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Abstract
This study employs the Experiential Learning Theory framework to investigate students’ 
use of a wildfire simulation. We analyzed log files automatically generated by middle and 
high school students (n = 1515) as they used a wildfire simulation and answered associated 
prompts in three simulation-based tasks. We first analyzed students’ log files to determine 
which, if any, measure of simulation use–quantity of runs, variation in runs, or quality of 
experimentation setup–predicted their scores on responses to observation and explanation 
questions that followed the simulation experience. Of the three measures, only the quality 
of students’ simulation use was significantly correlated to their written explanation scores 
in all three tasks. Further investigation into the sequence in which students used the simu-
lation and answered the questions revealed two common patterns in between two-thirds 
and three-quarters of the students in each task: (1) students ran the simulation and then 
answered the observation and explanation questions in that order or (2) students ran the 
simulation, answered the observation question, ran the simulation again, and then answered 
the explanation question. While there was no clear relationship between these two patterns 
and students’ scores on the explanation question, this finding has resulted in an updated 
experiential learning framework specific to simulation use. Implications for the design of 
scaffolding for future simulation-based learning experiences around natural hazards are 
discussed.
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Introduction

Wildfires rage. More and more acres are burning each year, coming dangerously close 
to highly populated areas across the globe (Hoover & Hanson, 2023; Turco et al., 2023). 
Wildfire hazards, such as polluted air and decreased visibility from smoke, are now impact-
ing areas that were previously too far from fuel sources to be affected (Warneke et  al., 
2023). As natural hazards such as wildfires increase due to climate change (Melia et al., 
2022), the future demands scientists who are well-versed in the environmental factors 
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involved in wildfire spread and propagation as well as prevention and mitigation techniques 
to reduce risks and impacts on communities and ecosystems (Alderson et al., 2022). Stu-
dents in Earth and environmental science classrooms today will be the scientists that face 
these challenges tomorrow.

Wildfire season now comprises the entire year with reports of devastating fires in 
Greece in August, Canada in October, and Australia in December. Other related natural 
disasters such as flooding and mudslides that often follow after wildfires have destroyed 
forests and compromised soils (Ren et al., 2011; Tiwari et al., 2020). These are only a few 
of the many natural hazards that have been exacerbated by a changing climate; hurricanes, 
floods, and droughts have also become more severe (Alifu et al., 2022; Garner, 2023; Hoell 
et  al., 2022). Consequently, the United Nations has declared that the public must have 
access to science-based education on natural disasters and has suggested that this education 
be provided via technology-based interventions (Center 2015). Global interest in teaching 
about natural hazards, risks, and resilience has produced a number of computer-based tools 
and curricula to teach about hurricanes (Luo et al., 2008), coastal flooding (Taillandier & 
Adam, 2018), volcanic eruptions (Lore et al., 2023; Mani et al., 2016), earthquakes (Lore 
& Seevers, 2022; Moutinho et al., 2017), and wildfire risk and impacts (Lord et al., 2024). 
Previous research on wildfire education has focused primarily on fire safety and prevention 
programs (Ballard et al., 2016; McCaffrey, 2015; Monroe et al., 2016).

This study investigated the relationship between students’ interactions with a wildfire 
simulation and their ability to make meaning from their experience. To do this, we ana-
lyzed the logs generated by students’ interactions with the simulation in three inquiry-
based, scaffolded tasks. We also analyzed students’ observations of simulation outputs 
(via multiple-choice questions) and their written explanations (via open-response ques-
tions) to assess whether or not they understood the concepts presented in specific simula-
tion experiences. Finally, we examined the sequence in which students used the simula-
tion and answered the questions to determine if that sequence predicted their conceptual 
understanding.

Literature review

Simulations can be used to teach students about environmental science (Kukkonen et al., 
2014; Petersson et al., 2013) including natural disasters (Taillandier & Adam, 2018), which 
typically cannot be taught in the field. Simulations provide an alternate way for students to 
experiment with natural phenomena that cannot be observed in the classroom due to time 
scales and variables that are difficult or dangerous to manipulate (Feurtzeig & Roberts, 
1999; Horwitz, 1996, 1999; Horwitz & Christie, 2000; Pallant & Lee, 2015, 2017; Pallant 
et al., 2023; Petersen et al., 2020; Quellmalz et al., 2012). Through the use of a simulation, 
a student can have “realistic experiences from which to gain and manipulate knowledge to 
understand better the relationship between the concepts being investigated” (Widiyatmoko, 
2018, p. 38). The ability to experiment by adjusting initial simulation inputs and observ-
ing different simulation outputs gives students agency in their learning process (Windschitl 
& Andre, 1998). Furthermore, virtual experiments that include simulations can both help 
students build a mental model of scientific phenomena and motivate them to learn (Dede 
et al., 2005). Holzinger et al. (2024) advocate the use of simulations in forestry education 
for improving safety and enhancing communication between stakeholders and the public.
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In recent years, multiple studies have shown that students’ understanding of science 
concepts can be fostered by using simulations (Abdullah & Shariff, 2008; Plass et  al., 
2012; Ramasundaram et  al., 2005; Sarabando et  al., 2014; Scalise et  al., 2011; Widi-
yatmoko, 2018). A small group of researchers who study educational simulations have 
attempted to analyze the clickstream data generated by students’ use of simulations and 
other online tools (Buckley et  al., 2006; Gobert et  al., 2012; McElhaney & Linn, 2011; 
Wilson et al., 2018). Various data mining techniques have been developed that look closely 
at trace data (Baker & Yacef, 2009; Gobert et  al., 2013; Martin & Sherin, 2013). More 
recently, researchers have mined the data generated by the use of online simulations to 
answer research questions around a broad variety of topics, such as exploring students’ 
problem-solving strategies (Greiff et al., 2018), training intelligent tutoring systems (Hen-
derson et  al., 2020), providing students with automated feedback (Lee et  al., 2021), and 
assessing student learning (Horwitz et al., 2023; Lord et al., 2024).

While it is not possible for researchers to simultaneously and directly observe how every 
student in the classroom is using a simulation, timestamped logs of students’ mouse clicks 
can be used to measure their interactions. Such logs can be used to measure dosage effect. 
For example, Wilson et al. (2018) found that the more students used a simulation, the better 
they learned concepts, as demonstrated by pre- to post-test scores. In contrast, McElhaney 
and Linn (2011) found that the number of simulation runs and variation in runs did not pre-
dict performance. Logs can also be used to determine the quality of students’ interactions 
with a simulation. For example, in a study by Buckley et al. (2006), researchers examined 
the actions of students who ran a genetics simulation in a few specific tasks within a larger 
module. They found that students who ran the simulation in certain tasks multiple times 
systematically (i.e., changing one variable at a time) had higher pre- to post-test gains than 
students who ran the simulation multiple times unsystematically (i.e., not changing any 
variables over multiple runs). Similarly, Gobert et al. (2012) found that students who ran 
single-variable experiments with a simulation had higher learning gains than students who 
experimented unsystematically.

A previous study by Lord et  al. (2024) also found that students’ systematic use of 
10 simulations included in a wildfire unit was correlated to gains from pre- to post-test; 
however, that study was limited as it did not dive into the specific simulation tasks to, for 
example, investigate the correlation between simulation use and written explanations of 
scientific phenomena. The current study builds upon that work and the work of others who 
have investigated the correlation between model interactions and students’ ability to write 
explanations. For example, Scalise and Clarke-Midura (2018) studied log data of students’ 
investigations in a virtual world, connecting students’ inquiry process with their ability to 
write scientific explanations. Lee et  al. (2021)’s study of students’ use of a groundwater 
simulation parsed log files in real time and compared student actions in a simulation with 
their written arguments for the purpose of providing automated feedback.

Theoretical framework

A combination of multiple learning theories, Kolb’s (1984) Experiential Learning Theory 
(ELT) reflects prior work by Dewey, Piaget, Vygotsky, and others that focus on student-
driven learning experiences. ELT is a cycle that includes four parts. The student must 
have a concrete experience to start. Then, they must make observations of their experi-
ence, which can be descriptive or reflective. In the third step, students explain what they 
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observed and pull concepts together. In the final step, students engage in further experi-
mentation to test out their ideas. Traditionally, the concrete experiences that start the cycle 
have been hands-on, but any novel task, including those presented virtually, can initiate the 
cycle of observation and contemplation (Enns, 1993). Computer simulations give students 
the opportunity to experience a phenomenon as well as to “exercise higher order capabili-
ties such as reflective thinking and abstract conceptualisation” (Falloon, 2019, p. 138). The 
modified ELT framework shown in Fig.  1 was developed to describe students’ use of a 
wildfire simulation (Lord et al., 2024).

This paper reports a detailed examination of this modified ELT framework by fine-
grained observation of students’ experiences with simulation-based tasks embedded in an 
online wildfire unit. In each task, students started a simulation experience by setting vari-
ables and then running an experiment. As the simulation ran, students were able to observe 
what happens as fire spreads on the landscape, reflect on what they see, and answer a mul-
tiple-choice question based on their observations. In the next step, students were prompted 
to make sense of the simulation experience and demonstrate their understanding by writing 
an explanation of the phenomenon illustrated in the simulation. The green arrow in the 
diagram, which bypasses step four, represents the path through the steps for those students 
who did not extend their experimentation in a particular simulation task, but moved on to 
the next task.

Experiential learning is a cyclical process and can include multiple experiences 
(Kolb & Kolb, 2018). This study dives into three such experiences that required students 
to set up and run a wildfire simulation that illustrated certain phenomena associated 
with wildfire propagation. Along with each simulation experience, the tasks prompted 
students to make descriptive observations of surface-level simulation output as well as 
reflective observations that required them to consider variation in burn outcomes under 
specific environmental conditions. Following this, students were asked to compose a 
written explanation that integrated their simulation experience and observations, to rea-
son about the environmental conditions that affect wildfires. As they worked through 

Fig. 1   Modified Experiential Learning Theory framework (Lord et al., 2024) for use with a single guided 
simulation task. In the additional simulation experimentation phase, students may perform new experiments 
to test their ideas
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the first three steps of the ELT cycle, students acquired growing knowledge of wildfires 
and their behavior under varying environmental conditions. In the fourth step, students 
could choose to run additional experiments with the simulation to test and refine their 
ideas.

This paper focuses on two research questions that look closely at how students 
engage in the ELT cycle in three simulation-based tasks:

1.	 How are three measures of students’ simulation experience (quantity, variation, and 
quality of simulation use) related to their answers to multiple-choice and written expla-
nations of wildfire phenomena?

2.	 To what extent does the sequence of students’ simulation use and question responses 
predict their observation and written explanation scores?

To answer the first research question, we compared three measures of students’ simulation 
experience to their scores on the specific description and explanation questions associated 
with each task. The three measures are quantity, variation, and quality. Quantity is meas-
ured by how many times a student ran the simulation. Variation is measured by the number 
of unique runs, i.e., simulation runs differing in at least one input parameter. The number 
of runs and number of unique runs, which we refer to as “dosage measures,” may pro-
vide researchers with interesting results but they do not consider how the student set up an 
experiment in order to answer a specific question, which is especially important when they 
are using an open-ended simulation (Gobert et al., 2013).

Variance in the third measure, the quality of the simulation experience, can only be 
detected using more fine-grained analytics. In a study by Lee et  al. (2021), researchers 
parsed log files to find patterns in students’ actions while using a water simulation (e.g., 
looking at water availability in confined vs. unconfined aquifers) and compared them to the 
quality of students’ written arguments in the claim-evidence-reasoning format (McNeill & 
Krajcik, 2008). Lee’s team used a decision tree to examine the combination of variables 
and student actions that resulted in the best simulation experience to produce the highest 
quality explanations. Pallant et al. (2023) examined a different artifact of students’ work 
with a simulation–their graphical snapshots of a plate tectonics simulation–and compared 
those to their explanations. In that case, students whose snapshot showed the simulation 
was configured to produce the necessary evidence provided explanations that evinced a 
significantly higher level of reasoning than that demonstrated by students whose snapshots 
showed that they failed to set up the simulation experience correctly. Finally, Lord et al. 
(2024) reported that students’ pre-to-post-test gains were correlated with the quality of 
their simulation experience; however, that study aggregated students’ model use across a 
module with 10 simulation-based tasks and did not look closely at simulation use in the 
context of specific tasks.

Based on the ELT framework shown in Fig.  1, we hypothesized that students would 
complete the cycle of simulation experience, observation, explanation, and then, perhaps, 
further experimentation. To verify this pattern, this study examined students’ actions as 
they worked through three simulation-based tasks. To answer our second research ques-
tion, we analyzed the logs of students’ clickstreams to determine not only their interactions 
with the simulation but also with the questions that followed. We used the ELT framework 
to design and develop the entire wildfire curriculum. Each task scaffolds students through 
a simulation-based experiment and then asks both observation and explanation questions. 
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We explored whether or not the different paths followed by students through the ELT cycle 
were predictive of their scores on the subsequent questions.

Research context

The wildfire simulation was embedded in a five-activity curriculum unit that gave students 
the ability to experiment with several factors that affect the propagation of wildfires. The 
first activity introduces students to the natural phenomenon of wildfires and the impacts of 
these fires on people in the United States over the past 100 years. In addition, students are 
given historical data on the frequency of such fires and the total area burned, which has 
trended upward over time. The second activity provides students with a unique interactive 
simulation tool called the Wildfire Explorer, which they use to conduct investigations on 
three factors that influence wildfire spread: amount of moisture, wind, and slope of ter-
rain. In the third activity, students use the simulation to explore differences in the spread 
and intensity of wildfires based on various types of vegetation as fuel. Students are also 
introduced to the concept of fire suppression and the unintended effect of putting out fires, 
which allows dead, dry vegetation to build on the forest floor and create increased fuel 
for the next fire. In the fourth activity, students are provided with mitigation tools to help 
reduce the risks of wildfires to communities represented in the simulation. Finally, in the 
fifth activity, students are asked to synthesize their knowledge of complex factors such as 
the effect of climate change on wildfire spread as well as past wildfire suppression efforts, 
and to apply their knowledge to more complex simulation-based tasks.

The unit includes 10 simulation-based tasks. This study focuses on the first three of 
these, in which students are asked to run experiments that focus on a single variable. 
The unit includes instructions for adjusting the initial parameters of the simulation (e.g., 
drought level, location of sparks that start the fire, vegetation type), but students are free to 
run the simulation as many times as they like with whatever settings they choose. They are 
then asked to investigate the effect of three parameters—drought, terrain, and vegetation—
on fire propagation. Each task is accompanied by two questions, a multiple-choice question 
that calls for a description of what occurred in the simulation and an open-response ques-
tion that asks the student to explain why the simulation acts in that way.

Drought task

In this task, students investigate the effect of moisture on wildfire spread. The simula-
tion presents two zones that can be set differently. Students can set the drought level (no 
drought, mild drought, and medium drought) to be different in the two zones, place a spark 
in each zone, and compare the spread of the fire, which they can do visually and also by 
using a graph generated by the model. A multiple-choice question prompts them to observe 
the output of the simulation and select the drought level that resulted in the fastest spread. 
An open-response question requires students to explain why they think the wildfire burned 
fastest under the drought condition they selected.

Terrain task

Students explore how wildfires spread in different terrain (see Fig. 2). They are asked to 
place two sparks in the mountainous zone, one at the base of a mountain slope and one at 
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the top. Students are instructed to observe the wildfires as they burn. A multiple-choice 
question asks them to compare the speed in which the fire spread when started in different 
areas. They are then asked to explain why fire moves differently depending on where the 
spark was located.

Vegetation task

In this task students explore the spread of wildfires fueled by different types of vegeta-
tion: grass, shrub, and forest. They are instructed to run an experiment by changing the 
vegetation type in each zone, though they are not explicitly advised to hold all other param-
eters constant. The multiple-choice question for this task asks students to select the vegeta-
tion that caused the fire to spread the fastest, and the open-response question asks them to 
explain why a wildfire spreads more quickly with the type of vegetation they chose.

Methods

Subjects

This study involved 1515 students who participated in a field test of the wildfire unit 
and experienced at least one of the three simulation-based tasks in the spring of 2022. 
Among the students, 40.6% were male, 38.2% were female, and 21.2% were non-binary 

Fig. 2   The Terrain Task asks students to place sparks at the bottom and the top of a slope in a mountainous 
area and observe the rate at which the wildfire spreads in both scenarios
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or preferred not to answer; 42.2% spoke English as a second language; 72.8% were white. 
Students were taught by 24 teachers in 15 high schools and 9 middle schools across the 
United States. Five of the schools were located in CA; two schools each were located in 
KY, PA, MI, NJ, TX, and WA; and one each was in FL, IA, MA, MD, MO, NC, and RI. 
The schools were located in a mix of suburban (14), rural (5), and urban (5) areas.

Data collection

As students used the online wildfire unit, their work was automatically saved. Every action 
that students made, including their typed answers to questions, was logged and times-
tamped. The Wildfire Explorer simulation was also instrumented to track students’ mouse 
clicks. Every time a student clicked a button, altered a setting in the simulation, or placed a 
spark in a given location to start a wildfire, the event was saved and timestamped. Students’ 
answers to questions and their actions within the simulation accumulated over the multiple 
days that they used the unit and were saved into one log file per student. These log files 
were then downloaded and parsed by researchers.

Simulation experience scoring

Our first research question is concerned with understanding the students’ experiences using 
the simulation by looking at trace data. We gathered data from three tasks: Drought Task, 
Terrain Task, and Vegetation Task. There are multiple ways to measure student actions via 
their simulation clicks. For each task, we computed the total number of times the student 
ran the model, or the quantity, as well as the variation in runs, which was the number of 
unique runs (i.e., runs with different starting parameters) students made. The third meas-
ure of simulation use measured the quality of the experimental setup of each simulation 
run. The quality score was computed using distinct rubrics customized for each task (see 
Tables 1 and 2). The rubrics were designed to give the highest score to a student who ran 
the simulation in such a way that the output would show the target phenomenon. For exam-
ple, in the Terrain Task, the optimal simulation run requires that students place one spark 
at the base of a mountain and one at the top and then run the simulation. When students 
added a spark to a region on the landscape, the elevation at that point was logged, enabling 
researchers to evaluate how well the student met the requirement to observe the fire mov-
ing differently when started at the top versus the bottom of a slope. For the Terrain Task, 

Table 1   Rubric for scoring the quality of the Terrain Task simulation experience

The simulation will not run unless at least one spark is placed to start a fire

Score Criteria

0 The student never went to the task page
1 The student went to the task page but never ran the simulation
2 The student ran the simulation but never with two sparks in the mountain zone
3 The student ran the simulation with two sparks in the mountain zone, but 

those sparks were not placed with one at the bottom and one at the top of a 
mountain

4 The student ran the simulation with at least one spark at the bottom and one at 
the top of a mountain
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students received a score of 0 if they never visited the page with the simulation, a 1 if they 
visited the page but never ran the simulation, a 2 if they ran the simulation but never with 
two or more sparks in the mountain zone, a 3 if they ran the model but not with at least one 
spark at the top of a mountain (within the highest elevation range) and one at the bottom 
(within the lowest elevation range), and a 4 if they ran the model with at least one spark at 
the top and one at the bottom.

The Drought and Vegetation Tasks were scored similarly. The Drought Task asked 
students to investigate the spread of fires under different drought conditions. In that case, 
the students set each zone to a different level of drought, added a spark to each zone, and 
watched the fire spread. The Vegetation Task asked students to compare the spread of fires 
in three different vegetations: grass, shrubs, and forest. Students’ performance on each of 
these tasks produced simulation quality scores that ranged from 0 to 5. Students received a 
zero for never visiting the page and a 1 for visiting the page but not running the simulation. 
Students received a 2 if they ran the simulation with only one spark in one zone. Students 
who placed a spark in both zones but did not compare two variations of the target variable 
(drought or vegetation) received a 3. If the student varied the target variable as well as an 
additional variable, they received a 4. Finally, students received a 5 if they conducted a 
controlled experiment with a spark in each zone where each zone was different with respect 
to the target variable and the same with respect to all other variables.

Observation scoring

We scored students’ responses to a multiple-choice question that asked them to examine 
the simulation output and make an observation. Answers to these questions were scored 
automatically by the system as a 0 for incorrect and a 1 for correct. For example, in the 
Terrain Task, students were asked the following question, “Add a spark to the top of one 
mountain and the bottom of a different mountain. Then, run the simulation. Did the wild-
fire move more quickly as it moved up or down the mountain?” Students chose from the 
following three responses, “The fire spread more quickly as it moved up the mountain,” 
“The fire spread more quickly as it moved down the mountain,” and “The fire spread at the 
same rate through the mountains.”

Table 2   Rubric for scoring the quality of the drought and vegetation tasks simulation experience

The simulation will not run unless at least one spark is placed to start a fire

Score Criteria

0 The student never went to the task page
1 The student went to the task page but never ran the simulation
2 The student ran the simulation but not with a spark in both zones
3 The student ran the simulation with sparks in both zones but both regions were the same with 

respect to the target variable (drought or vegetation)
4 The student ran the simulation with a spark in each zone and each zone was different with respect to 

the target variable but also different with respect to some other variable (not a controlled experi-
ment)

5 The student ran the simulation with a spark in each zone and each zone was different with respect to 
the target variable and the same with respect to all other variables (a controlled experiment)
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Explanation scoring

In each task, students were asked to formulate an explanation for the phenomena they 
observed in the simulation. For example, in the Terrain Task, students were asked, “Why 
do you think the fire behaves differently if it begins at the base of the mountain versus at 
the top of a mountain?” Students’ responses to these open-ended questions were scored 
on a scale from 0 to 4, using a knowledge integration rubric, which measured the number 
of salient ideas that students included in their written response as well as links between 
these ideas (see Fig. 3). Knowledge integration rubrics are more sensitive to inquiry-based 

Fig. 3   Prompts and scoring rubric for the Terrain Task
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learning questions as they can better discern the level of students’ understanding of com-
plex science concepts than more simple rubrics (Lee et al., 2011). Students who received 
a score of 0 or 1 wrote irrelevant or non-normative answers, such as “I have no idea,” or 
answers not pertaining to the scientific factor being studied, such as “The landscape was 
plains so it spread faster and there was no vegetation.” Students who made partial links 
to important features, such as “Because flames point uphill,” received a score of 2. Stu-
dents received a score of 3 when they were able to make a full link between two ideas. In 
one case, a student wrote, “Fire spreads up the mountain quicker than it spreads down it 
because when moving up the mountain, there is more vegetation right in front or above 
the flame and so it catches fire easily and the fire spreads.” To receive a score of 4, stu-
dent responses had to include a complex link or multiple links, such as “The fire at the 
base of the mountain is burning upward. As it’s traveling upward brush is able to catch 
more quickly as there’s more available dead vegetation. At the top of the mountain it has to 
travel downwards which is an unnatural direction for fire to burn as it faces upward.” This 
response connects the speed of the fire spread to the direction of the flames and the avail-
ability of additional fuel. A score of 2 or above was considered a high score as it indicates 
that the student was able to at least partially explain the phenomenon. Two members of 
the project team scored the students’ responses to the explanation questions and a third 
researcher resolved any discrepancies. The quadratic weighted kappa was 0.930 for the 
Drought Task, 0.926 for the Terrain Task, and 0.894 for the Vegetation Task.

Results

Simulation experience, observations, and explanations

We calculated the first two measures of students’ simulation experience by counting the 
quantity and variation of runs. There was a wide range of runs for each task (see Table 3). 
Some students ran the model an extreme number of times–one student ran the Vegetation 
Task simulation 65 times with 35 different distinct experiments.

We then calculated the simulation quality scores for each student run. For the purpose 
of this analysis, if students ran the same simulation multiple times, we used their highest 
score. So, if a student experimented with the simulation, running it several times with less-
than-ideal initial parameters but ran one time with the maximum score of 5 for the Drought 
and Vegetation Tasks or a score of 4 for the Terrain task, they received the higher score. 
Extra runs were not always helpful. For example, in the second task, one student ran 16 
times with 13 different initial conditions. These extra experiments did not help the student, 
who answered the multiple-choice question incorrectly (observation score of 0), indicating 
that wildfire moves downhill more quickly than uphill (the opposite is true and can be seen 
in the simulation). This student also had a low explanation score of 1, answering simply, 

Table 3   Summary of quantity of 
runs and variation in runs counts 
for each task

Task Quantity Variation

Range Mean Range Mean

Drought 0–61 5.47 0–25 3.58
Terrain 0–36 3.13 0–15 2.13
Vegetation 0–64 2.43 0–31 1.76
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“the fire spreads faster down a mountain.” In comparison, another student received a 3 for 
their explanation score, having run the model for this task just once under the nominal ini-
tial conditions. This student’s explanation was, “Fire spreads up the mountain quicker than 
it spreads down it because when moving up the mountain, there is more vegetation right in 
front or above the flame and so it catches fire easily and the fire spreads.”

We aggregated the open-response scores into two categories as follows: scores lower 
than 2 were scored as “low” and those 2 or greater were scored as “high.” We then aggre-
gated the simulation scores. The simulation quality was scored as “low” for scores less 
than or equal to 3 and “high” for scores 4 or higher. For the quantity and variation counts, 
we did something similar, scoring the number of runs as “low” for runs less than or equal 
to 5 and “high” for a number of runs greater than 5; unique runs were scored similarly but 
with a cutoff of 3. Although admittedly arbitrary, these cutoff points resulted in comparably 
sized cohorts in the low and high categories for each variable.

Having reduced each of our five variables to two levels, we proceeded to compute con-
tingency tables containing counts for every pair of variables for each of the three tasks. The 
contingency tables for each task show the number of students who scored low on the simu-
lation scores and also answered the multiple-choice question incorrectly on that page, the 
number who scored low but answered correctly, the number who scored high and answered 
incorrectly and the number who scored high and answered correctly (see Tables 4, 5, and 
6).

We computed the probability that these contingency counts could have arisen by chance 
using a chi-squared distribution including the Yates continuity correction (Yates, 1934) 

Table 4   Contingency table for 
the Drought Task showing the 
number of students who scored 
in each category

Answer type

Observation Explanation

Incorrect Correct Low High

Quality score Low 261 347 174 434
High 236 671 168 739

Quantity score Low 340 650 233 757
High 157 368 109 416

Variation score Low 332 618 234 716
High 165 400 108 457

Table 5   Contingency table for 
the Terrain Task showing the 
number of students who scored 
in each category

Answer type

Observation Explanation

Incorrect Correct Low High

Quality score Low 390 979 805 564
High 35 111 70 76

Quantity score Low 379 931 760 550
High 46 159 115 90

Variation score Low 368 912 740 540
High 57 178 135 100
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(see Table 7). For the Drought Task, the quality and variation scores were predictive of 
both the observation and explanation scores at the p < 0.001 level for the quality score and 
the p < 0.05 level for the variation score. The quantity score was not a significant predictor 
of either the observation or the explanation scores. For the Terrain Task, the only signifi-
cant prediction was between the quality and explanation scores whereas for the Vegetation 
Task, the quality score predicted both. Notably, the simulation quality score was correlated 
with the explanation scores in all three tasks (p < 0.001 for Drought, p < 0.05 for Terrain, 
and p < 0.005 for Vegetation).

Table 6   Contingency table for 
the Vegetation Task showing the 
number of students who scored 
in each category

Answer type

Observation Explanation

Incorrect Correct Low High

Quality score Low 216 308 245 279
High 99 892 378 613

Quantity score Low 283 1098 562 819
High 32 102 61 73

Variation score Low 272 1077 544 805
High 43 123 79 87

Table 7   This table shows the relationships between the three simulation measures and the observation and 
explanation scores for each task

*p < .001
**p < .005
***p < .05

Task Simulation score Answer type Chi-squared Probability

Drought Quality Observation 46.4  < .001*
Explanation 20.7  < .001*

Quantity Observation 2.97 0.090
Explanation 1.36 0.244

Variation Observation 5.05 0.016***
Explanation 5.86 0.016***

Terrain Quality Observation 1.12 0.290
Explanation 5.94 0.015***

Quantity Observation 3.39 0.066
Explanation 0.194 0.659

Variation Observation 1.771 1.83
Explanation 0.001 0.974

Vegetation Quality Observation 201  < .001*
Explanation 10.1 .001**

Quantity Observation 0.658 0.417
Explanation 0.985 0.321

Variation Observation 2.617 0.106
Explanation 2.928 0.087
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Simulation and question answering sequence

Our original ELT framework for simulations assumed the typical path would be simu-
lation, description question, explanation question, and then optional additional experi-
mentation with the simulation. However, by analyzing logs of students’ actions on each 
task page, we uncovered 14 different sequences of actions that students took when 
running the simulation and answering the observation and explanation questions (see 
Table 8). In fact, we found that a small number of students never ran the simulation but 
still answered the description and/or explanation questions. Students who never visited 
the task page are not included in these counts. For all three tasks, the majority of stu-
dents fall into two sequence categories. The first category includes those students who 
followed the expected path through the task in a linear fashion. These students, hereafter 
called the Linear Group, ran the simulation (one or more times), answered the observa-
tion question, and then completed the explanation. The second category includes those 
students who returned to the simulation between answering the two questions. These 
students, hereafter called the Return Group, ran the simulation (one or more times), 
answered the observation question, and then returned to run the simulation again (one 
or more times) before completing the explanation. In the Drought Task, 67% of students 
fell into these two categories, in the Terrain Task it was 76% and in the Vegetation Task 
it was 77%.

To determine if the sequence that students used during each task was correlated with 
their explanation scores on that task, we calculated probabilities by once again dividing 
the students into two groups by explanation score and comparing these groups by their 
sequence type. In only one of the three tasks, the Drought Task, did the sequence of 
students’ actions significantly correlate with their explanation scores (p < 0.005). In the 
other two tasks, students’ use of either of these two patterns did not predict their scores 

Table 8   Analysis of the log files revealed 14 different path sequences that students took through each task

* Linear Group
** Return Group

Drought Terrain Vegetation

(n) % (n) % (n) %

Observation (only) 15 1.0 6 0.4 7 0.5
Observation, explanation 65 4.5 99 7.1 93 6.8
Observation, explanation, simulation 14 1.0 14 1.0 18 1.3
Observation, simulation, explanation 69 4.8 52 3.7 88 6.4
Explanation (only) 8 0.6 7 0.5 6 0.4
Explanation, observation, simulation 4 0.3 0 0 3 0.2
Explanation, simulation, observation 48 3.3 30 2.1 23 1.7
Simulation (only) 21 1.5 9 0.6 7 0.5
Simulation, observation 159 11.1 13 0.9 15 1.1
Simulation, observation, explanation* 502 34.9 799 56.9 734 53.8
Simulation, observation, simulation, explanation** 458 31.8 268 19.1 310 22.7
Simulation, explanation 19 1.3 30 2.1 25 1.8
Simulation, explanation, observation 46 3.2 44 3.1 30 2.2
Simulation, explanation, simulation, observation 10 0.7 32 2.3 6 0.4
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on the explanation questions (see Table  9). The observation question was answered 
prior to the bifurcation in the sequence; therefore, it was not affected by the return to the 
simulation and was not included in the analysis.

Discussion

Using a fine-grained analysis of students’ actions in three wildfire tasks, this study 
yielded insights into the relationship between the simulation experience and the other 
steps of the ELT cycle. To answer the first research question, we investigated students’ 
experience with the Wildfire Explorer simulation in three different tasks. The first two 
measures of simulation use quantified the number of total simulation runs and different 
simulation experiments that students conducted. While the range of these two measures 
was wide for each of the three tasks, the means of both of these scores decreased from 
the first to the third task, suggesting that students conducted less experimentation as 
they moved through the module. Only in the first Drought Task did a higher number of 
variations in runs predict both a correct score on the observation question and a higher 
score on the explanation question. This may be because students were excited to experi-
ment with the different variable settings at the beginning of the module, which were not 
restricted to those required by the task prompt. From log data analysis, it is clear that 
many students spent time experimenting with different simulation inputs. For all three 
Wildfire Simulation tasks, running the simulation many times did not affect the stu-
dents’ observation or explanation scores, which is in line with the results of the McEl-
haney and Linn (2011) study. This suggests that designing introductory tasks to allow 
for open-ended experiences does not necessarily detract from student learning of the 
target phenomenon.

The most notable impacts to students’ ability to make observations and write expla-
nations on the three tasks came from the third measure of performance, the simula-
tion quality score, which measures the extent to which the students ran a controlled 
experiment that would result in a display of the target phenomenon of the task. Previous 
research on the Wildfire Explorer (Lord et  al., 2024) showed that students’ score on 
this measure across 10 tasks in the whole wildfire module correlated to higher post-test 
scores. In this study, we focused on the simulation experience in relation to the next 
two steps of the ELT cycle—the ability to make descriptive and reflective observations 
and then to conceptualize and explain the phenomenon. In two of the three tasks, the 

Table 9   Comparison of sequence group and explanation scores for each task

*p < .005

Task Sequence group Explanation 
score low

Explanation 
score high

Chi-squared Probability

Drought Linear group 129 373 10.697 0.001*
Return group 77 381

Terrain Linear group 476 323 1.654 0.198
Return group 147 121

Vegetation Linear group 311 423 0.123 0.726
Return group 127 183
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quality score correlated with students’ ability to make correct observations of the target 
phenomenon. And in all three tasks, the quality score predicted the explanation score. In 
each of the three tasks, our analysis shows that when students have set up a simulation 
in a way that is likely to illustrate the desired phenomenon, they are better able to make 
sense of what they see and consequently write a higher-level explanation.

This finding has implications for the design of future simulation-based tasks and the 
potential use of real-time simulation scoring and feedback. Extra experience with the 
simulation, whether it is testing multiple variables or running multiple times, is less 
impactful than students’ quality use of the simulation to make sense of the science con-
tent. When students conduct an appropriately controlled experiment using the simula-
tion, they are able to experience the target phenomena, make observations of model 
output, and write thoughtful explanations. The results of this study suggest that simu-
lation-based learning could be further enhanced via the development of an intelligent 
tutoring system built to analyze students’ simulation actions and provide feedback in 
real-time. This approach could significantly improve students’ understanding of the 
factors that contribute to wildfires. Given the growing risk of forest fires due to cli-
mate change, simulations with real-time feedback have the potential to reach students in 
related fields like forestry, agriculture, and environmental sciences, as well as the gen-
eral public (Holzinger et al., 2024).

Previous work on simulation feedback has also relied on hand scoring written responses 
(Lee et al., 2021), which is labor intensive. Future versions of the wildfire module could 
score simulation runs in real time and give students feedback on their experimental setup 
prior to their answering the explanation questions, avoiding the time and expense of incor-
porating natural language processing tools to evaluate students’ responses, which require 
large amounts of data for training the model. The teacher could be alerted when students 
are not using the model to run controlled experiments. The data analysis from this study 
could be used to train an AI system that evaluates students’ simulation experience.

Our second research question looked more closely at the sequence in which students 
experimented with the simulation and answered the question prompts. Counter to our orig-
inal hypothesis, which allowed for two paths through the ELT cycle, we found that students 
moved through the ELT cycle in 14 different ways. No student, in any of the three tasks, 
went through the four steps of the cycle as shown in the original modified ELT framework 
for simulations. The two most common paths—the Linear Group and the Return Group in 
our analysis—forced us to rethink our modified ELT cycle. While the Linear Group com-
prised the most students for each task and fits the prior version of the ELT cycle (e.g., 
completing the first three steps in order and omitting the fourth step), the prevalence of 
the Return Group prompted us to revise the ELT cycle for simulations. We collapsed the 
initial simulation experience and additional experimentation into one step as students fre-
quently ran multiple and varied experiments prior to moving to the observation step. While 
not every permutation was included in this simplified model, the ELT cycle (see Fig. 4) 
shows that (1) the simulation experience includes not only the experiment to fulfill the task 
requirements but also experimentation and (2) the return to the simulation prior to answer-
ing the explanation question.

Again, the Drought Task stood out as the only task with a significant difference in the 
explanation scores between the Linear Group and Return Group where returning to the 
simulation prior to answering the explanation question was correlated with a higher score. 
This may be because students were more engaged in this first task and were excited to use 
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the simulation. In providing an open-end simulation environment that enables students to 
explore by manipulating variables and testing their mental models, we gave them an oppor-
tunity to employ a variety of problem-solving strategies, none of which proved to be sig-
nificantly correlated to higher performance on the task (Greiff et al., 2018). While students 
may have strayed from the scaffolded task prior to writing their explanations, allowing stu-
dents agency in how they worked through the task did not deter from student learning; 
indeed, in some cases, it enhanced their conceptual understanding.

Limitations

The implications of this study are limited. While the wildfire module includes 10 simula-
tion-based tasks, we focused on just three of the tasks. Students’ responses to the remain-
ing tasks’ explanation scores were not evaluated nor were their paths through the ELT 
cycle on the next seven tasks. Future analysis could be performed on the remaining tasks. 
The results could also be related to students’ pre-to-post-test gains. In addition, while this 
study focused on wildfire education, the same ELT framework could be used to study other 
natural hazard online resources that use computational models, simulations, or game-based 
curricula.

Fig. 4   Modified ELT framework for simulation-based tasks. The blue boxes and arrows show the two most 
common paths through a single task. The initial simulation experience and further experimentation have 
been combined into one step. The green arrow represents the flow to the next task; each time the student is 
presented with a new task, this cycle is repeated
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Conclusion

This study illustrates the importance of designing open-ended simulation-based learning 
tasks to support students’ ability to turn experiences into explanations. We show that the 
most important measure of the simulation experience is setting up and running a controlled 
experiment that creates the phenomenon under investigation so that students can inter-
pret the system output, make observations, and write high-quality explanations. However, 
there is diversity in the approach that students take when going through a simulation-based 
task. The paths that students take to come to their explanations are sometimes winding. 
Simulations do not need to be locked down to allow access only to the variable in ques-
tion because access to other variables can encourage further experimentation and, in some 
cases, result in deeper learning.
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