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North Pacific
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Under anthropogenic warming, future changes to climate variability beyond specific modes such as
the El Niño-Southern Oscillation (ENSO) have not been well-characterized. In the Community Earth
SystemModel version 2 Large Ensemble (CESM2-LE) climatemodel, the future change to sea surface
temperature (SST) variability (and correspondingly marine heatwave intensity) on monthly timescales
and longer is spatially heterogeneous. We examined these projected changes (between 1960–2000
and 2060–2100) in theNorth Pacific using a local linear stochastic-deterministicmodel, which allowed
us to quantify the effect of changes to three drivers on SST variability: ocean “memory” (the SST
damping timescale), ENSO teleconnections, and stochastic noise forcing. The ocean memory
declines in most areas, but lengthens in the central North Pacific. This change is primarily due to
changes in air-sea feedbacks and ocean damping, with the shallowing mixed layer depth playing a
secondary role. An eastward shift of the ENSO teleconnection pattern is primarily responsible for the
pattern of SST variance change.

Anthropogenic emissions of greenhouse gasses are causing profound
changes to the Earth’s climate. Changes to the climatemean state have been
studied for over half a century (e.g., ref. 1) and are oftenused to set targets for
reducing greenhouse gas emissions. In contrast, changes to climate varia-
bility—characterized statistically by variance and occurrence of extreme
events and of importance for regional adaptation strategies—under future
warming scenarios are less understood.

There is a substantial bodyof literature characterizing future changes to
specific modes of climate variability such as the El Niño-Southern Oscilla-
tion (ENSO)2–8 and theMadden-JulianOscillation9–12. However the broader
study of climate variability changes is an emerging field with many out-
standing questions13–15.

The recent advent of large ensemble climate model simulations offers
an opportunity to robustly quantify future variance and extreme event
changes13,16–18. Conducting a large number of simulations with the same
climate model with identical external forcing but perturbed initial condi-
tions allows for a clear identification of the forced signal as it changes over
time, leaving only model and scenario uncertainty19.

In this study, we examined the projected change to sea surface tem-
perature (SST) variability in the North Pacific and its physical drivers using
the Community Earth System Model version 2 Large Ensemble (CESM2-
LE), which consists of 100 ensemblemember simulations13. Changes to SST

variability are of key importance to both physical and biological compo-
nents of the climate system: SST couples the ocean and atmosphere via
radiative and turbulent heat fluxes20 and controls many physiological pro-
cesses of marine organisms21. The occurrence of marine heatwaves, pro-
longed periods of anomalously high SST that result in severe ecological and
socioeconomic impacts22, is directly related toSSTvariability fromamoving
baseline perspective23,24.

Strikingly, the projected change in SSTvariance inCESM2-LEbetween
1960–2000 and 2060–2100 is not spatially uniform (Fig. 1c, d), and the aim
of this study was to identify the drivers responsible for this pattern of
variability change. Note that these projected changes in variance directly
translate (if the other statistical moments remain constant) to changes of
threshold exceedances of upper percentiles (e.g., the 90thpercentile) that are
often used to definemarine heatwaves (e.g., ref. 25). This can be seen by the
area-weighted spatial pattern correlation coefficient between the SST stan-
dard deviation change (Fig. 1e) and marine heatwave intensity change
(Fig. 1f), which globally is 0.87.

We used a local linear stochastic-deterministic SSTmodel (see Section
“Linear Stochastic-Deterministic Model”, Eq. (1)) to quantify the relative
effect of changes to three drivers on the overall change in SST variance on
monthly timescales and longer: oceanmemory, ENSO teleconnections, and
stochastic noise forcing. Although in this study we focus only on the
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CESM2-LE model and the North Pacific, our methodology is equally
applicable to other climate models and ocean basins.

In CESM2-LE there are significant changes to the drivers of SST var-
iance, which lead to corresponding changes to SST variance. In Sections
“Ocean Memory and Its Future Changes”–“Noise Forcing and Its Future
Changes” we discuss the changes of individual drivers and in Section
“Drivers of future SSTVariance Change” how they contribute to the overall
change of SST variance. We discuss the conclusions of these results in
Section “Discussion”. Our methodology is outlined in Section “Methods”,
which details how we determined the ocean memory ~λ

�1
, ENSO tele-

connection coefficient ~β, and stochastic noise forcing ξ and how the changes
of each of each of those drivers contributes to the changes of SST variance.

Results
Ocean memory and its future changes
The ocean memory varies considerably across the North Pacific, both in
observations and CESM2. Over most of the North Pacific, the ocean
memory diagnosed from the observations is between 2 and 6 months
(Fig. 2a). Equatorward of about 20∘N, particularly toward the eastern side
the basin, the ocean memory is substantially longer, typically around

9 months. The magnitude of the ocean memory is largely consistent with
previous estimations (e.g., refs. 26,27) and the autocorrelation timescale of
large-scale modes such as the the Pacific Decadal Oscillation28.

In the observations, the contribution of the different heat fluxes to the
total feedback (Fig. 3a–c) shows strong damping from turbulent heat fluxes
(almost entirely the latent heat feedback)particularly in abandat 25∘Nin the
westernNorthPacific.Overmuchof theNorthPacific polewardof 20∘N, the
radiative heatflux feedback (almost entirely shortwave feedback) is positive,
indicative of the low cloud-SST feedback, where negative SST anomalies are
associated with increased atmospheric stability, leading to the formation of
low clouds which reduce surface shortwave radiation and further cool the
ocean29–31.

The ocean memory in CESM2-LE is similar in magnitude to obser-
vations, ranging between about 2 and 9 months, but has a distinct spatial
pattern (Fig. 2d, g). The ocean memory is shorter in the western North
Pacific than in the east, which canmostly be attributed to strong dampingby
turbulent heat fluxes (Fig. 3d). As in the observations, the turbulent and
radiative feedbacks are dominated by the latent heat and shortwave feed-
backs, respectively (see Supplementary Fig. 5). A large area of particularly
long ocean memory is present between Hawai’i and North America,

Fig. 1 | SST variability and its future changes. a SST variance during 1960–2000
fromHadISST andb fromCESM2-LE. c SST variance change inCESM2-LE between
1960–2000 and 2060–2100. d Relative SST variance change between those time
periods. e SST standard deviation change in CESM2-LE between 1960–2000 and

2060–2100. f Change of mean marine heatwave (MHW) intensity between
1960–2000 and 2060–2100. Stippled areas in c–f show where the change of the
variance, standard deviation, or marine heatwave intensity is not significant at the
5% level.
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resulting from relatively weak turbulent heat flux damping and positive
radiative feedback, likely from the low cloud-SST feedback.

Interestingly, the phases of ~λ and the climatological mixed layer depth
~H differ: ~λ is most strongly negative between August and December
(depending on location) whereas ~H is deepest between December and
March (see Supplementary Fig. 1). That implies that the seasonality of the
air-sea heatflux feedbacks plays a strong role in the seasonalmodulationof~λ
in addition to that of the mixed layer depth.

Inobservations, the residual feedbackhas considerable spatial structure
(Fig. 3c), with areas of negative and strongly positive feedbacks. In CESM2-
LE, the residual feedback is negative everywhere except for coastal areas off
China and Mexico. As estimated in Section “Linear Stochastic-
Deterministic Model”, entrainment and horizontal eddy diffusion are
expected to damp SST anomalies, with a combined feedback on the order of
–0.06 months−1, which corresponds well with the results from CESM2-LE.
However, the strong positive feedbacks in observations could be the result of
errors in the heat flux and mixed layer depth data. The magnitude of the
feedbacks ~λ

�
x for different heat flux components are similar between

observations and CESM2-LE (see Supplementary Fig. 5). However, the
mixed layer depth is typically somewhat deeper in CESM2-LE than in the
ORAS5 reanalysis, which would lead to the ~λrad and ~λturb being greater in
magnitude in observations compared to CESM2-LE. Part of that dis-
crepancymay be due to the differentmixed layer definitions used: a density-
based definition for ORAS5 (see Section “Data”) and a buoyancy-based
definition for CESM232.

In the future climate in CESM2-LE, the ocean memory declines over
most of the basin except for a zonally-elongated area in the central North
Pacific where it increases (Fig. 2j). The changes to the individual feedbacks
are spatially varied, but it appears that the change in ocean memory is

primarily driven by changes to the radiative and residual feedbacks, sug-
gesting that changes in clouds and ocean dynamics are most important for
the change in ocean memory. In common with other climate models (e.g.,
refs. 33,34), the mixed layer depth in the North Pacific in CESM2-LE is
shallower nearly everywhere in the future climate, leading to a reduced heat
capacity and correspondingly shorter oceanmemory (Fig. 3j). However, the
magnitude of the feedback change due to the shallower mixed layer is
relativelyminor compared to the changes to the other feedbacks, in contrast
with the findings of ref. 34, which attributed the projected decline in ocean
memory in CMIP6 models primarily to mixed layer depth shallowing.

ENSO teleconnection and its future changes
The ENSO teleconnection, represented by ~β multiplied by the standard
deviation of Niño3.4, in both observations and CESM2-LE (Fig. 2b, e, h)
exhibits the well-known “atmospheric bridge” pattern: cooling of SSTs in
the centralNorthPacific andwarming in the easternNorthPacific duringEl
Niño (and the reverse during La Niña)35–37. This pattern is caused by
anomalous tropical heating in the central Pacific during El Niño which
excites atmospheric Rossbywave trains that propagate poleward and induce
changes in atmospheric circulation and surface heat fluxes. The Aleutian
Low deepens during El Niño, resulting in anomalous cold and dry north-
westerly winds over the central North Pacific that cool SSTs and anomalous
warm and humid southeasterly winds over the eastern North Pacific that
warm SSTs. These changes in wind, air temperature, and humidity mod-
ulate the air-sea heat fluxes, resulting in SST anomalies. These large-scale
atmospheric patterns are evident in the sea level pressure and 850-hPawind
regressed onto the Niño3.4 index (line contours and vectors in Fig. 2b, e, h).

The spatial pattern of the teleconnection inCESM2-LE for 1960–2000 is
broadly similar to theobservedpatternbut isdisplaced slightly to thewest and

Fig. 2 | Linear stochastic-deterministic model parameters and their future
changes. Eq. (1) parameters fit to HadISST a–c and CESM2-LE d–i SST data in
shaded contours, with CESM2-LE projected changes on the bottom row j–l.
b, e, h vectors and contours are the 850-hPa winds and sea level pressure anomalies
regressed onto theNiño3.4 index, the latter with 25-Pa/K spacing (positive values are
solid lines and negative lines are dashed, with a thicker line at the zero contour).
Stippling in d–f indicates that the parameters derived from observations lie outside

the 5th–95th percentile range of those derived from the CESM2-LE ensemble
members. Stippling in j–l indicates where the changes are not significant at the 5%
level. The ocean memory and ENSO teleconnection panels show the mean of the
parameters over the seasonal cycle, and all CESM2-LE panels are also the ensemble
mean of the respective parameters. Locations where the SST data is not well-
described by a local linear stochastic model are shown as white hatched areas (see
Section “Applicability of the Linear Stochastic-Deterministic Model”).
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is somewhat stronger inmagnitude (see ref. 38 for an overview of ENSO and
its teleconnections inCESM2).Thewestwarddisplacement likely isdue to the
ENSOSSTanomaly inCESM2extending furtherwest than in observations39.
However, in most of the North Pacific the observed teleconnection falls
within the 5th–95th percentile range of the CESM2-LE ensemblemembers. At
the center of action in the central North Pacific, the annually-averaged tele-
connection coefficient ~β ismuch stronger in observations than inCESM2-LE
for either time period (see Supplementary Fig. 6). However, the ensemble
meanNiño3.4 standard deviation in CESM2-LE is about 50% greater than in
observations: 1.30 K and 1.26 K for 1960–2000 and 2060–2100, respectively,
compared to the observed value of 0.86 K for 1960–2000 in HadISST. Thus,
the overall magnitude of forcing of the teleconnection on SST anomalies is
comparable between the model and observations.

In CESM2-LE, the ENSO teleconnection pattern shifts to the northeast
in the future climate. The teleconnection, both in its effect on atmospheric
circulation and SSTs, weakens slightly. That shift likely is caused by the
eastward shift of the locationofmaximumprecipitationduringENSOdue to
the expansion of the western Pacific warm pool (see refs. 40,41). Changes to
the atmospheric waveguide may also contribute to the teleconnection shift.

It is important to note that ENSO variance changes non-monotonically
over time in CESM2-LE: the variance increases with time until about 2040,
afterwhich it declines5. Thus the change of theENSO teleconnection strength
is dependent to some degree on the choice of the time periods being com-
pared. However, the change of the ENSO teleconnection (Fig. 2k) is domi-
nated by the spatial shift of the teleconnection pattern rather than the change
in the ENSO variance. As a result, we do not expect the non-monotonic
change of ENSO variability to critically affect the conclusions of this study.

Noise forcing and its future changes
The variance of the noise forcing ξhas a broadmaximumat 40∘Ninboth the
observations and CESM2-LE, stretching from Japan to about 150∘W

(Fig. 2c, f, i). This coincides with the subarctic SST front and the North
Pacific storm track, thus high atmospheric and oceanic variability in this
region is expected.

The leading three Empirical Orthogonal Functions (EOFs) of ξ show
spatially-coherent structures as do their regressions onto sea level pressure
and 850-hPa wind anomalies in both observations/reanalysis and CESM2-
LE (Fig. 4). The spatial patterns of the EOFs and regressions derived from
the HadISST and ERA5 data closely resemble those derived from CESM2-
LE data. EOF-1 represents amodulation of the strength of the noise forcing
along the subarctic SST front, with the atmospheric expression resembling
the strengthening/weakening of the Aleutian Low. This mode appears
similar to the stochastic forcing that contributes to the Pacific Decadal
Oscillation27,28. EOF-2 and EOF-3 represent meridional and zonal shifts,
respectively, of this pattern. The atmospheric circulation anomalies asso-
ciated with EOF-2 (Fig. 4d) resemble somewhat the North Pacific Oscilla-
tion pattern that contributes to forcing the North Pacific Gyre
Oscillation42,43. Hence, the leading patterns of the noise residual and their
corresponding atmospheric circulation anomalies are consistent with the
leading forcing patterns of the Pacific Decadal Oscillation and the North
Pacific Gyre Circulation.

The noise in observations has considerably greater variance than in
CESM2-LE even though the SST variance is similar. Because SST variance
increases with increasing ocean memory (in an AR-1 process; see ref. 44),
the greater noise variance in observations is compensated by the somewhat
shorter ocean memory to yield comparable overall SST variance to
CESM2-LE.

The future change of the noise forcing variance is spatially hetero-
geneous in CESM2-LE. Although increasing in most areas, particularly in
the eastern North Pacific between Hawai’i and North America, there are
areas in the central and southeastern parts of the basin where noise variance
decreases. This change may be due in part to changes in the intensity and

Fig. 3 | SST feedback parameters and their future changes. a–f Turbulent,
radiative, and residual SST feedbacks in HadISST for 1985–2018 and CESM2-LE for
1960–2000. g–i Changes to those feedbacks in CESM2-LE between 1960–2000 and
2060–2100, with j showing the contribution of the mixed layer depth change.
Stippling in g–i indicates where the changes are not significant at the 5% level. All

panels show the feedbacks averaged over the seasonal cycle and the CESM2-LE
panels showing the ensemble mean. Locations where the SST data does not meet the
criterion described in Section “Applicability of the Linear Stochastic-Deterministic
Model” are shown as white hatched areas.
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position of the storm track (see e.g. refs. 45,46). The changes to the leading ξ
EOFs and their atmospheric expressions are shown in Supplementary Fig. 7.
The pattern of the total noise residual change (Fig. 2l) somewhat resembles
the North Pacific Meridional Mode, particularly in the subtropical eastern
NorthPacific. Previous researchhas suggested that the variance of thismode
may increasewith futurewarming47,48. The strong increase in variance north
of Japan is potentially due to a poleward shift of the Kuroshio49.

Drivers of future SST variance change
As described in Section “Isolating SST Variance Contribution from Each
Driver” we used the fitted values of ~λ; ~β, and ξ to create several sets of
reconstructed SSTdata forced eitherbyENSOorby thenoise residual ξ. The
variance of the ENSO-forced SSTs is appreciably smaller than the noise-

forced SSTs (Fig. 5b, c). However, the change in variance of the ENSO-
forced SSTs due to the shift of the ENSO teleconnection is comparable in
magnitude to the change in variance of thenoise-forced SSTs (Fig. 5e, f). The
sum of the individual variance changes sums to close to the true variance
change, supporting the validity of integrating the forcings separately
(compare Fig. 5a, g).

The pattern of variance change due to each of the three drivers
closely resembles the changes to the corresponding parameters in
Fig. 2j–i. Increases in the ocean memory lead to increased SST var-
iance and vice versa, as expected for an AR-1 process (see ref. 44).
Likewise, increases in the magnitude of the ENSO teleconnection and
noise forcing lead to increases in SST variance, and vice versa. The
change in the strength of the ENSO teleconnection is almost entirely a

Fig. 5 | Drivers of SST variability changes. a The total SST variance change as in
Fig. 1c. b, c The SST variance associated with ENSO-only and noise-only forcing,
respectively, for 1960–2000. d–f The SST variance changes associated with the
change in ocean memory, the ENSO teleconnection, and stochastic noise. The gray
contours represent the same changes as in Fig. 2j–l: the change of the oceanmemory
~λ
�1
, ENSO teleconnection ~βσ(Niño3.4), and the noise variance σ(ξ), respectively.

The zero contour line is thicker, with contour intervals of 0.67 months, 0.04 K/
month, and 0.02 K/month, respectively. g The total SST variance change computed

by summing d–f. hThe contribution of the change of each driver to the SST variance
change. Hue indicates the relative contribution of each driver and brightness cor-
responds to the magnitude of the total SST variance change (see Supplementary Fig.
8). Locations where the SST data does not meet the criterion described in Section
“Applicability of the Linear Stochastic-Deterministic Model” are shown as white
hatched areas. Stippling indicates where the changes are not significant at the
5% level.

Fig. 4 | Patterns of the noise forcing. Regression of ξ onto the leading Empirical
Orthogonal Function (EOF) Principal Components (PCs) of ξ between 20∘N–60∘N
and 120∘E–120∘W during 1960–2000 a, e, f for HadISST and b, f, j for CESM2-LE.
The first three EOFs explain 14.8%, 10.2%, and 8.5% of the variance, respectively, for
HadISST and 14.2%, 11.0%, and 9.2% for CESM2-LE. The EOFs were computed

using 100 singular values and the PCs were normalized to have a standard deviation
(stdev.) of one. For CESM2-LE the EOFs were calculated across both time and
ensemble dimensions. Regression of the leading ξ PCs onto sea level pressure (SLP)
and 850-hPa wind anomalies c, g, k for HadISST/ERA5 and d, h, l for CESM2-LE.
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function of the change in ~β as the change in the Niño3.4 variance is
small between the two time periods in CESM2-LE.

Figure 5h shows the contribution of each driver to the overall variance
change by assigning the change due to each driver to a color channel
(red =Δξσ2ðT 0Þ, green =ΔNσ2ðT 0Þ, blue =Δλσ2ðT 0Þ). At each grid point, a
driver was only considered to contribute to the change in variance if its
associated variance change was of the same sign as the total SST variance
change (e.g., if at some grid pointΔσ2ðT 0Þ > 0 andΔλσ2ðT 0Þ < 0, the change
in ~λ was considered to not contribute to the overall change in variance).
Then the variance of the drivers that do contribute to the SST variance
change is represented by amix of colors, with the hue signifying the relative
contribution of each driver, and the brightness being proportional to the
magnitude of the total SST variance change. The construction of this
visualization is detailed in Supplementary Fig. 8.

As evidenced by the large areas of green in Fig. 5h, the shift of the ENSO
teleconnection dominates the SST variance change pattern. The arcuate
pattern in the centralNorthPacific and the decrease in variance in theGulf of
Alaska are almost entirelydue to the shift in the teleconnection.Thechange in
the stochastic noise forcing contributes to a lesser extent, with its greatest
influence being northeast of Hawai’i. In most of the North Pacific, decreased
SSTvariancedue todecliningoceanmemory is compensated for by increased
variance due to increasing stochastic noise forcing. Thatmemory is generally
declining and noise increasing implies that the “damped-persistence” pre-
dictability of SST anomalies will decline in the future in most areas.

We also assessed the contribution of the change of each driver by using
the pattern correlation, defined as the Pearson correlation coefficient
between twoarraysweightedby the cosine of the latitude.Areas of the arrays
where the RTQ criterion described in Section “Applicability of the Linear
Stochastic-Deterministic Model” are not met were removed. In the North
Pacific (10∘N-60∘N, 120∘E-100∘W) the pattern correlations between the total
variance change (as in Fig. 5g) and the variance changes due to individual
drivers are 0.15 for Δλσ2ðT 0Þ, 0.76 for ΔNσ2ðT 0Þ, and 0.47 for Δξσ2ðT 0Þ.
Those correlations support the above conclusion that the shift in the ENSO
teleconnection is most important to the overall change in SST variance,
followed by the change in the stochastic noise, with the change in ocean
memory playing only a minor role.

Discussion
In this work, we have demonstrated a conceptual model of SST variability
that can explain the drivers behind future change of projected SST variance.
By using this framework, we were able to quantify the SST variance change
between 1960–2000 and 2060–2100 to three drivers:
• Ocean Memory – The ocean memory declines over most of the North

Pacific with an elongated region in the center of the basin exhibiting
longer memory in the future. We attribute this change primarily to
changes in air-sea feedbacks and ocean damping, the latter presumably
due to changes inhorizontal diffusion andentrainment. The latent heat
and shortwave feedbacks, the latter likely due to the low cloud-SST
feedback, are the most important air-sea feedbacks. The shallowing
mixed layer depth appears to play a secondary role. The change in
oceanmemory plays aminor role in the overall change in SST variance
as its impact is largely compensated for by increases in stochastic noise
forcing.

• ENSO Teleconnections – The “atmospheric bridge,” which connects
North Pacific SSTs to ENSO events via atmospheric Rossby waves,
shifts to the northeast in the future climate. Although the extratropical
SST variance associated with remote ENSO forcing is much smaller
than the variance driven by stochastic noise, the shift of the ENSO
teleconnection pattern results in a large change in SST variance,
dominating the overall change in SST variance.

• Stochastic Noise Forcing—The noise forcing, computed as a residual
from a fit to an extended local linear stochastic-deterministic model
(Eq. (1)), increases in most of the North Pacific. Its impact on SST
variance is somewhat attenuated by the change in the ocean memory.

Thesefindingshave implications forpredictability—the generally lower
ocean memory and higher noise forcing suggests that predictability of a
simple “damped persistence”model will decline in skill in the future climate
inmost regions. ENSO is themajor source of SST predictability on seasonal
timescales, hence the shift of its teleconnections results in ENSO-associated
changes in predictability in different regions. Our results highlight the
importance of studies into future ENSO changes and its regional impacts.

Although this studywas focused narrowly on theNorth Pacific and the
CESM2-LE model, our framework should be equally applicable to other
extratropical oceans and other climate models. Different large ensemble
climatemodels showconsiderablediversity in their futureENSOdynamics5,
thus contribution of the various drivers of SST variability may differ greatly
betweenmodels. This study alsodidnotdetermine thephysicalmechanisms
responsible for the change in ocean memory and stochastic noise forcing
and how they relate to climatemean state changes. We aim to answer these
questions in future work.

Methods
Data
We used the Community Earth SystemModel version 2 Large Ensemble in
this study. CESM2 is a coupled Earth system model with active ocean
biogeochemistry50. The model incorporates the CAM6 atmosphere model
and POP2 ocean model, both on ~1∘ horizontal grids, as well as coupled
land, sea ice, wave, marine biogeochemical, and river runoff models. The
large ensemble consists of 100 ensemble members run from 1850 to 2100
and forced by CMIP6 historical (1850-2014) and SSP3-7.0 protocols
(2015–2100)13. The SSP3-7.0 scenario, which has a high rate of emissions,
was selected to investigate climate variability and its projected future
changes.Anomalieswere calculatedby subtracting the ensemblemean from
each ensemble member. We excluded SST data from our analysis at grid
points where the ensemble-mean sea ice fraction exceeded 15% for any
month during the time period considered.

Additionally we used several observational and reanalysis products to
compare the CESM2-LE results in the historical period (1960–2000 unless
otherwise noted).We used SSTs from theHadley Center Global Sea Ice and
Sea Surface Temperature v1.1 dataset (HadISST51); sea level pressure and
850-hPa winds from the ECMWF Reanalysis v5 (ERA552); mixed layer
depth from the Ocean Reanalysis System 5 (ORAS553, available from Jan-
uary 1985 to December 2018), which is defined as the depth where the
density exceeds the near surface density by 0.01 kg m−3; turbulent surface
heat fluxes from the 1∘ Objectively Analyzed air-sea Fluxes (OAFLUX54,
available from January 1985 to December 2022); and radiative surface heat
fluxes fromOAFLUX (derived from the ISCCP-D product55, available from
January 1985 to December 2009) and Clouds and Earth’s Radiant Energy
Systems Energy Balanced and Filled Ed4.2 product (CERES EBAF 56,
available fromMarch 2000 to December 2022). Anomalies were calculated
by subtracting the climatology for the entire time period used and then
detrendingwith a linear fit.We excludedHadISST data from our analysis at
grid pointswith sea ice cover (i.e.,NaNvalues in the data) during anymonth
from January 1960 to January 2000.

For the radiative heat fluxes, we calculated anomalies separately for
OAFLUX (January 1985 to February 2000) and CERES EBAF (March 2000
toDecember2022), and thencombined the two sets of anomalies. Because of
the limited time span and potential observational uncertainty of these data
(see e.g., ref. 57) we chose to spatially smooth the heat flux data using a
moving average filter with 3-by-3-grid-cell window size in an effort to
increase the signal-to-noise ratio of our calculations of air-sea heat flux
feedbacks described in Sections “SST Feedback Decomposition” and
“Applicability of the Linear Stochastic-Deterministic Model”. For compu-
tations requiring both heat flux and SST data, we also spatially smoothed the
HadISST data in the same manner. Note that the CESM2-LE data was not
smoothed because of the much larger time/ensemble span and lack of
observational uncertainty.

All data used in this study have a monthly temporal resolution.
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Marine heatwave intensity
Marine heatwaves were defined using a 90th-percentile threshold for
monthly SST anomaly computed for each calendar month using all
ensemble members58. The mean marine heatwave intensity at a given grid
point was calculated as the mean SST anomaly of all 90th-percentile excee-
dances over time and all ensemble members.

Linear stochastic-deterministic model
To quantify the effect of different drivers on SST variance, we used an
extension of the original local linear stochastic climate model59,60 with sea-
sonally modulated feedback and noise forcing61,62 and an ENSO tele-
connection term27,28,63.We use the formulation developed in refs. 64–66 that
includes seasonalmodulations in the feedback, noise forcing, and the ENSO
teleconnection term:

∂T 0ðtÞ
∂t

¼ ~λT 0ðtÞ þ ~βNðtÞ þ ξðtÞ; ð1Þ

whereT 0 is the SST anomaly at a given location, ~λ is a seasonallymodulated
feedback coefficient, ~β is a seasonally modulated ENSO teleconnection
coefficient,N is the Niño3.4 index (the SST anomaly averaged over 5∘N-5∘S,
170∘W-120∘W), and ξ is stochastic forcing (i.e., “weather noise”). Averaged
over the annual cycle, ~λmust be negative so that SST anomalies are damped
and do not grow without bound. ~λ

�1
has units of time and represents the

decay timescale of SST anomalies, thus we refer to it hereafter to as the
“ocean memory”34.

The parameters ~λ and ~β are defined as

~λ ¼ λ0 þ λ1 sinðωatÞ þ λ2 cosðωatÞ; ð2Þ

~β ¼ β0 þ β1 sinðωatÞ þ β2 cosðωatÞ; ð3Þ
whereωa is the angular frequency of the annual cycle (2π/12months−1) and
λ1, λ2, β1, and β2 determine the amplitude and phase of the seasonal
modulation. Physically, the seasonalmodulationof these coefficients reflects
seasonal changes of air-sea heat fluxes and themixed layer heat capacity, the
latter which is proportional to the mixed layer depth64,67. For ease of display
wepresent these coefficients as annual averages in this report (the amplitude
and phase of ~λ and ~β are shown in Supplementary Fig. 1).

The noise term ξ primarily represents stochastic forcing from the
atmosphere. It includes all processes that are uncorrelated with local SST
anomalies and remote ENSO forcing, chiefly anomalous air-sea heat fluxes
and anomalous Ekman advection of the SST gradient due to weather
variability68. Entrainment and other ocean processes can also contribute to
the forcing69,70. ξ should be nearly white given the fast decorrelation time-
scale of the atmosphere59,71.

At each grid point for each ensemble member, Eq. (1) was fitted to the
SST anomaly data using multiple linear regression (see ref. 65). ∂T 0=∂t was
computed using the forward finite difference method. The noise forcing ξ
was taken to be the residual from the fit. This residual is well-described by
white noise (see Supplementary Fig. 2), supporting the suitability of our
choice of theoretical SST model.

SST feedback decomposition
The SST feedback coefficient ~λ is the sum of several different atmospheric
and oceanic feedbacks70,72–74:

~λ ¼ ~λSH þ ~λLH þ ~λSW þ ~λLW þ ~λent þ ~λdiff þ ~λother ð4Þ

where ~λSH; ~λLH; ~λSW; ~λLW are the feedbacks associated with the sensible,
latent, shortwave, and longwave components of the air-sea heat flux,
respectively; ~λent is the feedback due to entrainment as the mixed layer
deepens in fall and winter; ~λdiff is the feedback due to horizontal eddy
diffusion, and~λother is the feedback due to non-local and other processes not
considered here.

We calculate the air-sea heat flux feedbacks given heat flux component
x by fitting the following equation using multiple linear regression:

Q0
xðtÞ ¼ ~λ

�
xT

0ðtÞ þ ~β
�
xNðtÞ þ ξ�xðtÞ; ð5Þ

where Q0
xðtÞ is the heat flux anomaly (defined as positive downward), ~λ

�
x is

the feedback for that heat flux component (with units Wm−2K−1), ~β
�
x is an

ENSO teleconnection coefficient, and ξ�xðtÞ is the noise forcing. ~λ
�
x is related

to the feedbacks ~λx in Eq. (4) by the following:

~λx ¼
~λ
�
x

ρcp ~H
ð6Þ

where ρ is the density of seawater (~1024 kg m−3), cp is the heat capacity of
seawater (~4000 J kg−1 K−1), and ~H is the monthly mixed layer depth cli-
matology. To fit this equation to observations, we used the whole time
period available for the heatflux data tominimize the error: January 1985 to
December 2018 instead of the 1960–2000 period for fitting Eq. (1).

The feedback due to entrainment is

~λent ¼ � ~went

~H
1� ∂T 0

b

∂T 0

� �� �
; ð7Þ

where ~went is the entrainment velocity climatology, the timederivative of the
mixed layer depth climatology ~H, and T 0

b is the temperature below the
mixed layer, with angled brackets denoting the ensemble/time mean (see
ref. 72). IfT 0

b is uncorrelatedwithT
0, and assuming amixed layer of average

depth 75meters with an annual cycle amplitude of 100meters, ~λent ≈ � 0:1
months−1 when averaged over the annual cycle. Entrainment also leads to
the phenomenon of “reemergence”: often the SST anomaly from the pre-
vious winter persists under themixed layer during summer and in fall is re-
entrained into the mixed layer, leading to the reemergence of SST
anomalies75,76. Reemergence is not modeled in this work.

The feedback due to horizontal eddy diffusion is

~λdiff ¼
∂

∂T 0 κ∇2T 0� �
; ð8Þ

where κ is the horizontal eddy diffusivity. The magnitude of this feedback
can be estimated via scaling analysis as

~λdiff ≈ � κ

L2
; ð9Þ

whereL is the typical length scale (angularwavenumber) of SSTanomalies77.
Ifwe assume isotropic SSTanomalieswith a typicalwavelengthof ~1000km
(i.e., L = 1000 km/2π ≈ 160 km) and κ ≈ 500m2s−1 (note that κ is a function
of length scale and geographic location; see ref. 78), λdiff ≈−0.05 months−1.

Vertical diffusion contributes to the SST feedback, although probably
to a much smaller degree. Assuming a mixed layer depth length scale of
Lz ≈ 50 m and vertical diffusivity κz ≈ 10−5 m2s−1 79, the feedback would
be ~−0.01 months−1.

Eq. (4) can be rewritten as

~λ ¼
~λ
�
turb

ρcp ~H
þ

~λ
�
rad

ρcp ~H
þ ~λres; ð10Þ

where ~λ
�
turb is the turbulent (~λ

�
SH + ~λ

�
LH) heat flux feedback, ~λ

�
rad is the

radiative (~λ
�
SW + ~λ

�
LW) heat flux feedback, and ~λres is the residual feedback.

~λres includes ~λent; ~λdiff ; ~λother, and errors in estimating the air-sea feedbacks.

From the estimations above, ~λent + ~λdiff≈� 0:06 months−1, thus we expect
~λres to have a similar value if there arenot substantial errors in the calculation
of the feedbacks and contributions from other unmodeled feedbacks.
Because the large number of degrees of freedom in CESM2-LE (100
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members) allows for robust statistical estimates of the atmospheric

feedbacks, we expect ~λres to primarily reflect damping by entrainment
and diffusion. However, for observations/reanalysis, uncertainties in the
heat flux, SST, and mixed layer depth data may compound to produce

substantial errors in the calculated feedbacks and thus ~λres may primarily
reflect these errors rather than just damping from oceanic processes.

The change in the feedback can be expanded from Eq. (10) as

Δ~λ ¼ Δ~λ
�
turb

ρcp ~H0

þ Δ~λ
�
rad

ρcp ~H0

þ�~λ
�
turb;0 � ~λ

�
rad;0

ρcp ~H
2
0

Δ~H

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δ~λH

þΔ~λres; ð11Þ

where Δ indicates the change between the two time periods, a subscript 0
indicates that the value from the first time period is used and Δ~λH is the
change in the air-sea heat flux feedback due to the change in themixed layer
depth climatology.

To calculate Eq. (10) and Eq. (11) from observational/reanalysis data
we used the common time period of the SST, heat flux, and mixed layer
depthdata, whichwas January 1985 toDecember 2018 (see Section “Data”).

Applicability of the linear Stochastic-deterministic model
Eq. (1) describes SSTs forced solely by the atmosphere: anomalous air-sea
heatfluxes and anomalous Ekman advection of themean SST gradient from
stochasticweather processes and remote forcing fromENSO.Contributions
to the variance from internal ocean dynamics (e.g., geostrophic advection,
mixed layer depth variability, and entrainment) are neglected26. This sim-
plification is inadequate to explain SST variance in the equatorial oceans,
where coupled ocean-atmosphere dynamics in thePacific give rise toENSO;
in western boundary currents, where ocean dynamics are important80–82;
and in the areas of the North Atlantic and Southern Ocean where the
thermohaline circulation contributes to SST variability on long
timescales83,84.

Additionally, Eq. (1) does notmodel slow, non-local oceanic processes
such as Rossby wave dynamics, which can be important for SST variability
and marine heatwaves on decadal timescales (e.g., refs. 27,85,86). Never-
theless, Eq. (1) andother similarmodels exhibit decadal variabilitydue to the
ocean’s integration of atmospheric forcing59. The Lorentzian spectrum
characteristic of thesemodels aswell as thepurely stochastic climatemodel59

has maximum power on timescales longer than the ocean memory (see
Supplementary Fig. 2a).

In previous studies, the applicability of a linear stochasticmodel to SST
dynamics was tested by goodness of fit to a theoretical power spectrum72,80,
by establishing a threshold of sea surface height variance overwhich oceanic
processes were assumed to dominate87, or by comparing advection of SST
anomalies with the estimated feedback term67.

We used an objective criterion based on the lagged covariance of SST
anomaliesT 0 andnet surfaceheatfluxanomaliesQ0;RTQ (see refs. 26,72,88).
If SST anomalies are both damped and forced byQ0, at negative lags (when
the ocean leads), RTQ should be negative, corresponding to damping of SST
anomalies byQ0. At positive lags (when the atmosphere leads), RTQ should
be positive, corresponding to forcing of SST anomalies by Q0. Thus we
considered that any grid point which had RTQ < 0 at negative lags (averaged
over lags -3 to -1months and all ensemblemembers) andRTQ > 0 at positive
lags (averaged over lags 1 to 3months and all ensemblemembers) to bewell
represented by a linear stochasticmodel forced by the atmosphere. The grid
points that did not meet this criterion were excluded from our analysis and
are shown as white hatched areas in the figures. As expected these grid
points are in areas of high oceanic variability and strong air-sea coupling,
such as the equatorial Pacific and Kuroshio-Oyashio Extension region. For
observations, as with the calculation of the air-sea heat flux feedbacks, this
criterion was evaluated using data from January 1985 to December 2022.
Supplementary Fig. 3 shows RTQ at several representative locations.

Isolating SST variance contribution from each driver
Once ~λ; ~β, and ξ are determined, the SST variance due to changes in the
corresponding drivers–the oceanmemory, ENSO teleconnection, and noise
forcing—can be isolated. We used two forward integrations, one isolating
the SST anomalies forced only by the ENSO teleconnection T 0

N and the
other isolating SST anomalies forced only by noise T 0

ξ :

T 0
N ðkþ 1Þ ¼ T 0

N ðkÞ þ ~λðmÞT 0
N ðkÞ þ ~βðmÞNðkÞ

h i
Δt; ð12Þ

T 0
ξðkþ 1Þ ¼ T 0

ξðkÞ þ ~λðmÞT 0
ξðkÞ þ ξðkÞ

h i
Δt; ð13Þ

where k is the time index, m is the month index (kmod 12), and Δt is the
time step (onemonth). ξ(k) was constructed using a shuffled fit residual (for
each ensemble member): for each calendar month, the year was randomly
shuffled, producingnoise forcing that is temporally uncorrelated (i.e., white)
but retains spatial correlations and seasonal variancemodulation present in
thefit residual.Our results differ little if theoriginalfit residual (that contains
both spatial correlations and a slight temporal autocorrelation) or a version
in which the time dimension of the noise forcing is shuffled in a different
random order at each grid point (and thus is white in both time and space;
see Supplementary Fig. 4).

To isolate the change in variance due to the change of each driver, we
performed six of these integrations with parameters from different time
periods (see Table 1). By varying the time period of some parameters while
holding others constant, it is possible to isolate changes in SST variance due
only to changes in an individual driver. The integrations were run at each
grid point for each ensemble member for the same 41-year time span as the
two time periods under consideration (i.e., 1960−2000 and 2060–2100),
creating an ensemble of 100 members for each of the cases in Table 1. Each
integration was initialized with the SST anomaly at the beginning of the
specified time period (2060–2100 for case C). We calculated the change in
variance due to the change in each driver using the following expressions:

Δλσ2ðT 0Þ ¼ σ2 T 0
N;B

	 

þ σ2 T 0

ξ;B

	 
h i
� σ2 T 0

N;C

	 

þ σ2 T 0

ξ;C

	 
h i
;

ð14Þ

ΔNσ2ðT 0Þ ¼ σ2 T 0
N;C

	 

� σ2 T 0

N;A

	 

; ð15Þ

Δξσ2ðT 0Þ ¼ σ2 T 0
ξ;C

	 

� σ2 T 0

ξ;A

	 

; ð16Þ

where Δxσ2ðT 0Þ is the change in SST variance due to changes to the driver
x, σ2(T 0

x;n) is the variance of the integrated SST time series corresponding to
the case letter n (A, B, or C) in Table 1. In each of these equations the time
periodofonedriver is variedwhile theothers areheld constant: inEq. (14) the

Table 1 | Integration parameters

T 0
x;n

~λ ~β;NðtÞ ξ(t) Note

T 0
N;A 1960–2000 1960–2000 – All parameters from historical

climate

T 0
ξ;A 1960–2000 – 1960–2000 All parameters from historical

climate

T 0
N;B 2060–2100 2060–2100 – All parameters from future

climate

T 0
ξ;B 2060–2100 – 2060–2100 All parameters from future

climate

T 0
N;C 1960–2000 2060–2100 – Oceanmemory from historical

climate, forcing from future
climate

T 0
ξ;C 1960–2000 – 2060–2100 Oceanmemory from historical

climate, forcing from future
climate
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time period of the oceanmemory is varied while the forcing is only from the
future period, and in Eqs. (15), (16) the time period of the forcing (ENSOand
stochastic noise, respectively) is varied while the ocean memory is from the
historical period. In other words, we perform finite difference partial deri-
vatives along three axes corresponding to each of the three drivers to find the
dependence of the SST variance change on the change of each of the drivers.

Statistical significance testing
All parameters shown in this report (e.g., σ2ðT 0

x;nÞ; ~λ; ~β) were calculated for
each ensemble member, creating 100 independent samples. Welch’s t-test
was thenused to assess the statistical significanceof ensemble-meanchanges
of these parameters between 1960–2000 and 2060–210089. Except in areas
with minimal changes, the null hypothesis of no change between the two
time periods is rejected at the 5% level.

Data availability
The CESM2-LE data are available via the Earth System Grid (https://www.
earthsystemgrid.org), the HadISST data are available from the Met Office
(https://www.metoffice.gov.uk/hadobs/hadisst/), the ERA5 and ORAS5
data are available via theClimateData Store (https://cds.climate.copernicus.
eu), theOAFLUXdata are available fromWHOI (https://oaflux.whoi.edu/),
and the CERES data are available fromNASA (https://ceres.larc.nasa.gov/).

Code availability
The code and data required to reproduce the figures is available via Zenodo
(https://zenodo.org/doi/10.5281/zenodo.10419763).
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