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Abstract
This work provides the first convergence analysis for the Randomized Block Coordi-
nate Descent method for minimizing a function that is both Hölder smooth and 
block Hölder smooth. Our analysis applies to objective functions that are non-con-
vex, convex, and strongly convex. For non-convex functions, we show that the 
expected gradient norm reduces at an O

(

k

�

1+�

)

 rate, where k is the iteration count 
and � is the Hölder exponent. For convex functions, we show that the expected sub-
optimality gap reduces at the rate O(k−� ) . In the strongly convex setting, we show 
this rate for the expected suboptimality gap improves to O

(

k
−

2�

1−�

)

 when 𝛾 > 1 and to 
a linear rate when � = 1 . Notably, these new convergence rates coincide with those 
furnished in the existing literature for the Lipschitz smooth setting.

Keywords  Randomized coordinate descent · Hölder · Convergence

1  Introduction

In this article, we provide non-asymptotic convergence rates for the Randomized 
Block Coordinate Descent (RBCD) method when applied to the problem

where the objective function f ∶ ℝ
d
→ ℝ is Hölder smooth, a generalization of 

the standard (Lipschitz) smoothness, and block Hölder smooth. Formally, the 

(1)f ∗ ∶= min
x∈ℝd

f (x),
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continuously differentiable function, f, is said to be Hölder smooth when its gradi-
ent, ∇f  , is Hölder continuous, i.e. there exist L > 0 and � ∈ (0, 1] guaranteeing

The popularity of block coordinate methods owes to their fitness for large-scale opti-
mization problems emerging from applications in machine learning and statistics. 
Essentially, randomized block coordinate descent is a (random) block-wise adap-
tation of gradient descent. Instead of updating all coordinates simultaneously, the 
randomized block coordinate descent method updates a single, randomly selected 
coordinate block using only that block’s partial gradient. The computational econ-
omy of these block gradient updates, relative to full gradient updates, are what make 
the randomized block coordinate descent method especially attractive for large-scale 
problems.

Given an initial point x0 , this cheap iterate update rule is somewhat more gen-
erally realized as

where tk > 0 , ik is selected randomly from {1,… ,m} , and P1,… ,Pm ∈ ℝ
d×d are 

orthogonal projection matrices onto orthogonal subspaces that sum to ℝd . The 
“block coordinate" name originates from the archetypal choice for the orthogonal 
subspaces projected onto: spans of collections of coordinate vectors.

For coordinate descent methods, and indeed a preponderance of first-order 
methods, the intimate relationship between the selection of step-sizes and ∇f  ’s 
regularity determines their convergence rates [2–7, 9, 12, 13]. Both Bredies [1] 
and Yashtini [13] study the interplay between step-size selection and convergence 
for gradient descent applied to (1) in the Hölder smooth regime. Bredies [1] 
established a O(1∕k� ) convergence rate of the proximal gradient method, a gener-
alization of the gradient descent method, for convex composite minimization. On 
the other hand, Yashtini [13] established that, given an appropriate step-size 
selection, gradient descent converges at a O

(

1∕k
�

1+�

)

 for non-convex, Hölder 

smooth objective functions.
We are unaware of any studies of the randomized block coordinate descent 

method that assume Hölder smoothness or its block-wise adaptation, block 
Hölder smoothness. We say that the continuously differentiable function, f, is 
block Hölder smooth if for each i = 1,… ,m , there exists Li > 0 such that

The seminal articles [8, 11] studying the randomized block coordinate descent 
method all make the more restrictive assumption that the gradient is Lipschitz 
continuous. Recently, inspired by the work of both Bredies [1] and Yashtini [13], 
Gutman and Ho-Nguyen [3] produced a convergence analysis for the cyclic block 
coordinate descent method assuming Hölder and block Hölder smoothness in both 
the convex and non-convex settings. Thus, the goal of this paper is to extend this 

(2)‖∇f (y) − ∇f (x)‖ ≤ L‖y − x‖� for all x, y ∈ ℝ
d.

(3)xk = xk−1 − tk ⋅ Pik
∇f (xk−1), k = 1, 2,… ,

(4)‖∇f (x + Piu) − ∇f (x)‖ ≤ Li‖Piu‖
� for all u ∈ ℝ

d.
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analysis to the more popular randomized block coordinate descent method in the 
non-convex, convex, and even strongly convex settings.

We conclude this introduction with an outline of our article that includes a 
high-level description of each of our main contributions. This article is structured 
into four primary sections:

•	 Section  2 In this section, we introduce our RBCD step-size selection for 
Hölder smooth objective functions as well as the attendant notation. We also 
introduce two key lemmas (Lemmas 2.1 and 2.2) that support our analyses.

•	 Section 3 In this section, we present our convergence analysis for general, pos-
sibly non-convex objective functions satisfying Hölder and block Hölder 
smoothness conditions. For these objectives, our proposed step-size ensures 
RBCD shrinks the expected gradient norm at a O

(

1∕k
�

1+�

)

 rate (Theorem 3.1).
•	 Section 4 In this section, we present our convergence analysis under the fur-

ther assumption that the objective function is convex. In this setting, RBCD 
with our step-size shrinks the expected suboptimality gap at a O(1∕k� ) rate for 
non-strongly convex objective functions (Theorem 4.1). Notably, our rates for 
these objective functions coincide with those of [8] when � = 1 , or equiva-
lently, when the objective is L-smooth.

•	 Section 5 In this section, we present our analysis under the further assumption 
that the objective function is strongly convex. This analysis depends upon the 
value of the Hölder exponent, � . When � = 1 , we show RBCD converges at a 
linear rate (Theorem 5.1). When � ∈ (0, 1) , we obtain a O

(

1∕k
2�

1−�

)

 rate of con-

vergence (Theorem 5.1). Moreover, we show that our sublinear rates converge 
to our linear rates as � → 1 (Corollary 5.1). As for convex objectives, our rates 
for strongly convex objectives coincide with those of [8] when the objective is 
L-smooth.

2 � Notation and step‑size selection for RBCD under Hölder 
smoothness

This short section introduces the notation necessary for all of this article’s devel-
opments, and the Hölder smoothness-based step-size selection for the RBCD 
method. It also exhibits two lemmas, Lemmas 2.1 and 2.2, that are used through-
out the paper to aid the convergence analysis of the proposed method.

Our step-size selection is an adaptation of that used for the cyclic block set-
ting from [3] to the immensely more popular randomized block setting. Thus, 
our notation is a synthesis of that article’s notation and the notation of [8], one of 
the canonical works on randomized coordinate descent. We let L̃ ∶= {L1,… , Lm} 
denote the set of the block Hölder smoothness constants. For � ∈ ℝ , we define 
the new constant, S�(f ) , as
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When f is clear from context, we will simply write S� . For the sake of concision, we 
set ∇if (x) ∶= Pi∇f (x) for all x ∈ ℝ

d and 1 ≤ i ≤ m . We adopt the notation, 
𝜈 ∶=

1+𝛾

𝛾
> 1 , because the quantity 1+�

�
 frequently appears in our analysis.

Much of our analysis is framed in terms of L̃-weighted q-norms on ℝd , ‖ ⋅ ‖�,q . 
Given � ∈ ℝ and q ≥ 1 , we let

When � = 0 , ‖ ⋅ ‖�,q reduces to the standard q-norm, which we write as ‖ ⋅ ‖q . For 
simplicity, we let ‖ ⋅ ‖ ∶= ‖ ⋅ ‖2 . We bare three important notes about these weighted 
norms. First, ‖ ⋅ ‖�,q generalizes the norm

which plays a starring role throughout Nesterov’s classical analysis of randomized 
coordinate descent methods from [8] in the block Lipschitz smooth setting. The flex-
ibility provided by changing the exponents 2 and 1/2 to q and 1/q, respectively, is 
critical to capturing our more general Hölderian convergence rates. Additionally, the 
parameter � permits us to simultaneously achieve RBCD’s convergence rates for two 
different, common random block selection schemes: 

	 (i)	 � = 0 corresponds to selecting the blocks uniformly at random;
	 (ii)	 � = 1 corresponds to selecting the i-th block with probability Li∕

∑m

i=1
Li.

Finally, these weighted norms possess natural duality relationships and equiva-
lences to the Euclidean norm, which we liberally use throughout our analysis and 
summarize in the below lemma.

Lemma 2.1  ((�, q)-Norm Duality and Equivalences) Let � ∈ ℝ , p ∈ [1,∞] , and q be 
the Hölder conjugate of p, i.e. q ∶=

p

p−1
 . The following hold for ‖ ⋅ ‖�,p : 

1.	 The Cauchy–Schwarz inequality 

 holds for all x, y ∈ ℝ
d . Equality is obtained if and only if x = 0 or 

S�(f ) =

m
∑

i=1

L�
i
.

(5)‖x‖�,q ∶=

�

m
�

i=1

L�
i
‖Pix‖

q

�1∕q

.

x ↦

�

m
�

i=1

L�
i
‖Pix‖

2

�1∕2

,

(6)�⟨x, y⟩� ≤ ‖x‖�,q‖y‖−� p

q
,q



5The randomized block coordinate descent method in the Hölder…

 for some c ∈ ℝ . Consequently, ‖ ⋅ ‖−� p

q
,q is the dual norm of ‖ ⋅ ‖�,q.

2.	 If p ≥ 2 and �, � ∈ ℝ then the norms ‖ ⋅ ‖�,p and ‖ ⋅ ‖�,2 satisfy 

 for all x ∈ ℝ
d.

We defer the proof of this lemma to the appendix (“Appendix 1”) to maintain the 
focus of our exposition.

With all of the article’s requisite notation in hand, we may introduce our main 
algorithm (Algorithm 1), and describe an associated descent lemma (Lemma 2.2). 
We note that our step-size, −‖∇if (x

k)‖�−2∕L�−1
i

 , coincides with that proposed in [8] 
when � = 1 . Thus, we may view it as a generalization that accounts for the use of 
block Hölder smoothness in the place of standard block smoothness.
Algorithm 1   Randomized block coordinate descent method (RBCD)

A special case of the main descent lemma of [1], derived in [3], plays the same 
role in our analysis that it played for the cyclic block analysis in [3]. We directly 
quote this special case from [3] below.

Lemma 2.2  (Block Hölder Descent Lemma, [3], Lemma 1) Let f ∶ ℝ
d
→ ℝ be a 

function that satisfies the block Hölder smoothness condition. For any i, 1 ≤ i ≤ m,

Moreover, if x+ is the minimizer of the right-hand side of (8), i.e.

y = c ⋅

m
�

i=1

L�
i
‖Pix‖

p−2Pix

�

max
1≤i≤m L

�

p
−

�

2

i

�

⋅ ‖x‖�,2 ≥ ‖x‖�,p ≥
�

m
1

p
−

1

2
⋅ min
1≤i≤m L

�

p
−

�

2

i

�

⋅ ‖x‖�,2

(8)f (x + Uiy) ≤ f (x) + ⟨∇if (x),Uiy⟩ +
Li

1 + �
‖Uiy‖

1+�

2
.
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then

3 � Convergence analysis: general objectives

In this section, we layout our convergence rate analysis for non-convex objec-
tives satisfying Hölder smoothness (2) and block Hölder smoothness (4). We will 
present the main convergence theorem (Theorem 3.1) after we elaborate our key 
Sufficient Decrease Lemma (Lemma 3.1). This lemma facilitates all of our con-
vergence analyses.

Lemma 3.1  (Sufficient Decrease) Let {xn}∞n=0 be the sequence generated by RBCD 
(Algorithm 1). If f satisfies our Hölder smoothness (2) and block Hölder smoothness 
(4) assumptions, then

holds for all k ≥ 0.

Proof  Expanding the expectation-defining sum, and applying the block descent 
lemma (Lemma 2.2), we compute

Rearranging the inequality and taking total expectations completes the proof. 	�  ◻

Next, we present the centerpiece of this section, our main convergence theo-
rem for non-convex objective functions.

x+ = x −
‖∇if (x)‖

�−2

L�−1
i

⋅ ∇if (x),

f (x) − f (x+) ≥ 1

�L�−1
i

‖∇if (x)‖
� .

(9)
1

�S�(f )
‖∇f (xk)‖

�

�+1−�,�
≤ f (xk) − �

�

f (xk+1)
�

�

�

�

xk
�

f (xk) − �

�

f (xk+1)
�

�

�

�

xk
�

= �

�

f (xk) − f (xk+1)
�

�

�

�

xk
�

=

m
�

i=1

�

L�
i

∑m

j=1
L�
j

�

⋅

�

f (xk) − f

�

xk −
‖∇if (x

k)‖�−2

L�−1
i

⋅ ∇if (x
k)

��

Lemma 2.2≥ 1

�S�

m
�

i=1

L�+1−�
i

‖∇if (x
k)‖� =

1

�S�
‖∇f (xk)‖

�

�+1−�,�
.
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Theorem 3.1  (RBCD Convergence: General Objective Functions) Let {xn}∞n=0 be the 
sequence generated by RBCD (Algorithm 1). If f satisfies our Hölder smoothness (2) 
and block Hölder smoothness (4) assumptions, then

holds for all k ≥ 0 . Consequently, we have the convergence rate measured in the 
norm ‖ ⋅ ‖�,2,

holds for all k ≥ 0.

Proof  For each k ≥ 0 , observe that

where we apply Jensen’s inequality to the expectation operator for the convex func-
tion x ↦ x� in (10), and Lemma 3.1 in (10). Taking �-th roots of both sides of the 
resultant inequality above, produces our first result.

The result in terms of the ‖ ⋅ ‖�,2 follows immediately from Lemma 2.1. 	�  ◻

4 � Convergence analysis: convex objectives

In this section, we forward our convergence analysis of RBCD (Theorem 4.1) for 
convex objective functions that are both Hölder (2) and block Hölder (4) smooth. 
First, we present a Technical Recurrence Lemma (Lemma  4.1) that helps pro-
duce our convergence rates in this section, and a subset of the convergence rates 
for strongly convex objective functions in the sequel. Next, we exhibit a techical 

min
0≤j≤k�

�

‖∇f (xj)‖1+�−�,�
� ≤ �

�S�(f )
�

1

�
⋅

�

f (x0) − f ∗

k + 1

�

1

�

= O

�

k
−

1

�

�

min
0≤j≤k�

�

‖∇f (xj)‖�,2
� ≤

⎛

⎜

⎜

⎜

⎝

max
1≤i≤m L

�

2
−

1+�−�

�

i

m
�−2

2�

⎞

⎟

⎟

⎟

⎠

⋅

�

�S�(f )
�

1

�
⋅

�

f (x0) − f ∗

k + 1

�

1

�

= O

�

k
−

1

�

�

,

(10)

min
0≤j≤k�

�

‖∇f (xj)‖�+1−�,�
�� ≤ 1

(k + 1)
⋅

k
�

j=0

�
�

‖∇f (xj)‖�+1−�,�
��

≤ 1

(k + 1)
⋅

k
�

j=0

�

�

‖∇f (xj)‖�
�+1−�,�

�

≤ �S� ⋅
1

(k + 1)
⋅

k
�

j=0

�

�
�

f (xj)
�

− �
�

f (xj+1)
��

(11)= �S� ⋅
f (x0) − �[f (xk+1)]

k + 1
≤ �S� ⋅

f (x0) − f ∗

k + 1
,
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lemma (Lemma 4.2) that permits us to express our rates in terms of the diameter 
of the initial sublevel set. Finally, the section concludes with our main conver-
gence theorem (Theorem 4.1) and a comparison of these rates to those furnished 
for smooth and convex functions in [8].

As promised, we begin this section with a Technical Recurrence Lemma that 
supports the derivation of our convergence rates.

Lemma 4.1  (Technical Recurrence, [10, Chapter 2, Lemma 6]) If {Ak}k≥0 is a non-
negative sequence of real numbers satisfying the recurrence

for some � ≥ 0 and r > 1 , then

The following lemma permits us to express our convergence rates here and in 
the sequel section in terms of the initial sublevel set’s diameter.

Lemma 4.2  Under the Block Hölder Smoothness assumption (4) and coercivity of f, 
f satisfies

for all x ∈ ℝ
d , where R𝛽,q(x) ∶= max

�

‖y − x∗‖𝛽,q ∶ f (x∗) = f ∗, f (y) ≤ f (x)
�

< ∞.

We defer the proof of this lemma to the appendix (“Appendix 1”).
Finally, equipped with these tools, we present and prove the theorem that 

establishes RBCD’s convergence rate for convex functions. Afterward, we explain 
its relationship to its analogue for smooth and convex functions in [8].

Theorem 4.1  (RBCD Convergence: Convex Objective Functions) Let {xn}∞n=1 be the 
sequence generated by RBCD (Algorithm 1). If f is a convex and coercive function 
that satisfies our Hölder smoothness (2) and block Hölder smoothness (4) assump-
tions, then

where R𝛽,q(x
0) ∶= maxy

�

‖y − x∗‖𝛽,q ∶ f (x∗) = f ∗, f (y) ≤ f (x0)
�

< ∞.

Proof  The bulk of this proof centers on an application of the Technical Recurrence 
Lemma (Lemma  4.1). In the context of that lemma, we let Ai = �[f (xi)] − f ∗ for 

Ak+1 ≤ Ak − �Ar
k

Ak ≤ A0

(1 + (r − 1)�Ar−1
0

k)
1

r−1

.

f (x) − f ∗ ≤
(

�S�(f )

2

)
1

�−1

⋅

(

� − 1

�

)

⋅ R(x)
�

�−1

(1+�−�)(1−�),
�

�−1

�[f (xk)] − f ∗ ≤
(

�S�(f )R(1+�−�)(1−�),
�

�−1

(x0)�
)

1

�−1

(� − 1)

[

2��−1 + (� − 1)�k
]

1

�−1

= O

(

k
−

1

�−1

)

,
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each i ≥ 0 . By definition, Ai ≥ 0 for each i ≥ 0 . To simplify notation, we let 
R ∶= R(1+�−�)(1−�),

�

�−1

(x0).
With this notation, we may restate the sufficient decrease inequality (9) of Lemma 

3.1 as

or, equivalently,

Thus, to apply the Technical Recurrence Lemma (Lemma 4.1) we need only bound 
the expectation on the right below by A�

k
 . By the Cauchy–Schwarz inequality 

(Lemma 2.1) for ‖ ⋅ ‖1+�−�,� and its dual ‖ ⋅ ‖(1+�−�)(1−�), �

�−1

 , we achieve for any opti-
mum x∗ , that

Raising each side of the above inequality to the power � , taking expectations, and 
applying Jensen’s inequality to the convex function x ↦ x�∕2 , we conclude

Stringing together our work above, equation (12) yields the recurrence

for each k ≥ 0 . We are now permitted to apply the Technical Recurrence Lemma 
(Lemma 4.1) with r = � and � =

1

�S�R
�
 to produce

We dedicate the remainder of this proof to simplifying this convergence bound. By 
factoring f (x0) − f ∗ out of both the numerator and denominator, we may equiva-
lently write the right-hand side of this bound as

�

�

‖∇f (xk)‖
�

�+1−�,�

� ≤ �S� ⋅
�

Ak − Ak+1

�

,

(12)Ak+1 ≤ Ak −
1

�S�
�

�

‖∇f (xk)‖
�

�+1−�,�

�

.

f (xk) − f ∗ ≤ �

xk − x∗,∇f (xk)
�

≤ ‖xk − x∗‖(1+�−�)(1−�), �

�−1

‖∇f (xk)‖1+�−�,� ≤ R‖∇f (xk)‖1+�−�,� .

A�

k
=
�

�[f (xk)] − f ∗
�� ≤ �

��

f (xk) − f ∗
���

≤ R�
�

�

‖∇f (xk)‖�
1+�−�,�

�

.

Ak+1 ≤ Ak −
1

�S�R
�
A�

k

�[f (xk)] − f ∗ ≤ f (x0) − f ∗

[

1 + (� − 1) ⋅ � ⋅
(

f (x0) − f ∗
)�−1

⋅ k
]

1

�−1

.

1
[

1

(f (x0)−f ∗)
�−1 + (� − 1) ⋅ � ⋅ k

]
1

�−1

.
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By considering x = x0 in Lemma  4.2, raising both sides to the power � − 1 and 
applying the norm equivalence inequality from Lemma 2.1, we further see

so the right-hand side of our bound simplifies to

which concludes the proof. 	�  ◻

Notably, our rate matches that provided by Nesterov [8] in the standard block 
smooth setting, i.e. when � = 2 we recover the convergence rate,

from [8].

5 � Convergence analysis: strongly convex objectives

In this final section, we conclude the paper with a convergence analysis of RBCD 
(Algorithm  1) for strongly convex objective functions that are both Hölder (2) 
and block Hölder (4) smooth. We say that f ∶ ℝ

d
→ ℝ is �-strongly convex with 

respect to the norm ‖ ⋅ ‖1−�,2 , where 𝜎 > 0 , if

for all x, y ∈ ℝ
d . The section begins with our main theorem (Theorem 5.1), which 

provides rates in both the L-smooth and Hölder smooth settings. Next, we com-
pare these rates with those in the previous section and [8]. Finally, we show that the 
smooth setting’s linear rate is achieved in the limit as � → 2 , or equivalently, � → 1 
(Corollary 5.1).

Without further ado, we present our main convergence theorem for strongly 
convex objective functions.

Theorem  5.1  (RBCD Convergence: Strongly Convex Objective Functions) 
Let {xn}∞n=1 be the sequence generated by RBCD (Algorithm  1). Suppose that 
f ∶ ℝ

d
→ ℝ is �-strongly convex and satisfies both the Hölder and block Hölder 

smoothness assumptions (2) and (4). The following hold: 

[

f (x0) − f (x∗)
]�−1 ≤

(

�S�

2

)

⋅

(

� − 1

�

)�−1

⋅ R�

⎡

⎢

⎢

⎢

⎣

1
�

�S�

2

�

⋅

�

�−1

�

��−1

⋅ R�

+ (� − 1) ⋅

�

1

�S�R
�

�

⋅ k

⎤

⎥

⎥

⎥

⎦

−
1

�−1

=

�

�S�R
�
�

1

�−1 (� − 1)

�

2��−1 + (� − 1)�k
�

1

�−1

,

�[Ak+1] ≤ 2

k + 4
S�(f )R

2(x1) = O(k−1),

(13)f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ +
1

2
�‖x − y‖2

1−�,2
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1.	 (Linear Rate—Smooth Setting) If � = 2 , i.e. f is smooth, then 

2.	 (Sublinear Rate—Hölder Smooth Setting) If 𝜈 > 2 , i.e. f is Hölder smooth but not 
smooth, then 

 where 

Proof  Let R ∶= R(1+�−�)(1−�),
�

�−1

(x0) to simplify notation. Both parts of the theorem 
speedily follow from the recurrence

where Ai = �[f (xi)] − f ∗ for each i ≥ 0 . After establishing (15), we will separately 
show how each of the Theorem’s two parts result from it.

As in the proof of convergence for non-strongly convex functions, the sufficient 
decrease inequality (9) of Lemma 3.1 implies (12), which we recall is

Glancing at (15) and this latest inequality, it becomes immediately clear that we 
ought to bound �

�

‖∇f (xk)‖
�

�+1−�,�

�

 below by A
�

2

k
= �

[

f (xk) − f ∗
]�∕2 , appropriately 

scaled. To this end, strong convexity now makes it’s main appearance. Using the 
standard argument of fixing x ∈ ℝ

d in �-strong convexity’s defining inequality (13) 
and minimizing it over y ∈ ℝ

d , we achieve the Polyak–Łojasiewicz (PL) inequality

(14)
�[f (xk)] − f ∗ ≤

(

1 −
�

S�(f )

)k

⋅

S�(f )
1

�−1 (� − 1)R(x0)
�

�−1

�
�−2

� 2
1

�−1

= O

(

exp

(

−
�

S�(f )
k

))

.

�[f (xk)] − f ∗ ≤ C0

(

C1 + C2k
)

2

�−2

= O

(

k
−

2

�−2

)

,

C0 = (2�S�(f ))
2

�−2m
1

� (� − 1)R(x0)
�

�−1 , C1 = 2
�−2

2(�−1)m
�−2

2� S�(f )
�−1

� �
�2−2�+4

2�

C2 = R(x0)
�(�−2)

2(�−1) (� − 1)
�−2

2 (� − 2)(2�)
�

2 min
1≤i≤m L

(�+1)(2−�)

2�

i

(15)Ak+1 ≤ Ak − A
�

2

k
⋅

⎛

⎜

⎜

⎜

⎝

(2�)
�

2 min
1≤i≤m L

(�+1)(2−�)

2�

i

�S�m
1

2
−

1

�

⎞

⎟

⎟

⎟

⎠

,

Ak+1 ≤ Ak −
1

�S�
�

�

‖∇f (xk)‖
�

�+1−�,�

�

.

1

2�

�

‖∇f (x)‖∗
1−�,2

�2 ≥ f (x) − f ∗.
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Setting x = xk , raising both sides to the power �∕2 , and then taking expectations, we 
see

which, by Jensen’s inequality applied to the convex function x ↦ x�∕2 , produces

The main bound (15) is secured by twice applying the (�, q)-Norm Duality Equiva-
lence Lemma (Lemma 2.1) to connect the recurrence inequality (12) and the PL-
derived bound (16),

Now, we are prepared to prove the theorem’s two constituent parts.

1.	 If � = 2 , then the main recurrence inequality (15) becomes 

 which by backward induction is equivalent to our desired bound, 

 where we have applied Lemma 4.2 in the first line.

1

(2�)
�

2

�

��

‖∇f (xk)‖
∗

1−�,2

��� ≥ �
�

(f (xk) − f ∗)�∕2
�

,

(16)
1

(2�)
�

2

�

��

‖∇f (xk)‖
∗

1−�,2

��� ≥ �

�
�

f (xk) − f ∗
���∕2

= A
�

2

k

Ak − Ak+1

(12)≥ 1

�S�
�

�

‖∇f (xk)‖
�

�+1−�,�

�

Lemma 2.1≥ 1

�S�
⋅

⎛

⎜

⎜

⎜

⎝

min
1≤i≤m L

�+1−�

�
−

�−1

2

i

m
1

2
−

1

�

⎞

⎟

⎟

⎟

⎠

⋅ �

�

‖∇f (xk)‖
�

�−1,2

�

Lemma 2.1
=

1

�S�
⋅

⎛

⎜

⎜

⎜

⎝

min
1≤i≤m L

(�+1)(2−�)

2�

i

m
1

2
−

1

�

⎞

⎟

⎟

⎟

⎠

⋅ �

��

‖∇f (xk)‖
∗

1−�,2

���

(16)≥ 1

�S�
⋅

⎛

⎜

⎜

⎜

⎝

min
1≤i≤m L

(�+1)(2−�)

2�

i

m
1

2
−

1

�

⎞

⎟

⎟

⎟

⎠

⋅

�

(2�)
�

2A
�

2

k

�

.

Ak+1 ≤ Ak − Ak ⋅

(

�

S�

)

= Ak

(

1 −
�

S�

)

,

(17)

�[f (xk)] − f ∗ = Ak ≤
(

1 −
�

S�

)k

⋅ A0 =

(

1 −
�

S�

)k

⋅

[

f (x0) − f ∗
]

≤
(

1 −
�

S�

)k

⋅

S
1

�−1

� (� − 1)R
�

�−1

�
�−2

� 2
1

�−1

,
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2.	 The 𝜈 > 2 result requires a verification that is as straightforward as, but more 
tedious than, that of 1. Applying the Technical Recurrence Lemma (Lemma 4.1) 

with r = �∕2 , and � =
(2�)

�

2

�S�m
�−2
2�

⋅ min
1≤i≤m L

(�+1)(2−�)

2�

i
 we see 

 This intermediate form of our convergence rate will facilitate the proof of our 
later convergence rate interpolation result (Corollary 5.1) so we have labeled it. 
For now though, we focus on processing this expression of the rate into its final 
form. The first step is to simply re-arrange this to 

 By factoring f (x0) − f ∗ out of both the numerator and denominator, and by 
applying Lemma 4.2 to the previous expression, its right-hand side simplifies to 

	�  ◻

We now make two crucial comparisons for the rates above. First, it is notewor-
thy that when � = 2 in the strongly-convex regime, we recover the same linear 
rate as that in [8]. Second, our strongly convex sublinear rate in the 𝜈 > 2 setting, 

(18)
�[f (xk)] − f ∗ ≤

f (x0) − f ∗
[

1 +
(

�−2
2

)

⋅ (2�)
�
2

�S�m
�−2
2�

⋅ min
1≤i≤m

L
(�+1)(2−�)

2�
i ⋅

(

f (x0) − f ∗
)

�−2
2 ⋅ k

]
2

�−2

.

�[f (xk)] − f ∗ ≤
(2�S�)

2
�−2 m

1
� (f (x0) − f ∗)

[

2�S�m
�−2
2� + (� − 2)(2�)

�
2 min
1≤i≤m

L
(�+1)(2−�)

2�
i ⋅

(

f (x0) − f ∗
)

�−2
2 k

]

2
�−2

.

=
(2�S�)

2

�−2m
1

�

�

�S�m
�−2
2�

(f (x0)−f ∗)
�−2
2

+ (� − 2)(2�)
�

2 min
1≤i≤m L

(�+1)(2−�)

2�

i
k

�
2

�−2

Lemma 4.2≤ (2�S�)
2

�−2m
1

�

⎡

⎢

⎢

⎢

⎢

⎣

�S�m
�−2
2�

⎛

⎜

⎜

⎝

S

�−2
2(�−1)
� (�−1)

�−2
2 R

�(�−2)
2(�−1)

�

(�−2)2

2� 2

�−2
2(�−1)

⎞

⎟

⎟

⎠

+ (� − 2)(2�)
�

2 min
1≤i≤m L

(�+1)(2−�)

2�

i
k

⎤

⎥

⎥

⎥

⎥

⎦

2

�−2

=
(2�S�)

2

�−2m
1

�

�

2
�−2

2(�−1) m
�−2
2� S

�−1
�

� �
�2−2�+4

2�

(�−1)
�−2
2 R

�(�−2)
2(�−1)

+ (� − 2)(2�)
�

2 min
1≤i≤m L

(�+1)(2−�)

2�

i
k

�

2

�−2

=
(2�S�)

2

�−2m
1

� (� − 1)R
�

�−1

�

2
�−2

2(�−1)m
�−2

2� S
�−1

�

� �
�2−2�+4

2� + R
�(�−2)

2(�−1) (� − 1)
�−2

2 (� − 2)(2�)
�

2 min
1≤i≤m L

(�+1)(2−�)

2�

i
k

�
2

�−2
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O(k
−

2

�−2 ) , is indeed faster than the O(k
−

1

�−1 ) rate occurring in the merely convex 
case.

To conclude this article, we demonstrate that, in the strongly convex case, 
when � → 2 the intermediate form (18) of the strongly convex sublinear rate of 
Theorem 5.1 converges to its � = 2 linear rate of convergence.

Corollary 5.1  (Interpolation of Linear and Sublinear Rate) In the strongly convex 
setting of Theorem 5.1, if � → 2 , then the sublinear rate converges to a linear rate of 
convergence. More formally, for the convergence bound

for k ≥ 0 , we observe the limiting result

Proof  The form of the sublinear convergence bound here was established by the 
immediately preceeding theorem in equation (18). The use of said rate in the proof 
of this corollary was foreshadowed there.

To prove our main limit result, suppose for a moment that

holds for any continuously differentiable g ∶ [0,∞) → [0,∞) such that g(0) > 0 . 
Restating our sublinear convergence rate, we see that

where

Observe that g is continuous differentiable and g(0) = 𝜎∕S𝛼 > 0 . Thus, it follows 
that

�[f (xk)] − f ∗ ≤ f (x0) − f ∗

[

1 +
(

�−2

2

)

⋅

(2�)
�

2

�S�m
�−2
2�

⋅ min
1≤i≤m L

(�+1)(2−�)

2�

i
⋅

(

f (x0) − f ∗
)

�−2

2
⋅ k

]
2

�−2

,

lim
�→2+

f (x0) − f ∗

[

1 +
(

�−2

2

)

⋅

(2�)
�

2

�S�m
�−2
2�

⋅ min
1≤i≤m L

(�+1)(2−�)

2�

i
⋅

(

f (x0) − f ∗
)

�−2

2
⋅ k

]
2

�−2

≤
(

1 −
�

2S�

)k

⋅

(

f (x0) − f ∗
)

(19)lim
x→0+

[

1 + g(x) ⋅ x
]−

1

x = e−g(0)

�[f (xk)] − f ∗

f (x0) − f ∗
≤ [

1 + g
(

� − 2

2

)

⋅

(

� − 2

2

)]

2

2−�

,

g(x) =
(2�)x+1

(2x + 2)S�m
x

2x+2

⋅ min
1≤i≤m L

−
(�+1)x

2x+2

i
⋅ Ax

0
⋅ k.
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where we applied the standard inequalities ex ≥ 1 + x and (1 + x)−1 < (1 − x∕2) for 
all x > 0 in the last two lines. Thus, we only need to prove (19) to finish the proof.

The proof is a simply straightforward computation:

where continuity of x ↦ ex is used in the second line, l’Hôpital’s rule is used in the 
third line, and the definition of g is used in the final line. 	�  ◻

Appendix 1: Proof of Lemma 2.1

In this section of the technical appendix, we prove Lemma 2.1. 

1.	 We begin by choosing x, y ∈ ℝ
d . The inequality is trivial if x = 0 so we assume 

x ≠ 0 . By the standard and p-norm versions of the Cauchy–Schwarz inequality, 
we compute 

 By the standard Cauchy–Schwarz inequality, the first inequality is obtained 
with equality if and only if one of Pix and Piy is a scalar multiple of the other 

�[f (xk)] − f ∗

f (x0) − f ∗
≤ lim

�→2+

[

1 + g
(

� − 2

2

)

⋅

(

� − 2

2

)]

2

2−�

(19)
= e−g(0) =

(

e
−

�

S�

)k

≤
(

1

1 +
�

S�

)k

≤
(

1 −
�

2S�

)k

,

lim
x→0+

[

1 + g(x) ⋅ x
]−

1

x = lim
x→0+

exp

(

−
ln
[

1 + g(x) ⋅ x
]

x

)

= exp

(

− lim
x→0+

ln
[

1 + g(x) ⋅ x
]

x

)

= exp

(

− lim
x→0+

g(x) + x ⋅ g�(x)

1 + x ⋅ g(x)

)

= exp(−g(0)),

⟨x, y⟩ =
m
∑

i=1
⟨Pix,Piy⟩ ≤

m
∑

i=1
‖Pix‖‖Piy‖ =

m
∑

i=1

(

L�∕pi ‖Pix‖
)

(

‖Piy‖

L�∕pi

)

=

⟨

(

L�∕p1 ‖P1x‖,… , L�∕p1 ‖P1x‖
)

,

(

‖P1y‖

L�∕p1

,… ,
‖Pmy‖

L�∕pm

)⟩

≤
‖

‖

‖

‖

(

L�∕p1 ‖P1x‖,… , L�∕pm ‖Pmx‖
)

‖

‖

‖

‖p

‖

‖

‖

‖

‖

‖

(

‖P1y‖

L�∕p1

,… ,
‖Pmy‖

L�∕pm

)

‖

‖

‖

‖

‖

‖q

= ‖x‖�,p‖y‖−� p
q ,q
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for each i = 1,… ,m . By the Cauchy–Schwarz inequality for p-norms, and our 
assumption that x ≠ 0 , the second inequality obtains equality if and only if there 
is some c ∈ ℝ such that 

 Assuming both inequalities hold then, we conclude there are c1,… , cm, c ∈ ℝ 
such that Piy = ci ⋅ Pix and cq ⋅ L�

i
‖Pix‖

p =
‖Piy‖

q

L
�q∕p

i

 for i = 1,… ,m . Fixing 

1 ≤ i ≤ m , and combining the equalities, we see that cq ⋅ L�
i
‖Pix‖

p = c
q

i
⋅

‖Pix‖
q

L
�q∕p

i

 , 

so 

 where we use the definition of q as p’s Hölder conjugate to produce the second 
equality. This completes the proof of 1.

2.	 Given x ∈ ℝ
d , consider the vector (‖Pjx‖j)

m
j=1

 . For any p ≥ 2 , the norm equiva-
lence inequality yields 

 But, 

 as, for any i, with 1 ≤ i ≤ m , L2�∕p
i

≤ L�
(

max1≤j≤m L

�

p
−

�

2

m

)2

 and we complete 

the first part of the inequality. The second part is quite similar. By the equiva-
lence norm inequality, 

 But 

 and we are done.

cq ⋅
�

L�
1
‖P1x‖

p,… , L�
m
‖Pmx‖

p
�

=

�

‖P1y‖
q

L
�q∕p

1

,… ,
‖Pmy‖

q

L
�q∕p
m

�

.

ci = c ⋅ L
�

�

1−
q

p

�

i
‖Pix‖

p

q
−1

= c ⋅ L�
i
‖Pix‖

p−2

‖x‖�,p =

( m
∑

j=1
L�j ‖Pjx‖

p
2

)
1
p

=

( m
∑

j=1
‖L�∕pj ⋅ Pjx‖

p
2

)
1
p

≤

( m
∑

j=1
‖L�∕pj ⋅ Pjx‖22

)
1
2

�

m
�

j=1

‖L
�∕p

j
⋅ Pjx‖

2
2

�
1

2

=

�

m
�

j=1

L
2�∕p

j
‖Pjx‖

2
2

�
1

2

≤ ‖x‖�,2 ⋅ max
1≤j≤m L

�

p
−

�

2

m

‖x‖�,2 =

( m
∑

j=1
L�j ‖Pjx‖22

)
1
2

=

( m
∑

j=1
‖L�∕2j ⋅ Pjx‖22

)
1
2

≤ m
1
2−

1
p ⋅

( m
∑

j=1
‖L�∕2j ⋅ Pjx‖

p
2

)
1
p

�

m
�

j=1

‖L
�∕2

j
⋅ P

j
x‖

p

2

�
1

p

=

�

m
�

j=1

L
�p∕2

j
‖P

j
x‖

p

2

�
1

p

≤ ‖x‖�,p ⋅ max
1≤j≤m L

�

2
−

�

p

j
=

‖x‖�,p

min
1≤j≤m L

�

p
−

�

2

j
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Appendix 2: Proof of Lemma 4.2

Suppose we are able to prove for all x, y ∈ ℝ
d that

Then x∗ , the first-order condition ∇f (x∗) naturally holds so (20) implies

and this completes the proof. Thus, it suffices to prove (20). Suppose that

holds for all x, y ∈ ℝ
d . Then, given u ∈ ℝ

d , the integral formulation of the mean 
value theorem states

Thus, the Cauchy–Schwartz inequality and our previous inequality imply

so taking u = y − x in (21) completes the proof. Consequently, we now need only 
prove the Hölderian co-coercivity condition (21), which we do presently.

(20)f (y) ≤ f (x) + ⟨∇f (x), y − x⟩ +

�

�S�

2

�
1

�−1

⋅

�

� − 1

�

�

⋅ ‖u‖
�

�−1

(1+�−�)(1−�),
�

�−1

f (x) − f (x∗) ≤ ⟨∇f (x∗), x − x∗⟩ +

�

�S�

2

�
1

�−1

⋅

�

� − 1

�

�

⋅ ‖x − x∗‖
�

�−1

(1+�−�)(1−�),
�

�−1

=

�

�S�

2

�
1

�−1

⋅

�

� − 1

�

�

⋅ ‖x − x∗‖
�

�−1

(1+�−�)(1−�),
�

�−1

≤
�

�S�

2

�
1

�−1

⋅

�

� − 1

�

�

⋅ R(x)
�

�−1

(1+�−�)(1−�),
�

�−1

(21)
2

�S�
‖∇f (x) − ∇f (y)‖�−1

1+�−�,�
≤ ‖x − y‖(1+�−�)(1−�), �

�−1

f (x + u) − f (x) = ∫
1

0

⟨∇f (x + tu), u⟩dt,

f (x + u) − f (x) − ⟨∇f (x), u⟩ = �
1

0

⟨∇f (x + tu) − ∇f (x), u⟩dt

≤ �
1

0

‖∇f (x + tu) − ∇f (x)‖1+�−�,�‖u‖(1+�−�)(1−�), �

�−1

dt

≤ �
1

0

�

�S�

2
‖tu‖(1+�−�)(1−�), �

�−1

�
1

�−1

‖u‖(1+�−�)(1−�), �

�−1

dt

=

�

�S�

2

�
1

�−1

‖u‖
�

�−1

(1+�−�)(1−�),
�

�−1 �
1

0

t
1

�−1 dt

=

�

�S�

2

�
1

�−1

⋅

�

� − 1

�

�

⋅ ‖u‖
�

�−1

(1+�−�)(1−�),
�

�−1

,
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Given y ∈ ℝ
d , the function x ↦ �(x) ∶= f (x) − f (y) − ⟨∇f (y), x − y⟩ is readily 

seen to be Hölder block smooth because f. Moreover, � has the same block Hölder 
smoothness constants and ∇�(x) = ∇f (x) − ∇f (y) . Thus, by the Block Hölder 
Descent Lemma (Lemma 2.2),

which we may restate as

Adding this inequality to its analogue with the roles of x and y reversed, we see 
produce

By Cauchy–Schwarz, we then see that

or equivalently

Given u ∈ ℝ
d , the integral formulation of the mean value theorem states

so the Cauchy–Schwarz inequality and the previous inequality imply

f (x) − f (y) − ⟨∇f (y), y − x⟩ = �(y) − min
z∈ℝd

�(z) ≥ max
1≤i≤m

�

1

�L�−1
i

‖∇if (x) − ∇if (y)‖
�

�

≥ 1

�S�

m
�

i=1

L�
i

L�−1
i

‖∇if (x) − ∇if (y)‖
� =

1

�S�
‖∇f (x) − ∇f (y)‖�

1+�−�,�
,

f (x) ≥ f (y) + ⟨∇f (y), y − x⟩ +
1

�S�
‖∇f (x) − ∇f (y)‖�

1+�−�,�
.

2

�S�
‖∇f (x) − ∇f (y)‖�

1+�−�,�
≤ ⟨∇f (x) − ∇f (y), x − y⟩.

2

�S�
‖∇f (x) − ∇f (y)‖�

1+�−�,�
≤ ‖∇f (x) − ∇f (y)‖1+�−�,�‖x − y‖(1+�−�)(1−�), �

�−1

,

2

�S�
‖∇f (x) − ∇f (y)‖�−1

1+�−�,�
≤ ‖x − y‖(1+�−�)(1−�), �

�−1

.

f (x + u) − f (x) = ∫
1

0

⟨∇f (x + tu), u⟩dt,
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Taking u = y − x completes the proof.

Funding  The authors are supported by NSF grant #2410328.

Data availability  No data were used or generated in the writing of this paper.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

References

	 1.	 Bredies, K.: A forward–backward splitting algorithm for the minimization of non-smooth convex 
functionals in Banach space. Inverse Problems 25(1), 015005 (2008)

	 2.	 Grimmer, B.: General Hölder smooth convergence rates follow from specialized rates assuming 
growth bounds. J. Optim. Theory Appl. 197(1), 51–70 (2023)

	 3.	 Gutman, D.H., Ho-Nguyen, N.: Cyclic coordinate descent in the Hölder smooth setting. Oper. Res. 
Lett. 50(5), 458–462 (2022)

	 4.	 Lee, M., Shekhar, S., Javidi, T.: Multi-scale zero-order optimization of smooth functions in an 
RKHS. In: 2022 IEEE International Symposium on Information Theory (ISIT), pp. 288–293. IEEE 
(2022)

	 5.	 Liu, Y., Wang, Y., Singh, A.: Smooth bandit optimization: generalization to Hölder space. In: Inter-
national Conference on Artificial Intelligence and Statistics, pp. 2206–2214. PMLR (2021)

	 6.	 Nemirovskii, A., Nesterov, Y.: Optimal methods of smooth convex minimization. USSR Comput. 
Math. Math. Phys. 25, 21–30 (1986)

	 7.	 Nemirovskii, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley-
Interscience Series in Discrete Mathematics, Wiley (1983)

	 8.	 Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM 
J. Optim. 22(2), 341–362 (2012)

	 9.	 Nesterov, Y.: Universal gradient methods for convex optimization problems. Math. Program. 152(1), 
381–404 (2015)

	10.	 Polyak, B.: Introduction to Optimization. Optimization Software (1987)
	11.	 Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for 

minimizing a composite function. Math. Program. 144(1), 1–38 (2014)
	12.	 Shibaev, I., Dvurechensky, P., Gasnikov, A.: Zeroth-order methods for noisy Hölder-gradient func-

tions. Optim. Lett. 16(7), 2123–2143 (2022)

f (x + u) − f (x) − ⟨∇f (x), u⟩ = �
1

0

⟨∇f (x + tu) − ∇f (x), u⟩dt

≤ �
1

0

‖∇f (x + tu) − ∇f (x)‖1+�−�,�‖u‖(1+�−�)(1−�), �

�−1

dt

≤ �
1

0

�

�S�

2
‖tu‖(1+�−�)(1−�), �

�−1

�
1

�−1

‖u‖(1+�−�)(1−�), �

�−1

dt

=

�

�S�

2

�
1

�−1

‖u‖
�

�−1

(1+�−�)(1−�),
�

�−1 �
1

0

t
1

�−1 dt

=

�

�S�

2

�
1

�−1

⋅

�

� − 1

�

�

⋅ ‖u‖
�

�−1

(1+�−�)(1−�),
�

�−1

.



20	 L. Farias Maia, D. H. Gutman 

	13.	 Yashtini, M.: On the global convergence rate of the gradient descent method for functions with 
Hölder continuous gradients. Optim. Lett. 10, 1361–1370 (2016)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.


	The randomized block coordinate descent method in the Hölder smooth setting
	Abstract
	1 Introduction
	2 Notation and step-size selection for RBCD under Hölder smoothness
	3 Convergence analysis: general objectives
	4 Convergence analysis: convex objectives
	5 Convergence analysis: strongly convex objectives
	Appendix 1: Proof of Lemma 2.1
	Appendix 2: Proof of Lemma 4.2
	References




