Downloaded from SAE International, Friday, January 31, 2025

INTERNATIONAL«

ARTICLE INFO

Article ID: 12-07-03-0020
© 2024 The Authors
doi:10.4271/12-07-03-0020

Employing a Model of Computation

for Testing and Verifying the
Security of Connected and
Autonomous Vehicles

Ala Jamil Alnaser,’ James Holland,? and Arman Sargolzaei?

'Florida Polytechnic University, Mathematics, USA
2University of South Florida, Mechanical Engineering Department, USA

Abstract

Testing and verifying the security of connected and autonomous vehicles (CAVs) under cyber-physical
attacks is a critical challenge for ensuring their safety and reliability. Proposed in this article is a
novel testing framework based on a model of computation that generates scenarios and attacks in
a closed-loop manner, while measuring the safety of the unit under testing (UUT), using a verifica-
tion vector. The framework was applied for testing the performance of two cooperative adaptive
cruise control (CACC) controllers under false data injection (FDI) attacks. Serving as the baseline
controller is one of a traditional design, while the proposed controller uses a resilient design that
combines a model and learning-based algorithm to detect and mitigate FDI attacks in real-time.
The simulation results show that the resilient controller outperforms the traditional controller in
terms of maintaining a safe distance, staying below the speed limit, and the accuracy of the
FDI estimation.

© 2024 The Authors. Published by SAE International. This Open Access article is published under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits distribution, and reproduction
in any medium, provided that the original author(s) and the source are credited.

History

Received: 25 Aug 2023
Revised: 09 Jan 2024
Accepted: 15 Feb 2024
e-Available: 05 Mar 2024

Keywords

Connected and autonomous
vehicles, Coverage, Model of
computation, Safety and
security, Testing and
verification framework,
Secure cooperative adaptive
cruise control

Citation

Alnaser, A., Holland, J., and
Sargolzaei, A., “Employing a
Model of Computation for
Testing and Verifying the
Security of Connected and
Autonomous Vehicles,” SAE
Int. J. of CAV 7(3):309-323,
2024,
doi:10.4271/12-07-03-0020.

ISSN: 2574-0741
e-ISSN: 2574-075X

309

http://creativecommons.org/licenses/by/4.0/

Downloaded from SAE International, Friday, January 31, 2025

310 Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

. Introduction

utonomous vehicles are one of the most promising

solutions to the exceedingly many and complex trans-

portation problems. Based on a report by the National
Highway Traffic Safety Administration (NHTSA) [1],
advanced driver assistance systems (ADAS) technologies have
the potential to prevent about 62% of traffic fatalities. However,
ADAS cannot function fully independently from the human
driver, which is the source of the vast majority of incidents
[2]. The natural evolution of ADAS technology will enable the
jump to completely autonomous driving by progressively
eliminating the vehicle’s dependence on human drivers, which
gives rise to the hybridized approach known as connected and
autonomous vehicles (CAVs). CAVs have the potential to dras-
tically reduce accidents, improve transportation system effi-
ciency, reduce gas emissions, and much more. Recent rapid
advancements in machine intelligence, machine vision,
processing speed, and sensor fusion technology are enabling
CAV technology to become readily available for widespread,
everyday use in the very near future [3].

Despite all of the advantages of this technology, two
significant barriers stand in the way of wide-scale adoption.
The first is the lack of a testing and verification protocol that
ensures operational safety and security. This challenge is
further complicated by the fact that CAVs rely on various
sensors, actuators, communication networks, and software
components to operate autonomously and cooperatively [4,
5]. These components are subject to faults and attacks that can
compromise the safety and security of CAVs and their passen-
gers. Faults can occur due to hardware failures, software bugs,
environmental disturbances, or human errors [6, 7, 8, 9].
Moreover, attacks can be launched by malicious actors who
aim to disrupt, deceive, or damage CAVs and their infrastruc-
ture. Some common types of attacks include FDI, denial of
16, 17, 18]. These faults and attacks can affect the perception,
planning, decision-making, and control of CAVs, leading to
undesirable outcomes such as collisions, violations, delays, or
loss of control. The second barrier to wide-scale adoption is
that these vulnerabilities exponentially increase the complexity
of testing [19, 20]. Therefore, it is essential to design and test
CAVs with robust and resilient mechanisms that can detect
and mitigate faults and attacks in real-time.

To address this, a process that builds an engineering
argument for ensuring safety must be developed. Typically,
this argument is built based on the following principles. First,
a conceptual understanding of the problem is built and
supported through virtual models. Second, a testing process
is built to validate the model and build an argument for
correctness. Third, the state space of tests is examined within
the modeling environment to develop metrics for complete-
ness. Finally, a structure is constructed where field testing
feeds back into this flow, so safety is always rising and leading
to accumulated learning [21].

In testing and verifying CAVs, there are various
approaches to tackle this challenging endeavor [22, 23, 24, 25,

testing encompasses both oftline and real-time methods [22].
Offline simulations emphasize optimizing computational
speed, while real-time simulations prioritize testing accuracy
within a constrained response time [23]. Additionally, real-
time simulations guarantee access to testing data, expediting
the validation phase and enhancing certainty throughout the
development process [24]. The other existing verification solu-
tions utilize ad hoc methods, such as miles driven, to demon-
strate some indication of operational safety. This often assumes
that the CAV’s perception of the surrounding environment
and the environment, itself, is comprehensive and perfect [36].
However, these approaches often lack the coverage and
completeness required to test rare and extreme cases where
the CAV under examination is prone to failure. In addition,
the above-mentioned approaches are only focus on one aspect
of CAVs such as testing the perception algorithms. To the best
of our knowledge, no fundamental structure has been devel-
oped to demonstrate the security and reliability of CAV
products, only operational success under ideal circumstances.
This research seeks to address all the aforementioned short-
comings of the current state-of-the-art by providing a testing
framework and mathematically sound metrics to quantify a
CAV’s security and reliability.

In this article, we present a framework for testing and
verifying the decision-making capabilities of CAVs while the
vehicle is under attacks. The framework is based on two math-
ematically defined procedures. The first is for generating
scenarios while the second is for testing the CAV’s responses.
Our framework leverages an artificial neural network (ANN)
to generate a seed for each scenario, which dictates the first
scene in testing. Furthermore, we demonstrate the effective-
ness of our algorithm as a testing framework by subjecting
two different ADAS controllers to two, identical scenarios.
The first controller is a traditionally designed model while the
second is a resilient controller designed to detect and mitigate
false data injection (FDI) attack. The first scenario that they
were subjected to seeks to analyze performance while oper-
ating under ideal circumstances with the second scenario
being designed to inject noise into the vehicle communication
network. The purpose of this additional phase of research is
to outline where our framework succeeds and understand
where it fails such that we can confidently continue building
this proof-of-concept into our vision of a comprehensive CAV
testing framework.

In summary, the contributions of this work are as follows:
(i) We proposed a unique algorithm to generate scenes in a
closed-loop manner that allows for the identification of equiv-
alent scenes. This, in turn, enables the production of unique
testing scenarios tailored for the system being tested under
attacks such as FDI. (ii) Since the verification function is
incorporated within the scenario generation algorithm, the
response of the controller is tested continuously and converges
toward scenarios that maximize unsafe behavior by the CAV.
(iii) We describe a secure cooperative adaptive cruise control
(CACC) under FDI attacks where we implemented the
proposed framework to verify its safety and security.

Downloaded from SAE International, Friday, January 31, 2025

The article is organized as follows: Section II presents a
summary of current relevant results. Section III provides the
necessary mathematical background for the proposed testing
and verification framework. The framework is then discussed
in Section I'V. The novel resilient control algorithm utilized
for CACC under testing is presented in Section V. To briefly
describe the resilient controller, it combined a model and
learning-based algorithms to detect and mitigate FDI attacks
in real-time. Finally, the proposed framework is implemented
to test the safety of the CACC algorithms under FDI attacks,
where the results are discussed in Section VI.

Il. Literature Review

In the past several years both the academic community and
industry have focused on the testing and verification of CAVs.
By leveraging classical methods, the field has developed novel
approaches targeted at testing and verifying the readiness of
CAVs. In [25] the authors identified five key testing challenges:
driver-less scenarios, complex requirements, non-determin-
istic algorithms, inductive learning, and fail-operational
systems. The authors proposed phased deployment, architec-
ture changes, and fault injection as potential solutions, while
suggesting a shift toward aligning existing software safety
approaches with the vehicle’s design process.

In [26] the authors presented an adaptive method to
generate scenarios for accelerating the testing of general
autonomous systems. This research sought to understand the
decision-making processes of an autonomous system and
identify the transient effects caused by transitioning between
performance modes. However, their methodology treats the
system as a black box, preventing the modification of the
decision-making algorithms.

The work in [27] emphasized the importance of offline
testing for validating autonomous vehicle performance and
control algorithms across various virtual scenarios. It intro-
duced a novel simulation platform with hardware in the loop
(HIL), comprising four layers that simulated vehicle models,
sensors, environments, and ECU control. This platform facili-
tated comprehensive closed-loop evaluations of perception,
planning, decision-making, and control algorithms, enabling
seamless migration to real self-driving cars. Experimental
validations conducted in virtual scenarios of public roads and
open parking lots substantiated the effectiveness of the
simulation platform.

The authors in [28] employed procedural content genera-
tion and search-based testing to automatically create virtual
scenarios, focused on testing the lane-departure software of
CAVs. While [29] used a game theoretic traffic model to test
the control of autonomous vehicles’ decisions and to calibrate
the parameters of an existing control system. In [30], several
components, such as road geometry, the environment, and
the behavior of the dynamic object, were formally defined and
combined to generate a virtual reality. Additionally, Zofka
et al. [31] included vehicle mechanics, sensors, and traffic to
generate scenarios for testing simulations.

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024 3

Leveraging a machine learning to generate test scenarios,
the authors in [32] presented a system that used a learning
feature utilizing feedback from the CAV’s controller and
aimed to converge on scenarios that model edge cases.
Another approach that also used machine learning was
presented in [33], employing recurrent neural networks
(RNNs) that were applied to existing crash data to create test
cases. Furthermore, the authors in [34] suggested an approach
called “deep test” for the automatic testing of AVs using neural
networks. In [35], an approach involving subjecting a
controller to a dynamically chosen set of fault scenarios within
a vehicle simulator to identify classes of vehicle faults and to
produce noteworthy performance by the vehicle controller
was proposed.

A recent body of research extensively covered various
facets crucial to the reliability and safety of automated vehicles.
One study [37] delved into verification and validation methods,
highlighting their paramount importance in decision-making
and planning within this domain. Another study [38] empha-
sized the significance of digital twins in enhancing the under-
standing and performance of connected and automated
vehicles. Moreover, a separate research endeavor [39] focused
on the pivotal role of virtual testing, demonstrating its efficacy
through a longitudinal dynamics validation example.
Additionally, insights from a study by [40] shed light on the
application of dense reinforcement learning to bolster the
safety validation of autonomous vehicles, showcasing
advanced techniques for enhancing their safety. Lastly, [41]
contributed valuable considerations regarding the deter-
minism of game engines used in simulation-based verification
for autonomous vehicles, ensuring accuracy and reliability in
simulation environments.

I1l. Mathematical
Background

In [21, 42], the authors presented a method to generate
scenarios that can be grouped into equivalent classes. The
objective was to address the completeness and coverage of a
test scenario by identifying all its variations and equivalent
scenarios. Hence, producing a collection of scenarios that
can be combined to generate other scenarios. Using the
equivalence class representatives, we can define coverage. To
illustrate this, suppose an autonomous algorithm’s response
was tested using a representative of a class of scenarios. If
the algorithm made the correct or expected decision then it
would be considered as passed this class representative. Thus,
itis expected to behave similarly, that is pass, in all the equiv-
alent scenarios in that class. Thus, we consider that class of
scenarios covered. The test results may be perceived as
binary—pass or fail—without accounting for varying degrees
of success or failure. Furthermore, the test output might
be considered as probabilistic or a percentage, which influ-
ences the decision-making process for equivalent scenarios.
With probabilistic outputs, decisions are not strictly binary

Downloaded from SAE International, Friday, January 31, 2025

312 Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

but rather revolve around confidence scores or
probability estimates.

In this context, the algorithm’s decision on equivalent
scenarios might be influenced by the confidence level it has
in its prediction. For instance, if it’s 80% confident that the
response belongs to a certain category (such as range for safety
distance or speed), it might make a decision based on that
level of confidence, potentially treating scenarios with higher
confidence differently than those with lower confidence scores.

So, while the autonomous algorithm’s successful identi-
fication of a representative case within a class implies potential
success for equivalent scenarios, the influence of probabilistic
outputs means that decisions might vary based on the level of
confidence in the algorithm’s prediction. Hence having an
accurate of the model is a prerequisite to obtaining equivalent
classes and coverage.

For example, suppose an AV is to be tested on how it
would approach and stop at a stop sign. In this case, one may
consider all types of intersections that have stop signs as
equivalent. Hence, if the AV slows down gradually and comes
to a complete stop at the stop sign, then it will be able to do
the same regardless of the type of intersection.

In this work, we will be using the same definitions as in

Definition 1. A scene vector C(k) € R" is a vector whose
components are the parameters that describe the environment
surrounding the AV within N, units of distance at discrete
time intervals (k = t, + n; At). The distance N, will be called
the radius of the scene vector and the parameters are grouped
and organized into four main groups:

* The parameters describing the dynamics of the AV, or
unit under test (UUT).

* The parameters describing the dynamics of
moving actors.

* The parameters describing the constants or
static components.

* Communication parameters between the UUT and any
actor or the environment, such as visibility, weather
conditions, road surface conditions, etc.

The next state is determined by a function { defined as:

Definition 2. Let { be a function for which the domain is the
Cartesian product space of the space of scene vectors (i.e., a
comprehensive space that holds all potential configurations
or descriptions of scenes by combining different sets of scene
vectors through a mathematical operation called the Cartesian
product), communications from other actors—namely their
velocities, positions, and directions—and the desired action
of the ego, such as velocity and position. The range of {is the
space of the scene vector. That is, if C(k) be the scene vector
at time step k, then

C(k + 1) = ((C(k), Ego’s desired Input, actors’ input)
Eq. (1)

where C(k + 1) is the vector corresponding to the next time
step calculated using the Newtonian laws of motion.

Thus, a scene or scenario y was formally defined as a
matrix whose columns are scene vectors at consecutive
time steps:

2 2[€(0), C(1),..., C(k)].

Eq. (2)

Definitions 1 and 2 enable one to define equivalence rela-
tions between scenes depending on the needs of the testing
and verification process, furthering the flexibility of the
proposed framework. Now, let’s define the verification process.

Consider a scene as in Definitions 1 and 2. Notice that
every actor—whether moving or stationary—and even the
road structure enter the scene with a certain set of assertions.
For example, another vehicle will assert that the distance
between the UUT and it remains greater than the minimum
safety distance. Based on this the authors in [21] defined a
verification function based on the multiplication of matrices
as follows:

Definition 3. Given a scenario y, we define the assertion
function V as a function with the domain being the set of
scenario matrices and the range being the interval [0, 1], which
has a predetermined set of weighted assertions. The output of
this function is a probability (or a percentage) calculated as
the weighted average based on the predetermined assertions
where an output of 0 means the UUT fails and an output of
1 represents the UUT passing.

The verification function can be presented as follows:

Let y be a scene given by a matrix of size n x (k + 1) where
k is the current time step. Now, assume that there are m asser-
tions placed on y. Let A be an m x n x (k + 1) multilayer matrix
(a tensor) called the assertion matrix. Let Aj be the m x n
matrix that corresponds to the jthlayer of A. In turn, A, corre-
sponds to the jth column (scene vector) in y where each row
represents an assertion and each column represents one of the
parameters in that scene vector. In other words, the entries in
each row are the weights representing the relation between
the assertions and the parameters in the scene vectors. Next,
the assertion function V is defined as follows:

V(x)=Ax =2y Eq. (3)

Here, the product Ay isan (m x 1 x (k + 1)) tensor repre-
sented as a multilayered matrix in which the jth layer is v; is
the (m x (k + 1)) vector obtained by multiplying the jth layer
of A by the jth column of y. Thatis, v, = AjC(j). In addition,
Xrefis an (m x 1 x (k+1)) tensor represented as a multilayered
matrix with each layer consisting of the vector of acceptable
values of the parameters for each assertion for each time step,
denoted by C, ;,j=0,...,k.

This grouping serves to consolidate all computational
steps. Notably, the operations involving additions,

Downloaded from SAE International, Friday, January 31, 2025

subtractions, and products are well-defined matrix operations,
ensuring the reproducibility of tests.

IV. Proposed Testing
Framework

Here, we present and discuss the scenario generation and
verification procedure for the proposed framework as illus-
trated in Figure 1.

Identify Initial Rules: This step establishes the funda-
mental characteristics of the scenario, defining key elements
such as road infrastructure type and actor specifics (dynamic
or static). For instance, detailing the nature of intersections
or highways and determining actor types, behaviors,
and counts.

Define Legal Road Structure: Expanding on initial rules,
this stage involves specifying intricate details of the road
system, including lane configurations, non-standard speed
limits, traffic control mechanisms, and environment-
specific features.

Neural Network-based Scene Generation: Leveraging
sophisticated machine learning architectures, this phase
utilizes extensive scene databases to generate initial position
and velocity vectors for scenario actors. There are many
machine learning structures that can be used such as recurrent
(RNNs) and long-short-term memory (LSTM) neural
networks, which are used to model sequences of data [43, 44].

m Scenario generation and testing procedure.

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024 313

In the context of scenario generation, these networks can
analyze sequential data representing various driving scenarios
to generate initial position and velocity vectors for actors
(vehicles, pedestrians, etc.) in a scene. Additionally, using
convolutional networks that are adept at extracting spatial
features from images, or generative adversarial networks
(GANG) that can be employed to generate synthetic scenes by
learning the underlying distribution of real-world driving
scenarios or a hybrid approach as done in [45, 46, 47]. Here,
we propose the following neural network architecture setup.

Neural Network Structure and Training Process: Designing
a neural network architecture involving:

¢ Input layers representing scenario features.

® Multiple hidden layers employing activation functions

(e.g., ReLU, sigmoid).

An output layer generating initial condition vectors for
actors and the UUT.

Training involves:
Random weight initialization.
Defining appropriate loss functions to measure error.

Optimization techniques (e.g., gradient descent) to
minimize loss.

Backpropagation for parameter updates.

Validation, Feasibility Check, and Feedback Loop:
Validation using separate datasets to ensure robustness and

Road structure — ANN initial scene gen:

Feedback Scenario function bas
to
generate

scenarios

>_

C

Newton'’s laws of motion
f(C(k —1),all actions).k > 1

erator 4= [Initial rules

ed on

&
<

(k)

—~

=|alsls = Assertion
M EIEEY © matrix
= = = = =]

318188 5 enerator
w|le|a|w A &

2O;

Verification

© The Authors

l

Unique
combined
actions of actors

UUT’s input and ego input
generated based U (k+1)
on the vehicle’s

control
Actors’ input/
@ cyberattack
. generator

Downloaded from SAE International, Friday, January 31, 2025

314 Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

prevent overfitting. Feasibility checks to comply with physical
laws, safety protocols, and environmental rules. An iterative
feedback loop incorporates insights from infeasible scenarios
for network refinement.

Scenario Generation Function Activation: Initiating
subsequent scene creation based on initial vectors and estab-
lished road structure, following Newtonian laws of motion.
The function (, as defined in Definition 2, is based on the
Newtonian laws of motion. The domain of { is the space of
feasible scene vectors as well as U(k), the combined actions of
the actors, and the UUT input at every time step. Initially,
C(0) along with the road structure are used as a seed to
generate C(1), which is used to generate the rest of the scenes
and to create the scenario y.

For each time step k > 1, {uses the vector C(k) along with
the road structure and U(k) (the combined inputs of the actors
and the ego (UUT)) to produce C(k). At this point, the vector
C(k) is used for the following:

* Asan input for the UUT control systems to generate the
decision (desired input) of the UUT, U, (k), to be used for
the (k + 1)th time step.

* Constructing the assertion matrix A(k) to be used for
assessing the decision made by the UUT at the kth
time step.

® The scene is added as the last column in the scenario
matrix y.

* The scene is used as the input for { to produce the scene
for the next time step.

Verification Function Execution: Scrutinizing the UUT
assertions across all time steps using assertion matrices, iden-
tifying and quantifying UUT failures throughout the scenario.
When the kth scene vector, C(k), is generated in the last step,
a corresponding assertion matrix A(k) will be generated. The
verification function V uses, as its domain, the entire scenario
x and the assertion matrices A(k) for each k=0, 1, ..., k to
determine whether the UUT passed or failed any of the asser-
tions for any of the time steps. The verification process is
performed at each time step to identify where the UUT failed
and the level of its failure.

Actor Input and Cyberattack Generation: Modifying
actor actions (U,(k)) based on verification results, poten-
tially introducing simulated cyberattacks to test
system resilience.

Class Equivalence and Coverage Check: Ensuring unique-
ness of input vectors before computing subsequent scenes,
preventing repetition or equivalence with previously tested
scenarios. Here, the input from the actors and the UUT are
combined into a single input vector U(k) to be used in the
computation of C(k + 1). However, before that is done, a check
is performed to make sure that the resulting action has not
been repeated nor has it been included in an equivalent scene
previously tested. If the input is equivalent to a previously
used vector then the actor input generator in the previous step
must produce a new vector.

A. The Structure of the
Assertion Matrix A

For a scene with [actors, the scene vector may be defined as
a (6 + 8/) x 1 column matrix. The first six rows list the dynamics
of the UUT with each other actor having eight additional rows
to capture the dynamics as well as the longitudinal and lati-
tudinal distance from the UUT.

Here, the corresponding assertion matrix 4 will
be defined as an m x n, where m =1 + 2l and n = 6 + 8I. The
first row of A is defined, as in 6, such that it can be used to
calculate the speed (or the square of the speed) of the UUT
and compare it with the speed limit. Furthermore, for each
moving actor, the UUT will pass if it maintains the minimum
safety distance.

Therefore, the matrix A will have the following form:

0 0 x(t) y(k) 0 ...

0 0

L mxn

The first negative identity matrix corresponding to the first
actor begins at the (2, 6 + 6 + 1) = (2, 13) entry, the second will
appear at the (4, 13 + 8) = (4, 21), the third will be at (6, 21 + 8)
= (6,29). That s, the negative identity submatrix that will corre-
spond to actor i will be at the entry (24, 13 + 8(i — 1)).

Remark 1. An important point to make that all the vehicle’s
decisions will effect its dynamics. For instance, if the UUT
was approaching a red traffic light, then the passing (correct)
response would be to slow down and come to a complete stop
at an appropriate position. Then notice that the correctness of
the decision can be measured by measuring the speed of the
UUT and relative distance between the UUT and actors in
the scene, including the traffic light.

Remark 2. Furthermore, note that we assumed that the UUT
has an accurate model of the environment around it. That is,
the previous example we assume that the UUT could recog-
nize a red traffic light and we were testing its response.

B. lllustration

Suppose we had a scene where there was a stretch of road with
a speed limit of 30 mph and only the UUT and another actor.
Then, for this illustration, we may ignore the latitudinal coor-
dinates and only consider the longitudinal ones. Thus,
we could set up a scene vector at a time step k as

C(t)=[x(t), x(t), &(t), x,(t), ,(¢): % (1), d,(1)]

Eq. (4)

Downloaded from SAE International, Friday, January 31, 2025

T
Cﬁ(t)z[ﬁu(t), ﬁm(t),...] Eq. (5
where x(t), v(t) =x(t) anda(t)=v(t)=5(t) are defined to
be the position, velocity, and acceleration of the UUT and
similarly x,, v;, and 4, ,,. defined to be the position, velocity,
and acceleration of the actor. Finally, d,(¢) is the distance
between the actor and the UUT. C. is the injected attack
between the UUT and other actors, which will be referenced
in Section V. For instance, C, will be injected fault, injected
delay for FDI attacks and time-delay switch (TDS) attacks,
respectively. Furthermore, we can define C; to represent other
types of attacks such as denial of service (DoS) attack.

The corresponding assertion matrix .4 will be a 3 x 14:

A1) = 01 00 0 0 O Ea. (6
=16 00000 -1 9 ©)
Here, we will have:
_|(x(0))
AC(1) _[_dl (1) Eq. (7)

Next, we can apply the verification function as follows:

V(c(t))=Ac(t)-c,
{ X } { Speed, }

_dl (t) _dmin,x (t)

where d,,;, .(f) is the minimum safety longitudinal distances
depending on the speed of both the UUT and the actor and
their positions. The UUT would “pass” the test if the result of
Equation 8 is a vector with non-positive entries in all its rows.
The vector C,, is the reference vector.C,, is to be generated
automatically and contain the speed limit from the road struc-

ture input and the minimum safety distances computed via
rules listed in [48].

Eq. (8)

V. CACC Algorithm

CACCisjust one example of the many ADAS that utilizes connec-
tivity between nearby vehicles to maintain speed while ensuring
safe following distances [49]. CACC was chosen for testing in our
framework as the majority of existing algorithms have been
designed assuming that their communication channels are secure.
However, the mere implementation of wireless communication
renders CACC prone to various attacks, such as FDIs.

A. Mathematical Model of
CACC under FDI Attacks

The wireless connectivity is integrated as part of the system
model, implemented as a feed-forward signal that relays

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024 315

m Vehicle CACC diagram.

Wireless
communication
channel

Vit Vica
Aj+1 i Aj—1
KXiv1 i Xi-1
X;
§
[
5 Vehicle; 1 Vehicle; Vehicle;_,

information through wireless communication. Figure 2 illus-
trates the data flow between CACC vehicles. For a string of
homogeneous vehicles with CACC capabilities following a
leader using a dynamic velocity profile, the dynamics model
of vehicles are described as

x (t)=v,(t)
3 (1) ==, (1) 1 (1) 4, (1)

i

Eq. (9)

where i € {1,...,n} denotes the follower vehicles, n is the
maximum number of follower vehicles, and i — 1 indicates
the leader vehicle. In Equation 9, m; € R is the vehicle’s mass
and b; € R is the friction force between the road and tires.
Alsox; €R,v;€R, u; € R, and d; € R represent the position,
velocity, control input, and external disturbance, respectively.
Furthermore, the parameters x, and v, = &,, for all 4, form (9)
will be the entries of the scene vector in (4).

Assumption 1. The disturbance is assumed to be bounded and
continuous by a known constant, such that||d, (¢)|| < d, for
t > ty, whered, e R, [50].

B. FDI Attack Representation

The FDI attacks are injected into the wireless communication
network of the connected vehicles, resulting in the vehicles
acting upon corrupted data. This causes instability in the
vehicle platoon, increasing the likelihood of collisions. In this
model, we assume that acceleration is the parameter affected
by the attack, interpreted as Equation 10. The attack affects
the output, which transforms it into the observed output

z, (aH (t)) 2a_,(t)+B()

where 7; € R is the attack function, 3; € R is the bounded,
unknown, continuous, and time-varying FDI attack, and a,_;
is the leader’s acceleration.

Eq. (10)

Assumption 2. The FDI attack is assumed to be bounded and
differentiable such thatJ B (t)| <P, where t > t;and B, is a
positive constant [51, 52

Downloaded from SAE International, Friday, January 31, 2025

316 Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

C. Resilient Controller Design

To measure the accuracy of the FDI attack estimation, the
estimation error for the FDI attack, f, :[t,,0) > R", i
defined as

B.(e)25.(6)-5(t) Eq. (1)

where ﬂ € R is the estimation of FDI attack.
To quantify the accuracy of the controller design,
we defined the tracking error signal as

e, (t) £ X, (t)—xH (t)+ D, +x, (t)
where x; € R denotes the desired distance between vehicles
and D; € R is the length of ith vehicle.

To facilitate the design process, the second error signal,

1, is defined as
t, (t) = e, (t) +ae, (t)

where «; € R, is an user-specified gain.
To facilitate the stability analysis, we need to define
another auxiliary error signal7_ € R as

Ra(t) 25 () + a5 (1)

where ;| € R, is a gain defined by users.

Eq. (12)

Eq. (13)

Eq. (14)

1. Controller Design: The control signal was designed
using a Lyapunov stability analysis to ensure that the
system remains stable under FDI attacks. The control
signal is defined as

where K, € R, is an user-specified gain, u, , 2u +B,
and 4;_; € R is the actual control signal of the leader.
2. FDI Attack Estimation: Considering respect to the

spatial domain, the NN estimation of FDI attack can
be described as

BAW! a(V.Td.) Eq. (16)

where W, e RO Ve R represent the esti-
mated ideal weights, n, is the number of neurons in the
hidden layer, o(-) € R * Y is an activation functions
vector, and d; is given as

52 [1, BT]T

Resulting from the stability analysis, the updating
laws for the NN weights are described as

Eq. (17)

= proj(T, (V"6,)¢)) Eq. (19)

and

Vi= proj(FiﬁVf@l‘o—(Vi"‘é})) Eq. (19)
where ¢ =r,—7_, while I';, I'), € R"*"i are definite
positive matrlces, and the function proj(-) denotes the
Lipschitz continuous projection operator defined in [50].

3. Observer Design: The observer is designed in such a
way to ensure that the system remains stable. Based
on the stability analysis in next subsection, the
observer for vehicle i — 1 is designed as

N bi— 3 7.
xiil(t):—ﬁv,;l(t) L()-B+L 7T, Eq. (20)
+a, T —al X +X

where L;; € R, and o; _, € R, are user-defined gains
and X, : [to, 00) — R is the state estimate error, which

is defined as
Eq. (21)

where %, , eR is the estimated position for the
lead vehicle.

D. Stability Analysis

Let V;: R’ x [0,00) > Ry, a radially unbounded, positive
definite, continuously differentiable Lyapunov function
defined as

1. 1. 1 1
v, :Ex’il +Eril +Eef +Erf +H, Eq. (22)
where H;; € R, is written as
H, al, (w r W)+ 1tr(x7Tr;1\7) Eq. (23)
i 2 2 1 i 1

whereV, =V, — V is the inner NN weight errorand W, = W, — W
is the outer NN welght error. Since we used prOJectlon operators
to design W andV,, therefore, W, and V, are bounded, and subse-
quently H; is bounded by|Hp, | < Hp, yaxWhere Hp 0, € Ry
Let 77; € R*" be define as

g 27 il] Eq. (24)
and let y; and y,, be defined as
i Eq.(29

Downloaded from SAE International, Friday, January 31, 2025

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024 317

and
L2 el Eq. (26)

therefore, the Lyapunov function satisfies the
following inequality

l//1I < VL, SWZ, +HL‘,max Eq (27)
Taking the derivative of (22) yields
VL =X ;CH +ET +eiéi +rzr1
. Eq. (28)

Substituting (13), (14), and their time derivatives into (28)
results in the following

)
.—axei)+r;(/;'i—Kl’rl.—ei+di) Eq. (29)

- tr[WiF;ilWi}—tr[Vil"; \?,j

Knowing that a Taylor’s series approximation can
be applied to (21), we have

B =W (V'8)+ W o'(V'8,)V/ 5 +N, Eq. (30)

where

Wo' (V)8)V 8, + W 9(V/5,)+7, Eq.(GD

I|l>

N,

where 9 denotes higher order terms and N, is bounded such
that ||N " <m,,wheren, eR_,

Substltutmg (30) in @) results
VL = _az‘eiz _ai‘;éiz—l -K, riz -L fﬁl +rd,
+ ¢ (WTG(‘ZT@)+WTGI(‘ZT@)‘ZT6; +N,) Eq. (32)
- (W AW)-n(7 £V,
Substituting and updating laws (18) and (19) in (32

cancels the NN terms. By applying Young’s inequality to select
terms in (32) results

N,

71,

1 2
<—|r
2¢,

2

Eq. (33)

- 1 . &
N, < Z"r’” I +3‘||N "
||r|| ||d ||

where ¢, ¢, and ¢, are positive known constants.

Applying Young’s inequality, the Equation 32 becomes

V, <-a % I -L [l —eufe - K, | I
o R R R
2¢, " 26, 2g, '
where ¢, is defined as
A g_o—z i—z 8_2_2
0, = 5 n, + 5 n, + 5 d, Eq. (35)
Re-arranging (34) results in
—(oc,._l)"5(,._1 "2 - (oc,.)"ei "2
1 -
{n-m)k Eq.G6)
1 1 2
K, ————||r
(5
Let the sufficient conditions be defined as
a,_, >0
a >0
1
le > ; Eq (37)

Given the sufficient conditions in (37), a;, and a,, can
be defined as

Eq. (38)

a, 2K, ———— Eq. (39)

From inequality (27), we know that the Lyapunov function
is bounded, therefore, (36) can be written as

. a, a,
V, S-—V, +—H Eq. (40)

i L;,max + qu
Y., Y.,

where 053 min{o;_;, a, o, o,}. Given the sufficient equa-
tions prov1ded in (37) are satisfied, the result in (40) ensures
semi-globally uniformly bounded tracking.

VI. Implementation and
Results

In this section, we intend to delve deeper into the validation
and fine-tuning of these parameters. We will demonstrate

Downloaded from SAE International, Friday, January 31, 2025

318

how variations in these design parameters impact the frame-
work’s ability to adapt, detect faults, and maintain safe system
behavior. This validation process will provide insights into
the optimal parameter configurations that maximize the
framework’s performance across diverse testing scenarios. To
that end, the procedure will be initiated manually without the
use of a neural network.

To test the proposed verification framework, a prototype
was developed using MATLAB/Simulink. The framework was
implemented as a Simulink model that leverages several
MATLAB functions to facilitate, both the verification frame-
work and the simulation environment. The verification frame-
work processes data generated by the simulation at each time
step in order to score the performance of the UUT. The simu-
lation environment is capable of modeling both environ-
mental factors and actor trajectories. At this stage, the frame-
work is capable of conducting test scenarios, recording the
results and relevant data generated during the simulation, and
enabling real-time visualization of testing.

The simulation environment used in this implementation
models are two actors, a leader and the follower. The lead
vehicle operates independently of the follower vehicle, taking
desired speed inputs from the test scenario. The follower
vehicle acts as the UUT and possesses a controller that uses
the leader’s acceleration and position to maintain a desired
following distance.

To leverage our simulation environment, a scenario
generation script was developed. The script is customizable,
taking several parameters as arguments. These are the
maximum FDI attack values f;, the maximum speed of the
actor, the time constant as defined in the actor model, the total
simulation time, and the desired sampling time. These param-
eters are then used to create a vector of random desired veloci-
ties at evenly spaced intervals for the desired simulation
duration. The period between speed changes is derived as
37;_,, where 7,_; is the leader time constant, as utilized in the
actor mathematical model, and ensures that the feasible
scenarios are generated.

For testing the viability of the framework, test scenarios
were developed. Each scenario was generated with a sample
time of 0.01 and lasts for 4,000 seconds of simulated time. In
all of the following scenarios, a random desired speed, between
0 and the speed limit, is sent to the lead vehicle’s trajectory
every 16.5 seconds.t This test vector is recorded as a three-
dimensional matrix containing desired velocities, the injected
FDI attack magnitude, and corresponding times in simula-
tion. Using this standardized test case, the framework enables
point-to-point comparisons of each CACC model throughout
each simulation step. In the following scenarios, the verifica-
tion process will classify the outcome as a failure if the distance
between vehicles falls below the established minimum safe
distance threshold. Furthermore, a failure in terms of velocity
will be recorded when velocity of the following vehicle is more
than the speed limit.

I'The time constant of the lead vehicle is 5.5 seconds. Therefore, it’s reason-
able to generate random desired speed every 16.5 seconds to allow enough
time to the velocity of lead vehicle to reach to 95% of its final value.

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

m Scenario 1 verification check: baseline controller
(top) and resilient controller (bottom).

Velocit: -
- — —Following distance

-

Baseline
Pass/Fail (0/1)
o
[9)]

-

Velocity
— — —Following distance

Resilient
Pass/Fail (0/1)
o
(92

2000 2500 3000 3500 4000

Time (s)

0 500 1000 1500

Scenario 1

1. Description: The first test scenario consisted of cycles
of random desired speeds with a single FDI attack of
30% injected and maintained throughout testing.

2. Results: As shown in Figure 3, the controller equipped
with detection was able to maintain a safe follow
distance throughout testing. The baseline controller,
on the other hand, spent the vast majority of the test
colliding with the lead vehicle due to the attack.

Figure 4 demonstrates the performance of the resilient
controller by presenting each actor’s velocity, the FDI attack
estimate and true value, as well as the distance between
vehicles. As shown, an attack of 30% is injected and held
constant throughout testing. The neural network detects the

m Scenario 1 performance: resilient controller’s
velocity profile (top), FDI estimation performance (middle),
and following distance of both controllers (bottom).

@
o

I 10! = = = Baseline controller
4 el
E 50 [H IIll — — — Resilient controller |
\>./ I| " Leader velocity !
B USELEN IR IR
510 L il Ifl IJ‘J ! 'pl’ -
© AT e A AR
2 v i iy W
WL Yk [
i] 19
0 1 1 e |
30
Actual FDI
;\?20 Estimated FDI
a
10
0 1 1 1 1 1 1 1 i
15
— Baseline controller
£ 10 Resilient controller
3 Desired distance
c 5
2
17}
a o
e B T o T |

0 500 1000 1500 2000 3000 3500 4000

Time (s)

2500

© The Authors

© The Authors

© The Authors

Downloaded from SAE International, Friday, January 31, 2025

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

319

attack and trains upon the signal to ensure adequate tracking
to prevent an unsafe following distance. The baseline
controller, however, is unable to detect and counter this attack,
causing the follower to pass the leader vehicle.

Utilizing the framework and testing results, the controller
parameters were tuned to improve performance. One area for
improvement was in ensuring the follower vehicle followed
the speed limit.

B. Scenario 2

1. Description: In the second scenario, random speeds
were periodically generated with random FDI attacks
injected at each speed change.

2. Results: As shown in Figure 5, the resilient controller
performed well on this test case, maintaining a safe
following distance throughout the majority of testing
and preventing any collision. The baseline controller,
on the other hand, frequently followed the lead
vehicle too closely, which resulted in several crashes.
The data in Figure 6 displays the ability of the FDI
estimator to adapt to the varying signal.

From the performance on the second scenario, the
controller was able to be further tuned. In the second scenario,
the neural network’s parameters were adjusted to improve
FDI estimation to maintain a safe following distance
throughout the entirety of testing.

C. Scenario 3

1. Description: In the third and final test, cycles of
accelerations and decelerations to random speeds
were generated with random FDI attacks injected at
each deceleration. In addition, the acceleration of the
leader is transmitted with additional white noise.

m Scenario 2 verification check: baseline controller
(top) and resilient controller (bottom).

Velocity
— = = Following distance

'

' ¥ R
1 [N} ||||
AR
: I

p I

— 1
=
~J

T

1
"

"F'l n :

1

1

!
il

!
fp

Baseline
Pass/Fail (0/1)
o
o
=1

-

=
e
R T

A I

1 1 1 1 1 1 1 1

Velocity
- = = Following distance

T

Resilient
Pass/Fail (0/1)
o
[

T

L L L L L L L)
0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

© The Authors

© The Authors

m Scenario 2 performance: resilient controller’s
velocity profile (top), FDI estimation performance (middle),
and following distance of both controllers (bottom).

= = = Baseline controller
= = = Resilient controller
Leader velocity

TU] g i h
Rt e
AR

= = = Actual FDI
— = = Estimated FDI

1 1 1 1 i
2000 2500 3000 3500 4000

Time (s)

1 1 1
0 500 1000 1500

2. Results: The results are contained within Figure 7. As
can be seen, the baseline controller encountered
specific speed changes and attack injection
combinations that resulted in an unsafe following
distance at multiple points throughout the test. While
the baseline controller performed drastically better
than the baseline counterpart. The fact that an unsafe
scenario was discovered for this baseline controller
demonstrates the validity and importance of a
framework that adaptively tests a system based on
its performance.

The results of the final test show that our controller
demonstrates a higher level of safety than the baseline
controller. However, it is also evident that the controller
could be refined for even further performance improvements.

IGEETETEA Scenario 3 verification check: baseline controller
(top) and resilient controller (bottom).

- L _ —_— R Velocity]
1-‘-|I ™ iy ! 1 i [\ "11"]= — = Following distance
= o Mepfya ' 1 it " I
03 | i n ! ! TR !
£ = ML R [B gy 1y
2 Sosf gyt g I h
RS 1] n o TR o
o 2 " Vg [N !] M
1 i m ! TR 0!
A I L o d gty 0
0 L LI R 1) iy] N M
1 1 1 1 1 1 1 J
| Velocity
1 = = = Following distance
=S
o =
7 05
T 3
]
o
0
L L L L L L L)
0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

Downloaded from SAE International, Friday, January 31, 2025

320

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

m Scenario 3 performance: resilient controller’s
velocity profile (top), FDI estimation performance (middle),
and following distance of both controllers (bottom).

IS
=3
T

| — — = Baseline controller|
— — — Resilient controller|

=)
T

Velocity (m/s)
o N oW
(=] =]

30

Baseline controller|
Resilient controller|
Q Desired distance

4000

0 500 1000 1500 2000 2500 3000 3500
Time (s)

This process of further testing and refinement is planned and
discussed in our future works (Figure 8).

Remark 3.
Convergence.

Parameter Design and Framework

The design of parameters such as control gains, observe
gains, and neural network structures significantly influences
the convergence and overall performance of the testing frame-
work. These parameters play a crucial role in determining the
adaptability and robustness of the controller and estimator
modules within the framework.

The control gains, for instance, regulate the response
characteristics of the controller, affecting how quickly and
accurately the system adjusts to varying scenarios. Similarly,
the observe gains impact the convergence rate of the estimator
module, influencing its ability to detect and adapt to injected
faults or disturbances.

Moreover, the neural network structures, including archi-
tecture, layer configurations, and learning algorithms, dictate
the learning capacity of the system. Properly designed neural
network structures ensure that the system can effectively
recognize and respond to abnormal scenarios, contributing
to the overall convergence of the testing framework. The gains
of controller, observer, and FDI estimator can be initialized
based on the sufficient conditions given in (37) and

© The Authors

optimization algorithms such as genetic algorithms can
be used to find the best parameters.

D. Threat Model and Risk
Analysis

This section develops and assesses a threat model following
the ISO/SAE 21434: Road Vehicles—Cybersecurity
Engineering standard, focusing on a resilient CACC algorithm
used in two vehicles on a straight highway. Risks linked to the
identified threats can be evaluated to compare the baseline
and resilient controller. This article uses the risk formula
from [53]:

R=1+FxI Eq. (41)
where R represents the risk value, F quantifies aggregated
attack feasibility rating (very low = 0, low = 1, medium = 1.5,
high =2), and I denotes impact rating (negligible = 0, moderate
=1, major = 1.5, severe = 2). For this work, impact is measured as

C
I=2x n Eq. (42)
where C and A denote the number of crashes and attacks,
respectively. The ratio is scaled by two to match the impact
range. Since a CACC system is critical, the impact I could
be severe if the feature is disrupted. But for this research, a
dynamic I is more useful for tuning the proposed controller.
Attack feasibility is assumed to be high, because the test
scenarios have a faulty leader vehicle signal.

The results of all three test scenarios are compiled in Table
1. The risk as well as RMSE of following distance and FDI
estimation are presented for each controller. In all three tests,
the baseline controller exhibited drastically higher risk than
the resilient controller. In addition, the following distance
error for the resilient controller is much less than the
baseline controller.

VIl. Conclusions and
Future Work

The use of a computation model for testing and verifying the
security of CAVs is a valuable tool in ensuring the safety and

TABLE 1 Testing results of baseline and resilient controller expressed in terms of risk and RMSE of following distance and

FDI estimation.

Baseline controller

Test scenario Risk Distance

1 796,459 9.7248 -
2 274,175 5.4087 =
3 234,099 5.4517 -

Resilient controller
FDI est.

Distance

1 0.089 0.9746
1 0.1875 2.6142
1 0.1451 1.8331

© The Authors

Downloaded from SAE International, Friday, January 31, 2025

reliability of these systems. This article proposed a novel frame-
work for testing and verifying the security of CAVs under
attacks. In addition, we discussed a new and original secure
CACC algorithm that combines model and learning-based
techniques to detect and mitigate FDI attacks in real-time. The
proposed framework was implemented in a software-in-the-
loop environment to test the security of CACC under attacks.
We showed that the proposed framework could demonstrate
unsafe situations. As CAVs become increasingly prevalent, it
is crucial that their security is thoroughly tested and verified
to ensure the safety of passengers and other road users.
Despite all of the advantages of the resilient controller, it
requires an accurate model of the leader and follower for the
observer design. In addition, tuning the parameters of the
developed controller is timely. Moreover, the resilient controller
cannot compensate for attacks such as TDS attack. To improve
the performance of the proposed framework, we plan to
develop an adaptive algorithm to adjust the parameters of
controllers in a closed-loop manner to refine their perfor-
mance during testing. Furthermore, we will use machine
learning algorithms to generate edge cases in our future work.

Acknowledgement

Partial support of this research was provided by the National
Science Foundation under Grant No. ECCS-EPCN-2241718
and CNS-1919855. Any opinions, findings, and conclusions,
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
sponsoring agency.

Contact Information

Ala]. Alnaser, PhD

ala.aj.alnaser@gmail.com
aalnaser@floridapoly.edu

References

1. Wang].-S., “Target Crash Population for Crash Avoidance
Technologies in Passenger Vehicles,” Tech. Rep., 2019.

2. Singh S., “Critical Reasons for Crashes Investigated in the
National Motor Vehicle Crash Causation Survey,” DOT HS
812 115, Tech. Rep., NHTSA’s National Center for Statistics
and Analysis, Washington, DC, 2015.

3. Sargolzaei, A., “Security of Cyber-Physical Systems,” MDPI-
Multidisciplinary Digital Publishing Institute, 2022.

4. Liu, L, Liu, S., and Shi, W., “4C: A Computation,
Communication, and Control Co-Design Framework for
CAVs,” IEEE Wireless Communications 28, no. 4 (2021): 42-
48, doi:10.1109/MWC.201.2000512.

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

10.

11.

12.

13.

14.

15.

16.

17.

18.

321

Rathore, R.S., Hewage, C., Kaiwartya, O., and Lloret, J., “In-
Vehicle Communication Cyber Security: Challenges and
Solutions,” Sensors 22, no. 17 (2022): 6679.

Khalil, K., Eldash, O., Kumar, A., and Bayoumi, M.,
“Machine Learning-Based Approach for Hardware Faults
Prediction,” IEEE Transactions on Circuits and Systems I:
Regular Papers 67, no. 11 (2020): 3880-3892, doi:10.1109/
TCSI1.2020.3010743.

Hirsch, T., “A Fault Localization and Debugging Support
Framework Driven by Bug Tracking Data,” arXiv preprint
arXiv:2103.02386, 2021, https://www.frontiersin.org/
articles/10.3389/fpubh.2020.00014/full.

Hayes, K., Blashki, G., Wiseman, J., Burke, S. et al., “Climate
Change and Mental Health: Risks, Impacts and Priority
Actions,” International Journal of Mental Health Systems 12
(2018): 28, doi:https://doi.org/10.1186/s13033-018-0210-6.

Reason, J., “Human Error: Models and Management,” BMJ
320 (2000): 768-770, doi:10.1136/bmj.320.7237.768.

Ahmed, A.-S.K. and Pathan, M., “False Data Injection
Attack (FDIA): An Overview and New Metrics for Fair
Evaluation of Its Countermeasure,” Complex Adaptive
Systems Modeling 8 (2020): 4, doi:https://doi.org/10.1186/
$40294-020-00070-w.

Zhou, B, Li, X., Zang, T., Cai, Y. et al., “The Detection of
False Data Injection Attack for Cyber-Physical Power
Systems Considering a Multi-Attack Mode,” Applied
Sciences 13, no. 19 (2023), doi:https://doi.org/10.3390/
appl31910596.

Wang, J., Sargolzaei, A., Sargolzaei, S., Yen, K. et al,,
“Advanced Driver Assistance Systems: A Pathway to
Autonomous Vehicles,” IEEE Access 7 (2019): 107205-
107226.

Zlomisli¢, V., Fertalj, K., and Sunk, V., “Denial of Service
Attacks, Defences and Research Challenges,” Cluster
Computing 20 (2017): 661-671, doi:https://doi.org/10.1007/
s10586-017-0730-x.

Bellardo, J. and Savage, S., “802.11 Denial-of-Service Attacks:
Real Vulnerabilities and Practical Solutions,” in Proceedings
of the 12th USENIX Security Symposium, Washington, DC,
2003, 15-28, https://www.usenix.org/legacy/events/sec03/
tech/full papers/bellardo/bellardo.pdf.

Naha, A., Teixeira, A., Ahlen, A., and Dey, S., “Sequential
Detection of Replay Attacks,” IEEE Transactions on
Automatic Control 68, no. 3 (2020): 1941-1948.

Jurcut, A.D., Coftey, T., and Dojen, R., “On the Prevention
and Detection of Replay Attacks Using a Logic-Based
Verification Tool,” in Computer Networks, Kwiecief, A., Gaj,
P., and Stera, P., Eds. (Cham: Springer International
Publishing, 2014), 128-137.

Basit, A., Zafar, M., Liu, X,, Javed, A.R. et al., “A
Comprehensive Survey of AI-Enabled Phishing Attacks
Detection Techniques,” Telecommunication Systems 76, no. 1
(2021): 139-154, doi:https://doi.org/10.1007/s11235-020-
00733-2.

Sun, Q., Miao, X., Guan, Z., Wang, J. et al., “Spoofing Attack
Detection Using Machine Learning in Cross-Technology
Communication,” Security and Communication Networks

ala.aj.alnaser@gmail.com
aalnaser@floridapoly.edu
http://dx.doi.org/10.1109/MWC.201.2000512
http://dx.doi.org/10.1109/TCSI.2020.3010743
http://dx.doi.org/10.1109/TCSI.2020.3010743
https://www.frontiersin.org/articles/10.3389/fpubh.2020.00014/full
https://www.frontiersin.org/articles/10.3389/fpubh.2020.00014/full
http://dx.doi.org/https://doi.org/10.1186/s13033-018-0210-6
http://dx.doi.org/10.1136/bmj.320.7237.768
http://dx.doi.org/https://doi.org/10.1186/s40294-020-00070-w
http://dx.doi.org/https://doi.org/10.1186/s40294-020-00070-w
http://dx.doi.org/https://doi.org/10.3390/app131910596
http://dx.doi.org/https://doi.org/10.3390/app131910596
http://dx.doi.org/https://doi.org/10.1007/s10586-017-0730-x
http://dx.doi.org/https://doi.org/10.1007/s10586-017-0730-x
https://www.usenix.org/legacy/events/sec03/tech/full_papers/bellardo/bellardo.pdf
https://www.usenix.org/legacy/events/sec03/tech/full_papers/bellardo/bellardo.pdf
http://dx.doi.org/https://doi.org/10.1007/s11235-020-00733-2
http://dx.doi.org/https://doi.org/10.1007/s11235-020-00733-2

322

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Downloaded from SAE International, Friday, January 31, 2025

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

2021 (2021): 3314595, doi:https://doi.
org/10.1155/2021/3314595.

Sargolzaei, A., Crane, C.D., Abbaspour, A., and Noei, S., “A
Machine Learning Approach for Fault Detection in
Vehicular Cyber-Physical Systems,” in 2016 15th IEEE
International Conference on Machine Learning and
Applications (ICMLA), IEEE, Anaheim, CA, 2016, 636-640.

Noei, S., Sargolzaei, A., Abbaspour, A., and Yen, K., “A
Decision Support System for Improving Resiliency of
Cooperative Adaptive Cruise Control Systems,” Procedia
Computer Science 95 (2016): 489-496.

Alnaser, A., Akbas, M., Sargolzaei, A., and Rahul, R,,
“Autonomous Vehicles Scenario Testing Framework and
Model of Computation,” SAE Intl.] CAV 2, no. 4 (2019): 205-
218, doi:https://doi.org/10.4271/12-02-04-0015.

Banerjee, S.S., Jha, S., Cyriac, J., Kalbarczyk, Z.T. et al,,
“Hands Off the Wheel in Autonomous Vehicles?: A Systems
Perspective on Over a Million Miles of Field Data,” in 2018
48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Luxembourg, June
2018, 586-597.

Gietelink, O., Ploeg, J., Schutter, B.D., and Verhaegen, M.,
“Development of Advanced Driver Assistance Systems with
Vehicle Hardware-in-the-Loop Simulations,” Vehicle System
Dynamics 44, no. 7 (2006): 569-590.

Bullock, D., Johnson, B., Wells, R., Kyte, M. et al.,
“Hardware-in-the-Loop Simulation,” Transportation
Research Part C: Emerging Technologies 12 (2004): 73-89.

Koopman, P. and Wagner, M., “Challenges in Autonomous
Vehicle Testing and Validation,” SAE Int. J. Trans. Safety 4,
no. 1 (2016): 15-24, doi:https://doi.org/10.4271/2016-01-0128.

Mullins, G.E., Stankiewicz, P.G., Hawthorne, R.C., and
Gupta, S.K., “Adaptive Generation of Challenging Scenarios
for Testing and Evaluation of Autonomous Vehicles,” Journal
of Systems and Software 137 (2018): 197-215.

Chen, Y., Chen, S., Zhang, T., Zhang, S. et al., “Autonomous
Vehicle Testing and Validation Platform: Integrated
Simulation System with Hardware in the Loop,” in 2018
IEEE Intelligent Vehicles Symposium (IV), Changshu, China,
2018, 949-956.

Gambi, A., Mueller, M., and Fraser, G., “Automatically
Testing Self-Driving Cars with Search-Based Procedural
Content Generation,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2019 (New York: Association for
Computing Machinery, 2019), 318-328.

Li, N, Oyler, D, Zhang, M., Yildiz, Y. et al., “Game-Theoretic
Modeling of Driver and Vehicle Interactions for Verification
and Validation of Autonomous Vehicle Control Systems,”
arXiv:1608.08589 [cs], August 2016.

Kim, B., Kashiba, Y., Dai, S., and Shiraishi, S., “Testing
Autonomous Vehicle Software in the Virtual Prototyping
Environment,” IEEE Embedded Systems Letters 9, no. 1
(2016): 5-8.

Zofka, M. René, S. Klemm, F. Kuhnt, T. et al., “Testing and
Validating High Level Components for Automated Driving:

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Simulation Framework for Traffic Scenarios,” in IEEE
Intelligent Vehicles Symposium (IV), Gothenburg, Sweden,
2016, 144-150.

Tuncali, C.E., Fainekos, G., Ito, H., and Kapinski, J.,
“Simulation-Based Adversarial Test Generation for
Autonomous Vehicles with Machine Learning Components,”
in IEEE Intelligent Vehicles Symposium (IV), Changshu,
China, 2018, 1555-1562.

Jenkins, I.R., Gee, L.O., Knauss, A., Yin, H. et al., “Accident
Scenario Generation with Recurrent Neural Networks,” in
21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, 2018, 3340-3345.

Tian, Y., Pei, K., Jana, S., and Ray, B., “Deep Test: Automated
Testing of Deep-Neural-Network-Driven Autonomous
Cars,” in Proceedings of the 40th International Conference on
Software Engineering, ACM, Gothenburg Sweden, 2018, 303-
314.

Schultz, A., Grefenstette, J., and De Jong, K., “Adaptive Testing
of Controllers for Autonomous Vehicles,” in Proceedings of the
1992 Symposium on Autonomous Underwater Vehicle
Technology, Washington, DC, 1992, 158-164.

Fremont, D.J., Kim, E., Pant, Y.V,, Seshia, S.A. et al., “Formal
Scenario-Based Testing of Autonomous Vehicles: From
Simulation to the Real World,” in 2020 IEEE 23rd
International Conference on Intelligent Transportation
Systems (ITSC), IEEE, Rhodes, Greece, 2020, 1-8.

Ma, Y., Sun, C., Chen, J., Cao, D. et al., “Verification and
Validation Methods for Decision-Making and Planning of
Automated Vehicles: A Review,” IEEE Transactions on
Intelligent Vehicles 7, no. 3 (2022): 480-498.

Schwarz, C. and Wang, Z., “The Role of Digital Twins in
Connected and Automated Vehicles,” IEEE Intelligent
Transportation Systems Magazine 14, no. 6 (2022): 41-51.

Dona, R., Vass, S., Mattas, K., Galassi, M.C. et al., “Virtual
Testing in Automated Driving Systems Certification. A
Longitudinal Dynamics Validation Example,” IEEE Access
10 (2022): 47661-47672.

Feng, S., Sun, H., Yan, X., Zhu, H. et al,, “Dense
Reinforcement Learning for Safety Validation of
Autonomous Vehicles,” Nature 615, no. 7953 (2023): 620-627.

Chance, G., Ghobrial, A., McAreavey, K., Lemaignan, S. et
al., “On Determinism of Game Engines Used for Simulation-
Based Autonomous Vehicle Verification,” IEEE Transactions
on Intelligent Transportation Systems 23, no. 11 (2022):
20538-20552.

Alnaser, A.]., Sargolzaei, A., and Akbas, M., “Autonomous
Vehicles Scenario Testing Framework and Model of
Computation: On Generation and Coverage,” IEEE Access 9
(2021): 60617-60628.

Watter, M., Springenberg,].T. et al., “Learning a Predictive
Model of the Environment for Model-Based Reinforcement
Learning,” arXiv preprint arXiv:1502.05361, 2015.

Bojarski, M. et al., “End-to-End Learning of Driving Models
for Simulation and Control,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 2016.

http://dx.doi.org/https://doi.org/10.1155/2021/3314595
http://dx.doi.org/https://doi.org/10.1155/2021/3314595
http://dx.doi.org/https://doi.org/10.4271/12-02-04-0015
http://dx.doi.org/https://doi.org/10.4271/2016-01-0128

45.

46.

47.

48.

49.

Downloaded from SAE International, Friday, January 31, 2025

Perera, C. et al., “Generation of Virtual Scenarios for Testing
Autonomous Vehicles Using Progressive Growing of GANS,”
in IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC), Ponta Delgada,
Portugal, 2020.

Kim, J. et al., “Generating Multi-Modal Road Scenarios for
Autonomous Driving Using GANS,” arXiv preprint
arXiv:2103.00020, 2021.

Hartmann, S., Weinmann,, M., Wessel, R., and Klein, R.,
“Streetgan: Towards road network synthesis with generative
adversarial networks,” (2017).

Shalev-Shwartz, S., Shammah, S., and Shashua, A., “On a
Formal Model of Safe and Scalable Self-Driving Cars,” arXiv
preprint arXiv:1708.06374, 2017.

Noei, S., Parvizimosaed, M., and Noei, M., “Longitudinal
Control for Connected and Automated Vehicles in Contested
Environments,” Electronics 10, no. 16 (2021): 1994.

Alnaser et al. / SAE Int. J. of CAV / Volume 7, Issue 3, 2024

51.

52.

53.

323

Sargolzaei, A., Zegers, F., Abbaspour, A., Crane, C. et al,,
“Secure Control Design for Networked Control Systems with
Nonlinear Dynamics under Time-Delay-Switch Attacks,” IEEE
Transactions on Automatic Control 68, no. 2 (2022): 798-811.

Sargolzaei, A., Allen, B.C., Crane, C.D., and Dixon, W.E,,
“Lyapunov-Based Control of a Nonlinear Multiagent System
with a Time-Varying Input Delay under False-Data-Injection
Attacks,” IEEE Transactions on Industrial Informatics 18, no.
4 (2021): 2693-2703.

Sargolzaei, A., “A Secure Control Design for Networked
Control System with Nonlinear Dynamics under False-
Data-Injection Attacks,” in 2021 American Control
Conference (ACC), IEEE, New Orleans, LA, 2021, 2693-2699.
Wang, Y., Wang, Y., Qin, H., Ji, H. et al., “A Systematic Risk
Assessment Framework of Automotive Cybersecurity,”
Automotive Innovation 4, no. 3 (2021): 253-261, doi:https://
doi.org/10.1007/s42154-021-00140-6.

© 2024 The Authors. Published by SAE International. This Open Access article is published under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits distribution, and reproduction in any medium, provided that the original author(s) and the source are credited.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies
solely with the author(s).

http://dx.doi.org/https://doi.org/10.1007/s42154-021-00140-6
http://dx.doi.org/https://doi.org/10.1007/s42154-021-00140-6

Downloaded from SAE International, Friday, January 31, 2025

	10.4271/12-07-03-0020: Employing a Model of Computation for Testing and Verifying the Security of Connected and Autonomous Vehicles
	10.4271/12-07-03-0020: Abstract
	10.4271/12-07-03-0020: Keywords
	I Introduction
	II Literature Review
	III Mathematical Background
	IV Proposed Testing Framework
	A The Structure of the Assertion Matrix A
	B Illustration

	V CACC Algorithm
	A Mathematical Model of CACC under FDI Attacks
	B FDI Attack Representation
	C Resilient Controller Design
	D Stability Analysis

	VI Implementation and Results
	A Scenario 1
	B Scenario 2
	C Scenario 3
	D Threat Model and Risk Analysis

	VII Conclusions and Future Work

	Acknowledgement
	References

