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Abstract

This work provides the first convergence analysis for the Randomized Block Coordi-
nate Descent method for minimizing a function that is both Holder smooth and
block Holder smooth. Our analysis applies to objective functions that are non-con-
vex, convex, and strongly convex. For non-convex functions, we show that the

expected gradient norm reduces at an O<k1+r > rate, where k is the iteration count

and y is the Holder exponent. For convex functions, we show that the expected sub-
optimality gap reduces at the rate O(k™). In the strongly convex setting, we show

2y
this rate for the expected suboptimality gap improves to (’)(k_: ) when y > 1and to

a linear rate when y = 1. Notably, these new convergence rates coincide with those
furnished in the existing literature for the Lipschitz smooth setting.

Keywords Randomized coordinate descent - Holder - Convergence

1 Introduction

In this article, we provide non-asymptotic convergence rates for the Randomized
Block Coordinate Descent (RBCD) method when applied to the problem

f 5=){I€1ui§f(x), (1)

where the objective function f : RY = R is Holder smooth, a generalization of
the standard (Lipschitz) smoothness, and block Holder smooth. Formally, the

4 Leandro Farias Maia
leandro.maia@tamu.edu

David Huckleberry Gutman
dhgutman @tamu.edu

Department of Industrial and Systems Engineering, Texas A&M University, Emerging
Technologies Building, 3131 TAMU, 101 Bizzell Street, College Station, TX 77843, USA

@ Springer


http://orcid.org/0009-0001-5008-7269
http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-024-02161-6&domain=pdf

2 L. Farias Maia, D. H. Gutman

continuously differentiable function, f, is said to be Holder smooth when its gradi-
ent, Vf, is Holder continuous, i.e. there exist L > 0 and y € (0, 1] guaranteeing

IVFo) = VIl < Llly = x| forallx,y € RY. 2

The popularity of block coordinate methods owes to their fitness for large-scale opti-
mization problems emerging from applications in machine learning and statistics.
Essentially, randomized block coordinate descent is a (random) block-wise adap-
tation of gradient descent. Instead of updating all coordinates simultaneously, the
randomized block coordinate descent method updates a single, randomly selected
coordinate block using only that block’s partial gradient. The computational econ-
omy of these block gradient updates, relative to full gradient updates, are what make
the randomized block coordinate descent method especially attractive for large-scale
problems.

Given an initial point x°, this cheap iterate update rule is somewhat more gen-
erally realized as

K=y P VAT, k=1,2,.0, (3)

where #, > 0, i, is selected randomly from {1,...,m}, and P,,...,P, € R™? are
orthogonal projection matrices onto orthogonal subspaces that sum to R?. The
“block coordinate" name originates from the archetypal choice for the orthogonal
subspaces projected onto: spans of collections of coordinate vectors.

For coordinate descent methods, and indeed a preponderance of first-order
methods, the intimate relationship between the selection of step-sizes and Vf’s
regularity determines their convergence rates [2-7, 9, 12, 13]. Both Bredies [1]
and Yashtini [13] study the interplay between step-size selection and convergence
for gradient descent applied to (1) in the Holder smooth regime. Bredies [1]
established a O(1/k") convergence rate of the proximal gradient method, a gener-
alization of the gradient descent method, for convex composite minimization. On
the other hand, Yashtini [13] established that, given an appropriate step-size

r
selection, gradient descent converges at a O(l/kHV) for non-convex, Holder

smooth objective functions.

We are unaware of any studies of the randomized block coordinate descent
method that assume Holder smoothness or its block-wise adaptation, block
Holder smoothness. We say that the continuously differentiable function, f, is
block Holder smooth if for each i =1, ..., m, there exists L; > 0 such that

IVf(x+ Pau) — VO < Ll Poull” for all u € R @)

The seminal articles [8, 11] studying the randomized block coordinate descent
method all make the more restrictive assumption that the gradient is Lipschitz
continuous. Recently, inspired by the work of both Bredies [1] and Yashtini [13],
Gutman and Ho-Nguyen [3] produced a convergence analysis for the cyclic block
coordinate descent method assuming Holder and block Holder smoothness in both
the convex and non-convex settings. Thus, the goal of this paper is to extend this
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analysis to the more popular randomized block coordinate descent method in the
non-convex, convex, and even strongly convex settings.

We conclude this introduction with an outline of our article that includes a
high-level description of each of our main contributions. This article is structured
into four primary sections:

e Section 2 In this section, we introduce our RBCD step-size selection for
Holder smooth objective functions as well as the attendant notation. We also
introduce two key lemmas (Lemmas 2.1 and 2.2) that support our analyses.

e Section 3 In this section, we present our convergence analysis for general, pos-
sibly non-convex objective functions satisfying Holder and block Holder
smoothness conditions. For these objectives, our proposed step-size ensures

RBCD shrinks the expected gradient norm at a (9(1 / ki ) rate (Theorem 3.1).

e Section 4 In this section, we present our convergence analysis under the fur-
ther assumption that the objective function is convex. In this setting, RBCD
with our step-size shrinks the expected suboptimality gap at a O(1/k") rate for
non-strongly convex objective functions (Theorem 4.1). Notably, our rates for
these objective functions coincide with those of [8] when y = 1, or equiva-
lently, when the objective is L-smooth.

e Section 5 In this section, we present our analysis under the further assumption
that the objective function is strongly convex. This analysis depends upon the
value of the Holder exponent, y. When y = 1, we show RBCD converges at a

linear rate (Theorem 5.1). When y € (0, 1), we obtain a O(l/kﬁ ) rate of con-

vergence (Theorem 5.1). Moreover, we show that our sublinear rates converge
to our linear rates as y — 1 (Corollary 5.1). As for convex objectives, our rates
for strongly convex objectives coincide with those of [8] when the objective is
L-smooth.

2 Notation and step-size selection for RBCD under Hélder
smoothness

This short section introduces the notation necessary for all of this article’s devel-
opments, and the Holder smoothness-based step-size selection for the RBCD
method. It also exhibits two lemmas, Lemmas 2.1 and 2.2, that are used through-
out the paper to aid the convergence analysis of the proposed method.

Our step-size selection is an adaptation of that used for the cyclic block set-
ting from [3] to the immensely more popular randomized block setting. Thus,
our notation is a synthesis of that article’s notation and the notation of [8], one of
the canonical works on randomized coordinate descent. We let L := {L,, ..., L, }
denote the set of the block Holder smoothness constants. For « € R, we define
the new constant, S,(f), as
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S = X L.
i=1

When f'is clear from context, we will simply write S,. For the sake of concision, we
set Vf(x) :=P;Vf(x) for all x€RY and 1 <i<m. We adopt the notation,
= lyﬂ > 1, because the quantity Iyﬂ frequently appears in our analysis.

Much of our analysis is framed in terms of L-weighted g-norms on R, || - llg.q-
Givena € Rand g > 1, we let

m 1/q
%l o= lZL?nP,-xMQ] . ®)
i=1

When a =0, || - ||, reduces to the standard g-norm, which we write as || - ||,. For
simplicity, we let|| - || := || - ||,. We bare three important notes about these weighted
norms. First, || - generalizes the norm

m 1/2
x> [Z L;?||Pix||2] ,
=1

which plays a starring role throughout Nesterov’s classical analysis of randomized
coordinate descent methods from [8] in the block Lipschitz smooth setting. The flex-
ibility provided by changing the exponents 2 and 1/2 to g and 1/g, respectively, is
critical to capturing our more general Holderian convergence rates. Additionally, the
parameter @ permits us to simultaneously achieve RBCD’s convergence rates for two
different, common random block selection schemes:

||a,q

(1) a = 0corresponds to selecting the blocks uniformly at random;
(i) a = 1corresponds to selecting the i-th block with probability L,/ Z:’;l L.

Finally, these weighted norms possess natural duality relationships and equiva-
lences to the Euclidean norm, which we liberally use throughout our analysis and

summarize in the below lemma.

Lemma 2.1 ((a, ¢)-Norm Duality and Equivalences) Let @ € R, p € [1, 0], and q be

the Holder conjugate of p, i.e. q .= p%l. The following hold for || - ||,

1. The Cauchy—Schwarz inequality

[ S Il I ©)

holds for all x,y € R?. Equality is obtained if and only if x = 0 or
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y=c-

m
-2
LY\ PP Px
i=1

for some ¢ € R. Consequently, || - ||_,z , is the dual norm of || - [, .
q
2. Ifp=2anda,f € Rthenthe norms|| - ||, and|| - || 5, satisfy

a_Fp 11 a_§
<]rnsg§lL{’ 2) Axllga 2 llxll,, = (m * - min L 2) Nl
for all x € R,

We defer the proof of this lemma to the appendix (“Appendix 1) to maintain the
focus of our exposition.

With all of the article’s requisite notation in hand, we may introduce our main
algorithm (Algorithm 1), and describe an associated descent lemma (Lemma 2.2).
We note that our step-size, —|| V£ (x})||¥~2 /Liv‘l, coincides with that proposed in [8]
when y = 1. Thus, we may view it as a generalization that accounts for the use of
block Hélder smoothness in the place of standard block smoothness.

Algorithm 1 Randomized block coordinate descent method (RBCD)
Data: 2° € dom(f), a € [0,1]

for k=0,1,2,... do
Choose

(e} «
ikN(pla"'vpm):: 77?1 PEEEEE) 'rfm ol )
Zj:l LS Zj:l L
Update block i, of z* according to

w1k IVaf@?)[7 2
e 2 B

K3

Vif(a). (7)

x

end

A special case of the main descent lemma of [1], derived in [3], plays the same
role in our analysis that it played for the cyclic block analysis in [3]. We directly
quote this special case from [3] below.

Lemma 2.2 (Block Holder Descent Lemma, [3], Lemma 1) Let f : R? - R be a
function that satisfies the block Holder smoothness condition. For any i,1 <i < m,

L.
O+ Up) <@ +(Vf (), Upy) + ﬁuu,-yu;”. )

Moreover, if x* is the minimizer of the right-hand side of (8), i.e.
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6 L. Farias Maia, D. H. Gutman

v=2
e re ||vi(jc_>l|| .

then
1
vV~

L

f&)=fG6") > IV

3 Convergence analysis: general objectives

In this section, we layout our convergence rate analysis for non-convex objec-
tives satisfying Holder smoothness (2) and block Holder smoothness (4). We will
present the main convergence theorem (Theorem 3.1) after we elaborate our key
Sufficient Decrease Lemma (Lemma 3.1). This lemma facilitates all of our con-
vergence analyses.

Lemma 3.1 (Sufficient Decrease) Let {x,}, be the sequence generated by RBCD
(Algorithm 1). If f satisfies our Holder smoothness (2) and block Holder smoothness
(4) assumptions, then

1
vS4(f)

holds for all k > 0.

IVf Gy iy, SfO) —E [f(xk“)

x"] )

Proof Expanding the expectation-defining sum, and applying the block descent
lemma (Lemma 2.2), we compute
xk] =F [f(xk) —fOrHh xk]

“ L )2
=y ( Zm’ La) : [f(xk) —f(xk - ”VJCLL?” : V,-f(x’()ﬂ
i=1

[; j=1"j i

) = [E[f(xk“)

Lemma22 o La+1 v X 1 v
> a -V . v = . \2 .
2 5 21‘, FIVIEON = S IV,
Rearranging the inequality and taking total expectations completes the proof. O

Next, we present the centerpiece of this section, our main convergence theo-
rem for non-convex objective functions.
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The randomized block coordinate descent method in the Holder... 7

Theorem 3.1 (RBCD Convergence: General Objective Functions) Let {x, }*  be the
sequence generated by RBCD (Algorithm 1). If f satisfies our Holder smoothness 2)
and block Holder smoothness (4) assumptions, then

| | OO SN ot
()%@E[uwwf)nm_v,v]S<V5a(f’)“( T ) =l

holds for all k > 0. Consequently, we have the convergence rate measured in the
norm|| - lg.,

B _lta-v
max L> 1
. . I<i<m ¢ ! OO =\ _ _1
gg}lsllk[E[||Vf(XJ)||ﬁ,2] < T - (vS.(N) " - <k+—1> = O<k V>,

holds for all k > 0.

Proof For each k > 0, observe that

k

D ENVF ) 1]

D &

. J v
Onsll_lsnk[E[||Vf(x)||a+l—v,v] < (k

+

IN
-~

T DEI@,. ) (10)

Jj=0

k
j+1
e 2, (Ee0] - B ™))

+

0y _ 1 0y _ £*
g JOO-EFGRDT o fa—f

11
* k+1 - k+1 ° (D

where we apply Jensen’s inequality to the expectation operator for the convex func-
tion x — x¥ in (10), and Lemma 3.1 in (10). Taking v-th roots of both sides of the
resultant inequality above, produces our first result.

The result in terms of the || - || 5, follows immediately from Lemma 2.1. O

4 Convergence analysis: convex objectives

In this section, we forward our convergence analysis of RBCD (Theorem 4.1) for
convex objective functions that are both Holder (2) and block Holder (4) smooth.
First, we present a Technical Recurrence Lemma (Lemma 4.1) that helps pro-
duce our convergence rates in this section, and a subset of the convergence rates
for strongly convex objective functions in the sequel. Next, we exhibit a techical
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8 L. Farias Maia, D. H. Gutman

lemma (Lemma 4.2) that permits us to express our rates in terms of the diameter
of the initial sublevel set. Finally, the section concludes with our main conver-
gence theorem (Theorem 4.1) and a comparison of these rates to those furnished
for smooth and convex functions in [8].

As promised, we begin this section with a Technical Recurrence Lemma that
supports the derivation of our convergence rates.

Lemma 4.1 (Technical Recurrence, [10, Chapter 2, Lemma 6]) If {A; } ;5 is a non-
negative sequence of real numbers satisfying the recurrence

Agyy S A, —0A]

for some 8 > 0 andr > 1, then

AO
Ak S T
1+ (r = DOAF k)=

The following lemma permits us to express our convergence rates here and in
the sequel section in terms of the initial sublevel set’s diameter.

Lemma 4.2 Under the Block Holder Smoothness assumption (4) and coercivity of f,
[ satisfies

o (SONT (v s
f(x) _f < <T> ' ( v ) 'R(x)(l+a—v)(l—v),ﬁ

for all x € R?, where R; ,(x) 1= max {|ly — x*||, : f(x*) =f*.f(¥) <f@®)} < oo

We defer the proof of this lemma to the appendix (“Appendix 17).

Finally, equipped with these tools, we present and prove the theorem that
establishes RBCD’s convergence rate for convex functions. Afterward, we explain
its relationship to its analogue for smooth and convex functions in [8].

Theorem 4.1 (RBCD Convergence: Convex Objective Functions) Let {x,}> | be the
sequence generated by RBCD (Algorithm 1). If f is a convex and coercive function
that satisfies our Holder smoothness (2) and block Holder smoothness (4) assump-
tions, then

[E[f( k)] f <VSa(f)R(l+a—v)(1_V)’+l(.X'O)V>E(V — 1)
X —f* S v _

[2vv=1 + (v = D)¥] =
where Ry ,(x°) 1= max, {Ily = x*|l, : f(*) =f*.f () <f(&O)} < o0.

Proof The bulk of this proof centers on an application of the Technical Recurrence
Lemma (Lemma 4.1). In the context of that lemma, we let A; = E[f(x')] — f* for
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The randomized block coordinate descent method in the Holder... 9

each i > 0. By definition, A; >0 for each i > 0. To simplify notation, we let
R:= R(1+a—v)(1—v),ﬁ(xo)-

With this notation, we may restate the sufficient decrease inequality (9) of Lemma
3.1 as

E[IVA I L] V8, (4= Ar),

or, equivalently,

1
v,

Appr S A —

E[IVF G (12)

Thus, to apply the Technical Recurrence Lemma (Lemma 4.1) we need only bound

the expectation on the right below by A]. By the Cauchy-Schwarz inequality

(Lemma 2.1) for || - ||,44-,, and its dual || - ||} 4—y)1-,),~, We achieve for any opti-
’ Tv-1

mum x*, that

FO8) = < (& = x5, ViEh)
S ”xk - x*||(1+a—V)(1—v),VTV] ”Vf(xk)”1+a—v,v S R”Vf(xk)”1+a—v,v'

Raising each side of the above inequality to the power v, taking expectations, and
applying Jensen’s inequality to the convex function x — x*/2, we conclude

Ay = (EFGHI-1*)" <E[(fh) - f7)']
< RE[IVFOIL, |
Stringing together our work above, equation (12) yields the recurrence

L

A A — WAk

for each k > 0. We are now permitted to apply the Technical Recurrence Lemma
(Lemma 4.1) withr = vand 6 = Tlm to produce

JG&O) =f*
(140 =10 (fa0-r) " 4]

E[f(h] —f* <

We dedicate the remainder of this proof to simplifying this convergence bound. By
factoring f(x°) —f* out of both the numerator and denominator, we may equiva-
lently write the right-hand side of this bound as

1

-

v—1

(Fa-£+)"

! l+(v—1)-0-k]
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10 L. Farias Maia, D. H. Gutman

By considering x = x” in Lemma 4.2, raising both sides to the power v — 1 and
applying the norm equivalence inequality from Lemma 2.1, we further see

EN L VSII -1 vt v
[ - fx)] 13<2>.(V ) ‘R

Vv

so the right-hand side of our bound simplifies to

1 o 1 ' _ (vSaRV)ﬁ(v—l)
<ﬁ).<ﬂ>”‘l.Rv+(v Y <VSaRV> (201 4 (v — k)T

2 v

which concludes the proof. O

Notably, our rate matches that provided by Nesterov [8] in the standard block
smooth setting, i.e. when v = 2 we recover the convergence rate,

2 _
E[Ag] < mSa(f)R%xl) = O(™,

from [8].

5 Convergence analysis: strongly convex objectives

In this final section, we conclude the paper with a convergence analysis of RBCD
(Algorithm 1) for strongly convex objective functions that are both Holder (2)
and block Holder (4) smooth. We say that f : RY — R is o-strongly convex with
respect to the norm|| - ||,_, 5, where 6 > 0, if

FO) 2 6+ (V@3 =) + 3ol =2, (13)

for all x,y € R4. The section begins with our main theorem (Theorem 5.1), which
provides rates in both the L-smooth and Holder smooth settings. Next, we com-
pare these rates with those in the previous section and [8]. Finally, we show that the
smooth setting’s linear rate is achieved in the limit as v — 2, or equivalently, y — 1
(Corollary 5.1).

Without further ado, we present our main convergence theorem for strongly
convex objective functions.

Theorem 5.1 (RBCD Convergence: Strongly Convex Objective Functions)
Let {x,}>, be the sequence generated by RBCD (Algorithm 1). Suppose that
f 1 RY > R is o-strongly convex and satisfies both the Holder and block Holder
smoothness assumptions (2) and (4). The following hold:
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The randomized block coordinate descent method in the Holder... 1

1. (Linear Rate—Smooth Setting) If v = 2, i.e. f is smooth, then

k L 0\
e o Sa(f)v’l (V - 1)R()C )vfl
ey - < (1- 5% ) - 20

vy 2 (14)
oo t))

2. (Sublinear Rate—Holder Smooth Setting) If v > 2, i.e. fis Holder smooth but not
smooth, then

B -1 < — 0 =0k ),
(C, + Cok) =
where

v=1  v2-2v+4

v v—2 v—"
Co = QvS,(f)Zm: (v — DRGDTT, €, =250m's S,(H) v >

(@+D(2-v)

v(v=2) V= v
C, = RGO (v = 1)'T (v — 2)(20)? min L, *
<i<m

i

Proof Let R :=R +a—v)(1—v),:”](x0) to simplify notation. Both parts of the theorem

speedily follow from the recurrence

N (@+D)(2-v)
(26)2 min L. *
5 1<i<m !
Ak+1 Squ_Ak : 1_1 ’ (15)
vS,m2"v

where A; = E[f(x))] — f* for each i > 0. After establishing (15), we will separately
show how each of the Theorem’s two parts result from it.

As in the proof of convergence for non-strongly convex functions, the sufficient
decrease inequality (9) of Lemma 3.1 implies (12), which we recall is

1 :
A S A= —E[IV/ GOl )

Glancing at (15) and this latest inequality, it becomes immediately clear that we
ought to bound [E[||Vf(xk)||v ] below by AZ = [E[f(xk) —f*] V/z, appropriately

a+l-v,v
scaled. To this end, strong convexity now makes it’s main appearance. Using the
standard argument of fixing x € R in o-strong convexity’s defining inequality (13)
and minimizing it over y € R?, we achieve the Polyak—t.ojasiewicz (PL) inequality

1 Y x
s (IVfel,.) 2 f00—f.
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12
Setting x = x,, raising both sides to the power v/2, and then taking expectations, we

see
7],

—E[(1vrl;,,) | 2 Elre -

(20)2
i v/2, produces

which, by Jensen’s inequality applied to the convex function x — x

e[l | 2 e -r]) 7 = 4; (16)

(20)?
The main bound (15) is secured by twice applying the (a, g)-Norm Duality Equiva-
lence Lemma (Lemma 2.1) to connect the recurrence inequality (12) and the PL-

derived bound (16),
12 1
Ac= A = —E[IV/el,

a
atl-v _a-l

1m}in L 2
<i<m
= | E[Ivreon

1
v

Lemma 2.1 1
> —- 1
VSa m2

(a+DH(2-v)
2v

L 21 1 121'i<n Li v

emma 2. <i<m *

= [ | [ (1l ) |
VSa m2 v

(a+D(2-v)

min L, %
(16) i A
1 1<ism ! ) [(20_)514]:].

1
v

1
\/S m2

Now, we are prepared to prove the theorem’s two constituent parts

If v = 2, then the main recurrence inequality (15) becomes

[ o
Ak+1 SAk_Ak. (S—> :Ak<1 - S—),

4

1.

which by backward induction is equivalent to our desired bound

k
1_SE> 'Ao=<1__> [f(xo) = f*]
a7

E[f ()] - f* = Ay < <
ST (v — DR

o k
S(“E) =

where we have applied Lemma 4.2 in the first line
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The randomized block coordinate descent method in the Holder... 13

2. The v > 2 result requires a verification that is as straightforward as, but more
tedious than, that of 1. Applying the Technical Recurrence Lemma (Lemma 4.1)

v (a+hH(2-v)
withr =v/2,and 6 = 292 . min L. * wesee
vS,m2v 1<i<m !
0y _ px
E6] —f* < fe) - .
=2\ o)’ T o 5 |7 (18)
[”(T)'ﬁ'&ﬂ:ﬂ A b

This intermediate form of our convergence rate will facilitate the proof of our
later convergence rate interpolation result (Corollary 5.1) so we have labeled it.
For now though, we focus on processing this expression of the rate into its final
form. The first step is to simply re-arrange this to

@QuS,)FTmY (F) — f*)

E[f ()] - f* <
(@+D@2-v)

v=2 v V=2
o _ 35 H 2v . Oy _ g%\ 2
2vS,m2 4+ (v—2)(20)2 lrélilsr}nL. (f(x )—f ) k

i

2
V=2

By factoring f(x°) —f* out of both the numerator and denominator, and by
applying Lemma 4.2 to the previous expression, its right-hand side simplifies to

21
_ 2vS,)—2mv
- 2
oS m w2 . @be-v 173
v v, —
——— +(v—-2)20) min L, * k
0y_fr) 2 I<i<m !
(FGO)=f*)
21
Lemma 4.2 (ZVSa)EmC
£ 2
2
s VZ;Z N (a+D(2-v)
vy, m v = .
=5~ +(v=2)206)2 min L, * &k
S[E(V*l><V7])V;2“R2(y71) l<ism
V=22 _v=2
v 2v 220v-D
2 1
2vS,)v—=2mv
= 2
22(va2]) VZ;ZSL;‘ v232v+4 . (a+D)(2-v) 2
—Ym v v v = .
— + (v —2)(20)2 min L, ok
(v=1)"2 R20-D 1<i<m

Q@vS,) = ms (v — DRS

=2 2 ¥l 2904 wv-2)

v=2 = w=2) v=2 v (@+h@=v) vaz
220-vmw S, v +Rw-D(v—1)72 (v—2)(20)2 lmin L * k
<i<m

i

O
We now make two crucial comparisons for the rates above. First, it is notewor-

thy that when v = 2 in the strongly-convex regime, we recover the same linear
rate as that in [8]. Second, our strongly convex sublinear rate in the v > 2 setting,
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14 L. Farias Maia, D. H. Gutman

O(k‘ﬁ), is indeed faster than the O(k‘ﬁ) rate occurring in the merely convex

case.

To conclude this article, we demonstrate that, in the strongly convex case,
when v — 2 the intermediate form (18) of the strongly convex sublinear rate of
Theorem 5.1 converges to its v = 2 linear rate of convergence.

Corollary 5.1 (Interpolation of Linear and Sublinear Rate) In the strongly convex
setting of Theorem 5.1, if v — 2, then the sublinear rate converges to a linear rate of
convergence. More formally, for the convergence bound

fO&O) —f*

E[f(] —f* <

@by

[ (2) 22 in 157 0y -) 7 4]

vSamTv_ 1<i<m
for k > 0, we observe the limiting result

; 160 -1
1m

v—2+

@+hH2—v) V=2 ] 2

[H(%z).@v_%z.mmg P (fE ) Tk

vSamﬁ 1<i<m
o k
s <l - 25a> eD=1)

Proof The form of the sublinear convergence bound here was established by the
immediately preceeding theorem in equation (18). The use of said rate in the proof
of this corollary was foreshadowed there.

To prove our main limit result, suppose for a moment that

1
lir(r)l+ [1 + g(x) -x]_; =80 (19)

holds for any continuously differentiable g : [0, c0) — [0, o) such that g(0) > 0.
Restating our sublinear convergence rate, we see that

k\) _ £ _ _ 22:
OIS < [1+6(152) (532)]

where

(20.)x+1 . _ (et
- min L, *? - Aj -k

W=
2x +2)S, mxn 1<i<m

Observe that g is continuous differentiable and g(0) = ¢/S, > 0. Thus, it follows
that
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2

kN _ _ _ =
AL <t [1+4(452) - (452)

s\ k
B0 = ({E)

Y ¢
S S 1_L 9
<1+Sﬂ> < 2Sa>

where we applied the standard inequalities ¢* > 1+ x and (1 +x)~! < (1 — x/2) for
all x > 0 in the last two lines. Thus, we only need to prove (19) to finish the proof.
The proof is a simply straightforward computation:

In [1 + g(x) -x] >

x—=0*

1
lim [1+4g(x)-x] * = lim exp <—
x—=0*t

I
[¢]
>
o
|
=
8
—_—
=
"
+
o
=
a2
il
N—

_ . g +x-g'(x)
=exp |- lim —————
-0t 1 4+x-g(x)
= exp(—g(0)),
where continuity of x — €* is used in the second line, ’'Hopital’s rule is used in the
third line, and the definition of g is used in the final line. O

Appendix 1: Proof of Lemma 2.1
In this section of the technical appendix, we prove Lemma 2.1.
1. We begin by choosing x,y € R¥. The inequality is trivial if x = 0 so we assume

x # 0. By the standard and p-norm versions of the Cauchy—Schwarz inequality,
we compute

m m m

1Py

(@y) =Y (P Py) < X IIPllIPyll = (L?/PMP,-xu)( o
i=1 i=1 1

i=

i

Py P
=<(LT/"||P1x||,...,LT/"nPlxn),<—” LA Ll ;’;yp”)>
I% L

1Pl 1P
= (GRS T | R
1 e » Ltll/p Lgl/p \ b ¥ g

By the standard Cauchy—Schwarz inequality, the first inequality is obtained
with equality if and only if one of P;x and P;y is a scalar multiple of the other
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16 L. Farias Maia, D. H. Gutman

for each i = 1,...,m. By the Cauchy—Schwarz inequality for p-norms, and our
assumption that x # 0, the second inequality obtains equality if and only if there
is some ¢ € R such that

1Pyl (L5

Ltlxq/p L;;q/p

A (LYNPxIP, ... . LENIP,xIP) =

Assuming both inequalities hold then, we conclude there are ¢y, ...,c,,c € R

P.yle . ..
such that Py =c¢;-Px and c?-LY||Px|]” = ”U,Ty/lrl, for i=1,...,m. Fixing
. .. .. ‘ Pl
1 <i <m, and combining the equalities, we see that ¢ - LY||Px||P = ciq . ”La:/l]l ,

i

SO

a(1-4 p_

¢;=c-L (=) IPxlls™" = c- L2]|Pux]|P
where we use the definition of g as p’s Holder conjugate to produce the second
equality. This completes the proof of 1.

2. Given x € R4, consider the vector (1P|l j)j"; ;- For any p > 2, the norm equiva-

lence inequality yields

m 11, m ; m
lxll,., = (ZL_;' ||P,-x||§) = (Z e’ P,-xu’;) < <Z 1 -R,-xn%)
j=1

J=1 J=1

1=

But,
1 1
m 2 m 2 «
a/p 2) _ 2a/p 2 . » 2
2Py ) = 2L NP ) < el - max L,
j=1 j=1
a_p\2

as, for any i, with 1 <i <m, Liza/p <L’ (maxlgSm L) *) and we complete

the first part of the inequality. The second part is quite similar. By the equiva-
lence norm inequality,

m % m % 11 m ]l,
2 5= 2
||x||ﬁ,2=<2Lf||R,~x||§> =< I VP_,-xné) <m? ( I ~P_,x||’2’)
J=1 j=1 =1

But

1 1
c B/2 4 ’ . Pp/2 P ’ 5—5 ”x"ap
_ ‘ B2 _ :
EIIL,- Py )= 2 LTNPG ) < el - max LF 7 = o
=

=

and we are done.
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Appendix 2: Proof of Lemma 4.2

Suppose we are able to prove for all x,y € R? that

< v Sy = (20)
JO) <@+ Y@y =0+ (55) (5= ) Ml
Then x*, the first-order condition Vf(x*) naturally holds so (20) implies

ST y—1 e
f(x)—f(x*)s(Vf(x*),x—x*>+<V2) '(VV )‘le—xil{lw_v)u_w,ﬁ

1
vS \ sv—1 v
= (=) (B2) e=w] v
2 v (1+a—v)(1—v),:

1
VS fv—=1 -
S( 2 ) < v )-R(x)(lm_v)(l_v)ﬁ

and this completes the proof. Thus, it suffices to prove (20). Suppose that

2
vS,

IV = VFD iy < 1= Ylasamvaon, = Q1)

holds for all x,y € R4. Then, given u € R4, the integral formulation of the mean
value theorem states

1
S+ uw) —fx) = / (Vf(x + tw), u)dt,
0
Thus, the Cauchy—Schwartz inequality and our previous inequality imply
1
65410 =00 = (0.0 = [ (Ve 10 = Vo).
0

1
< / IVF(x + tu) — Vf(x)“1+a—v,v||”||(1+a_v)(|_v),let
0 v

Lrvs, =
< 7||m||(1+a¢—v)(1—v),#l ”””(Ha—v)(l—w,%dt
o = =
1
vS,\ ! P ! Ld
=\ ||M||(1+m_v)(l_v)’ﬁ A tv-1dt
T
A N
) v (Ha—v)(1-v). ="

so taking u =y — x in (21) completes the proof. Consequently, we now need only
prove the Holderian co-coercivity condition (21), which we do presently.
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18 L. Farias Maia, D. H. Gutman

Given y € R?, the function x = ¢(x) 1= f(x) —f(y) — (Vf(y),x —y) is readily
seen to be Holder block smooth because f. Moreover, ¢ has the same block Holder
smoothness constants and V¢(x) = Vf(x) — Vf(y). Thus, by the Block Holder
Descent Lemma (Lemma 2.2),

1

SO =f0) = {VfO)y = x) = $(y) — min $(z) > max IVif ) = VDI

1<i leY“
> LS v s - vemlt = L 1vse - v
= VSa L‘,'_l i i - VSa 1+a—v,v’

i=1

which we may restate as

JO) 20+ (Vf().y —x) +

I .
o5 V@ = VIOl

Adding this inequality to its analogue with the roles of x and y reversed, we see
produce

2190 = VO, < V) = V0D 5= 0,

By Cauchy—Schwarz, we then see that

2 v
VS [IVf(x) - Vf()’)lll_'_a_v,v < |IVfx) - V.f(y)”l+a—v,v”x _y||(1+a_v)(1_v),v_i]’

or equivalently

2 v
US IVf(x) — Vf()’)”lﬂll_v,v <x- y”(Ha—V)(l—V)sﬁ'

Given u € R, the integral formulation of the mean value theorem states

1
fx+u) —fx) = / (Vf(x + tu), u)dt,
0

so the Cauchy—Schwarz inequality and the previous inequality imply

@ Springer



The randomized block coordinate descent method in the Holder... 19

1
FO 1) = () — (VFG0 u) = / (Vx4 1) = VFO). u)er
0

v—1

1
! vS, =
< 2 ettll (1 a—vy1-v), = el 1 samvy1 -, - d
o = -
1
VS, \ ! - ! id
=3 ||14||(1+01_v)(1_v)7ﬁ ; t-idt
T
= V8. \* (v=1 .||M||i
2 v (1+a—v)(1—v),i .

1
< / VG 1) = VO s ity
0

Taking u = y — x completes the proof.
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