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DRAGON: A Dialogue-Based Robot for Assistive
Navigation With Visual Language Grounding

Shuijing Liu , Aamir Hasan , Graduate Student Member, IEEE, Kaiwen Hong , Runxuan Wang ,
Peixin Chang , Zachary Mizrachi , Justin Lin , D. Livingston McPherson , Wendy A. Rogers ,

and Katherine Driggs-Campbell , Member, IEEE

Abstract—Persons with visual impairments (PwVI) have diffi-
culties understanding and navigating spaces around them. Cur-
rent wayfinding technologies either focus solely on navigation or
provide limited communication about the environment. Motivated
by recent advances in visual-language grounding and semantic
navigation, we propose DRAGON, a guiding robot powered by a
dialogue system and the ability to associate the environment with
natural language. By understanding the commands from the user,
DRAGON is able to guide the user to the desired landmarks on the
map, describe the environment, and answer questions from visual
observations. Through effective utilization of dialogue, the robot
can ground the user’s free-form language to the environment, and
give the user semantic information through spoken language. We
conduct a user study with blindfolded participants in an everyday
indoor environment. Our results demonstrate that DRAGON is
able to communicate with the user smoothly, provide a good guiding
experience, and connect users with their surrounding environment
in an intuitive manner.

Index Terms—Human-centered robotics, natural dialog for HRI,
AI-enabled robotics.

I. INTRODUCTION

WAYFINDING, defined as helping people orient them-
selves in an environment and guiding them from place
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Fig. 1. DRAGON identifies the intents of the user through dialogue, grounds
language with the environment, and guides the user to their desired goal.

to place, is a longstanding challenge for persons with visual
impairments (PwVI) [1], [2]. To improve the quality of PwVI’s
lives, we aim to build a guiding robot that can connect language
to the surrounding world to verbally interact with PwVI.

To pair wayfinding with communication, a line of previous
works gives users signals such as navigation instructions [3],
[4] and basic environment information [5], [6]. As a step further,
other wayfinding technologies recognize and convey the seman-
tic meaning of the surrounding environment such as naming the
landmarks [7], [8], [9]. However, these methods require special
environmental setups, such as multiple RFID tags and bluetooth
beacons. To improve the aforementioned systems with recent
advances in machine learning [10], [11], [12], we aim to remove
dependence on these types of special infrastructure by integrat-
ing advances in visual-language grounding into conversational
wayfinding.

More broadly, technologies in vision-language navigation and
voice-controlled robots have made significant progress [10],
[11], [12]. These navigation agents are able to perform var-
ious tasks according to natural language commands such as
“bring me a cup,” with simple onboard sensors. This is usually
achieved by encoding visual landmarks in a semantic map and
associating language with these landmarks during navigation,
which is referred to as visual-language grounding [11], [13].
However, these general-purpose frameworks assume that hu-
mans can provide step-by-step navigation instructions. These
systems are not built for PwVI, who often need help perceiving
the environment and planning paths. Thus, building a robot guide
that can intuitively exchange semantic information with users
remains an open challenge.

In this paper, we propose DRAGON, a Dialogue-based Robot
for Assistive navigation with visual-language Grounding. In
Fig. 1, since PwVIs have limited vision, DRAGON uses speech
to communicate with the user and a physical handle for fully
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TABLE I
BENCHMARK FOR CONVERSATIONAL WAYFINDING TECHNOLOGIES

autonomous navigation guidance. The dialogue and navigation
can be executed simultaneously. When the user gives a speech
command, Speech Recognition (SR) and Natural Language
Understanding (NLU) modules first extract the user’s intents
and desired destinations. The user command does not have any
templates or constraints on vocabulary or expressions. Based on
the outputs of NLU, one of the following grounding functional-
ities is triggered: (1) finding users’ desired destinations with a
visual-language model [14] and guiding them to the destinations;
(2) describing nearby objects; and (3) answering questions from
users. With (2) and (3), DRAGON can help users gain awareness
of their surroundings during navigation.

To find users’ intended goals on a map, we propose a
novel landmark recognition module based on CLIP [14]. After
a straightforward mapping process, the landmark recognizer
is able to select the landmark whose image best matches the
user descriptions. Our landmark recognizer is able to associate
flexible and open-vocabulary commands with few constraints
on user expressions. If the description is ambiguous, our sys-
tem will disambiguate user intents through additional dialogue.
Then, the corresponding goal location is passed to the path
planners for navigation guidance. Combined with the robot’s
navigation module, the powerful and reliable landmark recog-
nizer is essential to ensure the success and user experience of
DRAGON.

Our main contributions are as follows: (1) As an interactive
navigation guide for PwVI, DRAGON enables voice-based
dialogue, which carries rich information and has grounding
capabilities; (2) We propose a novel landmark mapping and
recognition method that can associate free-form language com-
mands with image landmarks. Our method can be easily plugged
into the standard navigation module of mobile robots; (3) A user
study with five blindfolded participants (N=5) demonstrates that
DRAGON is able to understand user intents through dialogue
and guide them to desired destinations in an intuitive manner.
To the best of our knowledge, our work is the first to show
that visual-language grounding via dialogue benefits robotic
assistive navigation.

II. RELATED WORKS

A. Wayfinding Robots and Technologies

Navigation guidance: To guide PwVI from point A to point
B following a planned path, unactuated devices, such as smart-
phones and wearables, rely on haptic or audio feedback to give
instructions such as going straight and turning right [4], [7],

[8], [17]. However, delays and misunderstandings might lead
to inevitable deviations, which take time and effort to recover
from [5], [7]. On the other hand, robots provide a physical
holding point, which offers kinesthetic feedback to minimize
deviations and reduce the mental load of users [15], [18], [19].
Such physical guidance can be combined with aforementioned
verbal or haptic navigation instructions to further improve per-
formance at the cost of a more expensive system [3], [6]. To
ensure both efficiency and low cost, we mount a handle on our
robot to give intuitive real-time steering feedback in navigation.

Semantic communication: A large part of blind naviga-
tion technologies ignores exchanging environmental informa-
tion with users [3], [18], [20]. To deal with this issue, CaBot
applies object recognition to describe the user’s neighborhood,
yet the user cannot hold conversations with the robot or choose
their destinations [6]. To enable users to choose a semantic
goal (e.g. a restroom), some works mark points of interest
using bluetooth beacons [7], [8] or RFID tags [9], [15], which
requires heavy instrumentation. As an alternative, extracting
semantic information from ego-centric camera images is much
cheaper and easier. For example, SeeWay uses skybox images
to represent landmarks [17]. Similarly, Landmark AI offers
semantic-related functionalities including describing the envi-
ronment, reading road signs, and recognizing landmarks using
a phone camera [16]. However, these phone applications are
not robots and thus cannot physically guide users or provide a
stable mounting point for cameras. In contrast, Table I shows that
DRAGON brings conversational wayfinding to the next level:
A robot can simultaneously offer physical guidance and enable
users to trigger a variety of functionalities through dialogue.

B. Command Following Navigation

Tremendous efforts have been made in understanding and
grounding human language instructions for various robotic
tasks [10], [11], [12]. In command following navigation, a
modular pipeline usually consists of three modules: (1) an NLU
system to map instructions to speaker intent; (2) a grounding
module to associate the intent with physical entities; and (3)
a SLAM and a planner to generate feasible trajectories [13],
[21], [22]. Other works attempt to learn end-to-end policies
from simulated environments or datasets [23], [24], [25], [26].
However, due to sim-to-real gaps in perception, language, and
planning, deploying these policies to the real world remains an
open challenge for applications in the low data regime such as
wayfinding [27]. Therefore, we adopt the modular pipeline to
ensure performance in the real world.
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Fig. 2. Overview of the system and platform of DRAGON. (a) Submodules, message passing, and user interface. (b) The robot platform.

C. Semantic Landmark Recognition

Understanding the semantic meanings of a scene is a vital
step towards interactive navigation [11], [13]. Some works re-
construct volumetric maps for the environment, where each grid
is associated with a semantic label [11], [22], [28]. Other works
build more abstract scene graphs [29], [30]. However, imple-
menting these methods on a real robot is expensive, as they re-
quire accurately calibrated depth cameras and high-performing
instance segmentation models.

Another line of work collects images as landmarks to create
topological graphs [31], [32], [33]. In navigation, the goal loca-
tion is retrieved by computing the similarity between a goal
image and all stored landmarks. However, the above works
only consider image goals, which are less natural than language
in human-centered applications. Inspired by Shah et al. [13]
and Huang et al. [11], we use CLIP [14] to associate image
landmarks with users’ language commands. Compared with
previous works that use closed vocabulary object detectors,
which are limited to a predefined set of semantic classes [28],
[29], [30], our method can handle more flexible and open-
vocabulary commands. We use CLIP to select landmarks and
keep traditional cost maps for planning, enabling easy inte-
gration of our method into the navigation stack of mobile
robots.

III. SYSTEM OVERVIEW

In this section, we describe the setup and configuration of
our robot guide with special considerations for PwVI users.
Fig. 2(a) shows an overview of our proposed system with
three main components: (1) The TurtleBot platform (yellow);
(2) Audio communication interface (purple); (3) Dialogue and
grounding modules (red). The modules communicate with each
other through ROS. We expand part (1) and (2) in this section
and part (3) in Section IV.

A. Robot Platform

Overview: We use the Turtlebot2i as our robot platform.
As shown in Fig. 2(b), the robot is fitted with the following
sensors and equipment: (1) An RP-Lidar A3 laser range finder is
mounted on the top of the robot structure for SLAM; (2) An Intel
RealSense D435i camera is mounted on the top of a monopod
facing forward for scene description and question answering;
(3) A wireless headset is used to communicate with the user.
The headset is lightweight and maximally protects the users’
privacy, while the absence of wires avoids tripping hazards;

(4) A T-shaped handle is attached to the top rear side of the
robot as a holding point for the user’s arm. The handle allows
users to choose their preferred holding configurations such as
one hand or two hands. The robot is connected to a desktop
computer which provides more computation resources through
WiFi.

Planning and navigation: The robot operations are managed
by the ROS move_base navigation stack, which is a standard
package to autonomously navigate a mobile robot to a given goal
pose. Before navigation, we create a 2D occupancy map of the
environment using laser-based SLAM and mark the semantic
landmarks at the same time (see Fig. 3 and Section IV-B for
details). At the beginning of each trial, the goal pose is obtained
from the dialogue with the user (further specified in Section IV).
During navigation, adaptive Monte Carlo localization is used to
localize the robot on the map. We use the dynamic window
approach (DWA) [34] and A∗ as local and global planners,
respectively. The minimum translational velocity is restricted
to be non-negative to prevent the robot from moving backward
and colliding with the user. The maximum velocity of the robot
can be adjusted by the user (see Section IV-D).

B. Audio Communication Interface

Speech is a natural choice for human-robot communication,
particularly in cases where the human has limited vision [2],
[35], [36]. To this end, as shown in purple in Fig. 2(a), we
develop an audio communication interface that consists of:
(1) Input: When audio is captured by the audio_capture
package, the OpenAI Whisper speech recognition model [37]
transcribes speech commands to text, which are passed to the
NLU module. The SR module continuously transcribes the
audio from the microphone and publishes the text transcriptions
to a ROS topic in real time; (2) Output: We use the Google
text-to-speech (TTS) service to convert the text output from
the visual-language modules and navigation module to speech,
which is then narrated to the user via the headset. The TTS is
another ROS topic that converts and plays the synthesized sound
constantly.

IV. DIALOGUE AND GROUNDING

The goal of DRAGON is to connect the user with the envi-
ronment through conversation. In this section, we describe how
our dialogue system understands user language (Section IV-A),
maps and localizes semantic landmarks (Section IV-B),
provides information about the environment (Section IV-C), and
adjusts the navigation preference of the user (Section IV-D). Our
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grounding system is visualized in the red parts of Fig. 2(a). The
inputs to the subsystem are the transcribed texts from SR and
the outputs are synthetic speech from TTS.

A. Natural Language Understanding (NLU)

The NLU takes a transcribed sentence as input and outputs
user intents and entities of interest. The intent recognizer is a
multi-label classifier with all classes shown in Table II. The
intents are designed based on the needs of our tasks. The entities
are locations, objects, and object attributes which include the
material and functionalities of an object. We use Dual Intent and
Entity Transformer for intent classification and entity recogni-
tion [38]. We train the model using a custom dataset with 1092
sentences collected by ourselves. For each intent, we collect
various expressions including misspelled and phonetically sim-
ilar phrases, which makes our NLU robust to the nuances of
human language and the errors caused by the SR. For example,
“a think” and “a sink” both refer to the kitchen sink. We also
collected expressions for multi-intents and unknown intents so
that the NLU can fulfill a request containing multiple intents and
ignore noise input. For instance, “Hello robot, can you take me
to a sofa?” will both activate the robot and set an object goal.
Once the intent and entities are extracted, the corresponding
downstream module is activated. The NLU may pass additional
input arguments to modules such as extracted entities or the
whole sentence. Different downsteam models are triggers based
on extracted intents and entities.

During navigation, the landmark recognition is triggered if the
user intent is Object goal or Location goal and the NLU extracts
a goal object from the input sentence. The extracted information
of the goal is kept in memory throughout the conversation. If the
user mentions additional information about the landmark, we use
simple prompt engineering to make the description more spe-
cific. For example, locations and attributes of objects, such as “a
chair in the kitchen,” can be added to the memorized description.
In addition, the robot uses clarification dialogue to disambiguate
the desired landmark if the input description does not contain any
object. If the user only provided the location or attributes without
mentioning the object name (e.g. “Take me to the kitchen”), our
system provides hints to encourage the user to provide more
specific descriptions (e.g. “What object are you looking for in the
kitchen?”). If there are multiple similar objects in different land-
marks, our system disambiguates the user’s preferred landmark
(e.g. “What kind of chair are you looking for? A dining chair, an
office chair, or a sofa?”). After choosing a unique landmark, our
system confirms the memorized goal description with the user
(e.g. “Do you wish to go to a dining chair?”). No further action is
taken until the user affirms the goal. The memorized goal infor-
mation is cleared after the confirmation to prepare for the next
goal.

With the disambiguation and confirmation dialogue, the NLU
is able to precisely capture the user’s desired destination with
minimal constraints on the user’s phrasing, which is crucial for
the whole navigation experience. Using better language models
for the NLU is left for future work.

B. Landmark Mapping and Recognition

To guide the user to their object goals, we first record the
images and locations of landmarks during SLAM. Then, we use
a fine-tuned CLIP model to match the user’s description with
goal images, whose corresponding location and orientation are

TABLE II
ALL USER INTENTS AND THEIR DESCRIPTIONS

sent to the navigation stack for navigation guidance. The CLIP
model version is ViT-B/32 [14].

The landmark mapping process is performed simultaneously
with SLAM. During SLAM, when the robot is at a landmark that
might be a point of interest, we simply save the current robot
pose in the map frame and an RGB image of the landmark to
the disk with a single key press. No labels or text descriptions
are needed at this stage. The resulting landmark map is shown
in Fig. 3.

During navigation, this module is activated when the intent is
Object goal or Location goal. After the goal is confirmed by the
NLU, the CLIP model selects the landmark whose image has
the highest similarity score with the descriptions of landmarks.
To obtain the image-text similarity score, a text encoder and
an image encoder first convert the input text and all images to
vector embeddings. Then, the text and image similarity score is
computed by the cosine similarity between the pairwise text and
image embeddings. The image with the highest similarity score
is selected as the goal. Finally, the corresponding location of the
chosen landmark on the map is sent to an action client, which
sets the goal for the robot.

The zero-shot performance of pre-trained CLIP models is
not satisfactory in our environment due to distribution shifts.
As shown in Fig. 3, the objects in the images are frequently
cropped due to the low mounting point of our camera and the
close distance between the camera and the objects. In addition,
the descriptions of landmarks from a PwVI might be vaguer
than those in public datasets (e.g. “a chair” v.s. “a blue chair in
front of a white wall”). To this end, we fine-tune the CLIP model
with a custom dataset containing 544 image and text description
pairs with a 8× 10−6 learning rate for 35 epochs. The images
are taken by the robot camera in our environment and the text is
provided by the authors. By using an open-vocabulary model to
recognize landmarks, DRAGON can handle free-form language
and is not limited to a fixed set of object classes. Thus, the user
expressions are less restricted, making the grounding module
easier for non-experts to use.

C. Environment Understanding Modules

To help the user gain awareness of their surroundings, we use
an object detector [39] to describe the objects (activated if the
intent is Describe) and a VQA model [40] to answer the user’s
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questions (activated if the intent is Ask). Both models take the
current camera image as input.

The output of the object detector consists of a list of detected
instances, their object classes, confidence scores, and bounding
boxes. To avoid narrating a long list and to keep the description
concise, we post-process the output as follows. We first apply
non-maximum suppression and filter out the detected instances
with low confidence scores. Then, for the remaining instances,
we keep the top three classes with the largest average bounding
boxes, and list the object class names together with the numbers
of objects (e.g. “2 chairs, 1 person, and 1 table”).

The VQA model takes the current camera image and the user’s
question from the SR and outputs a short answer to the question.
Since healthy people and PwVI would ask different questions
to the same images [41], we collect a dataset of 10252 (image,
question, answer) triplets to fine-tune the VQA model for 20
epochs. Again, images are taken by the robot camera in our
environment and the text is provided by the authors. To handle
free-form user expressions, the dataset contains cases where
multiple questions have the same meaning but different phrasing
(e.g. “Is any person in front of me?” and “Anyone here?”).

Finally, the outputs of the object detector and VQA are
narrated to the user in real time. Since both models can only
take an RGB image, our system cannot provide depth-based
information or detect anything out of the camera view.

D. Navigation Preference Customization

To accommodate the different walking paces of users and to
avoid tiring the user during navigation, the robot can change its
speed (activated if the intent is Accelerate or Decelerate), take
a pause (Pause), and resume (Resume). To pause the robot, our
system stores and cancels the current goal from the action client
in the navigation stack. To resume, the stored goal is sent to the
action client again. To update the speed, we change the maximum
translational and rotational velocities of the DWA local planner
in real-time.

V. EXPERIMENTS

A. Baseline

We compare the CLIP-based landmark recognizer with a
closed-vocabulary object detector as the baseline [39]1. The
vocabulary size, or the number of classes, of the detector is
more than 1200 and it is fine-tuned with the same amount of data
as CLIP. In the baseline, the landmark images are passed into
the object detector, which outputs the class names of detected
objects. During navigation, the baseline chooses the landmark
with the highest number of objects mentioned by the user. Since
the vocabulary of object detectors is fixed, the baseline is unable
to incorporate an object’s attributes or locations obtained from
disambiguation. All other modules are the same for our system
and the baseline.

B. User Study

Environment: All experiments were conducted in an every-
day indoor environment in a university building. Three routes
were created with furniture obstacles. Fig. 3 provides a layout

1Open-vocabulary object detectors exist [39]. We choose a closed-vocabulary
detector to represent a closed-vocabulary grounding model.

Fig. 3. Map of our environment with semantic landmarks. The images are
landmarks with locations marked by red dots. The orange lines are the three
routes in the user study. The red squares are the starting locations of routes.

TABLE III
EXAMPLE EXPRESSIONS AND THEIR CORRESPONDING LANDMARKS FROM

CLIP VS. THE DETECTOR

of the environment, all landmarks, and three routes highlighted
with orange curves. The routes were designed to have varying
levels of difficulties for the system to correctly interpret the
destination. Specifically, landmark A of Route 1 contains simple
objects, landmark B of Route 2 contains more complicated
objects, and landmark C of Route 3 contains a transparent door
that is hard for object recognition.

Participants: The user study was conducted with N=5 partic-
ipants (mean age=26; 3 males; 2 females; all participants were
university students). All participants have full (corrected) vision
and are asked to wear a blindfold to simulate a visual impairment.
While our true target population are PwVI, the purpose of this
pilot study is to validate the capabilities of DRAGON . A user
study with PwVI is left for future work.

Procedure: Participants were first familiarized with the goals
of the study and requested to fill a demographic and robot tech-
nology survey. Then, participants were provided with a test run to
get familiar with the system and its intricate navigation feedback
mechanism. To begin the trial, the users were asked to command
the robot to take them to a predetermined goal destination.
Participants were not constrained in either the vocabulary or the
sentence structure of their speech commands. The users were
also informed that they could interact with the robot (e.g. ask
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Fig. 4. An example navigation trial with human-robot dialogue in the user study. In the dialogue boxes, “H” denotes the human and “R” denotes the robot. The
camera view is shown in the lower right corner.

for a description of their surroundings) at any point of the naviga-
tion. After each route, we used a short questionnaire to measure
the participant’s perception of the system. A strictly structured
post-survey interview was conducted after participants finished
all three routes to collect their feedback with the system. The
same procedure was performed for CLIP and the detector, re-
sulting in a total of 15 trials per method (3 routes and 5 users).
The order of which method was tested first was randomized for
each participant to minimize the bias introduced due to the order
of testing. All materials included in the user study, including a
full walkthrough of the whole study for a participant and all
questionnaires can be found here: https://drive.google.com/file/
d/15KNR6C82mUrKSPMFRCnAJZ1C2NGX7dXJ/view.

C. Metrics

Objective metrics: We measure the accuracy of all inter-
actions during the user study, including 312 NLU, 30 land-
mark recognition (LR) and navigation trials, 15 environment
description (EnvDes), 74 VQA, and 15 navigation preference
adjustment (NavAdj). The NLU is correct when the extracted
intent and entities (if any) are both correct. We also measure the
accuracy of the NLU by taking the correctness of SR into account
to analyze the effect of wrong SR. The effect of wrong NLU
outputs is ignored when evaluating its downstream modules.
An LR is considered correct if the robot chooses the correct
landmark. A navigation trial is successful if the robot guides the
user to the correct landmark without any delays or collisions
along the route. An EnvDes is considered fully correct if all
named objects exist in the camera image and the number of
all objects is correct. It is considered partially correct if all
named objects exist but the number of some objects is wrong.
The correctness of answers from VQA is based on the camera
images, not on the information out of the camera view. A NavAdj
is successful if the change in robot speed is consistent with the
user commands.

Subjective metrics: For both methods, we compare the scores
for categories from the short questionnaire in Table VI. The
difference in scores for each participant was aggregated and ana-
lyzed to discount individual biases. We evaluate user preferences
for the other modules through a simple Likert scale analysis
on the responses from the post-survey interview. Additionally,
participants’ feedback is summarized for qualitative analysis.

VI. RESULTS

In this section, we discuss the results of our user study.
Example navigation trials, as well as demonstrations of each
module during the user study, are in this video and Fig. 4.

TABLE IV
SUCCESS RATES (%) OF LR AND NAVIGATION (INCLUDING OVERALL SUCCESS
RATE, AND SUCCESS RATE IF LR IS CORRECT), AND THE AVERAGE NUMBER

OF DIALOGUE ROUNDS FOR A SUCCESSFUL LR

A. Quantitative Evaluation

LR and navigation: CLIP and the baseline only differ in LR
and its resulting navigation. As seen in Table IV, the success rate
of navigation is 100% if LR succeeds, because ROS navigation
stack can navigate the robot to any desired goal pose robustly
in our environment. This dependency indicates that the perfor-
mance of LR is the key factor for navigation in the DRAGON
system.

For LR, as shown in Table IV, our CLIP model with dis-
ambiguation outperforms the detector baseline by achieving
100% success rate in LR and navigation with fewer rounds of
dialogue on average. We attribute this result to the fact that
CLIP is an open vocabulary model that can take free-form
query text, which is essential for our task because the user
may use different expressions to refer to the same landmark.
On the contrary, a closed vocabulary object detector can only
handle a fixed set of object classes with limited expressions.
For example, in Table III, although both models can handle
different objects that belong to the same landmark, CLIP can
associate synonyms, such as “sofa” and “couch”, and wrong
transcriptions, such as “coach”, to the correct landmark. In
contrast, the closed-vocabulary detector can only handle strictly
fixed expressions. The detector misidentifies some objects such
as the transparent door in Landmark C after fine-tuning. Since
our target users are usually non-experts, the baseline sometimes
needs the user to rephrase multiple times to recognize the goal,
which causes the user to run out of patience, and results in failure
or more rounds of dialogue.

Besides CLIP, the disambiguation dialogue also contributes to
the performance. With disambiguation, additional information
such as the material and functionality of objects can be merged
into the query text, such as “fabric chair” and “relaxing chair”
as shown in Table III. These rich descriptions are helpful in dis-
tinguishing landmarks that have the same objects with different
attributes, such as the different types of chairs in Landmark A,
D, and E in Fig. 3 with fewer rounds of user rephrasing.

NLU: In Table V, the overall accuracy of NLU is over
15% higher than SR, as the NLU is trained with incorrectly
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TABLE V
ACCURACIES (%) OF THE SR, NLU (INCLUDING OVERALL ACCURACY,

ACCURACY IF SR IS CORRECT AND IF SR IS WRONG), ENVDES WITH FULLY
CORRECT AND PARTIALLY CORRECT NUMBER OF OBJECTS, VQA, AND

NAVIGATION ADJUSTMENT MODULES

TABLE VI
MEAN USER EXPERIENCE SCORES ON A SCALE OF 1 TO 10

transcribed text and thus can work even when SR is incorrect.
However, we do notice that NLU performs better with correct
SR. The common failure cases of NLU occur when (1) The
SR mistakenly breaks a sentence into two halves (e.g. “Is there
anything?” and “To my right.” are treated as two sentences);
and (2) The NLU does not correctly extract intents from noisy
transcriptions and chitchat, which can happen during the user
study. Thus, we believe that a better SR engine would vastly
benefit the performance of the whole system. However, since
DRAGON will not begin navigation until the user confirms the
goal in the dialogue, the wrong SR and NLU have little effect
on navigation.

Other modules: The system’s environment descriptions are
sometimes inaccurate due to errors in the object detector such
as: (1) detecting incorrect number of objects (e.g. 3 wall sock-
ets, when there was only 1 present); and (2) incorrect object
classifications of rare or uncommon objects (e.g. a building
information tablet was classified as a poster). Although we use
non-maximum suppression and confidence score threshold to
reduce the errors, they are hard to entirely eliminate due to the
data distribution shift and the blurry images caused by the robot
motion. Nevertheless, in Table V, the model is able to output a
list of objects with correct class names in 75.76% of the cases,
which might be more important to the user than a correct number
of objects.

The VQA module accurately answers the user’s questions in
82.43% of the cases. The model fails in cases where the user
asks questions that the robot cannot answer based on a single
RGB image. For example, without precise depth information
the VQA model only answers “far” or “close” if the question
is “How far is the person from me?”. Without a wider field of
view, the model outputs objects on the front side of the camera
if the question is “What is on my right?”.

B. Qualitative Evaluation

In Table VI, participants showed an increasing preference
for DRAGON with CLIP over the detector in all user expe-
rience categories across all routes. Specifically, participants
reported a 32% improvement with a mean score difference
of 1.60± 0.89 in the overall experience and a mean score
difference of 1.40± 0.89 in the communication experience.

The difference increases as the goal landmark contains more
complicated objects in Route 2, and objects that are difficult
to detect in Route 3, where the failures in LR significantly
lower the user score for the detector based system. Particularly,
participants noted that DRAGON with CLIP understood their
intent, asked good follow-up questions, and correctly guided
them to their destination. In contrast, the closed-vocabulary
detector failed at these aspects and occasionally was unable to
recognize destinations even though they existed. Participants
also noted that the failures in intent understanding led to a
frustrating communication experience with the detector.

One user in particular mentioned that the CLIP based model
“... was able to actually understand me, so it accurately took
me to the location and correctly answer [sic] my questions.”
while the detector based model “... would confirm the location
I wanted to go to but could not find [sic; participant meant
understand] the right location.” However, users also mentioned
potential improvements for DRAGON including more detailed
environment descriptions, a quicker response time, and warnings
of potential dangers such as “We’re going through a door.”

For the user experience categories that are the same for
both LR methods, such as the ‘intuitiveness of communication
interface’ and the ability of the system to aid in ‘gaining aware-
ness of the environment,’ participants reported average scores
of 7.07± 2.17 and 6.07± 3.21, respectively. As evidenced by
these scores, the users’ opinions regarding these two categories
were positive, due to the inclusion of the dialogue and grounding
modules. However, participants highlighted minor inaccuracies
in the environment descriptions and the slow pace of communi-
cation due to processing times and network delays as potential
issues.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we present DRAGON, a first-of-its-kind guide
robot that fulfills user intents and familiarizes the user with their
surroundings through interactive dialogue. We use CLIP to re-
trieve landmark destinations from commands and provide visual
information through language. The user study shows promis-
ing communication, grounding, and navigation performance of
DRAGON . Our work suggests that visual-language grounding
and dialogue can greatly improve human-robot interaction.

To extend DRAGON and address its limitations, we point
out the following directions for future work. First, the current
dialogue system is rule-based with fixed behaviors for each
intent. Replacing hard-coded rules with adaptive learning-based
policies, such as large language models, should generalize to
more complex user behaviors and more subtasks. Second, the en-
vironment understanding modules provide limited information.
Future informative descriptions should include object relation-
ships in images, incorporate information from the map and other
sensors, and inform users about the planned path and potential
dangers. Finally, the physical interface of the platform should
be redesigned to improve ergonomics.
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