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Abstract
Testing and verifying the security of connected and autonomous vehicles (CAVs) under cyber-physical 
attacks is a critical challenge for ensuring their safety and reliability. Proposed in this article is a 
novel testing framework based on a model of computation that generates scenarios and attacks in 
a closed-loop manner, while measuring the safety of the unit under testing (UUT), using a verifica-
tion vector. The framework was applied for testing the performance of two cooperative adaptive 
cruise control (CACC) controllers under false data injection (FDI) attacks. Serving as the baseline 
controller is one of a traditional design, while the proposed controller uses a resilient design that 
combines a model and learning-based algorithm to detect and mitigate FDI attacks in real-time. 
The simulation results show that the resilient controller outperforms the traditional controller in 
terms of maintaining a safe distance, staying below the speed limit, and the accuracy of the 
FDI estimation.

© 2024 The Authors. Published by SAE International. This Open Access article is published under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits distribution, and reproduction 
in any medium, provided that the original author(s) and the source are credited.
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I. �Introduction

Autonomous vehicles are one of the most promising 
solutions to the exceedingly many and complex trans-
portation problems. Based on a report by the National 

Highway Traffic Safety Administration (NHTSA) [1], 
advanced driver assistance systems (ADAS) technologies have 
the potential to prevent about 62% of traffic fatalities. However, 
ADAS cannot function fully independently from the human 
driver, which is the source of the vast majority of incidents 
[2]. The natural evolution of ADAS technology will enable the 
jump to completely autonomous driving by progressively 
eliminating the vehicle’s dependence on human drivers, which 
gives rise to the hybridized approach known as connected and 
autonomous vehicles (CAVs). CAVs have the potential to dras-
tically reduce accidents, improve transportation system effi-
ciency, reduce gas emissions, and much more. Recent rapid 
advancements in machine intelligence, machine vision, 
processing speed, and sensor fusion technology are enabling 
CAV technology to become readily available for widespread, 
everyday use in the very near future [3].

Despite all of the advantages of this technology, two 
significant barriers stand in the way of wide-scale adoption. 
The first is the lack of a testing and verification protocol that 
ensures operational safety and security. This challenge is 
further complicated by the fact that CAVs rely on various 
sensors, actuators, communication networks, and software 
components to operate autonomously and cooperatively [4, 
5]. These components are subject to faults and attacks that can 
compromise the safety and security of CAVs and their passen-
gers. Faults can occur due to hardware failures, software bugs, 
environmental disturbances, or human errors [6, 7, 8, 9]. 
Moreover, attacks can be launched by malicious actors who 
aim to disrupt, deceive, or damage CAVs and their infrastruc-
ture. Some common types of attacks include FDI, denial of 
service, replay, spoofing, and jamming [10, 11, 12, 13, 14, 15, 
16, 17, 18]. These faults and attacks can affect the perception, 
planning, decision-making, and control of CAVs, leading to 
undesirable outcomes such as collisions, violations, delays, or 
loss of control. The second barrier to wide-scale adoption is 
that these vulnerabilities exponentially increase the complexity 
of testing [19, 20]. Therefore, it is essential to design and test 
CAVs with robust and resilient mechanisms that can detect 
and mitigate faults and attacks in real-time.

To address this, a process that builds an engineering 
argument for ensuring safety must be developed. Typically, 
this argument is built based on the following principles. First, 
a conceptual understanding of the problem is built and 
supported through virtual models. Second, a testing process 
is built to validate the model and build an argument for 
correctness. Third, the state space of tests is examined within 
the modeling environment to develop metrics for complete-
ness. Finally, a structure is constructed where field testing 
feeds back into this flow, so safety is always rising and leading 
to accumulated learning [21].

In testing and verifying CAVs, there are various 
approaches to tackle this challenging endeavor [22, 23, 24, 25, 

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Simulated 
testing encompasses both offline and real-time methods [22]. 
Offline simulations emphasize optimizing computational 
speed, while real-time simulations prioritize testing accuracy 
within a constrained response time [23]. Additionally, real-
time simulations guarantee access to testing data, expediting 
the validation phase and enhancing certainty throughout the 
development process [24]. The other existing verification solu-
tions utilize ad hoc methods, such as miles driven, to demon-
strate some indication of operational safety. This often assumes 
that the CAV’s perception of the surrounding environment 
and the environment, itself, is comprehensive and perfect [36]. 
However, these approaches often lack the coverage and 
completeness required to test rare and extreme cases where 
the CAV under examination is prone to failure. In addition, 
the above-mentioned approaches are only focus on one aspect 
of CAVs such as testing the perception algorithms. To the best 
of our knowledge, no fundamental structure has been devel-
oped to demonstrate the security and reliability of CAV 
products, only operational success under ideal circumstances. 
This research seeks to address all the aforementioned short-
comings of the current state-of-the-art by providing a testing 
framework and mathematically sound metrics to quantify a 
CAV’s security and reliability.

In this article, we present a framework for testing and 
verifying the decision-making capabilities of CAVs while the 
vehicle is under attacks. The framework is based on two math-
ematically defined procedures. The first is for generating 
scenarios while the second is for testing the CAV’s responses. 
Our framework leverages an artificial neural network (ANN) 
to generate a seed for each scenario, which dictates the first 
scene in testing. Furthermore, we demonstrate the effective-
ness of our algorithm as a testing framework by subjecting 
two different ADAS controllers to two, identical scenarios. 
The first controller is a traditionally designed model while the 
second is a resilient controller designed to detect and mitigate 
false data injection (FDI) attack. The first scenario that they 
were subjected to seeks to analyze performance while oper-
ating under ideal circumstances with the second scenario 
being designed to inject noise into the vehicle communication 
network. The purpose of this additional phase of research is 
to outline where our framework succeeds and understand 
where it fails such that we can confidently continue building 
this proof-of-concept into our vision of a comprehensive CAV 
testing framework.

In summary, the contributions of this work are as follows: 
(i) We proposed a unique algorithm to generate scenes in a 
closed-loop manner that allows for the identification of equiv-
alent scenes. This, in turn, enables the production of unique 
testing scenarios tailored for the system being tested under 
attacks such as FDI. (ii) Since the verification function is 
incorporated within the scenario generation algorithm, the 
response of the controller is tested continuously and converges 
toward scenarios that maximize unsafe behavior by the CAV. 
(iii) We describe a secure cooperative adaptive cruise control 
(CACC) under FDI attacks where we  implemented the 
proposed framework to verify its safety and security.
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The article is organized as follows: Section II presents a 
summary of current relevant results. Section III provides the 
necessary mathematical background for the proposed testing 
and verification framework. The framework is then discussed 
in Section IV. The novel resilient control algorithm utilized 
for CACC under testing is presented in Section V. To briefly 
describe the resilient controller, it combined a model and 
learning-based algorithms to detect and mitigate FDI attacks 
in real-time. Finally, the proposed framework is implemented 
to test the safety of the CACC algorithms under FDI attacks, 
where the results are discussed in Section VI.

II. �Literature Review
In the past several years both the academic community and 
industry have focused on the testing and verification of CAVs. 
By leveraging classical methods, the field has developed novel 
approaches targeted at testing and verifying the readiness of 
CAVs. In [25] the authors identified five key testing challenges: 
driver-less scenarios, complex requirements, non-determin-
istic algorithms, inductive learning, and fail-operational 
systems. The authors proposed phased deployment, architec-
ture changes, and fault injection as potential solutions, while 
suggesting a shift toward aligning existing software safety 
approaches with the vehicle’s design process.

In [26] the authors presented an adaptive method to 
generate scenarios for accelerating the testing of general 
autonomous systems. This research sought to understand the 
decision-making processes of an autonomous system and 
identify the transient effects caused by transitioning between 
performance modes. However, their methodology treats the 
system as a black box, preventing the modification of the 
decision-making algorithms.

The work in [27] emphasized the importance of offline 
testing for validating autonomous vehicle performance and 
control algorithms across various virtual scenarios. It intro-
duced a novel simulation platform with hardware in the loop 
(HIL), comprising four layers that simulated vehicle models, 
sensors, environments, and ECU control. This platform facili-
tated comprehensive closed-loop evaluations of perception, 
planning, decision-making, and control algorithms, enabling 
seamless migration to real self-driving cars. Experimental 
validations conducted in virtual scenarios of public roads and 
open parking lots substantiated the effectiveness of the 
simulation platform.

The authors in [28] employed procedural content genera-
tion and search-based testing to automatically create virtual 
scenarios, focused on testing the lane-departure software of 
CAVs. While [29] used a game theoretic traffic model to test 
the control of autonomous vehicles’ decisions and to calibrate 
the parameters of an existing control system. In [30], several 
components, such as road geometry, the environment, and 
the behavior of the dynamic object, were formally defined and 
combined to generate a virtual reality. Additionally, Zofka 
et al. [31] included vehicle mechanics, sensors, and traffic to 
generate scenarios for testing simulations.

Leveraging a machine learning to generate test scenarios, 
the authors in [32] presented a system that used a learning 
feature utilizing feedback from the CAV’s controller and 
aimed to converge on scenarios that model edge cases. 
Another approach that also used machine learning was 
presented in [33], employing recurrent neural networks 
(RNNs) that were applied to existing crash data to create test 
cases. Furthermore, the authors in [34] suggested an approach 
called “deep test” for the automatic testing of AVs using neural 
networks. In [35], an approach involving subjecting a 
controller to a dynamically chosen set of fault scenarios within 
a vehicle simulator to identify classes of vehicle faults and to 
produce noteworthy performance by the vehicle controller 
was proposed.

A recent body of research extensively covered various 
facets crucial to the reliability and safety of automated vehicles. 
One study [37] delved into verification and validation methods, 
highlighting their paramount importance in decision-making 
and planning within this domain. Another study [38] empha-
sized the significance of digital twins in enhancing the under-
standing and performance of connected and automated 
vehicles. Moreover, a separate research endeavor [39] focused 
on the pivotal role of virtual testing, demonstrating its efficacy 
through a longitudinal dynamics validation example. 
Additionally, insights from a study by [40] shed light on the 
application of dense reinforcement learning to bolster the 
safety validation of autonomous vehicles, showcasing 
advanced techniques for enhancing their safety. Lastly, [41] 
contributed valuable considerations regarding the deter-
minism of game engines used in simulation-based verification 
for autonomous vehicles, ensuring accuracy and reliability in 
simulation environments.

III. �Mathematical 
Background

In [21, 42], the authors presented a method to generate 
scenarios that can be grouped into equivalent classes. The 
objective was to address the completeness and coverage of a 
test scenario by identifying all its variations and equivalent 
scenarios. Hence, producing a collection of scenarios that 
can be  combined to generate other scenarios. Using the 
equivalence class representatives, we can define coverage. To 
illustrate this, suppose an autonomous algorithm’s response 
was tested using a representative of a class of scenarios. If 
the algorithm made the correct or expected decision then it 
would be considered as passed this class representative. Thus, 
it is expected to behave similarly, that is pass, in all the equiv-
alent scenarios in that class. Thus, we consider that class of 
scenarios covered. The test results may be  perceived as 
binary—pass or fail—without accounting for varying degrees 
of success or failure. Furthermore, the test output might 
be considered as probabilistic or a percentage, which influ-
ences the decision-making process for equivalent scenarios. 
With probabilistic outputs, decisions are not strictly binary 
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but rather revolve around conf idence scores or 
probability estimates.

In this context, the algorithm’s decision on equivalent 
scenarios might be influenced by the confidence level it has 
in its prediction. For instance, if it’s 80% confident that the 
response belongs to a certain category (such as range for safety 
distance or speed), it might make a decision based on that 
level of confidence, potentially treating scenarios with higher 
confidence differently than those with lower confidence scores.

So, while the autonomous algorithm’s successful identi-
fication of a representative case within a class implies potential 
success for equivalent scenarios, the influence of probabilistic 
outputs means that decisions might vary based on the level of 
confidence in the algorithm’s prediction. Hence having an 
accurate of the model is a prerequisite to obtaining equivalent 
classes and coverage.

For example, suppose an AV is to be tested on how it 
would approach and stop at a stop sign. In this case, one may 
consider all types of intersections that have stop signs as 
equivalent. Hence, if the AV slows down gradually and comes 
to a complete stop at the stop sign, then it will be able to do 
the same regardless of the type of intersection.

In this work, we will be using the same definitions as in 
[21, 42].

Definition 1. A scene vector C(k) ∈ ℝni is a vector whose 
components are the parameters that describe the environment 
surrounding the AV within  k  units of distance at discrete 
time intervals (k = t0 + nk Δt). The distance  k  will be called 
the radius of the scene vector and the parameters are grouped 
and organized into four main groups:

•• The parameters describing the dynamics of the AV, or 
unit under test (UUT).

•• The parameters describing the dynamics of 
moving actors.

•• The parameters describing the constants or 
static components.

•• Communication parameters between the UUT and any 
actor or the environment, such as visibility, weather 
conditions, road surface conditions, etc.

The next state is determined by a function ζ defined as:

Definition 2. Let ζ be a function for which the domain is the 
Cartesian product space of the space of scene vectors (i.e., a 
comprehensive space that holds all potential configurations 
or descriptions of scenes by combining different sets of scene 
vectors through a mathematical operation called the Cartesian 
product), communications from other actors—namely their 
velocities, positions, and directions—and the desired action 
of the ego, such as velocity and position. The range of ζ is the 
space of the scene vector. That is, if C(k) be the scene vector 
at time step k, then

	 ( ) ( )( )ζ+ =1 , Ego’s desired Input, actors’ inputk kC C 	
Eq. (1)

where C(k + 1) is the vector corresponding to the next time 
step calculated using the Newtonian laws of motion.

Thus, a scene or scenario χ was formally defined as a 
matrix whose columns are scene vectors at consecutive 
time steps:

	 �  C C C0 1� � � � � � ��� ��, , , k .	 Eq. (2)

Definitions 1 and 2 enable one to define equivalence rela-
tions between scenes depending on the needs of the testing 
and verification process, furthering the flexibility of the 
proposed framework. Now, let’s define the verification process.

Consider a scene as in Definitions 1 and 2. Notice that 
every actor—whether moving or stationary—and even the 
road structure enter the scene with a certain set of assertions. 
For example, another vehicle will assert that the distance 
between the UUT and it remains greater than the minimum 
safety distance. Based on this the authors in [21] defined a 
verification function based on the multiplication of matrices 
as follows:

Definition 3. Given a scenario χ, we define the assertion 
function   as a function with the domain being the set of 
scenario matrices and the range being the interval [0, 1], which 
has a predetermined set of weighted assertions. The output of 
this function is a probability (or a percentage) calculated as 
the weighted average based on the predetermined assertions 
where an output of 0 means the UUT fails and an output of 
1 represents the UUT passing.

The verification function can be presented as follows:
Let χ be a scene given by a matrix of size n × (k + 1) where 

k is the current time step. Now, assume that there are m asser-
tions placed on χ. Let  be an m × n × (k + 1) multilayer matrix 
(a tensor) called the assertion matrix. Let j  be the m × n 
matrix that corresponds to the jth layer of . In turn, j corre-
sponds to the jth column (scene vector) in χ where each row 
represents an assertion and each column represents one of the 
parameters in that scene vector. In other words, the entries in 
each row are the weights representing the relation between 
the assertions and the parameters in the scene vectors. Next, 
the assertion function   is defined as follows:

	 V A� � �� � � � ref 	 Eq. (3)

Here, the product χ  is an (m × 1 × (k + 1)) tensor repre-
sented as a multilayered matrix in which the jth layer is vj is 
the (m × (k + 1)) vector obtained by multiplying the jth layer 
of  by the jth column of χ. That is, v Cj j j� � � . In addition, 
χref is an (m × 1 × (k+1)) tensor represented as a multilayered 
matrix with each layer consisting of the vector of acceptable 
values of the parameters for each assertion for each time step, 
denoted by 0 0, , , ,j j k� � .

This grouping serves to consolidate all computational 
steps. Notably, the operations involving additions, 
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subtractions, and products are well-defined matrix operations, 
ensuring the reproducibility of tests.

IV. �Proposed Testing 
Framework

Here, we present and discuss the scenario generation and 
verification procedure for the proposed framework as illus-
trated in Figure 1.

Identify Initial Rules: This step establishes the funda-
mental characteristics of the scenario, defining key elements 
such as road infrastructure type and actor specifics (dynamic 
or static). For instance, detailing the nature of intersections 
or highways and determining actor types, behaviors, 
and counts.

Define Legal Road Structure: Expanding on initial rules, 
this stage involves specifying intricate details of the road 
system, including lane configurations, non-standard speed 
limits, traffic control mechanisms, and environment-
specific features.

Neural Network-based Scene Generation: Leveraging 
sophisticated machine learning architectures, this phase 
utilizes extensive scene databases to generate initial position 
and velocity vectors for scenario actors. There are many 
machine learning structures that can be used such as recurrent 
(RNNs) and long–short-term memory (LSTM) neural 
networks, which are used to model sequences of data [43, 44]. 

In the context of scenario generation, these networks can 
analyze sequential data representing various driving scenarios 
to generate initial position and velocity vectors for actors 
(vehicles, pedestrians, etc.) in a scene. Additionally, using 
convolutional networks that are adept at extracting spatial 
features from images, or generative adversarial networks 
(GANs) that can be employed to generate synthetic scenes by 
learning the underlying distribution of real-world driving 
scenarios or a hybrid approach as done in [45, 46, 47]. Here, 
we propose the following neural network architecture setup.

Neural Network Structure and Training Process: Designing 
a neural network architecture involving:

•• Input layers representing scenario features.

•• Multiple hidden layers employing activation functions 
(e.g., ReLU, sigmoid).

•• An output layer generating initial condition vectors for 
actors and the UUT.

Training involves:

•• Random weight initialization.

•• Defining appropriate loss functions to measure error.

•• Optimization techniques (e.g., gradient descent) to 
minimize loss.

•• Backpropagation for parameter updates.

Validation, Feasibility Check, and Feedback Loop: 
Validation using separate datasets to ensure robustness and 

 FIGURE 1  Scenario generation and testing procedure.
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prevent overfitting. Feasibility checks to comply with physical 
laws, safety protocols, and environmental rules. An iterative 
feedback loop incorporates insights from infeasible scenarios 
for network refinement.

Scenario Generation Function Activation: Initiating 
subsequent scene creation based on initial vectors and estab-
lished road structure, following Newtonian laws of motion. 
The function ζ, as defined in Definition 2, is based on the 
Newtonian laws of motion. The domain of ζ is the space of 
feasible scene vectors as well as U(k), the combined actions of 
the actors, and the UUT input at every time step. Initially, 
C(0) along with the road structure are used as a seed to 
generate C(1), which is used to generate the rest of the scenes 
and to create the scenario χ.

For each time step k > 1, ζ uses the vector C(k) along with 
the road structure and U(k) (the combined inputs of the actors 
and the ego (UUT)) to produce C(k). At this point, the vector 
C(k) is used for the following:

•• As an input for the UUT control systems to generate the 
decision (desired input) of the UUT, U1(k), to be used for 
the (k + 1)th time step.

•• Constructing the assertion matrix A(k) to be used for 
assessing the decision made by the UUT at the kth 
time step.

•• The scene is added as the last column in the scenario 
matrix χ.

•• The scene is used as the input for ζ to produce the scene 
for the next time step.

Verification Function Execution: Scrutinizing the UUT 
assertions across all time steps using assertion matrices, iden-
tifying and quantifying UUT failures throughout the scenario. 
When the kth scene vector, C(k), is generated in the last step, 
a corresponding assertion matrix A(k) will be generated. The 
verification function   uses, as its domain, the entire scenario 
χ and the assertion matrices A(k) for each k = 0, 1, …, k to 
determine whether the UUT passed or failed any of the asser-
tions for any of the time steps. The verification process is 
performed at each time step to identify where the UUT failed 
and the level of its failure.

Actor Input and Cyberattack Generation: Modifying 
actor actions (Ui(k)) based on verification results, poten-
tia l ly introducing simulated cyberattacks to test 
system resilience.

Class Equivalence and Coverage Check: Ensuring unique-
ness of input vectors before computing subsequent scenes, 
preventing repetition or equivalence with previously tested 
scenarios. Here, the input from the actors and the UUT are 
combined into a single input vector U(k) to be used in the 
computation of C(k + 1). However, before that is done, a check 
is performed to make sure that the resulting action has not 
been repeated nor has it been included in an equivalent scene 
previously tested. If the input is equivalent to a previously 
used vector then the actor input generator in the previous step 
must produce a new vector.

A. �The Structure of the 
Assertion Matrix A

For a scene with l actors, the scene vector may be defined as 
a (6 + 8l) × 1 column matrix. The first six rows list the dynamics 
of the UUT with each other actor having eight additional rows 
to capture the dynamics as well as the longitudinal and lati-
tudinal distance from the UUT.

Here, the corresponding assertion matrix  will 
be defined as an m × n, where m = 1 + 2l and n = 6 + 8l. The 
first row of  is defined, as in 6, such that it can be used to 
calculate the speed (or the square of the speed) of the UUT 
and compare it with the speed limit. Furthermore, for each 
moving actor, the UUT will pass if it maintains the minimum 
safety distance.

Therefore, the matrix  will have the following form:

	

0 0 0
1 0

0 1
1 0

0 1

� �

� � � �

x t y k

m

� � � � ��
�

�
�

�
�

�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

0 0

0 0

��n

	

The first negative identity matrix corresponding to the first 
actor begins at the (2, 6 + 6 + 1) = (2, 13) entry, the second will 
appear at the (4, 13 + 8) = (4, 21), the third will be at (6, 21 + 8) 
= (6, 29). That is, the negative identity submatrix that will corre-
spond to actor i will be at the entry (2i, 13 + 8(i − 1)).

Remark 1. An important point to make that all the vehicle’s 
decisions will effect its dynamics. For instance, if the UUT 
was approaching a red traffic light, then the passing (correct) 
response would be to slow down and come to a complete stop 
at an appropriate position. Then notice that the correctness of 
the decision can be measured by measuring the speed of the 
UUT and relative distance between the UUT and actors in 
the scene, including the traffic light.

Remark 2. Furthermore, note that we assumed that the UUT 
has an accurate model of the environment around it. That is, 
the previous example we assume that the UUT could recog-
nize a red traffic light and we were testing its response.

B. �Illustration
Suppose we had a scene where there was a stretch of road with 
a speed limit of 30 mph and only the UUT and another actor. 
Then, for this illustration, we may ignore the latitudinal coor-
dinates and only consider the longitudinal ones. Thus, 
we could set up a scene vector at a time step k as

	 C t x t x t x t x t x t x t d t
T� � � � � � � � � � � � � � � � ��� ��, , , , , ,  1 1 1 1 	

Eq. (4)
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	 C 

� � �t t t
T� � � � � � � ��� ��1 1 1 2, ,, , 	 Eq. (5)

where x t v t x t� � � � � � �,  , and a t v t x t� � � � � � � �   are defined to 
be the position, velocity, and acceleration of the UUT and 
similarly x1, v1, and a1 are defined to be the position, velocity, 
and acceleration of the actor. Finally, d1(t) is the distance 
between the actor and the UUT. C 

β  is the injected attack 
between the UUT and other actors, which will be referenced 
in Section V. For instance, C 

β  will be injected fault, injected 
delay for FDI attacks and time-delay switch (TDS) attacks, 
respectively. Furthermore, we can define C 

β  to represent other 
types of attacks such as denial of service (DoS) attack.

The corresponding assertion matrix  will be a 3 × 14:

	  t� � �
�

�

�
�

�

�
�

0 1 0 0 0 0 0
0 0 0 0 0 0 1

	 Eq. (6)

Here, we will have:

	 C t
x t
d t

� � � � �� �
� � �
�

�
�
�

�

�
�
�



1

	 Eq. (7)

Next, we can apply the verification function as follows:

	
V A CC Ct t

x
d t

Speed
d t

ref

ref

min x

� �� � � � � �

�
� � �
�

�
�

�

�
� � � � �

�

�
�

�

�
�



1 ,

	 Eq. (8)

where dmin,x(t) is the minimum safety longitudinal distances 
depending on the speed of both the UUT and the actor and 
their positions. The UUT would “pass” the test if the result of 
Equation 8 is a vector with non-positive entries in all its rows.

The vector ref  is the reference vector. ref  is to be generated 
automatically and contain the speed limit from the road struc-
ture input and the minimum safety distances computed via 
rules listed in [48].

V. �CACC Algorithm
CACC is just one example of the many ADAS that utilizes connec-
tivity between nearby vehicles to maintain speed while ensuring 
safe following distances [49]. CACC was chosen for testing in our 
framework as the majority of existing algorithms have been 
designed assuming that their communication channels are secure. 
However, the mere implementation of wireless communication 
renders CACC prone to various attacks, such as FDIs.

A. �Mathematical Model of 
CACC under FDI Attacks

The wireless connectivity is integrated as part of the system 
model, implemented as a feed-forward signal that relays 

information through wireless communication. Figure 2 illus-
trates the data flow between CACC vehicles. For a string of 
homogeneous vehicles with CACC capabilities following a 
leader using a dynamic velocity profile, the dynamics model 
of vehicles are described as

	




x t v t

v t
b
m

v t u t d t

i i

i
i

i
i i i

� � � � �

� � � � � � � � � � � �

�

�
�

�
�

	 Eq. (9)

where i ∈  {1, …, n} denotes the follower vehicles, n is the 
maximum number of follower vehicles, and i − 1 indicates 
the leader vehicle. In Equation 9, mi ∈ ℝ is the vehicle’s mass 
and bi ∈ ℝ is the friction force between the road and tires. 
Also xi ∈ ℝ, vi ∈ ℝ, ui ∈ ℝ, and di ∈ ℝ represent the position, 
velocity, control input, and external disturbance, respectively. 
Furthermore, the parameters xi and  v xi i= , for all i, form (9) 
will be the entries of the scene vector in (4).

Assumption 1. The disturbance is assumed to be bounded and 
continuous by a known constant, such that || ||d t di i� � �  for 
t ≥ t0, where di � �  [50].

B. �FDI Attack Representation
The FDI attacks are injected into the wireless communication 
network of the connected vehicles, resulting in the vehicles 
acting upon corrupted data. This causes instability in the 
vehicle platoon, increasing the likelihood of collisions. In this 
model, we assume that acceleration is the parameter affected 
by the attack, interpreted as Equation 10. The attack affects 
the output, which transforms it into the observed output

	 � �i i i ia t a t t� �� �� � � � � � �1 1 	 Eq. (10)

where πi ∈ ℝ is the attack function, βi ∈ ℝ is the bounded, 
unknown, continuous, and time-varying FDI attack, and ai−1 
is the leader’s acceleration.

Assumption 2. The FDI attack is assumed to be bounded and 
differentiable such that � �i it� � � , where t ≥ t0 and βi  is a 
positive constant [51, 52].

 FIGURE 2  Vehicle CACC diagram.
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C. �Resilient Controller Design
To measure the accuracy of the FDI attack estimation, the 
estimation error for the FDI attack, �i

nt i: ,0 ,��� ��  is 
defined as

	 ( ) ( ) ( )β β β−



ˆ
i i it t t 	 Eq. (11)

where β ∈ˆ  is the estimation of FDI attack.
To quantify the accuracy of the controller design, 

we defined the tracking error signal as

	 e t x t x t D x ti i i i di� � � � � � � � � � �� 1 	 Eq. (12)

where xdi ∈ ℝ denotes the desired distance between vehicles 
and Di ∈ ℝ is the length of ith vehicle.

To facilitate the design process, the second error signal, 
ri, is defined as

	 r t e t e ti i i i� � � � � � �� � � 	 Eq. (13)

where αi ∈ ℝ>0 is an user-specified gain.
To facilitate the stability analysis, we  need to define 

another auxiliary error signal ri� �1  as

	 � � �� �r t x t x ti i i i� � � �� � � � � � �1 1 1 1� 	 Eq. (14)

where αi − 1 ∈ ℝ>0 is a gain defined by users.

	 1.	 Controller Design: The control signal was designed 
using a Lyapunov stability analysis to ensure that the 
system remains stable under FDI attacks. The control 
signal is defined as

	 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

β

α α

−
− −

−

− + −

− − + − −





1
1 1

1
2

1

ˆ

i i

i i
i i i i i

i i

d i i i i i i

b b
u t v t v t u t

m m
x t r t e t e t K r t

	 Eq. (15)

where K1i ∈ ℝ>0 is an user-specified gain, u ui i i� � �1 1 � , 
and ui − 1 ∈ ℝ is the actual control signal of the leader.

	 2.	 FDI Attack Estimation: Considering respect to the 
spatial domain, the NN estimation of FDI attack can 
be described as

	 ( )β σ δ

ˆ ˆ ˆT T
i i i iW V 	 Eq. (16)

where ( ) ( )+ × + ×∈ ∈ 1 1,ˆ ˆi i i nn n n n
i iW V  represent the esti-

mated ideal weights, nn is the number of neurons in the 
hidden layer, σ(⋅) ∈ ℝ(nn + 1) is an activation functions 
vector, and δi is given as

	 δ β 
  1, ˆ T

T
i i 	 Eq. (17)

Resulting from the stability analysis, the updating 
laws for the NN weights are described as

	 ( )( )δ φ= Γ


1
ˆ ˆ

i

T
i i i iW proj V 	 Eq. (18)

and

	 ( )( )φ σ δ= Γ


2
ˆ ˆ ˆ

i

T T T
i i i i iV proj W V 	 Eq. (19)

where �i i ir r� �� �1 while Γ1i,  Γ2i ∈ ℝni × ni are definite 
positive matrices, and the function proj(·) denotes the 
Lipschitz continuous projection operator defined in [50].

	 3.	 Observer Design: The observer is designed in such a 
way to ensure that the system remains stable. Based 
on the stability analysis in next subsection, the 
observer for vehicle i − 1 is designed as

	 ( ) ( ) ( ) β

α α

−
− − − −

−

− − − − −

= − + − +

+ − +





  

1
1 1 1 1 1

1
2

1 1 1 1 1

ˆˆ
i

i
i i i i i

i

i i i i i

b
x t v t u t L r

m
r x x

	 Eq. (20)

where L1i ∈ ℝ>0 and αi − 1 ∈ ℝ>0 are user-defined gains 
and x ti� ��� ��1 0: ,  is the state estimate error, which 
is defined as

	 ( ) ( ) ( )− − −−
1 1 1ˆi i ix t x t x t 	 Eq. (21)

where − ∈1ˆix  is the estimated position for the 
lead vehicle.

D. �Stability Analysis
Let Vi  : ℝ5 × [0, ∞) → ℝ≥0, a radially unbounded, positive 
definite, continuously differentiable Lyapunov function 
defined as

	 V x r e r HL i i i i Li i
� � � � �� �

1
2

1
2

1
2

1
21

2
1

2 2 2
  	 Eq. (22)

where HLi ∈ ℝ≥0 is written as

	 H tr W W tr V VL i
T

i i
T

ii i i
� � � � �1

2
1
21

1
2

1� �� �� � � � �	 Eq. (23)

where = −
ˆ

i i iV V V  is the inner NN weight error and = −
ˆ

i i iW W W  
is the outer NN weight error. Since we used projection operators 
to design ˆ

iW  and ˆ ,iV  therefore, Wi and Vi are bounded, and subse-
quently HLi is bounded by ∣ HLi ∣   ≤  HLi, max where HLi, max ∈ ℝ>0. 
Let πi ∈ ℝ2ni be define as

	 q r x e ri i
T

i
T

i
T

i
T T

� � �� ��� ��1 1, , , 	 Eq. (24)

and let ψ1i and ψ2i be defined as

	 ψ1
21

2i
qi 	 Eq. (25)
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and

	 ψ 2
2

i
qi 	 Eq. (26)

therefore, the Lyapunov funct ion sat isf ies the 
following inequality

	 � �1 2i i i i
V HL L� � � ,max	 Eq. (27)

Taking the derivative of (22) yields

	
� � �� �� � ��

� �
V x x r r e e r r

tr W W

L i i i i i i i i

i i i

i
� � � �

� � � �
� � � �

�

1 1 1 1

1
1� ˘ ttr V Vi i i

� ��2
1�� �˘ 	 Eq. (28)

Substituting (13), (14), and their time derivatives into (28) 
results in the following
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Eq. (29)

Knowing that a Taylor’s series approximation can 
be applied to (21), we have

    ( ) ( )β σ δ σ δ δ +′= +
 

ˆ ˆ ˆ
i

T T T T T
i i i i i i i i i nW V W V V N 	 Eq. (30)

where

	 ( ) ( )σ δ δ ϑ δ γ+ +′  



ˆ
i

T T T T T
n i i i i i i i i iN W V V W V 	 Eq. (31)

where ϑ denotes higher order terms and Nni is bounded such 
that N nn ni i

≤ , where nni
� � 0 .

Substituting (30) in (29) results
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	 Eq. (32)

Substituting and updating laws (18) and (19) in (32) 
cancels the NN terms. By applying Young’s inequality to select 
terms in (32) results
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	 Eq. (33)

where ε0, ε1, and ε2 are positive known constants.

Applying Young’s inequality, the Equation 32 becomes
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	 Eq. (34)

where φi is defined as

	 �
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0 2 1 2 2 2

2 2 2
� � 	 Eq. (35)

Re-arranging (34) results in
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	 Eq. (36)

Let the sufficient conditions be defined as
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	 Eq. (37)

Given the sufficient conditions in (37), α1i and α2i can 
be defined as

	 �
�1 1

1

1
2i i

L � 	 Eq. (38)

	 �
� �2 1

0 2

1
2

1
2i i

K � � 	 Eq. (39)

From inequality (27), we know that the Lyapunov function 
is bounded, therefore, (36) can be written as

	 V V HL L L max ii

i

i

i

i

i

i
� � � �

�

�

�

�
�3

2

3

2
, 	 Eq. (40)

where α3i ≜  min {αi − 1,   αi,   α1,   α2}. Given the sufficient equa-
tions provided in (37) are satisfied, the result in (40) ensures 
semi-globally uniformly bounded tracking.

VI. �Implementation and 
Results

In this section, we intend to delve deeper into the validation 
and fine-tuning of these parameters. We will demonstrate 
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how variations in these design parameters impact the frame-
work’s ability to adapt, detect faults, and maintain safe system 
behavior. This validation process will provide insights into 
the optimal parameter configurations that maximize the 
framework’s performance across diverse testing scenarios. To 
that end, the procedure will be initiated manually without the 
use of a neural network.

To test the proposed verification framework, a prototype 
was developed using MATLAB/Simulink. The framework was 
implemented as a Simulink model that leverages several 
MATLAB functions to facilitate, both the verification frame-
work and the simulation environment. The verification frame-
work processes data generated by the simulation at each time 
step in order to score the performance of the UUT. The simu-
lation environment is capable of modeling both environ-
mental factors and actor trajectories. At this stage, the frame-
work is capable of conducting test scenarios, recording the 
results and relevant data generated during the simulation, and 
enabling real-time visualization of testing.

The simulation environment used in this implementation 
models are two actors, a leader and the follower. The lead 
vehicle operates independently of the follower vehicle, taking 
desired speed inputs from the test scenario. The follower 
vehicle acts as the UUT and possesses a controller that uses 
the leader’s acceleration and position to maintain a desired 
following distance.

To leverage our simulation environment, a scenario 
generation script was developed. The script is customizable, 
taking several parameters as arguments. These are the 
maximum FDI attack values βi, the maximum speed of the 
actor, the time constant as defined in the actor model, the total 
simulation time, and the desired sampling time. These param-
eters are then used to create a vector of random desired veloci-
ties at evenly spaced intervals for the desired simulation 
duration. The period between speed changes is derived as 
3τi − 1, where τi−1 is the leader time constant, as utilized in the 
actor mathematical model, and ensures that the feasible 
scenarios are generated.

For testing the viability of the framework, test scenarios 
were developed. Each scenario was generated with a sample 
time of 0.01 and lasts for 4,000 seconds of simulated time. In 
all of the following scenarios, a random desired speed, between 
0 and the speed limit, is sent to the lead vehicle’s trajectory 
every 16.5 seconds.1 This test vector is recorded as a three-
dimensional matrix containing desired velocities, the injected 
FDI attack magnitude, and corresponding times in simula-
tion. Using this standardized test case, the framework enables 
point-to-point comparisons of each CACC model throughout 
each simulation step. In the following scenarios, the verifica-
tion process will classify the outcome as a failure if the distance 
between vehicles falls below the established minimum safe 
distance threshold. Furthermore, a failure in terms of velocity 
will be recorded when velocity of the following vehicle is more 
than the speed limit.

1 The time constant of the lead vehicle is 5.5 seconds. Therefore, it’s reason-
able to generate random desired speed every 16.5 seconds to allow enough 
time to the velocity of lead vehicle to reach to 95% of its final value.

A. �Scenario 1
	 1.	 Description: The first test scenario consisted of cycles 

of random desired speeds with a single FDI attack of 
30% injected and maintained throughout testing.

	 2.	 Results: As shown in Figure 3, the controller equipped 
with detection was able to maintain a safe follow 
distance throughout testing. The baseline controller, 
on the other hand, spent the vast majority of the test 
colliding with the lead vehicle due to the attack.

Figure 4 demonstrates the performance of the resilient 
controller by presenting each actor’s velocity, the FDI attack 
estimate and true value, as well as the distance between 
vehicles. As shown, an attack of 30% is injected and held 
constant throughout testing. The neural network detects the 
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 FIGURE 4  Scenario 1 performance: resilient controller’s 
velocity profile (top), FDI estimation performance (middle), 
and following distance of both controllers (bottom).
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attack and trains upon the signal to ensure adequate tracking 
to prevent an unsafe following distance. The baseline 
controller, however, is unable to detect and counter this attack, 
causing the follower to pass the leader vehicle.

Utilizing the framework and testing results, the controller 
parameters were tuned to improve performance. One area for 
improvement was in ensuring the follower vehicle followed 
the speed limit.

B. �Scenario 2
	 1.	 Description: In the second scenario, random speeds 

were periodically generated with random FDI attacks 
injected at each speed change.

	 2.	 Results: As shown in Figure 5, the resilient controller 
performed well on this test case, maintaining a safe 
following distance throughout the majority of testing 
and preventing any collision. The baseline controller, 
on the other hand, frequently followed the lead 
vehicle too closely, which resulted in several crashes. 
The data in Figure 6 displays the ability of the FDI 
estimator to adapt to the varying signal.

From the performance on the second scenario, the 
controller was able to be further tuned. In the second scenario, 
the neural network’s parameters were adjusted to improve 
FDI estimation to maintain a safe following distance 
throughout the entirety of testing.

C. �Scenario 3
	 1.	 Description: In the third and final test, cycles of 

accelerations and decelerations to random speeds 
were generated with random FDI attacks injected at 
each deceleration. In addition, the acceleration of the 
leader is transmitted with additional white noise.

	 2.	 Results: The results are contained within Figure 7. As 
can be seen, the baseline controller encountered 
specific speed changes and attack injection 
combinations that resulted in an unsafe following 
distance at multiple points throughout the test. While 
the baseline controller performed drastically better 
than the baseline counterpart. The fact that an unsafe 
scenario was discovered for this baseline controller 
demonstrates the validity and importance of a 
framework that adaptively tests a system based on 
its performance.

The results of the final test show that our controller 
demonstrates a higher level of safety than the baseline 
controller. However, it is also evident that the controller 
could be refined for even further performance improvements. 
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 FIGURE 5  Scenario 2 verification check: baseline controller 
(top) and resilient controller (bottom).
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 FIGURE 6  Scenario 2 performance: resilient controller’s 
velocity profile (top), FDI estimation performance (middle), 
and following distance of both controllers (bottom).
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 FIGURE 7  Scenario 3 verification check: baseline controller 
(top) and resilient controller (bottom).
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This process of further testing and refinement is planned and 
discussed in our future works (Figure 8).

Remark  3 .  Parameter Design and Framework  
Convergence.

The design of parameters such as control gains, observe 
gains, and neural network structures significantly influences 
the convergence and overall performance of the testing frame-
work. These parameters play a crucial role in determining the 
adaptability and robustness of the controller and estimator 
modules within the framework.

The control gains, for instance, regulate the response 
characteristics of the controller, affecting how quickly and 
accurately the system adjusts to varying scenarios. Similarly, 
the observe gains impact the convergence rate of the estimator 
module, influencing its ability to detect and adapt to injected 
faults or disturbances.

Moreover, the neural network structures, including archi-
tecture, layer configurations, and learning algorithms, dictate 
the learning capacity of the system. Properly designed neural 
network structures ensure that the system can effectively 
recognize and respond to abnormal scenarios, contributing 
to the overall convergence of the testing framework. The gains 
of controller, observer, and FDI estimator can be initialized 
based on the sufficient conditions given in (37) and 

optimization algorithms such as genetic algorithms can 
be used to find the best parameters.

D. �Threat Model and Risk 
Analysis

This section develops and assesses a threat model following 
the ISO/SAE 21434: Road Vehicles—Cybersecurity 
Engineering standard, focusing on a resilient CACC algorithm 
used in two vehicles on a straight highway. Risks linked to the 
identified threats can be evaluated to compare the baseline 
and resilient controller. This article uses the risk formula 
from [53]:

	 R F I� � �1 	 Eq. (41)

where R represents the risk value, F quantifies aggregated 
attack feasibility rating (very low = 0, low = 1, medium = 1.5, 
high = 2), and I denotes impact rating (negligible = 0, moderate 
= 1, major = 1.5, severe = 2). For this work, impact is measured as

	 I C
A

� �2 	 Eq. (42)

where C and A denote the number of crashes and attacks, 
respectively. The ratio is scaled by two to match the impact 
range. Since a CACC system is critical, the impact I could 
be severe if the feature is disrupted. But for this research, a 
dynamic I is more useful for tuning the proposed controller. 
Attack feasibility is assumed to be  high, because the test 
scenarios have a faulty leader vehicle signal.

The results of all three test scenarios are compiled in Table 
1. The risk as well as RMSE of following distance and FDI 
estimation are presented for each controller. In all three tests, 
the baseline controller exhibited drastically higher risk than 
the resilient controller. In addition, the following distance 
error for the resilient controller is much less than the 
baseline controller.

VII. �Conclusions and 
Future Work

The use of a computation model for testing and verifying the 
security of CAVs is a valuable tool in ensuring the safety and 

 FIGURE 8  Scenario 3 performance: resilient controller’s 
velocity profile (top), FDI estimation performance (middle), 
and following distance of both controllers (bottom).
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TABLE 1 Testing results of baseline and resilient controller expressed in terms of risk and RMSE of following distance and 
FDI estimation.

Test scenario
Baseline controller Resilient controller
Risk Distance FDI est. Risk Distance FDI est.

1 796,459 9.7248 - 1 0.089 0.9746

2 274,175 5.4087 - 1 0.1875 2.6142

3 234,099 5.4517 - 1 0.1451 1.8331 ©
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rs
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reliability of these systems. This article proposed a novel frame-
work for testing and verifying the security of CAVs under 
attacks. In addition, we discussed a new and original secure 
CACC algorithm that combines model and learning-based 
techniques to detect and mitigate FDI attacks in real-time. The 
proposed framework was implemented in a software-in-the-
loop environment to test the security of CACC under attacks. 
We showed that the proposed framework could demonstrate 
unsafe situations. As CAVs become increasingly prevalent, it 
is crucial that their security is thoroughly tested and verified 
to ensure the safety of passengers and other road users.

Despite all of the advantages of the resilient controller, it 
requires an accurate model of the leader and follower for the 
observer design. In addition, tuning the parameters of the 
developed controller is timely. Moreover, the resilient controller 
cannot compensate for attacks such as TDS attack. To improve 
the performance of the proposed framework, we  plan to 
develop an adaptive algorithm to adjust the parameters of 
controllers in a closed-loop manner to refine their perfor-
mance during testing. Furthermore, we will use machine 
learning algorithms to generate edge cases in our future work.
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