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Abstract

We present an algorithm to derive difference images for data taken with JWST with matched point-spread
functions (PSFs). It is based on the saccadic fast Fourier transform method but with revisions to accommodate the
rotations and spatial variations of the PSFs. It allows for spatially varying kernels in B-spline form with separately
controlled photometric scaling and Tikhonov kernel regularization for harnessing the ultimate fitting flexibility. We
present this method using the JWST/NIRCam images of galaxy cluster Abell 2744 acquired in JWST Cycle 1 as
the test data. The algorithm can be useful for time-domain source detection and differential photometry with JWST.
It can also coadd images of multiple exposures taken at different field orientations. The coadded images preserve
the sharpness of the central cores of the PSFs, and the positions and shapes of the objects are matched precisely
with B-splines across the field.

Unified Astronomy Thesaurus concepts: Astronomy software (1855); Transient detection (1957)

1. Introduction

The James Webb Space Telescope (JWST) provides a
unique opportunity for time-domain astronomy. The superb
image quality enables the detection of faint transients out to the
explosions of the first generation of massive stars and white
dwarfs in the Universe (Riess & Livio 2006; Wang et al. 2017;
Regős & Vinkó 2019; Lu et al. 2022). These diverse transients
as different types of supernovae (SNe) can be direct probes to
trace the cosmic star formation history in the early Universe
and expand our understanding substantially about the physics
of the events at the epoch of the cosmic dawn. Recent
observations have demonstrated that very faint transients (mag
∼ 29) are abundant in the near-infrared images taken by JWST
(Chen et al. 2022b, 2022a, 2023; Hu et al. 2022c; DeCoursey
et al. 2023; Yan et al. 2023c, 2023b, 2023a).

Difference image analysis is a major enabling technique in
time-domain astronomy (Alard & Lupton 1998; Alard 2000;
Bramich 2008; Miller et al. 2008; Becker 2015; Hu et al.
2022b). However, for JWST, the highly structured point-spread
function (PSF) and the uncertainties in precisely matching the
astrometries of images taken at different epochs can pose
significant challenges in the identification of transients in the
vicinity of bright sources like the central regions of galaxies.
These include, for example, strongly gravitationally lensed
transients in the vicinity of foreground lensing galaxies (Sheu
et al. 2023) and the various nuclear transients, including SNe as
well as tidal disruption events (e.g., van Velzen et al. 2011;
Grishin et al. 2021; Regős et al. 2021; Zhu et al. 2021).
Calculating the difference images accurately is also important
in high-precision differential photometry, which is employed in
the detections of microlensing events (Mao & Paczynski 1991;
Sumi et al. 2003, 2006, 2013) and exoplanet transits (e.g.,
Oelkers & Stassun 2018; Montalto et al. 2020). Recent works

also reveal that the highly structured JWST/NIRCam PSF
exhibits prominent spatial variation across the field of view of
up to 20% and shows significant temporal variations at a level
of ∼3%–4% (Nardiello et al. 2022; Yan et al. 2023c; Zhuang &
Shen 2024; Zhuang et al. 2024).
This study presents a method based on the saccadic fast Fourier

transform (SFFT) algorithm (Hu et al. 2022b, hereafter H22) to
accommodate such complicated PSFs as those of JWST for image
differences. Unlike previously published algorithms, the SFFT can
model the spatial variations of the PSF using a B-spline function
and allows for more accurate image matching across the field in
terms of PSF homogenization and compensation of astrometric
misalignments. By design, our algorithm presents image subtrac-
tion in Fourier space, thereby achieving exceptional computational
efficiency. Moreover, it can be used for both sparse and crowded
stellar fields. The SFFT has been applied and extensively
examined in several ongoing time-domain surveys and some
transient analyses (e.g., Hu et al. 2017; Zhang et al. 2020; Palmese
et al. 2022; Sun et al. 2022; Wang et al. 2024; Yang et al. 2022;
Sheu et al. 2023). Recently, it also enabled new transient
discoveries in JWST multiepoch imaging observations (Hu et al.
2022a, 2022c;, Hu & Wang 2023a, 2023b). The code of this study
is built on the SFFT algorithm proposed in H22, with significant
improvements for JWST. The improved version of SFFT is
publicly available on Github,4 and a tutorial demonstrating how
to perform and evaluate SFFT subtraction on JWST/NIRCam
is also provided.5 The package is easily adaptable for data from
other telescopes, such as with the Nancy Grace Roman Space
Telescope (Roman; Spergel et al. 2015) and the Legacy Survey
of Space and Time (LSST; Ivezić et al. 2019).

2. Test Data

In this work, we demonstrate our method using the public
JWST/NIRCam images of the Hubble Frontier Field galaxy

The Astronomical Journal, 167:231 (16pp), 2024 May https://doi.org/10.3847/1538-3881/ad36cb
© 2024. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

4 https://github.com/thomasvrussell/sfft
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cluster Abell 2744 (Castellano et al. 2016; Merlin et al. 2016,
hereafter A2744). In Cycle 1, JWST has carried out imaging
observations of the well-studied lensing cluster at multiple
epochs by several JWST programs, which has built a great data
set for testing image difference methods that can be used for
JWST time-domain analyses.

We use the JWST/NIRCam imaging data acquired by the
Early Release Science (ERS) GLASS-JWST program (JWST-
ERS-1324, PI Treu; Treu et al. 2022) on 2022 June 28–29 as
the reference images of our subtraction tests. The data set
consists of NIRCam images in seven filters (F090W, F115W,
F150W, F200W, F277W, F356W, and F444W) covering
observed wavelengths from 0.9 to 4.4 μm with 5σ depths
down to 28.8–29.7 AB mag (see Merlin et al. 2022).

JWST revisited the cluster in 2022 November and conducted
ultradeep NIRCam observations with 4–6 hr exposures
(∼29–30 AB mag) in seven filters (F115W, F150W, F200W,
F277W, F356W, F410M, and F444W) as a part of another
early JWST program that targets A2744: the Ultradeep
NIRSpec and NIRCam ObserVations before the Epoch of
Reionization (UNCOVER) Treasury survey (JWST-GO-2561,
PI Labbé & Bezanson; Bezanson et al. 2022). We take the
NIRCam observations collected by the UNCOVER program on
2022 November 2 as the science images for subtractions. Note
that the two JWST visits with different pointing and orientation
overlap partially in a sky area covering ∼1.4 arcmin2 centered
at R.A.= 3°.5237919, decl.=−30°.3673410 (see the JWST
footprint of A2744 in JWST Cycle 1 in Weaver et al. 2023).
All the JWST data used in this paper can be found in MAST:
doi:10.17909/7qx3-zt80.

3. Image Reduction and Mosaics

We process the raw NIRCam data using the official STScI
JWST Calibration Pipeline version 1.9.06 (Bushouse et al.
2022) in the context of jwst_1027.pmap,7 which includes in-
flight reference calibration files released on 2023 February 20.
To enhance the reduction quality, we incorporate a few
augmentations into the official pipeline largely following the
data processing prescriptions of the Cosmic Evolution Early
Release Science Survey (CEERS; Finkelstein et al. 2022)
program described in Bagley et al. (2023).

We reduce the uncalibrated images through Stage 1
(Detector1Pipeline) of the JWST Calibration Pipeline
that performs detector-level corrections and converts ramps to
count-rate (slope) images. Given that the presence of stray light
reflected off a secondary mirror support bar can introduce
contamination to observations, giving rise to the characteristic
“wisp” features on images, we address this problem by
undertaking the subtraction of wisp patterns on count-rate
images in F150W and F200W (most prominent filters) using
the available wisp templates released on 2022 August 26.8

Next, our processing turns to deal with the 1/f noise that is
introduced during detector readout (Schlawin et al. 2020) and
manifests itself in random horizontal and vertical striping
patterns. We identify and reduce the 1/f noise on count-rate
images following the approach of amp-row and column
subtraction proposed in Bagley et al. (2023). Note that the

stripes are measured after the sources in the field have been
well masked, unlike Bagley et al. (2023), here we identify the
source mask using NoiseChisel (Akhlaghi & Ichi-
kawa 2015), a noise-based method tailored for the detection
of very extended and diffuse objects. However, we note that the
correction of snowballs (Rigby et al. 2023), the circular defects
on NIRCam images caused by cosmic-ray events, is yet to be
included in our processing. We perform additional instrumental
corrections and calibrations (e.g., flat-fielding) by Stage 2
(Image2Pipeline) of the JWST Calibration Pipeline. In
this step, the count-rate images are converted to units of
MJy Sr−1.
We employ the JWST Stage 3 (Image3Pipeline) routine

to create a mosaic image for each filter at the reference
(science) epoch that combines all detectors and dithers with
drizzling. This final stage consists of reduction steps, including
astrometric alignment (TweakReg), background matching
(SkyMatch), outlier detection (OutlierDetection), and
resampling (Resample). As the SkyMatch step in Stage 3
may have difficulties in background matching for the cases
with small dither (Bagley et al. 2023), we skip this step in our
processing but remove a single sky value for each individual
image prior to Stage 3 using the SkyMatch function.9 In
addition, we opt to deactivate the TweakReg step in Stage 3,
which is used to calculate the coordinate transformations for
aligning individual images to an absolute World Coordinate
System (WCS) frame. Instead, we first combine all detector
images of each exposure to a single exposure image using the
Resample function. We then select the exposure that has the
maximal overlapping area with other exposures as the agent of
mosaic creation to provide a reference WCS frame. We use
SExtractor (Bertin & Arnouts 1996) to create a source catalog
for each exposure and perform relative astrometry with respect
to the sky coordinates measured on the agent exposure using
SCAMP (Bertin 2006). This step harmonizes the WCS
information across all exposures involved in the mosaic
creation without invoking any absolute WCS reference. Upon
running the OutlierDetection step to identify the outliers
in the data, the exposures are drizzled to a single mosaic with a
drizzling parameter pixfrac=1 using the JWST Stage 3
routine.10

Finally, we make a custom sky subtraction on the mosaic by
NoiseChisel to eliminate the residual background. Recall
that the relative astrometry above is separately performed for
each mosaic, thereby not guaranteeing WCS consistency across
the mosaics. We then undertake additional relative astrometric
calibrations at the mosaic level with respect to an agent mosaic
in F200W. The preprocessing ends with the final image
resampling of all mosaics aligned to the agent mosaic using
SWarp (Bertin 2010). Throughout the paper, unless explicitly
stated otherwise, the term “mosaic” will refer to the
astronomically aligned version after resampling.

4. Image Subtraction

Our image subtraction method developed for optimal
difference imaging of JWST data is based on the SFFT
algorithm proposed in H22. Here we briefly recap the algorithm
framework and introduce the improvements in Section 4.1. The

6 https://github.com/spacetelescope/jwst
7 https://jwst-crds.stsci.edu/context_table/jwst_1047.pmap
8 https://jwst-docs.stsci.edu/jwst-near-infrared-camera/nircam-features-and-
caveats/nircam-claws-and-wisps

9 We adopt the mode with the parameter skymethod = “local.”
10 Note that the mosaic images used for image subtractions are not
significantly undersampled after the process of drizzling (see Zhuang &
Shen 2024).
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specific subtraction scheme for JWST imaging observations is
described in Section 4.2.

4.1. Improved SFFT Method

SFFT is an algorithm for astronomical image difference that
presents the least-squares problem of image subtraction in
Fourier space, bringing about a remarkable advancement in
computational performance. It employs a δ-function basis to
allow for ultimately flexible image matching with “shape-free”
convolution kernels. Furthermore, SFFT can accommodate
spatial variations of the matching kernel across the image field
modeled by polynomials or B-splines.

For JWST observations, a number of modifications have
been implemented within the SFFT framework. We summarize
as follows:

1. The B-spline form spatial variation of the convolution
kernel, originally proposed in H22, is now well integrated
into our software and extensively tested on JWST
imaging data.

2. The photometric scaling factor through convolution, that
is, the sum of the matching kernel, can be separately
controlled, though it was fully entangled with the kernel
pixels in H22. For instance, the improved SFFT allows
for a B-spline form matching kernel while imposing user-
defined constraints on the kernel sum, such as being less
flexible polynomials or constant across the field.

3. The improved SFFT enables Tikhonov regularization
(Press et al. 2007) to suppress the overfitting trend of the
matching kernel due to the ultimate flexibility of the δ-
function basis. In particular, we provide an option to
adjust our regularization to create a trivial penalty when
the optimal matching kernel has a profile close to a δ
function, e.g., for subtractions between images that
already have similar PSFs.

4.1.1. The SFFT: A Recap

The problem of image subtraction can be written as the
minimization of the difference image D (Alard & Lupton 1998;
Alard 2000), in the form

∬
( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )

D x y S x y R K x y B x y

S x y dudvR x u y v K u v

B x y

, , , ,

, , ,

, , 1
x y,

= - -

= - - -

-

where R and S are input images with the same dimension
(N0, N1), and x and y are image coordinate indices in the ranges
of [0, N0) and [0, N1), respectively. The spatially varying
convolution of image R is denoted by R#K. Kx,y is the
matching kernel attached to image coordinate (x, y) with shape
(2w0+ 1, 2w1+ 1), while u and v are kernel coordinate indices
in the range of [−w0, w0+ 1) and [−w1, w1+ 1), respectively.
Note that the matching kernel Kx,y, as a function of image
coordinate, can vary across the image field to adapt to the
ubiquitous spatial variations of the PSF, photometric scaling,
and astrometry misalignment. Furthermore, the additional
offset map B is used to account for the background difference
between images R and S.

Following Bramich (2008) and Miller et al. (2008), SFFT
decomposes the matching kernel Kx,y into a complete

δ-function basis  as follows:

( )  K A A , 2x y xy xy, 00 00 å= +
ab

ab ab

where (α, β) is the kernel coordinate of a noncenter kernel
pixel, i.e., (α, β)≠ 011. The basis  is defined as

( ) ( ) ( ) u v u v, , 300 d=

and

( ) ( ) ( ) ( ) u v u v u v, , , , 4d da b= - - -ab

where δ is a binary function such that δ(ρ, ò)= 1 if ρ= ò= 0
and zero otherwise, with ρ and ò being any integers. Note that
all basis vectors other than00 have a zero sum. As a result, the
photometric scaling encapsulated in the convolution is uniquely
determined by the coefficient Axy00.
The kernel spatial variation is completely encoded in the

coefficients Axy00 (particular) and Axyab (general), which can be
modeled by a two-dimensional smooth surface of either
polynomials or B-splines across the image field:

( ) ( ) A a U x y, 5xy
rs

rs rs00 00å=

and

( ) ( ) A a V x y, . 6xy
ij

ij ijå=ab ab

The base functions Urs (Vij) can have a k-order polynomial
form:

( ) ( ) ( )  U V x y x y: , , 7rs ij =r
r

where ρ and ò are polynomial power indices in the range of
[0, k] and [0, k− ρ], respectively. Alternatively, they may
follow a more flexible B-spline form:

( ) ( ) ( ) ( ) ( )  U V x y x y: , , 8rs ij k t k t; , ; ,x y=r r 

where k t; , xr (  k ty; , ) are the one-dimensional B-spline basis
functions of given degree k and knots tx (ty) along the x-axis
(y-axis), and the indices ρ and ò are in range of [ ]k N0, tx+ and
[ ]k N0, ty+ , respectively. We note that the improved SFFT,

unlike in H22, formulates the coefficients Axy00 and Axyab
independently. It signifies that the photometric scaling factor
can be separately controlled, a feature that has been validated as
beneficial in Bramich et al. (2013).
The differential background B(x, y) is also fitted by a

polynomial/B-spline form function:

( ) ( )B b W x y, , 9xy
pq

pq pqå=

where the base functions Wpq are pq or pq.
With an approximation (see Appendix A of H22) based on

the fact that the scale of the spatial variations under
consideration is significantly larger than that of convolution

11 By contrast, (α, β) included the center kernel pixel in H22.
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kernel, Equation (1) can be rewritten as

( ) ( ) ◦

◦ ( )









D x y S x y a U

a V b W

, ,

, 10
rs

rs
rs

ij
ij

ij

pq
pq

pq
00

00 00å

å å

= -

- -
ab

ab ab

where the notation ◦ indicates circular convolution and
Urs=UrsR and V ij= VijR for abbreviations. Equation (10)
can also be derived using a different approach without the
approximation (see the alternative perspective in Appendix A).

It is characteristic of the SFFT method to deliver the image
subtraction problem forward into Fourier space. In the Fourier
domain, we obtain

( )

  



  D S a U a V

b W , 11

rs
rs

rs

ij
ij

ij

pq
pq

pq

00 00å å

å

= - -

-

ab
ab ab

where the symbols with a hat denote the Fourier transform of
the images, a N N ars rs00 0 1 00= and a N N aij ij0 1=ab ab.

By Parseval’s theorem, the least-squares optimization of
difference image D is equivalent to minimizing its power
spectrum in Fourier space. Let G D D= * (*stands for complex
conjugate), which represents the power spectrum of the
difference image, and we can define the loss of the
minimization in Fourier space as follows:

( ) ( ) ( ) G l m, , 12
lm

0
2 åq c= =

where θ are the free parameters (ars00, aijαβ, and bpq) of
Equation (11) that characterize the image subtraction. Thus, a
least-squares solution can be attained by optimizing its
gradients to satisfy the condition  00 = .

4.1.2. Kernel Regularization

The minimization of image subtraction with the δ-function
basis is prone to overfitting problems (Becker et al. 2012;
Bramich et al. 2016; Masci et al. 2017). It is often characterized
by irregularities (excessively noisy) resulting from matching
kernels showing undesired adaptions to the noise of input data.
The improved SFFT leverages Tikhonov regularization to
address this overfitting issue.

Following the prescription outlined in Becker et al. (2012)
and Bramich et al. (2016), we regularize the shape of fitted
matching kernels to have minimal local second derivatives by
applying an additional penalty in the loss function. Since SFFT
has invariant matching kernels across the field, we must
implement the regularization for the convolutional kernels
realized at different positions. With this consideration, we
modify Equation (12) as follows:

( ) ˜ ˜ ( ) w K L LK , 13
g

g g
T T

g
2 åq c l= +

where K̃g is the flattened version of matching kernel K at image
coordinate (xg, yg), λ is an empirically tuned parameter to
adjust the overall strength of regularization, and wg is the
specific weight of regularization at the coordinate (xg, yg). The
specific weights accommodate the situations when some
subregions may be more susceptible to overfitting so that a
higher local suppression is required accordingly. For

simplicity, we only use a uniform weighting scheme, i.e.,
wg= 1, in this work. L is the symmetric (NK, NK) Laplacian
matrix (see also Bramich et al. 2016) that represents the
connectivity graph of kernel pixels, or, equivalently, the
standard Cartesian δ-function basis, with elements

⎧
⎨
⎪⎪
⎩⎪⎪

( )

( )

L

N

,

, for , and N is the number
of kernel pixels adjacent to the
kernel pixel of index .

1, for , and and correspond
to adjacent kernel pixels.

0, otherwise.
14

adj, adj

m n

n m

m
n m m n

=

=

- ¹

m

Note that ˜LK is an array of approximations to the local second
derivative at each kernel pixel of K. It is locally calculated using
at most five kernel pixels, generally following f″(u, v)≈ f (u− 1,
v)+ f (u+ 1, v)+ f (u, v− 1)+ f (u, v+ 1)− 4f (u, v), except for
those kernel pixels adjacent to the boundary.
However, an important concern regarding the aforemen-

tioned definition lies in the fact that the regularization penalty
remains nontrivial for a trivial matching kernel, i.e., a
δ-function kernel with its only nonzero element at the kernel
center. For example, the optimal matching kernels can be close
to such a δ-function when the image subtractions are performed
on images with PSFs already broadly aligned to each other.
Under such circumstances, it is no longer reasonable to allow
the regularization to hinder the image subtraction from finding
a δ-function-like kernel as its optimal solution. Hence, the
improved SFFT offers users an option to remove the “barrier”
by further tweaking the central rows of the Laplacian matrix as
follows:

( ) ( )L , 0, 15m n =+

where μ+ represents the central five kernel pixels of shape “+”

at (−1, 0), (1, 0), (0, −1), (0, 1), and (0, 0). The modification is
equivalent to dropping the contributions of the local second
derivatives at these central kernel pixels from the summation of
Equation (13). As a result, the penalty is no longer a function of
the pixel value of the kernel center at (0, 0). In this work, we
zero out the central rows of L following Equation (15).
Invoking Equations (2)–(6) and using abbreviations

( )V V x y,ij
g

ij g g= and ( )U U x y,rs
g

rs g g= , we flatten the matching
kernel using the equations

˜ ( ) ( )K a V 16g
ij

ij ij
gåh = ab

and

˜ ( ) ( ) K a U a V , 17g
rs

rs rs
g

ij
ij ij

g
00å åf = -

a b
a b

¢ ¢
¢ ¢

where η is the flatten index of noncenter kernel pixel (α, β), i.e.,
η= (w0+ α)(2w1+ 1)+ (w1+ β), and f is the flatten index of
the center kernel pixel (0, 0), i.e., f=w0(2w1+ 1)+w1. Taking
regularization into account and abbreviation of L= LTL, the loss
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function described in Equation (13) can be rewritten as

( ) { ˜ ( ) ˜ ( )

˜ ( ) ˜ ( )

˜ ( ) ˜ ( ) ˜ ( ) } ( )

 w K K

K K

K K K . 18

g
g g g

g g

g g g

2

2

å å

å

å

q c l h h

f h

h f f

= + ¢

+

+ +

h h
hh

h
fh

h
hf ff

¢
¢L

L

L L

4.1.3. Subtraction in Fourier Space

It remains to minimize the loss function ( ) q by optimizing
its gradient with  0 = , which still yields a linear system:

( )A b. 19q =

One can solve the linear equations following Appendix B.
Finally, taking the solution of Equation (19), we arrive at the
difference image D by applying the solution to Equation (11).

4.2. Image Subtraction Scheme for JWST

This subsection presents the custom procedures of image
subtractions we developed for JWST imaging data. To
demonstrate our method, we perform the image subtraction
between the NIRCam mosaic at the reference epoch (hereafter
the reference mosaic) and the NIRCam mosaic at the science
epoch (hereafter the science mosaic) in each band (F115W,
F150W, F200W, F277W, F356W, and F444W) created in
Section 3.

4.2.1. Cross-convolution

First, we convolve the reference (science) mosaic with the
PSF model of the science (reference) mosaic, i.e., the so-called
cross-convolution. More specifically, the cross-convolved
mosaics R∗ and S∗ are generated following

◦
◦ ( )

R R P
S S P , 20

S

R

=
=
*
*

where R (S) is the reference (science) mosaic and PR (PS) is a
corresponding PSF model at the image center retrieved from
WebbPSF tool.12

The image subtraction approach with cross-convolution
involved to homogenize PSFs was initially proposed by Gal-
Yam et al. (2008) and Yuan & Akerlof (2008) and used in
Zackay et al. (2016). Given that the JWST observations with a
varying position angle lead to the rotation of the highly
structured PSF in the images taken at different epochs, a cross-
convolution before a more sophisticated subtraction can
broadly align the PSFs of input images to each other in a
numerically stable way. As a result, it can effectively avoid
deconvolution in the subsequent image subtraction that
amplifies the noise and results in pathological correlation-
induced patterns on the difference image (Zackay et al. 2016).

Note that we do not construct the PSFs from the observed
frames; the WebbPSF models are used instead as approxima-
tions to the PSFs of the observations. We do this because it is
not always possible to construct PSFs from the observed
images. The cross-convolution brings the images to a level of
approximately matching PSFs. Further processing by SFFT

will match the PSFs with the matching kernel given in
Equation (2).

4.2.2. SFFT Preprocessing

As described in H22, it is essential for the SFFT method to
solve the image subtraction on a masked version of input
images rather than the original ones. A proper image mask
serves to eliminate the affection of “bad” pixels in real
observations, e.g., saturation, cosmic rays, and variable
sources. It thus directs the SFFT minimization toward an
unbiased construction of convolution kernels.
In this work, we create a binary mask shared for the given

science and reference mosaics, largely following the preproces-
sing routine of sparse-flavor SFFT described in H22 with some
modifications:

1. We identify the “bad” sources for SFFT subtraction using
SExtractor. A field source is seen as “bad” if its
SExtractor catalog value FLAG is zero and satisfies one
of the following conditions: (1) it shows a significant
brightness change larger than 1 mag between reference
and science mosaics measured by SExtractor catalog
value MAG_AUTO, or (2) it is only detectable on one of
the mosaic images. One may notice that the source
exclusion here is a simplified version of the sparse-flavor
SFFT in H22. We have skipped the identification of
pointlike sources, as the deficiency of stars in JWST
observations renders it difficult to detect a line feature
regarding point sources using the Hough transformation.

2. We create a binary mask with pixel values initialized to 1,
and then we zero out all pixels associated with the
identified “bad” objects or background regions, according
to SExtractor segmentation maps of reference and science
mosaics.

3. We tweak the binary mask by further clipping (converting
mask value 1 to 0) all pixels that fall below three times the
background standard deviation on any of the cross-
convolved mosaics. The mask refinement is to make a
better rejection of the noise-dominated pixels. Further-
more, our software allows for a final custom adjustment on
the binary mask by clipping specific pixel regions defined
in an SAOImage DS9 region file using a polygon format.
Although this function is not activated in our subtraction
tests, it can be useful to exclude the saturated stars or other
defects in the images when necessary.

Note that the masked regions (mask value 1) are considered
reliable for solving the image subtraction. To create the masked
version of cross-convolved mosaics, we replace the pixels of
cross-convolved mosaics located in unmasked regions (mask
value 0) with trivial zeros.

4.2.3. SFFT Subtraction

We adopt the improved SFFT algorithm described in
Section 4.1 to perform image subtraction between the cross-
convolved mosaics produced in Section 4.2.1. This step aims to
achieve better image matching to compensate the simple cross-
convolution with limited matching accuracy.
We configure the tunable parameters of SFFT subtraction for

JWST/NIRCam as follows:

1. The half-width of matching kernels is tuned to 11 and 5
pixels for short- and long-wavelength channels, respectively.

12 https://www.stsci.edu/jwst/science-planning/proposal-planning-toolbox/
psf-simulation-tool
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2. The general spatial variation of the matching kernel (i.e.,
Equation (6)) is modeled by a flexible B-spline function
following Equation (8) with degree two and knots
uniformly distributed at regular intervals of 300 (150)
pixels along both the x- and y-axes for short-wavelength
(long-wavelength) channels.

3. The particular spatial variation of the matching kernel
sum (i.e., Equation (5)) is fitted by a quadratic function
following Equation (7). Note that a relatively low
flexibility of the kernel sum can preclude the photometric
scaling from any undesired local structures. Otherwise,
for instance, a variable object not successfully masked in
Section 4.2.2 could incur a local underestimate or
overestimate of photometric scaling at the position of
the variable source.

4. Given that the background component of the mosaic
images has been removed in Section 3, we assume a
trivial flat differential background by a zero-order
polynomial function (see Equation (9)).

5. The regularization strength parameter λ (see Equation (13))
is finely tuned to be 3× 10−5. We use 512 positions
randomly sampled within the image frame to regularize the
solution.

We solve the image matching on the masked version of cross-
convolved mosaics created in Section 4.2.2 and subsequently
carry out the image subtraction between the (unmasked) cross-
convolved mosaics by applying the matching solution.13 That is,

( )D S R K, 21= -* * *

where K is the spatially variant matching kernel solved from
the masked mosaics. An initial difference image D

*
is thus

obtained. We hereafter refer to it as undecorrelated difference.

4.2.4. Noise Decorrelation

Given that the undecorrelated difference must possess highly
correlated background noise introduced in the cross-convolu-
tion and SFFT subtraction, we whiten the difference image
through a noise decorrelation procedure following H22 (see
also Zackay et al. 2016).

The formulation of noise decorrelation in H22 (see Appendix
C of H22) does not take kernel spatial variations into account,
while the SFFT matching kernels are spatially variant across
the image. We adopt a straightforward strategy by dividing the
image frame into a grid of small tiles so that we can perform the
noise decorrelation separately for each tile, where the matching
kernel is approximately constant. Here we use a grid with tile
size as small as the matching kernel size. The noise
decorrelation is performed by convolving undecorrelated
difference with a spatially varying decorrelation kernel Q that
is constant for each tile in the grid:

( )D D Q 22= *

and

( ( ∣ ∣ ∣ ∣ ∣ ∣ ) ) ( ) Q Z P P KIDFT , 23S R R S
2 2 2 2 2s s= +

where σR (σS) is the background standard deviation of reference
mosaic R (science mosaic S) and K is the mathcing kernel realized
at each tile center. Z is a factor that normalizes the decorrelation

kernel Q to have a unit kernel sum for preserving the flux zero-
point. As the noise decorrelation is derived in Fourier space, the
decorrelation kernel Q is obtained after an inverse discrete Fourier
transform (IDFT). To avoid confusion, we refer to the final
difference image D as decorrelated difference.

4.2.5. Differential S/N

A key objective of optimal image subtraction is to yield a
difference image where the flux residues of nonvariable sources
and background are only dominated by their intrinsic statistical
fluctuations, such as photon noise. The least-squares mini-
mization of SFFT subtraction serves this purpose by generally
suppressing the flux residues as far as possible. However, the
effort may also be overkill in this direction: significant
overfitting can adapt to the noise in data and artificially drive
the residues toward zeros. The concern motivates us to
modulate the loss function of SFFT subtraction with Tikhonov
regularization. To evaluate whether the differential residues
exactly stand at the optimal state, it is useful to derive the
expected statistical noise of the difference image to provide a
fiducial level of optimal subtraction.
Using a simple Monte Carlo sampling, we generate a

propagated error map for decorrelated difference. JWST Stage
3 (Image3Pipeline) has produced an associated error map
for each mosaic image. First, we resample the JWST error map
of the unaligned reference (science) mosaic to the target frame
using SWarp. Subsequently, we calibrate the resampled error
map using a constant scaling factor so that the background
errors can coincide with the actual flux distribution measured
on the reference (science) mosaic. Here we have assumed that
each pixel of the reference (science) mosaic approximately
follows an independent Gaussian distribution.
We randomly sample a zero-mean noise image 1024 times

following the calibrated error map of the reference (science)
mosaic to trace the noise propagation through image subtrac-
tion. Next, we apply the same pixel operations involved in
generating the decorrelated difference (cross-convolution,
SFFT image subtraction, and decorrelation) to each randomly
sampled noise image pair. This step outputs 1024 propagated
noise images at the decorrelated difference stage, and we
calculate their standard deviation at each pixel to construct the
final propagated error map.
Finally, the signal-to-noise ratio (S/N) of decorrelated

difference is calculated as the decorrelated difference D divided
by the propagated error map N:

( )D D N , 24=

hereafter referred to as the differential S/N map.
The differential S/N map is a convenient check image to

evaluate the quality of image subtraction. An optimal image
subtraction should yield a differential S/N map that broadly
adheres to an independent standard Gaussian distribution
across the entire field. However, this criterion is overly
idealistic, as the assumption of independent noise distribution
of the input reference (science) mosaic is only an approx-
imation. Instead, we opt for a more pragmatic standard by
considering the measured distribution of differential S/Ns on
the background as the fiducial level. One can judge the quality
of image subtraction at sources by comparing its differential S/
Ns to the benchmark background level.

13 For a 2K NIRCam image, the kernel determination and image subtraction
with B-splines typically take ∼10 s on one NVIDIA Tesla A100 GPU.
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5. Performance and Comparisons

In this section, we demonstrate our image differencing
method described in Section 4.2 using NIRCam F200W
mosaics of the A2744 cluster created in Section 3. We present
the subtraction performance of our method in Section 5.1. We
compare our subtraction results with other methods in
Section 5.2.

5.1. Subtraction Performance

Figure 1 shows the subtraction performance of the SFFT
method over a section of A2744 covering 25″× 25″ centered at
R.A.= 3°.5270483, decl.=−30°.3645990. Our SFFT method
can subtract the JWST data with few conspicuous subtraction-
induced artifacts in the decorrelated difference, indicating an
excellent image matching. The behavior of background noise
correlation throughout the image subtraction process is
depicted in Figure 1. Initially, the reference (science) mosaic
exhibits only weak local correlation. After the subsequent
cross-convolution, there is a notable surge in noise correlation,
which remains pronounced in the undecorrelated difference.
However, our noise decorrelation efficiently reduces the
prominent correlation to a level comparable to the original
reference (science) mosaic.

Figure 2 zooms in on a specific region of A2744 centered at
R.A.= 3°.5295458, decl.=−30°.3648780, where our subtrac-
tion method unveiled a transient candidate, AT 2022acew (Hu
et al. 2022c). AT 2022acew appears at a sky position between
two galaxies. One of the galaxies is a typical elliptical galaxy
(SExtractor detection G1 in Figure 2), while the other might be
a (lensed) galaxy that exhibits more intricate structures
(SExtractor detections G2, G3, and G4 in Figure 2). Notably,

a bright foreground star is near the galaxies (SExtractor
detection P1 in Figure 2). This selected region showcases how
our subtraction method performs on different sources with
diverse morphology. The differential S/N map in Figure 2
reveals a distinct and prominent detection of AT 2022acew,
despite its faint nature. Meanwhile, most pixels associated with
the galaxies exhibit desirable low differential S/Ns comparable
to the background fiducial level. As shown in Figure 2, the
subtraction quality on the central regions of bright objects G1,
G3, and G4 has reached a (nearly) optimal level. For object G2,
our subtraction reveals structured residues at its core. Aperture
photometry of G2 on the SFFT difference shows a significant
positive net flux, which suggests that the residues are not likely
a stand-alone subtraction-induced artifact, i.e., they may
originate from the true flux variability of an AGN or a nuclear
transient candidate at G2. At the bright star P1, a circular
subtraction artifact appears, but its contamination is well
confined to a relatively small area with a radius of 0 22
(equivalently, ∼3.5 times of FWHM) to the star’s centroid. We
conduct a statistical analysis on the differential S/Ns across the
field presented in Figure 2. It also confirms that the differential
S/Ns in signal-dominated regions are broadly consistent with
the fiducial background level. Only a moderate performance
deterioration appears at the brightest pixels (S/N > 100). We
emphasize that the subtraction quality on these regions is
critical for the search and accurate photometry of the transients
close to galaxy nuclei. Figure 2 also traces the PSF changes
through the processes of image subtraction. One may notice
that the noise decorrelation not only whitens the noise but also
narrows down the PSF size of the difference image, rendering it
comparable to original unconvolved mosaics.

Figure 1. Image subtraction performance of the SFFT method on NIRCam (F200W) mosaics of the A2744 cluster. Top panels: from left to right, reference mosaic
(R), science mosaic (S), and decorrelated difference (D). Bottom panels: from left to right, the cross-convolved reference mosaic (R*), cross-convolved science mosaic
(S*), and undecorrelated difference (D*). The inset of each panel shows the local noise correlation measured on the samples of the background pixels enclosed in the
blue square. More specifically, it represents the covariance matrix of a multivariate random vector, consisting of 25 adjacent background pixels (see definition in
Appendix C of H22). The black dashed square indicates the position of transient candidate AT 2022acew. The arrows between different panels represent the
corresponding operations as labeled on the right side.
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5.2. Comparisons with Other Subtraction Methods

To compare the performance of different subtraction
methods, we conduct the following tests on NIRCam F200W
mosaics of the A2744 cluster using various approaches:

1. Direct HOTPANTS: The subtraction is directly per-
formed between the science mosaic and reference mosaic
using software HOTPANTS14 (Becker 2015), a widely
used implementation of Alard & Lupton (1998) with a
Gaussian function kernel basis. Here we use a simplified
noise propagation, where the error map of the difference
image is calculated as the square root of the variance sum
of the input mosaics. Subsequently, we generate a
corresponding differential S/N map based on this
error map.

2. Direct polynomial SFFT: The subtraction is directly
carried out between science mosaic and reference mosaic
using polynomial form SFFT. We create a binary mask
following the steps described in Section 4.2.2, except the
refinement clipping is applied to the unconvolved
mosaics instead. SFFT is configured with kernel spatial
variation fitted by a quadratic function and inactivated
Tikhonov regularization, following Section 4.2.3 other-
wise. Like the direct HOTPANTS test, a differential S/N
map is produced based on the simplified noise
propagation.

3. Direct B-spline SFFT: The subtraction is directly
performed between the science mosaic and reference
mosaic using B-spline form SFFT. The same binary mask
is used as in the direct polynomial SFFT test, and SFFT
configurations completely follow Section 4.2.3. Like the
direct HOTPANTS test, a differential S/N map is
generated using the simplified noise propagation.

4. Cross-convolved arithmetic subtraction: The subtraction
is performed between the cross-convolved science mosaic
and cross-convolved reference mosaic using a straightfor-
ward pixel-wise arithmetic operation of subtraction.
Subsequently, we whiten the correlated background noise
of the resulting difference image introduced in cross-
convolution following the noise decorrelation method
outlined in Section 4.2.4. Finally, a differential S/N map
is created using the Monte Carlo sampling described in
Section 4.2.5.

5. Cross-convolved polynomial SFFT: The subtraction is
conducted between the cross-convolved science mosaic
and cross-convolved reference mosaic using polynomial
form SFFT, with the same configurations as the direct
polynomial SFFT test. We proceed to decorrelate the
background noise of the resulting difference image
introduced in cross-convolution and SFFT subtraction
following the strategy in Section 4.2.4. Again, we create a
differential S/N map with the Monte Carlo sampling.

6. Cross-convolved B-spline SFFT: The subtraction test
introduced in Section 4.2.

Figure 2. Image subtraction performance of the SFFT method on NIRCam (F200W) mosaics in a close-up view around the transient candidate AT 2022acew (white
plus sign) in the A2744 cluster. The grayscale images presented in the first three columns are the same as in Figure 1, but zoomed in on a 3″ × 3″ section around AT
2022acew. However, the insets show the corresponding PSF models with measured FWHM values (in units of arcsec) labeled at the top. Note that the PSF models of
R and S are retrieved from WebbPSF, while those of R

*
and D are generated by applying the corresponding convolutions to the original WebbPSF models. In the

reference mosaic R, the overlaid contour in red (purple) marks the detection profiles for pixels with flux over 10 (100) times the sky background standard deviation σs
on both reference mosaic R and science mosaic S. The top right panel shows the differential S/N map D, while the bottom right panel presents the probability
distributions (histograms in light colors) of differential S/Ns within different regions across the image as labeled. The cyan plus signs mark the centroid positions of
the five most prominent detections in this field measured by SExtractor on S. The arrows between different image panels represent the corresponding operations as
labeled on the right side. A Gaussian profile is fitted for each distribution and illustrated by a dark-colored curve. The skewness of each distribution is marked in the
corresponding color. The vertical black short lines at the right side of the x-axis indicate the differential S/N values of AT 2022acew higher than 5.

14 HOTPANTS is configured with the following parameters: −c = t, −r = 11,
−ko = 2, −bgo = 0, −rss = 30, −nsx = NX/100 and −nsy = NY/100.
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Figure 3 shows the subtraction performances on NIRCam
mosaics of the A2744 cluster using the abovementioned
methods. The statistics of differential S/N indicate that the
two B-spline SFFT tests, with or without cross-convolution,
have the best subtraction quality among the methods. Their
differential S/Ns in signal-dominated regions can broadly
reach the fiducial background levels. This suggests that the
introduction of flexible B-spline form spatial variations for
convolutional kernels, coupled with the δ-function kernel basis
of SFFT, contributes to achieving a nearly optimal level of
image subtraction for JWST/NIRCam data. We note that the
less optimal direct polynomial SFFT subtraction already
demonstrates a considerable improvement over the direct
HOTPANTS (see Ha and Hb in Figure 3). Despite both
approaches adopting polynomial modeling for the PSF
variation, SFFT’s utilization of a δ-function basis proves more
effective for handling sophisticated PSF homogenization and
compensation of astrometric misalignments for JWST, com-
pared to HOTPANTS with Gaussian basis functions. A detailed
evaluation of polynomial form SFFT against other existing
implementations (including HOTPANTS) is presented in H22,
with an emphasis on ground-based observation tests.

Considering the distributions of differential S/N alone, one
may conclude that the direct B-spline SFFT appears to be as

good as the cross-convolved B-spline SFFT. However, it is
important to emphasize that the inclusion of cross-convolution,
in addition to its numerical stability, improves the subtraction
quality for point sources. The advantage is evident for the
bright star P1: the direct B-spline SFFT gives rise to a more
extended subtraction artifact, as shown by the residues
surrounding the squarelike pattern in Figure 3. Due to the
limited number of stars in our test data, this advantage is not
adequately reflected in the statistics.
To visualize the flexibility of the B-spline kernel, we have

extracted the matching kernels at different image positions for
the cross-convolved polynomial and B-spline SFFTs. Figure 4
shows the spatial variations of five central kernel pixels and
the kernel sum for these two subtraction tests. Note that the
photometric scaling for cross-convolved B-spline SFFT has
been constrained to a low-degree quadratic function in the
same form as cross-convolved polynomial SFFT. The two
kernel sum surfaces depicted in Figure 4 are roughly
consistent with each other and close to a flat unit plane. As
anticipated, central kernel pixels for the B-spline form exhibit
more structures across the field that can better adapt to the
PSF spatial variation and compensate for local astrometrical
misalignments.

Figure 3. Image subtraction performance on NIRCam (F200W) mosaics of the A2744 cluster using different methods. (S): A 25″ × 25″ image section of the science
mosaic as shown in Figure 1, and its inset shows a 3″ × 3″ zoomed-in postage stamp around AT 2022acew as shown in Figure 2. ( Da )–( Df ): Postage stamps (with the
same view as the inset of (S)) of differential S/N maps from the six subtraction tests in Section 5.2: direct HOTPANTS, direct polynomial SFFT, direct B-spline
SFFT, cross-convolved arithmetic subtraction, cross-convolved polynomial SFFT, and cross-convolved B-spline SFFT, respectively. In each postage stamp, the cyan
circle highlights the central region of the elliptical galaxy in the lower right corner, centered at R.A. = 3°. 5293333, decl. = −30°. 3648317, with a radius of 0 3098,
five times the FWHM size of the PSF model of the science mosaic; the yellow circle marks a region selected from the ambient background with the same radius. The
standard deviation σ of the pixel values enclosed by the cyan (yellow) circle is accordingly labeled in the lower left corner. The five prominent detections shown in
Figure 2 are also marked with cyan plus signs in the inset of (S) and panel Df . (Ha)–(Hf): The histograms, from left to right, show the probability distributions of
differential S/Ns for different pixel regions for the six subtraction tests, respectively. The pixel regions are identified following Figure 2. Each distribution’s standard
deviation σ is labeled at the right border using the corresponding color.
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Figure 4. Comparisons of spatial variations of matching kernels between the polynomial form SFFT and B-spline form SFFT. The leftmost panel shows the 25″ × 25″
image section of the science mosaic, as in Figures 1 and 2. The top panels that are labeled by KP(α, β) show the spatial variations across the image field of the
matching kernel pixel at (α, β) for cross-convolved polynomial SFFT test. In contrast, the top rightmost panel shows the spatial variations of the kernel sum. The
bottom panels have the same style, but for the cross-convolved B-spline SFFT test. In these panels, the dashed white lines indicate the positions of the inner knots of
B-splines. The black dashed square indicates the position of AT 2022acew, as in Figure 3.

Figure 5. The effect of Tikhonov regularizations in SFFT subtraction. (S): A 25″ × 25″ pixel section of the science mosaic, centered at R.A. = 3°. 5234850,
decl. = −30°. 3615950. (S

*
): A 4″ × 4″ postage stamp of the cross-convolved science mosaic centered at the examined galaxy. ( D1*)–( D6*): Postage stamps (with a

view the same as S
*
) of the undecorrelated differential S/N maps for SFFT subtraction tests, with increasing regularization strength λ being 0, 10−6, 10−5, 3 × 10−5,

10−4, and 10−3, respectively. In each postage stamp, the cyan circle highlights the central region of the examined galaxy with a radius of 0 1763, twice the FWHM of
the cross-convolved PSF model. In contrast, the yellow circle marks a region selected from the ambient background with a radius of 15 pixels (0 4650). The standard
deviation σ of the pixel values enclosed by the cyan (yellow) circle is accordingly labeled in the lower left corner. (K1)–(K6): From left to right, the panels show the
matching kernels realized at the position of the examined galaxy for SFFT subtraction tests, with the increasing λ as labeled. (H1)–(H6): From left to right, the
histograms show the probability distributions of undecorrelated differential S/Ns, enclosed by different pixel regions shown as different histogram colors, for SFFT
subtraction tests with increasing λ. The pixel regions are identified following Figure 2 but defined on the cross-convolved image pair. Each distribution’s standard
deviation σ is labeled at the right border in the corresponding color.
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6. The Effect of Kernel Regularization

Overfitting is an important concern regarding any image
subtraction method, especially with the δ-function basis. In this
section, we demonstrate how the regularization technique
assists the SFFT subtraction in properly harnessing the least-
squares minimization process to mitigate overfitting.

We reconduct our subtraction test on the NIRCam F200W
mosaics six times, each with a different regularization strength λ
ranging from 0 to 10−3. To evaluate the quality of undecorre-
lated differences of these subtraction tests, we calculate a
propagated error map for each undecorrelated difference using
the Monte Carlo sampling described in Section 4.2.5 and
generate a corresponding undecorrelated differential S/N map.

Figure 5 shows the impact of Tikhonov regularization on
SFFT subtraction tests at an examined galaxy at R.
A.= 3°.5216322, decl.=−30°.3627870 in A2744. When no
regularization is applied, one can notice that the overfitting
manifests itself in the highly flattened undecorrelated differential
S/Ns at the examined galaxy compared with the neighboring
background. Accordingly, the matching kernel at the examined
galaxy is excessively noisy, signifying an undesirable adaptation
to the galaxy’s Poisson noise. Statistically, the overall distribu-
tion of undecorrelated differential S/Ns at signal-dominated
regions is also pathological: it is even better than the fiducial
background level. As shown in Figure 5, adjusting the
regularization strength can adequately address the overfitting
problem. Increasing the regularization parameter λ results in a
smoother matching kernel and broadens the distribution of
undecorrelated differential S/Ns in signal-dominated regions to
be more reasonable. It is worth mentioning that the regulariza-
tion strength we used in Section 4.2, λ= 3× 10−5, is a moderate
value that effectively curbs overfitting without significantly
compromising the quality of subtraction.

Despite its effectiveness in regularizing the noise levels of
difference images, the Tikhonov regularization may not be the
ultimate solution to address the overfitting problem in image
subtraction. The penalty term of Tikhonov regularization only
modulates the shape of the matching kernels but does not
guarantee or properly quantify the optimal solution. It is not

mathematically well-defined, and users must fine-tune the
regularization strength as a hyperparameter. For optimal
subtraction, the ultimate goal is to eliminate any structured
residues in the difference image for all the objects without true
variability. It is equivalent to minimizing the information
content or maximizing the entropy of the residual images. In a
future study, we will aim to incorporate a term into the loss
function that can steer the fitting toward maximum entropy.

7. Image Coadd

Naturally, the precise image matching accomplished by the
B-spline form of SFFT can also be employed in the image
coaddition to construct deeper mosaics. We illustrate this
capability by performing a coaddition of the two NIRCam
F200W mosaics of A2744 that were used in Section 5.
The coaddition scheme mostly inherits the procedures

described in Section 4.2. We use the same cross-convolution
and B-spline form SFFT to align the input mosaics. The
matched mosaics are subjected to weighted coaddition (instead
of subtraction) followed by a noise decorrelation. More
specifically, we coadd the reference mosaic R and science
mosaic S following

[ ( ◦ ) ( ◦ ) ] ( ) C w S P w R P K Q 25S R R S c= +

and

( ( ∣ ∣ ∣ ∣ ∣ ∣ ) ) ( ) Q Z w P w P KIDFT , 26c c S S R R R S
2 2 2 2 2 2 2s s= +

where simple inverse variance weights w 1S S
2s= and

w 1R R
2s= are adopted. Again, Zc is a normalization factor,

and the noise decorrelation is performed over the same grid of
tiles. The example image coadd is shown in Figure 6. We note
that the sharp NIRCam PSF is preserved through the image
coaddition. As expected, the coadd image bears reduced
background noise and increased signal levels. With the
detection parameters set to be identical,15 the image coadd

Figure 6. Image coadd of NICam (F200W) mosaics of the A2744 cluster using the SFFT method. From left to right, the mosaic image was taken on 2022 June 28–29,
2022 November 2, and the SFFT coadd mosaic. The insets show the corresponding PSF models with measured FWHM values (in units of arcsec) labeled at the top.
Note that the PSF models of R and S are retrieved from WebbPSF, while the PSF models of coadded image C are generated by applying the corresponding
convolutions to the WebbPSF models. In each panel, the blue circles are the sources detected by SExtractor on each panel image. The red squares represent the
sources detected only in the coadded image. The SExtractor parameters were kept identical in detecting these sources. The black dashed circles indicate the pixel
regions contaminated by the uncorrected snowballs, and sources inside them are not shown.

15 SExtractor is configured as follows: DETECT_THERSH = 1.5,
DETECT_MINAREA = 5 and DEBLEND_MINCONT = 0.005.
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leads to detection limits that are ∼0.25 mag fainter, consistent
with the expectation from Poisson statistics of the noise. The
advantage of using SFFT for image coadding is that it
automatically aligns and matches the positions and profiles of
the objects in the image field and creates coadd images that
preserve the sharpness of the central cores of the JWST PSFs.

8. Summary and Conclusions

We have introduced an image differencing pipeline adapted
to improve difference image analyses of JWST/NIRCam
observations. We briefly summarize here the major steps of the
pipeline:

1. Starting from uncalibrated NIRCam observations, we
utilize an augmented version of the official STScI JWST
Calibration Pipeline to create the reference and science
mosaics taken at different epochs (see Section 3).

2. Next, we perform cross-convolution by convolving the
reference mosaic with the PSF model of the science
mosaic and vice versa, using the PSF models provided by
WebbPSF (see Section 4.2.1). This process can broadly
align the PSFs of the two mosaics and minimize the
numerical instability during the subsequent image
subtraction.

3. We introduce a B-spline form of kernel variations in the
SFFT method and modulate it by the Tikhonov
regularization to perform the image subtraction between

Figure 7. Image subtraction performance of the SFFT method on NIRCam mosaics of the A2744 cluster illustrated with more examples. For each row, the first
postage stamp shows a 3″ × 3″ section of the science mosaic in F200W centered at a sky coordinate as labeled on the left side. The next six postage stamps on the
right-hand side present the differential S/N maps within the same view generated by the SFFT subtractions in F115W, F150W, F200W, F277W, F356W, and F444W,
respectively. For comparisons, the last two postage stamps show the differential S/N maps generated by the direct HOTPANTS and the cross-convolved arithmetic
subtractions (see Section 5.2) in F444W, respectively.
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the cross-convolved mosaics (see Sections 4.2.2 and
4.2.3). This step aims to achieve an accurate image
matching with PSF homogenization and corrections of
astrometrical misalignments. This version of the SFFT
method is characterized by several new features, outlined
as follows: (1) It allows for flexible B-spline functions to
depict the spatial variation of matching kernels, and in
parallel, it can independently control the photometric
scaling (kernel sum), typically by modeling with
polynomial functions with lower degrees of freedom.
(2) Tikhonov regularization has been incorporated to
suppress the undesired noise adaptions (i.e., overfitting
problem) caused by the high level of flexibility in the
fitting process. The new method is detailed in Section 4.

4. We apply the prescription of noise decorrelation outlined
in H22 to the difference image obtained from the SFFT
subtraction (see Section 4.2.4). This step effectively
removes the convolution-induced correlations of back-
ground noise, and the FWHM of the central cores of the
PSF becomes comparable to that in the original mosaics.

5. Finally, the pipeline provides a differential S/N map as a
check image to evaluate the quality of subtraction and
diagnose possible overfitting (see Section 4.2.5).

This paper demonstrates the performance of the pipeline
using JWST/NIRCam imaging data of the A2744 cluster
acquired in JWST Cycle 1 by the GLASS and UNCOVER
programs. We exemplify that our method can achieve high
subtraction quality, for which the residues on signal-dominated
regions statistically harmonize with those at the fiducial
background level. Moreover, we show that the regularization
technique can properly suppress the overfitting trend stemming
from the high degree of freedom in SFFT subtraction. We also
make a comparison of subtraction performance using different
techniques. Among them, a regularized B-spline form SFFT
coupled with cross-convolution can achieve the best quality of
image subtraction for the JWST/NIRCam data. The method
can also be used for accurate coadding of JWST images. The
algorithm is potentially useful in studying variable stars/
transients in nearby galaxies, in searching for exoplanets
through microlensing, and in finding SNe, especially those that
are gravitationally lensed by nearby, relatively bright galaxies
(e.g., Penny et al. 2019; Chen et al. 2022c; Yuan et al. 2022;
Mayker Chen et al. 2023; Riess et al. 2023).

Figure 7 presents more examples of the subtraction
performance on the A2744 cluster in different filter bands,
zoomed in on several galaxies. The data reduction and image
subtraction follow the steps described in Sections 3 and 4.2,
respectively. The PSF mismatch can lead to spurious features
extending to 0 5 from the center of a bright point source if
the difference images are calculated using the original mosaics
(see Figures 3 and 7 for examples). While the total area affected
by the PSF mismatch is usually insignificant compared to the
entire image field, the central regions of galaxies require more
careful treatment and cannot be ignored for many important
studies. For transient searches around diffuse galaxies, the
effect of the PSF structure may not matter much. Our method is
most important in searching for transients around galaxies with
bright central cores. Some examples are the SNe and tidal
disruption events close to the central regions of galaxies, AGN
variabilities, and SNe lensed by foreground galaxies (whose
Einstein ring is of the size ∼1″).

As shown in Figure 7, the difference images of these
galaxies derived from our algorithm are clean and reveal no
variabilities, whereas residual patterns are conspicuous when
using simple arithmetic subtraction. Our algorithm enables
robust discoveries of variabilities and transients down to the
nuclei of galaxies. The eighth row of Figure 7 shows such an
example (see the white plus sign). It shows a transient
phenomenon that is significantly detected only at a wavelength
longer than 2 μm, with magnitudes of 32.16± 1.50 (F115W),
31.27± 0.73 (F150W), 28.84± 0.09 (F200W), 28.97± 0.13
(F277W), 29.13± 0.16 (F356W), and 28.27± 0.10 (F444W).
This could be a highly reddened flare/tidal disruption event
related to AGN variability, a very red SN, or a gravitationally
magnified high-redshift SN (z 4 for typical Type Ia SNe
around maximum light). Our pipeline facilitates the discoveries
and follow-up studies of such objects to address these
intriguing possibilities.
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Appendix A
An Alternative Perspective on the Approximation in SFFT

Equation (10) can be obtained by tweaking the definition of
the matching kernel K as follows:
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The center element Kx,y(0, 0) aligns with the original definition
in Equation (2). The modification is applied to the noncenter
elements Kx,y(α, β), where we introduce a minor shift (α, β) on
each basis function Vij of kernel spatial variation in the kernel
construction. Consequently, this results in corresponding
photometric scaling,
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We note that Equations (A1) and (A2) give the exact form of
the matching kernel performed in SFFT subtraction. In general,
the basis functions Vij can be considered constant within the
scale of the matching kernel. With this consideration, the
claimed matching kernel and photometric scaling in
Section 4.1.1 can closely approximate their precise forms.
For the sake of simplicity, we refrain from applying this
refinement to the matching kernel throughout this paper.

Appendix B
Solving Linear System in SFFT

The first component of the loss function in Equation (18)
represents the overall subtraction residues in the Fourier domain,
calculated as the sum of the power spectrum of the difference
image. Substituting Equation (11) into Equation (12), one can
obtain the power spectrum

( )

[ ]

[ ]

[ ( ) ]

[ ( ) ]

( ) ( )

( ) ( )

( ) ( )

( ) ( )

[ ] ( )

R

R

R

R

R









 





















 









 







 

















 

 

 

 

B1

G S S a S U

a S V

a b U W

a b V W

a U a U

a U a V

a V a U

a V a V

b S W b W b W

2

2

2

2

2 ,

rs
rs

rs

ij
ij

ij

rs pq
rs pq

rs pq

ij pq
ij pq

ij pq

rs r s
rs

rs
r s

r s

rs i j
rs

rs
i j

i j

ij r s
ij

ij
r s

r s

ij i j
ij

ij
i j

i j

pq
pq

pq

pq p q
pq

pq
p q

p q

00 00

00 00

00 00 00 00

00 00

00 00

å

å

åå

åå

åå

å å

åå

å å

å åå

= -

-

+

+

+

+

+

+

- +

ab
ab ab

ab
ab ab

a b
a b a b

ab
ab ab

ab a b
ab ab a b a b

¢ ¢
¢ ¢

¢ ¢

¢ ¢ ¢ ¢
¢ ¢ ¢ ¢

¢ ¢
¢ ¢

¢ ¢
¢ ¢

¢ ¢

¢ ¢ ¢ ¢
¢ ¢ ¢ ¢

¢ ¢
¢ ¢

¢ ¢
¢ ¢

¢ ¢

* *

*

*

*

* *

* *

* *

* *

* *

where R stands for the real part of complex numbers.
Taking the regularization penalty into account, we can

rewrite the loss function described in Equation (18) by
invoking Equations (14), (16), and (17):
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where η and h¢ are the flatten index of noncenter kernel pixels
(α, β) and ( ),a b¢ ¢ , respectively. f is the flatten index of the
center kernel pixel (0, 0).
Next, we optimize the gradient of the loss function with
 0 = that constructs the linear system described in

Equation (19). By virtue of the simple form of the δ-function
basis in Fourier space, we can write the linear system as
follows.
The matrix A is symmetric and can be seen as a partitioned

matrix with four submatrices. The upper left block of A: (i) the
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where, following the previous convention, h̄ is the flatten index
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The upper right block of A: (i) the component of the cross
terms for “kernel to background,”
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The lower left block of A: (i) the component of the cross
terms for “background to kernel,”
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The lower right block of A composed of the cross terms for
“background to background”:
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One the right-hand side of the linear system, the upper block
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