of homogeneous LoRA for different
rank r. Higher ranks achieve better performance with fewer
communication rounds than the lower ranks, but they overfit
quickly. Conversely, the lowest rank r = 1 achieves low
perplexity slower than higher ranks, but without overfitting.

we use RougeL (Lin, 2004) as the metric. We use

298 users from Reddit that have at least 100 data

samples as the training clients and use another 100

users with at least 100 data samples for evaluation.

We use mini-batch size 8 and number of local it-

erations τ = 5 with the feature length set to 1024.

For the learning rate we perform grid search in

η = {0.1, 0.01, 0.001, 0.0001}. For each MSC

and Reddit task, we select 5 and 10 clients per

communication round respectively. The rank dis-

tribution across clients for HETLORA is set to a

truncated power-law distribution with α = 0.1 in

the range between [rmin, rmax] (inclusively). All ex-

periments were ran with 3 different random seeds.

4.1 Experiment Results

Homogeneous LoRA and the Effect of Ranks r.

First, we evaluate the performance of federated

fine-tuning of the LoRA modules with homoge-

neous LoRA deployment across clients in Fig. 3 for

different ranks r ∈ [1, 5, 20, 50]. We observe that

a higher rank r for homogeneous LoRA achieves

better perplexity floor with fewer communication

rounds than the lower ranks but quickly overfits

resulting in worse performance compared to the

lower ranks after more communication rounds. On

0 100 200
Communication Rounds

102

103

Pe
rp

le
xi

ty

rmin = 1
rmin = 5

(a) rmax = 10

0 100 200
Communication Rounds

102

103

Pe
rp

le
xi

ty

rmin = 1
rmin = 5

(b) rmax = 50

Figure 4: Performance of HETLORA without rank pruning
or and with simple average aggregation. Similar to homoge-
neous LoRA, larger rmin leads to overfitting for heterogeneous
LoRA, but it is not as severe as homogeneous LoRA even
for larger maximum rank rmax = 50 showing that the smaller
rank LoRA modules act as a regularizer for HETLORA.

the other hand, while the lower rank cases need

more communication rounds to achieve good per-

formance, it does not have the problem of overfit-

ting as the higher ranks. Hence for homogeneous

LoRA, there is a trade-off between low and high

ranks, in terms of faster performance achievement

and overfitting. Note that these observations are

consistent with previous literature in the central-

ized setting where a higher rank does not neces-

sarily yields the best performance (Hu et al., 2021;

Zhang et al., 2023b). Subsequently, we show that

HETLORA that is not only more practical than ho-

mogeneous LoRA, but also achieves a better final

performance with fewer number of communication

rounds without the overfitting issue.

Naïve Heterogeneous LoRA and the Effect

of rmin and rmax. First, we show the perfor-

mance of naïve heterogeneous LoRA which is

HETLORA without self rank-pruning and with

only average aggregation instead of the sparsity-

weighted aggregation in Fig. 4. We see that similar

to homogeneous LoRA, a smaller minimum rank

rmin = 1 leads to slower training but better perfor-

mance while a larger maximum rank leads to faster

training but worse performance. However, unlike

homogeneous LoRA, the overfitting does not get

7

12909

Reddit (RougeL) Multi-Session Chat (Perplexity)
PaLM 2-XXS PaLM 2-XS PaLM 2-XXS PaLM 2-XS

HETLORA, γ = 1 92.17 (±0.08) 91.95 (±0.03) 55.07 (±0.81) 40.92 (±0.58)
HETLORA, γ = 0.99 94.23 (±0.03) 94.41 (±0.05) 53.93 (±1.57) 38.76 (±0.52)
HETLORA, γ = 0.95 89.62 (±1.33) 83.19 (±1.70) 71.10 (±1.39) 46.39 (±0.87)
HETLORA, γ = 0.85 60.31 (±3.04) 53.28 (±2.47) 120.72 (±10.93) 59.67 (±1.98)

Table 4: Ablation study on the effect of the decaying factor γ for HETLORA’s self-rank pruning in the local training step.
While aggressive pruning can be harmful to HETLORA’s performance, pruning (γ = 0.99) can outperform the case when there
is no pruning at all (γ = 1) by reducing the noise introduced by large rank clients with low data complexity.

0 50 100 150 200
Communication Rounds

40

50

60

70

80

90

100

Ro
ug

eL

HomLoRA r= 5
HomLoRA r= 50
HetLoRA
Full Fine-Tune

(a) Reddit

0 50 100 150 200
Communication Rounds

102

103

Pe
rp

le
xi

ty
HomLoRA r= 5
HomLoRA r= 50
HetLoRA
Full Fine-Tune

(b) MSC

Figure 5: Comparison of the performance across homoge-
neous LoRA, heterogeneous LoRA, and full fine-tuning. Het-
erogeneous LoRA achieves better performance than homoge-
neous LoRA with fewer number of communication rounds.

as severe for heterogeneous LoRA even with much

larger ranks such as rmax = 50. We can imply from

this result that the smaller rank LoRA modules act

as a regularizer in heterogeneous LoRA prevent-

ing overfitting. Next, we show that by adding the

self rank-pruning and sparsity-weighted aggrega-

tion, we improve the performance such that even

with rmin = 5 we are able to prevent overfitting

issues and achieve better training speed and final

performance than other baselines.

Heterogeneous LoRA compared to PEFT. Fi-

nally, we compare HETLORA with other baselines

in Table 3 and Fig. 5. We see that HETLORA with

rmin = 5 and rmax = 50 achieves faster training

as well as better performance than homogeneous

LoRA cases with both edge cases of the ranks

r ∈ {5, 50} and reconostruction+SVD which was

explained in Section 3.4. This implies that HET-

LORA is not only practical in the sense that clients

are allowed to have their own rank values, it can

also outperform the limited case of homogeneous

LoRA where all clients have r = rmin or the im-

practical case where all clients have r = rmax.

Heterogeneous LoRA compared to Full-Fine

Tuning. In Table 3, we can see that for the Red-

dit text summarization, HETLORA achieves sim-

ilar performance with full-fine tuning with only

R
a

ti
o

 o
f

co
m

m
u

n
ic

a
te

d

p
a

ra
m

e
te

r
#

 t
o

 F
u

ll
 F

in
e

-T
u

n
in

g

Full HomLoRA

(min rank)

HomLoRA

(max rank)

HetLoRA

Reddit

MSC
1.000

0.998

0.004

0.002

0.000

Figure 6: Ratio of communicated number of parameters for
different PEFT methods to full fine-tuning to achieve the
target value for the metric where it is RougeL 80 for Reddit
text summarization task and perplexity 150 for the multi-
session chat response task. The ‘X’ means that the target
metric is not achieved even after convergence.

0.003% of parameters trained compared to full-fine

tuning. For chat response, HETLORA achieves

slightly lower performance than full fine-tuning.

However, full fine-tuning requires to train a much

larger number of parameters compared to HET-

LORA, making it infeasible to train with ODFMs

in practice. We also show in Fig. 6 that to achieve

the targeted performance for both Reddit and MSC

task, HETLORA requires significantly less num-

ber of parameters to be trained and communicated

compared to full fine-tuning. Although for Reddit,

HOMLORA has a slightly less number of param-

eters to be trained, the final achieved RougeL is

outperformed by HETLORA as shown in Table 3.

Effect of the Decaying Factor γ. Lastly, we

conduct an ablation study on the effect of the de-

caying factor γ of HETLORA’s local training step

with self-rank pruning in Table 4. We observed that

aggressive pruning hurts the performance where

γ = 0.85 shows the worse performance across

the varying γ values. On the other hand, no prun-

ing at all (γ = 1) underperforms the case when

there is pruning (γ = 0.99), showing that reducing

the noise introduced by large rank clients which

data complexity is actually not that high indeed

improves the performance.

8

12910

5 Discussions and Concluding Remarks

In our work, we investigated federated fine-tuning

for ODFMs by proposing HETLORA that enables

utilizing the power of FMs at the edge by taking

device system and data heterogeneity into con-

sideration. HETLORA is not only practical but

also achieves better training speed, communica-

tion/computation efficiency, and final performance

compared to other relevant baselines such as SVD-

based LoRA, homogeneous LoRA, or full fine-

tuning. Our findings in this work opens up several

questions worth investigating. For instance, if the

settings allow us to assign specific ranks to clients

what will be the effective way to assign the ranks

across clients for better convergence and perfor-

mance? Another important next step of our work

includes pursuing the theoretical convergence and

generalization of heterogeneous LoRA.

6 Limitations

In this work, we address tackling system and data

heterogeneity in federated fine-tuning of on-device

foundation models. Our work is motivated by

clients being able to carry different ranks for the

LoRA fine-tuning method depending on their avail-

able resources, and thus exploiting this character-

istic to improve federated fine-tuning with het-

erogeneous LoRA. However, our work assumes

that the rank distribution across clients (which is

analogous to how system resources are distributed

across clients) is independent to the data distribu-

tion. There can be scenarios in which this is not

necessarily the case where the rank and data dis-

tribution can be correlated. For instance, more

affluent populations can have better off devices

with larger resource capacity, and may have data

distributions different to that of less affluent pop-

ulations. Such correlation should be explored for

future work to better understand the implications

of heterogenoeus LoRA.

References

Anonymous. 2024. Flora: Federated fine-tuning large
language models with heterogeneous low-rank adap-
tations.

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H.
Ezzeldin, Qingfeng Liu, Kee-Bong Song, Mostafa
El-Khamy, and Salman Avestimehr. 2023. Slora:

Federated parameter efficient fine-tuning of lan-
guage models. CoRR, abs/2308.06522.

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao,
and Yaliang Li. 2024. Federated fine-tuning of large
language models under heterogeneous tasks and
client resources. arXiv preprint arXiv:2402.11505.

Rishi Bommasani, Drew A. Hudson, and et. al.
Ehsan Adeli. 2022. On the opportunities and
risks of foundation models. arXiv preprint
arXiv:2108.07258.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Anto-
nio Marcedone, H. Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. 2016.
Practical secure aggregation for federated learning
on user-held data. In NIPS Workshop on Private
Multi-Party Machine Learning.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. arXiv preprint arXiv:2005.14165.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George
Karypis. 2022. Differentially private bias-term only
fine-tuning of foundation models. arXiv preprint
arXiv:2210.00036.

Jinyu Chen, Wenchao Xu, Song Guo, Junxiao Wang,
Jie Zhang, and Haozhao Wang. 2022. Fedtune: A
deep dive into efficient federated fine-tuning with
pre-trained transformers. CoRR, abs/2211.08025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi,
Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong,
Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine,
Vincent Vanhoucke, Karol Hausman, Marc Tou-
ssaint, Klaus Greff, Andy Zeng, Igor Mordatch,
and Pete Florence. 2023. Palm-e: An embod-
ied multimodal language model. arXiv preprint
arXiv:2303.03378.

Gemini Team Google. 2024. Gemini: A family
of highly capable multimodal models. https://

arxiv.org/abs/2312.11805.

9

12911

Google. 2022. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311.

Google. 2023. Palm 2 technical report. arXiv preprint
arXiv:2305.1040.

Google DeepMind. 2023. Introducing palm2.
https://blog.google/technology/ai/

google-palm-2-ai-large-language-model/.

Tao Guo, Song Guo, and Junxiao Wang. 2023. Pfed-
prompt: Learning personalized prompt for vision-
language models in federated learning. In Proceed-
ings of the ACM Web Conference 2023, WWW ’23,
page 1364–1374, New York, NY, USA. Association
for Computing Machinery.

Tao Guo, Song Guo, Junxiao Wang, and Wenchao Xu.
2022. Promptfl: Let federated participants cooper-
atively learn prompts instead of models — feder-
ated learning in age of foundation model. CoRR,
abs/2208.11625.

Venkatesan Guruswami and Ravi Kannan. 2012. Lec-
ture notes in computer science theory for the infor-
mation age.

Samuel Horváth, Stefanos Laskaridis, Shashank Ra-
jput, and Hongyi Wang. 2024. Maestro: Uncover-
ing low-rank structures via trainable decomposition.
In Proceedings of the International Conference on
Machine Learning (ICML).

Neil Houlsby, Andrei Giurgiu, Stanisław Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In Proceedings of the International Conference on
Machine Learning (ICML).

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. In International Conference
on Learning Representations (ICLR).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In The 36th
Conference on Neural Information Processing Sys-
tems (NeurIPS 2022).

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What
would elsa do? freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090.

Gwen Legate, Nicolas Bernier, Lucas Caccia, Edouard
Oyallon, and Eugene Belilovsky. 2023. Guiding the
last layer in federated learning with pre-trained mod-
els. In Workshop of Federated Learning and Analyt-
ics in Practice@ICML.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Empirical Methods in Natural Language
Processing (EMNLP).

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for gener-
ation. arXiv preprint arXiv:2101.00190.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and
Yvette Graham. 2024. Alora: Allocating low-rank
adaptation for fine-tuning large language models.
arXiv preprint arXiv:2403.16187.

Andre Manoel, Mirian del Carmen Hipolito Garcia, Tal
Baumel, Shize Su, Jialei Chen, Robert Sim, Dan
Miller, Danny Karmon, and Dimitrios Dimitriadis.
2023. Federated multilingual models for medical
transcript analysis. In Conference on Health, Infer-
ence, and Learning (CHIL), pages 147–162.

H. Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Agøura y Arcas.
2017. Communication-Efficient Learning of Deep
Networks from Decentralized Data. International
Conference on Artificial Intelligenece and Statistics
(AISTATS).

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:submit/4812508.

Alec Radford, Jong Wook Kim, Chris Hallacy,
Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, Gretchen Krueger, and Ilya Sutskever.
2021. Learning transferable visual models from
natural language supervision. arXiv preprint
arXiv:2103.00020.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Za-
heer, Ameet Talwalkar, and Virginia Smith. 2020.
Federated optimization for heterogeneous networks.
In Proceedings of the 3rd MLSys Conference.

Joao Sedoc, Daphne Ippolito, Arun Kirubarajan, Jai
Thirani, Lyle Ungar, and Chris Callison-Burch.
2019. Chateval: A tool for chatbot evaluation. Pro-
ceedings of NAACL-HLT.

Ofir Ben Shoham and Nadav Rappoport. 2023. Feder-
ated learning of medical concepts embedding using
behrt. arXiv preprint arXiv:2305.13052.

Aliaksandra Shysheya, John F Bronskill, Massimil-
iano Patacchiola, Sebastian Nowozin, and Richard E
Turner. 2023. Fit: Parameter efficient few-shot
transfer learning for personalized and federated im-
age classification. International Conference on
Learning Representations (ICLR).

10

12912

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding.
2024. Improving lora in privacy-preserving fed-
erated learning. In International Conference on
Learning Representations (ICLR).

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Michael Völske, Martin Potthast, Shahbaz Syed, and
Benno Stein. 2017. TL;DR: Mining Reddit to
learn automatic summarization. In Proceedings of
the Workshop on New Frontiers in Summarization,
pages 59–63, Copenhagen, Denmark. Association
for Computational Linguistics.

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis,
Kin K. Leung, Christian Makaya, Ting He, and
Kevin Chan. 2019. Adaptive federated learning
in resource constrained edge computing systems.
IEEE Journal on Selected Areas in Communications,
37(6):1205 – 1221.

Colin Wei, Sang Michael Xie, and Tengyu Ma. 2021.
Why do pretrained language models help in down-
stream tasks? an analysis of head and prompt tun-
ing. Advances in Neural Information Processing
Systems, 34:16158–16170.

Mitchell Wortsman, Suchin Gururangan, Shen Li, Ali
Farhadi, Ludwig Schmidt, Michael Rabbat, and
Ari S. Morcos. 2023. lo-fi: distributed fine-tuning
without communication. Transactions on Machine
Learning Research (TMLR).

Xinghao Wu, Xuefeng Liu, Jianwei Niu, Haolin Wang,
Shaojie Tang, and Guogang Zhu. 2024. Fedlora:
When personalized federated learning meets low-
rank adaptation.

Jing Xu, Arthur Szlam, and Jason Weston. 2021. Be-
yond goldfish memory: Long-term open-domain
conversation. arXiv preprint arXiv:2107.07567.

Liping Yi, Han Yu, Gang Wang, and Xiaoguang Liu.
2023. Fedlora: Model-heterogeneous personalized
federated learning with lora tuning. arXiv preprint
arXiv:2310.13283.

Sixing Yu, J. Pablo Muñoz, and Ali Jannesari. 2023.
Federated foundation models: Privacy-preserving
and collaborative learning for large models. arXiv
preprint arXiv:2305.11414.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, and Guoyin Wangand Yiran Chen.
2023a. Towards building the federated gpt: Feder-
ated instruction tuning. CoRR, abs/2305.05644.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023b. Adaptive budget allocation for
parameter-efficient fine-tuning. In The 11th Inter-
national Conference on Learning Representations
(ICLR).

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Zhuo Zhang, Xiangjing Hu, Jingyuan Zhang, Yating
Zhang, Hui Wang, Lizhen Qu, and Zenglin Xu.
2023c. Fedlegal: The first real-world federated
learning benchmark for legal nlp. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (ACL).

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang,
Yue Yu, Lizhen Qu, and Zenglin Xu. 2023d.
Fedpetuning: When federated learning meets the
parameter-efficient tuning methods of pre-trained
language models. Findings of the Association for
Computational Linguistics (ACL).

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu,
Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan,
Lifang He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu,
Pengtao Xie, Caiming Xiong, Jian Pei, Philip S. Yu,
and Lichao Sun. 2023. A comprehensive survey on
pretrained foundation models: A history from bert
to chatgpt. arXiv preprint arXiv:2302.09419.

11

12913

