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Spectrally and geographically diverse collections of broadband imagery have been
used to show that the aggregate reflectance of the vast majority of ice-free landscapes
on Earth can be represented as linear mixtures of rock and soil substrates (S), photosyn-
thetic vegetation (V) and dark targets (D) composed of shadow and spectrally absorp-
tive/transmissive materials (e.g., deep clear water, ferromagnesian rock, organic-rich soil).
As such, dark fraction estimates can also be used to quantify variations in illumination,
geometry (i.e., slope and aspect) and surface roughness [5]. The spectral feature space
bounded by these SVD EMs is also referred to as a spectral mixing space in acknowl-
edgement of the spectral mixing that generally occurs at or below the subpixel scale of
the IFOV. Compilations of Landsat, Sentinel and MODIS have been used to demonstrate
the consistency of the triangular SVD mixing space across landscapes [6–11]. In addition,
distinct mixing continua are observed for sands and evaporite substrates, shallow marine
substrates (e.g., rock, sediments and coral) and the snow/firn/ice continuum [7,10,12].
The widespread applicability of the SVD model and remarkable stability of its inversion
for broadband spectra are noteworthy, given its generally small (<~5%) misfit and linear
scaling over orders of magnitude in sensor resolution [7,9,13]. This begs the question of
whether similar characteristics may extend to spectrally mixed pixels collected by imaging
spectrometers. The fact that application-specific linear mixture models have been used to
represent hyperspectral data for years suggests that this may be the case (e.g., [2,14–18]).

Pilot studies of spectra collected by the AVIRIS and EMIT spectrometers suggest that
the broadband SVD model may be extended to higher spatial and spectral resolution.
Sousa and Small (2017) used a diverse collection of 3–9 m AVIRIS imagery from a variety
of landscapes in California to demonstrate similarity of mixing space topology and EMs to
near-simultaneous acquisitions of 30 m Landsat imagery [13]. More recently, Sousa and
Small (2023) used a smaller but diverse set of 20 early-release EMIT granules to verify the
SVD mixing space topology and EMs at 40–60 m and 10 nm resolutions [19]. In addition to
using the singular value decomposition to quantify spectral dimensionality and mixing
space topology, this study also used nonlinear dimensionality reduction [20] to characterize
local mixing space topology as well as that of the feature space of the SVD mixture resid-
ual [19]. The much greater spectral and geographic diversity of the current EMIT archive
allows for this characterization to be extended to a more globally representative diversity
of landscapes than was possible with the 20 early release EMIT granules.

Both broadband and spectroscopic studies of the spectral mixing spaces raise questions
about the completeness and generality of the SVD model for ice-free land cover, specifically
regarding the plane of substrates revealed by the earlier studies referenced above. Variance
partition from singular value decomposition of image compilations consistently shows
both broadband and spectroscopic mixing spaces to be statistically three-dimensional (3D)
for >95% of total variance [21–23]. The third dimension generally accounts for only a
few percent of total variance of the 3D space, but this thin third dimension consistently
corresponds to the plane of substrates and often reveals additional potential substrate EMs.
Most notably would be non-photosynthetic vegetation (NPV), which is abundant in many
landscapes and often considered a distinct endmember [16,24–26]. In addition, previous
studies have also shown that the high albedo substrate EM most often corresponds to a
sand reflectance which is generally distinct from lower albedo soil reflectances. SVD models
using a sand substrate EM can represent reflectances of a diversity of landscapes accurately
(<~6% RMS misfit), but the significantly higher amplitude of a sand substrate EM may
also underestimate the true fraction of lower albedo soils present in most landscapes with
exposed substrate. In addition, the lack of an NPV EM omits an important compositional
component of the vegetation–substrate continuum in many landscapes. Extending the SVD
model by including an NPV EM would effectively extend the 2D planar triangular model
to a 3D tetrahedral model, perhaps better representing the true 3D topology of the spectral
mixing space. However, adding another degree of freedom to a stable model may incur
costs in terms of model stability.
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The objectives of this study are fourfold: (1) Verify the generality and stability of the
spectroscopic SVD model in a larger, more spectrally diverse range of landscapes than
previous studies have used. (2) Characterize the SVD topology and plane of substrates to
assess linearity of spectral mixing. (3) Identify additional potential endmembers for non-
sandy soil and NPV to extend the SVD model. (4) Quantify fraction estimate plausibility,
EM sensitivity and linearity of spatial scaling for the spectroscopic linear mixture model.
The ultimate objective is to develop an effective low-dimensional model to represent a
high dimensional mixing space, thereby simplifying the use of spectroscopic imagery for a
variety of applications.

2. Materials and Methods
2.1. Data

Data for this study were acquired by the Earth Mineral Dust Source Investigation
(EMIT). EMIT is a NASA spaceborne imaging spectroscopy mission with the primary
purpose of studying the mineralogy of dust and dust source regions [27]. The EMIT
instrument is a Dyson imaging spectrometer with 11◦ cross-track field of view, a wide-
swath (1240 samples) design, and a fast (F/1.8) optical system. EMIT data are collected
across a 380–2500 nm spectral range at ~7.4 nm spectral sampling, with a high signal-to-
noise ratio (SNR, >500 in most regions of the spectrum) [28,29]. EMIT was launched on
14 July 2022 using a SpaceX Dragon vehicle and autonomously docked to the forward-
facing port of the International Space Station (ISS) [30]. EMIT data and algorithms are
freely available for public use. All analysis in this manuscript uses the Level-2A surface
reflectance product [31,32], downloaded free-of-charge from NASA’s EarthData Search web
portal at: https://search.earthdata.nasa.gov (accessed on 4 October 2024).

A total of 40 EMIT granules were selected from 33 agricultural basins worldwide, as
constrained by the ISS orbit and the available EMIT acquisitions. We focus on agricultural
basins because of the diversity of soils and vegetation types that characterize many agri-
cultural basins. Granules were chosen on the basis of climate, biome, geologic substrate
and cropping stage in order to maximize spectral diversity with respect to vegetation
cover density, soil exposure and tillage and geologic diversity of surrounding substrates.
Limitations were imposed by the coverage of available EMIT data and atmospheric condi-
tions. As shown in Figure 1, all continents (except Antarctica) are represented, as are most
major agricultural basins worldwide, within the constraints of available EMIT coverage.
Figure 2 shows the mosaic of EMIT granules as RGB composites of visible (550 nm), near
infrared (800 nm) and shortwave infrared (2200 nm) reflectance. The common linear stretch
[0, 0.8] in Figure 2A illustrates the contrast between vegetation (green) and the diversity
of substrates (brown) while the individual 2% linear stretches in Figure 2B highlight the
spectral diversity of each granule. We believe the selection of granules chosen is sufficiently
representative because the topology of the feature space (described below) is virtually
identical to that of the above referenced MODIS-based study which was based on land area
coverage more than 1000 times greater than that of the 40 granules used in this study.

2.2. Methods
2.2.1. Spectral Dimensionality and Mixing Space Topology

We use linear and nonlinear dimensionality reduction to characterize the statistical
dimensionality and topology of the spectral mixing space of the EMIT mosaic described
above. The singular value decomposition [33] is used to quantify the variance partition of
the orthonormal dimensions (principal components; PCs) of the spectral + spatial matrix of
reflectances [34] as given by the normalized singular values. This variance partition allows
for separation of the low-order PCs representing the spatial distribution of the spectral
eigenvectors that span the space of the spectral continuum defining the most distinctive
types of land cover spectra. The topology of this low-dimensional space provides an
indication of the linearity of spectral mixing within the space as well as facilitating identifi-
cation of the spectral endmembers that span the space [2]. The endmembers are located

https://search.earthdata.nasa.gov
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at the apexes of the low-dimensional PC distribution while the linearity (or nonlinearity)
of mixing can be inferred from the inward concavity (or convexity) of the orthogonal 2D
projections of the PCs.
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2.2.2. UMAP and Joint Characterization

The approach to nonlinear dimensionality reduction used in this study is the Uniform
Manifold Approximation and Projection (UMAP) algorithm [20]. Briefly, UMAP is a mani-
fold learning algorithm which assumes that the vectors of pixelwise high-dimensional spec-
troscopic reflectance can be approximated as uniformly distributed on a low-dimensional
Riemannian manifold with a locally varying metric. UMAP seeks to learn this manifold
by first building a fuzzy simplicial complex comprised of locally connected fuzzy sim-
plicial sets, then finding an embedding with optimal similarity to the fuzzy topological
structure through minimization of cross-entropy. Key choices in implementation of the
UMAP algorithm include dimensionality of the embedding space and number of nearest
neighbors (NNs) considered when constructing the simplicial sets. The decisions used in
this study follow lessons learned during previous applications of UMAP to spectroscopic
and multispectral image data [11,12,19,35–38].

We further synthesize linear and nonlinear dimensionality reduction under the frame-
work of joint characterization (JC) [35]. JC explicitly acknowledges that important spec-
troscopic information can exist at multiple scales of variance. In fact, for spectroscopic
applications, high-variance features (e.g., the spectral continuum) can be less useful (and
are often reasonably approximated by multispectral sensors), but low-variance features
(e.g., subtle spectral absorptions) can be critical for compositional diagnosis. JC combines
UMAP and PC dimensions to visualize both high- and low-variance features together,
providing a straightforward way of capturing, for instance, spectra with different miner-
alogical absorption features but similar overall spectral continua. The curious reader is
directed towards [11,12,19,35–38] for further detail.
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2.2.3. Linear Spectral Mixture Modeling

We use the unit-sum constrained linear mixture model originally developed by Adams,
Smith and Johnson (1986) [39] for Martian spectra, and later applied to terrestrial spectra
by Gillespie et al. (1990) [3] and Smith et al. (1990) [40]. For each pixel spectrum in the
EMIT mosaic, the linear mixture model is given as

r = Ef + ε (1)

in which r is the observed reflectance spectrum, E is the matrix of endmember spectra, f is
the vector of endmember fractions sought and ε is the misfit to be minimized. In addition
to a mixing equation for each waveband, the matrix E also contains a unit-sum constraint
equation in which the sum of all fractions equals 1.

For the EMIT reflectance spectra in the 40 granule mosaic described above, we invert
the constrained linear model using the familiar least squares solution given by Settle and
Drake (1993) [1].

f = (ETE)−1 ETr (2)

The validity of the SVD and SVDN models is quantified using the RMS misfit of the
modeled to the observed spectra for each pixel in the EMIT mosaic. Bivariate distributions
of RMS misfit are used to compare the performance of the models and the validity of the
assumptions of dimensionality and linearity of spectral mixing. Analysis of linearity of
scaling (described below) using higher spatial and spectral resolution spectra provides an
independent vicarious validation of the linear mixing models for the EMIT spectra.

2.2.4. Endmember Selection and Sensitivity Analysis

Endmembers are identified from the apexes of the spectral mixing space given by
the low-order PCs. For large, spectrally diverse collections of spectra, we distinguish
between interior endmembers residing at the apexes of the dense continuum of the primary
PC cluster, and exterior endmembers that sometimes form sparse constellations around
the apexes but are more distant from the primary PC cluster [11]. Interior endmembers
are generally means of several spectra clustered at the apex while exterior endmembers
correspond to individual spectra distinct from the apex cluster. While the vegetation
and dark apexes are generally well-defined with few (if any) exterior endmembers, the
substrate apex often contains several exterior endmembers as well as nearby subsidiary
apexes corresponding to lower amplitude substrate endmembers. We use the Pearson
linear correlation coefficient (ρ) to quantify collinearity of spectral endmembers.

Endmember sensitivity analysis uses varying combinations of the exterior endmem-
bers to define a suite of SVD models from all possible permutations of the exterior S, V
and D endmembers. Following the methodology given by [7], the degree of collinearity
(given by correlation coefficients) and dispersion (given by standard deviations) of all pairs
of individual model fraction distributions provide metrics for the sensitivity of the SVD
model to the variability among the exterior endmembers. As such, these metrics provide
a conservative depiction of the uncertainty of fraction estimates obtained from the more
representative interior endmembers.

2.2.5. Scaling Analysis

The potential linearity of spatial scaling of endmember fractions with sensor spatial
resolution is an important benefit of the linear mixture model. The assumption of linear
mixing by endmember area within the pixel IFOV contrasts with the non-associative
property of the normalized difference used in most spectral. In this study, we use the
methodology given by [7,41] to simulate the linear mixing of 4.4 m AVIRIS endmember
fractions within the ~40 m × 60 m EMIT IFOV by convolving the AVIRIS fractions with
a Gaussian point spread function with a full width half max of 50 m. Using the same
EMIT-derived SVD endmembers interpolated onto the AVIRIS-3 wavebands to invert the
SVD model yields 4.4 m fraction estimates, which are aggregated with the EMIT point
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spread function then co-registered with corresponding fractions obtained using the same
endmembers to estimate SVD fractions for a near-simultaneous (1 day) EMIT acquisition.

3. Results

The spectral mixing space rendered from the low-order PCs reveals the expected trian-
gular topology with clearly defined tapering apexes for vegetation and dark endmembers
(Figure 3). The plane of substrates, accounting for ~2% of total variance, is characterized
by a high albedo sand apex with multiple lower albedo sand apexes and a distinct mixing
continuum extending to a soil endmember. Opposite the dark-to-soil continuum, a clear
convex bulge reveals an NPV endmember with amplitude comparable to, but somewhat
lower than, the soil endmember. Both sand and NPV endmembers form mixing continua
converging to the vegetation and dark endmembers, with the plane of substrates forming
the base of the SVDN tetrahedron.
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Figure 3. Spectral mixing space formed by low-order principal components of the EMIT mosaic
(Figure 2). Orthogonal projections of PCs 1–3 clearly show prominent apexes corresponding to
substrate, vegetation and dark reflectances. The outward convexity in PC 3 reveals an additional non-
photosynthetic (N) vegetation endmember. Substrate endmember S corresponds to sandy soils, but
pure sands have distinct reflectances and form separate mixing trends with the dark endmember. A
linear mixture model using the S, V, D and N endmembers projects the mixing space into a tetrahedron
bounded by a convex hull of 6 linear mixing trends, excluding sands, cloud and turbid water.
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In contrast, the UMAP embeddings show distinct mixing continua for vegetation
and substrates, with NPV connecting both. Figure 4 shows the UMAP embedding for a
near_neighbor scaling of 30. The 1-2 projection shows a single continuum surrounded by a
constellation of distinct clusters, while the 3-2 projection clearly distinguishes the vegetation
and substrate continua. Almost all of the isolated clusters correspond to spectrally distinct
water bodies, or water masses within the larger coastal water bodies. There are two distinct
clusters corresponding to sand bodies in the Levant and Salton granules. However, almost
all of the sands present in the several desert granules form continua within or connected
to the larger substrate continuum. The joint characterization combining PCs 1 & 2 with
UMAP dimension 3 show these continua more clearly as they all span a range of amplitudes
extending from the dark endmember to each of the distinct sand reflectances present in
the mosaic (Figure 4). At least nine distinct continua can be identified for this UMAP
embedding. Higher near_neighbor settings collapse these distinct continua onto the larger
substrate continuum.
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Figure 4. Spectral mixing space and joint characterization for the EMIT mosaic. A 3D embedding
derived from Uniform Manifold Approximation and Projection (UMAP) reveals two distinct con-
tinua for substrates and vegetation surrounded by a constellation of distinct sand and water body
reflectances (top). The joint characterization using UMAP and PC projections combines the global
structure of the orthogonal PCs with the local structure preserved by UMAP (bottom). Distinct soil
and NPV continua increase in reflectance amplitude with PC distinguishing the substrates (PC1)
and vegetation (PC2). NPV spans both continua. A single continuum spanning multiple sample
sites splits to yield general soil (S1) and NPV (N1) endmembers while many other site-specific soil
continua yield endmembers corresponding to spectrally distinct sands shown in Figure 5. In contrast
to the distinct soil and sand endmembers, all vegetation forms a single continuum spanned by
photosynthetic and non-photosynthetic vegetation endmembers.
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Figure 5. Reflectance spectra from Soil and NPV continua in Figure 4. Two distinct NPV continua
(N3 and N4) converge to a single continuum that branches (N2) from the soil continuum to a single
higher amplitude NPV endmember (N1). The soil continuum extends from the branch point to a
single higher amplitude soil endmember (S1). In parallel to this main soil continuum, seven different
soil continua (S3–S9) extend to spectrally distinct sand endmembers. Isolated clusters correspond to
geographically distinct pure sands in the Negev desert (S2, S10) and Anza-Borrego desert (S11).

The joint characterization reveals the presence of two distinct limbs of lower amplitude
NPV embedded within the substrate continuum. Differences in the VNIR and SWIR2
(2000–2500 nm) suggest that N3 may be more vegetation-dominant with deeper chlorophyll
absorptions in the visible and more prominent lignin absorptions in the SWIR2 (Figure 5).
In contrast, N4 has more nearly uniform VNIR reflectance reminiscent of sandy soil with no
prominent absorptions in the SWIR2. These two limbs merge to form a single continuum
that increases in amplitude to a branch point between higher amplitude NPV and a purely
soil continuum at N2. The higher amplitude NPV (N1) and soil (S1) endmembers illustrate
the NIR peak (~1400 nm) and deep lignin absorptions in SWIR2 of the NPV, in contrast to
the more continuous soil spectrum peaking at SWIR1 wavelengths. This soil EM contrasts
strongly with the VNIR shoulders and varying SWIR2 absorptions of the high albedo EMs
of the sand continua.

Inversion of the SVDN mixture model yields the SVD composites shown in Figure 6A
and the NPV and RMS misfit composites in Figure 6B. Aside from varying densities of
vegetation canopy, the most prominent differences among the sample sites in the SVD
composite is the contrast between higher albedo sandy soils and unmodeled sands (red)
and lower albedo soils (blue to magenta). The relatively fine scale spectral diversity of the
San Joaquin valley soils is especially apparent in this composite. The prominence of NPV
(yellow) in most of the sample sites is apparent from Figure 6B. Because of the generally low
misfit of the SVDN model, areas with relatively higher misfit (blue) are actually areas with
relatively little exposed NPV. Inversions run without the unit sum constraint produced
wildly divergent results for both the SVD and SVDN models, with implausible dark fraction
estimates and fraction sums ranging from −2 to 10.
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Comparing bivariate fraction distributions highlights the most prominent differences
between the SVD, SVDN and NVD models. Figure 7 shows different models by column
and corresponding fraction distributions across rows. Most immediately apparent is the
difference in fraction distribution ranges among models. The SVD model (left) is well-
bounded [0, 1] with all exceedances <0.1, while the SVDN and NVD models have both
larger exceedances and much greater numbers of spectra out of range. This is particularly
true for both substrate and vegetation in the SVDN model. For the SVDN model, 29% of
substrate fractions are <0, while only 3% are <0 for the SVD model. For vegetation fractions,
both models perform similarly with <5% of estimates < 0—although the magnitude of
exceedance is significantly greater for the SVDN model. For the SVDN model, most of
the spectra with significantly negative substrate fractions have intermediate vegetation
and dark fractions, corresponding to forests and other closed canopy vegetation. Notably,
29% of NPV fractions are <0 with exceedances reaching −1 for the SVDN model. The
increasingly negative values of NPV with increasing substrate fractions >1 indicates that
these nearly colinear (ρ = 0.9) endmembers together minimize misfit through destructive
interference. In contrast, the NVD model shows similar tradeoffs of NPV with both the
dark and vegetation fractions. Without a substrate endmember, the moderate collinearity
(ρ = 0.53) of the NPV and vegetation endmembers results in similar interference effects.
While the NVD model did yield plausible fractions for a significant number of modeled
spectra, and may therefore be viable in some landscapes where NPV is more prominent
than exposed soil, the large number of implausible fractions make it unsuitable for a general
model for landscape reflectance.
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Figure 7. Endmember fraction spaces for the SVD, SVDN and NVD models. All models are subsets of
the same SVDN endmembers, differing only in the inclusion of the S and N endmembers. Comparing
the left and center columns, it is apparent that including the N endmember increases the negative
fractions for all endmembers. For the SVDN model, RMS misfit diminishes with increasing NPV
fraction, but is greatest for spectra with negative NPV fractions. Note much wider ranges for all
fraction distributions for the NVD model.
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Comparing corresponding fraction distributions for the SVD and SVDN models
reveals the effect of model dimensionality on the fraction estimates themselves. Figure 8
shows corresponding S, V and D fractions for both models, along with misfit distributions.
As should be expected, the substrate fraction estimates are most strongly impacted by the
presence of absence of the NPV endmember with a strong negative bias for all but the
highest substrate fractions in the SVDN model. This is also true for the dark fractions,
but to a much lesser extent than for substrates. It is noteworthy that vegetation fractions
are almost identical for both models, although with a slight positive bias for the lowest
vegetation fractions in the SVD model. As expected, the SVD model has higher RMS
misfit than the SVDN, although both are quite small (<0.04) for all spectra except clouds.
Although misfit is somewhat greater for the SVD model, it is still <0.04 for 98% and <0.02
for 68% of all spectra.
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Figure 8. SVD versus SVDN model comparison. The Substrate fraction is most sensitive to the
addition of the NPV endmember. However, the Vegetation fraction is quite insensitive and the Dark
fraction is most sensitive at low fractions. As expected, the SVD model has somewhat higher misfit,
although still relatively low at well under 0.04 for the vast majority of spectra in the mosaic. The
negligible number of higher misfit spectra are associated with clouds and high albedo sands, which
are not represented in either model. The inset covariability matric shows EM correlations on/above
the diagonal and Mutual Information (MI) scores below. Note high correlation and MI for S and N.

Comparing the observed spectra for both models reveals the nature of the misfits for
each. Figure 9 shows the same RMS misfit comparison as Figure 8, but at an enlarged scale.
Aside from cloud, both models show the largest misfits for sands (example 2). As expected,
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the SVDN model achieves much better fits for spectra with high NPV fractions. Both
models have comparable misfits for example 7 because none of the EMs can accommodate
the anomalously high visible reflectance of this mixture of NPV and vegetation.
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Figure 9. Raw and modeled EMIT spectra with SVD vs. SVDN model misfit space. The NPV-
dominant spectra are modeled more accurately with the SVDN than the SVD model. Sands (1,2,3)
have higher misfits for both models because neither has a sand endmember. SVD and SVDN models
have 90% and 95% (respectively) of spectra with less than 0.03 misfit. Note expanded reflectance
scale on example 7.

The endmember sensitivity analysis confirms that the SVD model is quite robust to
variations in all three endmembers. Comparing all permutations of three peripheral (out-
lier) spectra for each endmember quantifies the worst case scenarios using combinations
of anomalous endmember spectra. Pairwise sensitivities between individual endmember
spectra are highlighted by correlations between corresponding fractions for each endmem-
ber combination as shown in the inset correlation matrices in Figure 10. The consistently
high (> 0.98) linear correlations for all endmember combinations highlights the extremely
stable nature of the SVD model inversion that results from the near orthogonality of its
endmembers. The large numbers of implausible fraction estimates produced by the SVDN
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and NVD models reveal the relative instability of these models, thereby precluding the
utility of sensitivity analysis for either model.
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Figure 10. Endmember sensitivity analysis. Three peripheral spectral endmembers (upper left) for S,
V and D yield 33 = 27 SVD model permutations. Pairwise combinations of each resulting endmember
fraction distribution for the EMIT mosaic yield (27

2) = 351 model inversion correlations (inset) for
each SVD endmember. S and V fraction distribution correlations are > 0.99 but D fractions go as
low as 0.98 because differences among S and V endmembers are amplified in D fractions. Standard
deviations among model pairs are < 0.05 for each fraction for 99.8% of all 63,692,800 spectra.

The linearity of mixing for both SVD and SVDN models is confirmed by comparing
fraction estimate distributions for a 40 × 60 m resolution EMIT acquisition with near coin-
cident 4.4 m resolution AVIRIS-3 acquisition from an agricultural region on the Sacramento
delta in California. Despite the difference in spatial and spectral resolution, the spectral
mixing spaces of the EMIT granule and AVIRIS-3 line are virtually identical and both
mixture model inversions yield comparable RMS misfit distributions. Figure 11 shows SVD
fraction composites for SVDN models using the same EMIT-derived endmember spectra
for both instruments. Scaling is strongly linear across an order of magnitude difference
in resolution for all fraction estimate distributions. The slight positive biases for the S,
V and N fractions and slight negative bias of the D fractions of the AVIRIS spectra are
consistent with its collection under higher solar elevation conditions compared to the EMIT
acquisition. Much of the dispersion about the 1:1 lines is a result of significant identifiable
orthographic displacements between the AVIRIS line and the EMIT granule.
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Figure 11. Linearity of scaling for the SVDN model. The 4 m resolution AVIRIS-3 line was collected
the day after the 47 × 60 m resolution EMIT scene. All fractions scale linearly over the order of
magnitude difference in resolution. Dispersion is greater for Substrate and NPV fractions. The
slight bias of the fractions relative to 1:1 is consistent with the lower solar elevation at time of
EMIT collection. Some of the dispersion about the 1:1 lines results from orthographic displacements
between images.

4. Discussion
4.1. The Spectroscopic Mixing Space

The collection of 40 EMIT granules from a diversity of agricultural basins world-
wide yields a low-order mixing space topology very similar to that obtained from much
larger areas of Landsat, Sentinel 2 and MODIS imagery collections, as well as smaller
areas of AVIRIS collections, used in previous studies. The most obvious differences are
related to the exclusion of evaporites, submarine substrates (i.e., reefs) and the cryospheric
continuum of snow/firn/ice—which all form distinct mixing continua not found in the
majority of ice-free landscapes. In comparison to our earlier analysis of 20 early-release
EMIT granules, this collection contains a much greater diversity of both soil and vegetation
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types and exposures. As a result, the structure of the plane of substrates is more clearly
resolved. Notably, soil and sand mixing continua are clearly distinguished and an NPV
apex emerges. The joint characterization of the mixing space, combining the UMAP and PC
embeddings, shows distinct substrate and vegetation continua, topologically connected by
NPV. This is physically consistent with NPV being a compositional intermediary between
photosynthetic vegetation and soil. The joint characterization also reveals at least seven
distinct mixing continua between sands and sandy soils. This is also consistent with the
fact that sands are often mineralogically distinct as a result of source rock provenance and
the sedimentological processes by which they are segregated from finer-grained sediments.
One notable difference to the broadband mixing spaces of earlier studies is the prominent
continuum of water body reflectances extending from the dark endmember. This is con-
sistent with EMIT’s high signal-to-noise ratio and thus its ability to resolve more distinct
reflectances in the visible spectrum, as well as the importance of spectral curvature for
aqueous targets and the absence of evaporite and snow/firn/ice continua in this image
compilation, which would otherwise compress the 3rd dimension of the PC space because
of the very high reflectance amplitude of dry evaporites and snow.

4.2. The SVD Model—Why It Works

Identification of a pure soil endmember, distinct from sands, allows the new soil-based
spectroscopic SVD model to better represent a wider diversity of landscapes. Because
the sand mixing continuum forms one edge of the plane of substrates while the NPV
continuum forms the opposite, the intermediary soil endmember better accommodates
both non-sandy soils as well as more organic-rich soils nearer the NPV continuum. This
more representative endmember therefore reduces the misfit for most of the plane of
substrates, as well as for unmodeled NPV. In addition, the reduced amplitude of the new
soil endmember (relative to sand) reduces the underestimation of soil fraction estimates
obtained using a high amplitude sand endmember for all substrates. The slightly negative
vegetation fractions are limited to low albedo sands in the Gobi desert (Huang He & Hexi).
The slightly negative dark fractions are limited to high albedo sands in the Negev (Levant)
and Anza-Borrego (Salton) deserts. Relative to earlier studies, the incorporation of more
soil-rich and fewer sand-dominant landscapes in the EMIT mosaic reduces the variance
partition of the plane of substrates from 5–6% to 2–3% of total mixing space variance, with
a reduction of RMS misfit to < 0.03 for 91% of modeled spectra. A sand-based substrate
endmember may sometimes be preferred for modeling some arid landscapes, but the
new soil-based substrate endmember may better represent a wider variety of non-arid
landscapes worldwide.

The primary reason why the planar triangular SVD model is so effective as a general
model of land surface reflectance is related to the nearly planar triangular topology of
the low-order PC mixing space itself. Without the high amplitude evaporite, reef and
cryospheric continua dominating the 3rd dimension of the space, the plane of substrates
itself represents only <3% of total variance. Using a single substrate endmember effectively
neglects this off-plane variance. However, the near orthogonality (ρ < ±0.3) of the S, V and
D endmembers stabilizes the model inversion without driving the SVD fractions out of [0, 1]
plausibility range. This stability comes at the cost of slightly higher RMS misfit (compared
to SVDN), but the near planar topology of the mixing space still allows for a remarkably
low misfit overall. Particularly given the presence of high amplitude unmodeled sands and
clouds in the EMIT mosaic.

The primary limitation of the SVD model remains its requisite projection of a 3D mix-
ing space onto a 2D model plane. The new, more representative soil endmember partially
resolves the misfit that results from the orthogonal plane of substrates; however, sandy
and NPV-rich soils still lie outside the model. In addition, nonlinear mixing resulting from
multiple scattering produces convexities in parts of the mixing space that cannot be accom-
modated by any linear mixture model. Nonetheless, it is remarkable that nonlinearities
associated with soil moisture effects and volume scattering within vegetation canopies are
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so well represented as varying mixtures of the substrate and vegetation endmembers mix-
ing with the dark endmember. While moisture absorption and partial canopy transmission
are certainly not linear effects, modulation by the dark endmember seems to be an effective
way to represent them at meter to kilometer scales of spectral mixing.

4.3. The SVDN Model—Why It Does Not Work

Extending the SVD model with an NPV endmember reduces its already small RMS
misfit significantly in many landscapes. However, this reduction comes at the cost of a
much larger percentage of spectra being represented with implausible fraction estimates
outside the [0, 1] range. The primary reason for this destabilization of the model inversion
is the combination of the near collinearity (ρ~0.9) of the NPV and substrate endmembers
as well as the additional degree of freedom of the SVDN model relative to the SVD. This
additional degree of freedom, combined with the near collinearity of the substrate and
NPV endmembers, allows the inversion to exploit destructive interference in the form of
negative fractions to minimize model misfit. The moderate collinearity (ρ~0.5) of the NPV
and vegetation endmembers also likely contributes to the implausible fraction distributions
of both SVDN and NVD models. The identification of the NPV mixing continuum certainly
better characterizes the spectroscopic mixing space from a physical perspective, and the
NPV endmember spectrum may be useful for applications where NPV is a prominent
component of the mixing space, but the overall costs clearly outweigh the benefits of the
SVDN model as a general, parsimonious representation for landscape reflectance.

4.4. Why Use Standardized Spectral Mixture Models?

By combining the benefits of application-specific spectral mixture models with stan-
dardized spectral indices, the SSMM offers consistency, simplicity, inclusivity and diversity.
While the benefits of diversity are often overstated, or even taken as axiomatic, the ability
of a single model for mixed spectral reflectance to represent a wide range of landscape
components is nonetheless potentially valuable for many applications.

The existence of an SSMM for spectroscopic mixture modeling in no way precludes
the use of application-specific mixture models with local or otherwise optimized spectral
endmembers. Given the stability and negligible computational cost of the SVD model
inversion, the SSMM can complement application-specific mixture models by allowing
their resulting fraction distributions to be compared across space and time by projecting
them onto the SVD basis. Mathematically, the standardized SVD model provides a parsi-
monious representation of both the global spectral mixing space for a wide range of ice-free
landscapes, as well as for spectral libraries. One potential application for the spectroscopic
SSMM could therefore be the ability to easily project a given spectral library onto a sim-
ple ternary space spanning the three most physically and spectrally distinct components
of most terrestrial landscapes. As such, the spectroscopic SSMM could allow for direct
comparisons of different spectral libraries in the form of ternary diagrams. Further, an
SSMM rooted in high SNR spectroscopic data facilitates straightforward standardization
and cross-calibration of models across several multispectral sensors, since sensor-specific
EMs can be trivially computed via convolution for any arbitrary multispectral sensor for
which a spectral response function is available.

The information captured by a standardized spectroscopic mixture model can also
be understood in the context of the wavelength-explicit misfit of the model, the spectral
mixture residual [3,4]. The estimation of EM abundances using spectral unmixing involves
minimization of a cost function, which is often but not always the root-mean-square misfit
between the actual observed reflectance spectrum and the spectrum generated by areas-
weighted linear combination of EM reflectances. Important spectroscopic information can
exist within this model misfit, for instance, absorption features which are not represented
in the EM spectra. Viewed in this way, the mixture residual of a standardized spectroscopic
mixture model has conceptual parallels to Continuum Removal (e.g., [26]). Evaluation and
refinement of the standardized mixture model are thus important for understanding and
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improving the utility and generality of the spectral mixture residual in spaceborne imaging
spectroscopy data.

4.5. Limitations and Future Work

The scaling analysis included in this study provides an important form of vicarious
validation, indicating that the decameter resolution linear mixture model provides a rea-
sonable approximation of spectrally distinct meter scale land cover components. However,
it will be important to supplement this vicarious validation with in situ field validation
taking into account factors like varying illumination geometry, soil moisture and roughness
variations, canopy closure and leaf area index (e.g., [42,43]). The role of NPV spanning the
substrate and vegetation mixing continua could also be the focus of a dedicated field valida-
tion campaign. Such field validations might be best constrained by collecting multitemporal
observations of a seasonally variable validation site, perhaps with in situ monitors to pro-
vide more detailed context for spatiotemporal changes in atmospheric opacity, illumination
geometry, vegetation phenology and soil moisture content.

The geographic coverage provided by the EMIT mission limits the availability of
cloud-free imagery for the tropics. This is particularly true in Africa. It also precludes
inclusion of high-latitude boreal environments. Based on earlier studies using more globally
representative collections of broadband multispectral data, we do not expect the spectral
mixing space to change significantly with extension to higher and lower latitudes, but
we do acknowledge the potential for a more globally inclusive data compilation. Future
studies will extend this analysis to a wider range of environments when global coverage
from the NASA SBG mission becomes available after its anticipated 2028 launch.

5. Conclusions

The spectral dimensionality, topology and spectral endmembers of the spectral mixing
space of a diverse mosaic of EMIT spectra all correspond strongly to those previously
derived from larger collections of broadband imagery. The standardized spectral mix-
ture model developed for broadband multispectral sensors is therefore applicable to the
spectroscopic mixing space of the EMIT spectra. A new soil-based substrate endmember
better accommodates the 2D plane of substrates than previous sand-based endmembers
did. Extending the planar SVD mixture model to a tetrahedral SVDN model by addition
of an NPV endmember reduces model misfit slightly, but does so at the expense of im-
plausible fraction estimates beyond [0, 1]. However, the spectroscopic SVD model, using a
more representative soil substrate endmember, achieves very small misfit < 0.03 for 91% of
modeled spectra.
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Appendix A.

Granule IDs for the level 2A reflectance products used in this analysis are given in
Table A1. Date and time of acquisition are encoded in each granule ID. All granules and
associated metadata are available at no cost from

https://search.earthdata.nasa.gov/search/granules?p=C2408750690-LPCLOUD&pg[0]
[v]=f&pg[0][gsk]=-start_date&g=G2597125746-LPCLOUD&q=C2408750690-LPCLOUD&tl=
1678721309!3!!&lat=36.6371673833095&long=-122.41625976562499&zoom=7 (accessed 4 Octo-
ber 2024).

Table A1. Granule ID list.

Granule Name Granule ID

San Joaquin EMIT_L2A_RFL_001_20230730T214131_2321114_002

San Joaquin EMIT_L2A_RFL_001_20230818T210031_2323014_003

San Joaquin EMIT_L2A_RFL_001_20230818T210043_2323014_004

San Joaquin EMIT_L2A_RFL_001_20230818T210055_2323014_005

San Joaquin EMIT_L2A_RFL_001_20230818T210107_2323014_006

Sacramento EMIT_L2A_RFL_001_20231015T215023_2328814_003

Sacramento EMIT_L2A_RFL_001_20231015T215035_2328814_004

Coast EMIT_L2A_RFL_001_20230730T214119_2321114_001

Coast EMIT_L2A_RFL_001_20230730T214131_2321114_002

Salton EMIT_L2A_RFL_001_20230406T181545_2309612_004

Uruguay EMIT_L2A_RFL_001_20230113T112633_2301307_002

Cape East EMIT_L2A_RFL_001_20230309T082246_2306805_015

Huang He EMIT_L2A_RFL_001_20230329T073242_2308805_021

Po Plain EMIT_L2A_RFL_001_20230611T141838_2316209_007

Hexi Corridor EMIT_L2A_RFL_001_20230612T022526_2316302_006

Dakota Badlands EMIT_L2A_RFL_001_20230815T201231_2322713_002

Lazio EMIT_L2A_RFL_001_20230822T100609_2323407_002

Mato Grosso EMIT_L2A_RFL_001_20230822T180914_2323412_015

Levant EMIT_L2A_RFL_001_20230823T092349_2323506_005

Permian EMIT_L2A_RFL_001_20231008T161139_2328111_017

Yaqui EMIT_L2A_RFL_001_20231030T161901_2330311_007

Rondonia EMIT_L2A_RFL_001_20231106T123222_2331008_002

Cape West EMIT_L2A_RFL_001_20231108T075946_2331205_007

https://search.earthdata.nasa.gov/search/granules?p=C2408750690-LPCLOUD&pg[0][v]=f&pg[0][gsk]=-start_date&g=G2597125746-LPCLOUD&q=C2408750690-LPCLOUD&tl=1678721309!3!!&lat=36.6371673833095&long=-122.41625976562499&zoom=7
https://search.earthdata.nasa.gov/search/granules?p=C2408750690-LPCLOUD&pg[0][v]=f&pg[0][gsk]=-start_date&g=G2597125746-LPCLOUD&q=C2408750690-LPCLOUD&tl=1678721309!3!!&lat=36.6371673833095&long=-122.41625976562499&zoom=7
https://search.earthdata.nasa.gov/search/granules?p=C2408750690-LPCLOUD&pg[0][v]=f&pg[0][gsk]=-start_date&g=G2597125746-LPCLOUD&q=C2408750690-LPCLOUD&tl=1678721309!3!!&lat=36.6371673833095&long=-122.41625976562499&zoom=7
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Table A1. Cont.

Granule Name Granule ID

Nile Delta EMIT_L2A_RFL_001_20231126T114157_2333008_038

Khorat Plateau EMIT_L2A_RFL_001_20231228T035308_2336203_008

Java EMIT_L2A_RFL_001_20240104T013445_2400401_003

Maipo EMIT_L2A_RFL_001_20240110T203435_2401013_004

Mato Grosso EMIT_L2A_RFL_001_20240126T141740_2402609_047

Mississippi EMIT_L2A_RFL_001_20240218T183646_2404912_018

Minas Gerais EMIT_L2A_RFL_001_20240301T140747_2406109_010

Mato Grosso EMIT_L2A_RFL_001_20240304T131943_2406409_014

Mendoza EMIT_L2A_RFL_001_20240307T140838_2406709_008

Victoria EMIT_L2A_RFL_001_20240320T024911_2408001_007

S.W.Australia EMIT_L2A_RFL_001_20240327T020129_2408701_003

S.W.Australia EMIT_L2A_RFL_001_20240327T020141_2408701_004

Fergana Valley EMIT_L2A_RFL_001_20230221T063036_2305204_018

Swat Valley EMIT_L2A_RFL_001_20230609T044704_2316003_020

Chaco EMIT_L2A_RFL_001_20240327T142850_2408709_051

Wei Plain EMIT_L2A_RFL_001_20240328T061551_2408804_005

Oaxaca EMIT_L2A_RFL_001_20240401T165645_2409211_004

Appendix B. AVIRIS and EMIT Fraction Spaces

SVDN fraction spaces for the Sacramento Delta AVIRIS-3 and EMIT acquisitions are
shown in Figure A1.

Figure A1. SVDN fraction spaces for the AVIRIS-3 and EMIT acquisitions compared in Figure 11.
As expected, the 4.4 m AVIRIS pixel fractions span a wider range than the more spectrally mixed
EMIT pixels. As with the EMIT mosaic, S, V and D fractions are well-bounded while NPV shows a
significant percentage of negative fractions.
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