
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

ZEBRA: A Zero-Bit Robust-Accumulation 
Compute-In-Memory Approach for Neural Network 
Acceleration Utilizing Different Bitwise Patterns
Yiming Chen1, Guodong Yin1, Hongtao Zhong1, Mingyen Lee1, Huazhong Yang1, Sumitha George2, 

Vijaykrishnan Narayanan3, and Xueqing Li1 
BNRist, EE, Tsinghua University1, North Dakota State University2, Pennsylvania State University3 

Email: xueqingli@tsinghua.edu.cn 

Abstract—Deploying a lightweight quantized model in 
compute-in-memory (CIM) might result in significant accuracy 
degradation due to reduced signal-noise rate (SNR). To address 
this issue, this paper presents ZEBRA, a zero-bit robust-
accumulation CIM approach, which utilizes bitwise zero 
patterns to compress computation with ultra-high resilience 
against noise due to circuit non-idealities, etc. First, ZEBRA 
provides a cross-level design that successfully exploits value-
adaptive zero-bit patterns to improve the performance in robust 
8-bit quantization dramatically. Second, ZEBRA presents a 
multi-level local computing unit circuit design to implement the 
bitwise sparsity pattern, which boosts the area/energy efficiency 
by 2x-4x compared with existing CIM works. Experiments 
demonstrate that ZEBRA can achieve <1.0% accuracy loss in 
CIFAR10/100 with typical noise, while conventional CIM works 
suffer from > 10% accuracy loss. Such robustness leads to much 
more stable accuracy for high-parallelism inference on large 
models in practice. 

Keywords—Neural Network, Compute-in-Memory, 
Robustness Computing 

I. INTRODUCTION 
In recent years, artificial intelligence (AI) enabled by deep 

neural networks (DNN) has made significant breakthroughs in 
various fields, such as computer vision (CV), natural language 
processing (NLP), and automatic control. It has been proved 
that large models have strong generalization and robustness 
[1]. Unfortunately, it also results in the memory wall issue [2]. 
To overcome the challenges of neural network inference, 

compute-in-memory (CIM) is proposed as a promising 
technique that reduces data movement by performing binary-
format MAC with the support of in-cell or in-array computing 
units after clamping and uniformly quantizing trained 
floating-point weights. CIM has been explored in various 
memory techniques, including SRAM [3], [4], eDRAM [5], 
[6], RRAM [7], FeFET [8], and even ROM [9]. Among them, 
CMOS-based SRAM-CIM and eDRAM-CIM are highlighted 
for their mature fabrication, high reliability, and high energy 
efficiency, which effectively mitigates the data movement for 
many data-intensive applications.  
Nevertheless, despite the macro-level energy efficiency 

advantages of SRAM-CIM, it remains severe challenges to 
support large models due to the constraints of limited capacity 
in the edge devices [9]. The advantages of system-level energy 
efficiency will be diminished as the model size increases. 
Therefore, to address this issue, several techniques across 
different levels have been developed to reduce the parameter 
number in the neural network. 
First, a possible approach on the architecture level is to 

adopt lightweight versions of large models such as MobileNet 
[10], and ShuffleNet [11]. However, these lightweight model 
structures have lower redundancy. It could be challenging on 
analog-based CIM deployment due to low model robustness.  

Second, another approach is employing layer-wise 
compression techniques, such as sparse pruning [12]. Sparse 
pruning involves skipping unnecessary computations for 
certain layers, channels, and feature maps in a large model. 
Unstructured sparsity methods [13] perform no accuracy loss, 
but may not be well-suited for regular CIM arrays. Structured 
layer-wise and channel-wise sparsity methods [12], [14], on 
the other hand, could be more feasible for energy-efficient 
CIM computations with reduced workloads of NNs.  
Third, a parameter-level approach is weight quantization. 

Recently, a promising solution has emerged in the form of a 
vector-wise quantization [15], which allows for efficient 4-bit 
quantization over a wide range and delivers significant 
performance improvement on GPUs. Despite the advantages, 
due to the irregular quantization scales in matrix-vector 
multiplication (MVM), it is difficult to be implemented on the 
CIM macro and PE arrays. 
This work provides new insights into low-bit quantization 

and bitwise structured sparsity in CIM. As shown in Fig. 1(a), 
low-bit quantization can be modeled as a form of bitwise 
sparsity based on 8-bit quantization. However, there is a 
dilemma between the quantization dynamic range and 
resolution. It is noticed that low-bit quantization also suffers 
from low redundancy, which results in accuracy degradation 
under the noise due to hardware non-idealities or malicious 
injection during MVM computation. Therefore, we ask this 
inspiring question: is it possible to introduce a robust zero-bit 
compression method on CIM to deploy a high-efficient 
lightweight model? 
This question is answered affirmatively in this paper by the 

proposed ZEBRA shown in Fig. 1(b) with robust bitwise 
sparsity utilization and corresponding hardware-software co-
optimization. ZEBRA has several highlights: 
First, by introducing value-adaptive zero-bit patterns, we 

prove the key idea that effectively combines the high dynamic 
range and high resolution to perform a high-robustness 8-bit 
quantization. This makes it possible to achieve dramatic 

 
Fig. 1. Challenges and opportunities in (a) conventional CIM and (b) 
proposed ZEBRA architecture. 

 

①
0 0 0 1

① Dilemma between dynamic range
and bit-error cost in low-bitwidth CIM

Large Dynamic Range

Resolution

② Dilemma between energy 
efficiency and robustness

(a) (b)

1000

① Combine the high dynamic range and
high resolution for lower bit-error cost

Large Dynamic Range

Resolution
High Resolution

High Dynamic Range

② Interleaving patterns ZEBRA to achieve high-
robust low-bitwidth MAC for high energy efficiency

①
8-bit Weight

4-bit Weight

Large Value

Small Value

0 0+- +-

...
W1

M
LS
IU

MUX & ADCs

LCU
W16

...

Subarray
Subarray

Subarray
Subarray
Interface

...

Ac
cu
m
ul
at
io
n+2

+0

-1
+0

...

R
ob
us
tn
es
s

Energy Efficiency

High-Bitwidth

Low-Bitwidth
Conventional
CIM Array

This
Work

Large
Error
Cost

Error Bit
Low
Error
Cost



improvement by combining the high area/energy efficiency 
benefits of 4-bit quantization with the high robustness of 8-bit 
quantization. Notably, both uniform and non-uniform 
quantization could be utilized for the proposed value-adaptive 
zero-bit patterns. 
Second, we demonstrate a hardware-software co-optimized 

computing implementation of ZEBRA that achieves the 
aforementioned versatile robust CIM. This work supports 
multi-bit signed input-weight multiplication with the proposed 
multi-level local computing unit (ML-LCU) and the multi-
level signed input unit (ML-SIU). With the support of ML-
LCU and ML-SIU, ZEBRA shows 2x-4x energy efficiency 
improvement and 3-3.5x noise tolerance compared with prior 
CIM works. 
The key contributions of this work ZEBRA include: 
• Encoding method: a robust low-bitwidth data 

encoding method enabled by value-adaptive zero-bi 
patterns for the analog CIM. It overcomes the 
dilemma between the low efficiency of 8-bit 
quantization and the robust issue of 4-bit quantization. 

• Circuits implementation: a local computing unit 
supports multi-level input and weight multiplication. 
Besides, a signed weight mode by signed binary 
encoding is adopted to enhance the bitwise sparsity. 

• Experiments and evaluation: rich results across 
application, macro, and system levels, showing 
performance and robustness improvement brought 
from value-adaptive zero-bit patterns method and 
multi-level local computing unit. 

II. BACKGROUND 

A. Compute-In-Memory (CIM) 
Compute-in-memory is an emerging technique raised 

recently to alleviate the memory access bottleneck between 
memory cells and computing units. 
According to the location of the computing units, CIM 

could be divided into in-cell [3] and in-array [16] designs. In-
cell designs use standard memory cells [17] or add additional 
transistors to implement bit multiplications. This approach can 
greatly increase the upper limit of CIM computing parallelism.  
According to the principle of accumulation, the analog CIM 

could be divided into current-domain [3], charge-domain [18], 
and time-domain [19] designs, as shown in Fig. 2(a)(b)(c), 
respectively.  The current-domain methodology accumulates 
the output of each computing cell by near-linear leakage 
current [20]. However, the inherent bottleneck of the current-
domain CIM is the PVT robustness, preventing the current-
domain CIM from achieving higher parallelism. The time 
domain methodology accumulates output from cells or local 
computing cells (LCC) by the cascaded delay chain. It 
overcomes the read-out interface bottleneck. However, the 
upper bound of parallelism is still limited by the maximum 
latency. The charge-domain methodology accumulates output 

by the principle of charge redistribution. The accuracy of 
charge-domain CIM depends on the capacitors matching, 
which usually has a better PVT robustness than transistors 
discharging. In this case, much higher parallelism of up to one 
thousand rows [18] could be motivated.  
Digital-CIM [21], [22] is recently proposed, as shown in 

Fig. 2(d). To completely overcome the sensing overhead and 
the analog noise margin, the analog-mode accumulation 
modules are replaced with a digital adder tree, leading to 
higher accuracy. However, digital CIM has difficulty in 
exploiting bitwise sparsity by the adder trees with high area 
overhead compared to analog CIM. 

B. Quantization and Sparsity Utilization 
In addition to hardware exploration, software-hardware co-

optimization is also a crucial approach to improving the 
inference efficiency of large neural network models. 
One promising technique is quantization as shown in Fig. 

3(a). One quantization method is quantization-aware training 
(QAT) using fine-tuning. It achieves higher accuracy on 
lightweight models. However, QAT is vulnerable to noise. On 
the contrary, post-training quantization is another practical 
technique without extra training. However, with more 
sensitive weight bits and activation bits in low-bitwidth 
quantization, the robustness would be a challenge in noise-
sensitive analog-based CIM and noisy environments [23]. 
Lightweight models also motivate energy-efficient edge 

smart devices. As shown in Fig. 3(b), the cascaded depthwise 
convolution and pointwise convolution could perform as 
alternatives to larger-scale convolution layers. However, this 
approach poses challenges for other redundancy-dependent 
compression strategies, such as low-bit quantization on CIM. 
Sparsity utilization is another approach to high-efficient 

inference. Thanks to the normal distribution of the weights 
and the ReLU activation function, massive weights and 
activations with value ‘0’ provide an opportunity to alleviate 
the high computing overhead. There are two kinds of sparsity 
utilization methods. One is the unstructured sparsity using a 
sparse matrix multiplication optimization algorithm, and the 
other is the structured sparsity. Unstructured sparsity poses a 
significant challenge in regular CIM arrays. To overcome this 
issue, a structured sparsity [14], as shown in Fig. 3(c), was 
proposed to prune specific parts of the neural network. By 
taking advantage of input-wise, layer-wise, and channel-wise 
structured sparsity, the operation numbers of NNs can be 
significantly reduced, leading to energy-efficient and high-
performance neural network inferences. 

III. PROPOSED ARCHITECTURE ZEBRA 

A. Challenges and Opportunities 
Deployment of low-bit quantized neural networks on the 

charge-domain CIM is a promising technique for achieving 
high-energy-efficient edge intelligence. As mentioned above, 
this design space has been well explored. However, there are 
still challenges and opportunities. 

 
Fig. 2. Different CIM implementation methods in (a) current domain, (b) 
charge domain, (c) time domain, and (d) digital domain. 

 
Fig. 3. Existing neural network compression methods: (a) quantization, (b) 
lightweight model structure, and (c) structured sparsity utilization. 

Cell

Cell

.
.
.

Cell

.
.
.

...

...

...

Ac
tiv
at
io
n
Bu
ffe
r

.
.
.

X

X

Current Domain

.
.
.

X

X

Charge Domain

Cell

(a) (b)

.
.
.

Time Domain
(c)

X

X

.
.
.

Digital Domain

X

X

(d)

.
.
.

X

X

Adder Tree

...
MUX

ADCs ADCs TDCsSensing Interface

Zero Points

+7-7 0

(a)

Scale-0.6 +0.6

(b) (c)

Pruned

Bottleneck # of Para.:

Conv2d # of Para:

!×#×$ + !!

Q
ua
nt
.

!!	×#×$

NH
W



First, there is a conflict between high dynamic range and 
high resolution in low-bit quantization for high-efficient 
inference. Improving quantization accuracy by shrinking the 
quantization scale without increasing precision will result in 
an accuracy loss due to dynamic range reduction. 
Second, despite the advantages of improved matching, the 

charge-domain CIM still requires robust computing to 
maintain accuracy. Non-ideal factors or malicious attackers 
that inject noise in the analog CIM can result in significant 
accuracy loss in lightweight NNs due to low redundancy.  

B. Robust Value-Adaptive Zero-Bit Pattern 
To overcome the challenges above, the proposed ZEBRA 

first explores opportunities for robust analog CIM by 
combining high-dynamic and high-resolution patterns. Note 
that ZEBRA is the first work to utilize zero-bit patterns in the 
CIM structure. It is orthogonal to other sparsity utilization 
techniques and non-uniform quantization methods in the 
design space since they work on a different level. 
Concerning zero-bit pattern in neural networks, we present 

an insight that lower-bit quantization can be viewed as a form 
of structured sparsity by fixing specific bit locations as ‘0’. 
This concept is illustrated in Fig. 4(a). It is noticed that, 
without altering the dynamic range, a 4-bit quantization can 
be considered equivalent to sparsing the lower 4-bit of 8-bit 
data. As shown in Fig. 4(b) and (c), there is a tradeoff between 
the dynamic range and the resolution of quantized parameters: 
At low-bit quantization, it is feasible to reduce the dynamic 

range by a factor of two, as shown in Fig. 4(b). To maintain a 

high data resolution, aggressive range reduction is also an 
option shown in Fig. 4(c), with the overhead of a shrunk 
dynamic range. Thus, there exists a dilemma between 
dynamic range and resolution, which has been discussed by 
various works [15], [24]. The key is to reduce the dynamic 
range by reducing the amount of data in a single quantization 
process. An efficient approach is a vector-wise quantization 
[15]. However, it is a fine-grained dynamic quantization 
technique that is unfriendly to regular CIM arrays. 
It motivates us: is it possible to achieve both high dynamic 

range and high quantized resolution in CIM architecture? 
This paper provides an answer: value-adaptive patterns. Fig. 

5(a) and (b) show two implementation options, respectively. 
Option I presented in Fig. 5(a) attempts to directly apply the 

aforementioned insight to represent a value by selecting 
between a high dynamic range pattern and a high-resolution 
pattern. It switches between two different sparse patterns with 
an extra pattern selection bit. One of the patterns fixed the 
most significant bit (MSB) and the least 3 significant bits to 
‘0’. The other pattern fixed the least significant bit (LSB) and 
the most 3 significant bits to 0. This approach tends to achieve 
both a broad dynamic range for large values and higher 
resolution for small values at different zero-bit patterns while 
maintaining structured computing.  
Option II tries to employ alternating zero-bit patterns, as 

shown in Fig. 5(b), to merge high dynamic range and high 
resolution in both patterns. One pattern is fixed to '0' for odd-
bit locations, while the other pattern is fixed to '0' for even-bit 
locations. In this case, the scaling of the same bit is reduced 
from 4x to 2x. 
Additionally, possible circuit implementations of Option I 

and Option II in the CIM array are discussed in Fig. 5(c) and 
(d), respectively. Fig. 5(d) shows two potential CIM cell 
structures that have been designed separately in the current 
domain and charge domain. The pattern selection bit of each 
parameter determines the gain of local computing units S in 
the current domain or the size of computing capacitors in the 
charge domain. In Option I, the size of S is 4 while in Option 
II, it is 2. This work efficiently implements structured CIM 
arrays, thereby avoiding performance degradation due to 
unstructured sparsity. However, scaling the LCC presents a 
challenge in that more accuracy accumulation is required due 
to a larger S, especially in Option I. What’s worse, the 
complex computing units by the proposed bitwise sparsity 
bring significant area overhead, resulting in a decrease in 
overall area efficiency. Therefore, it is crucial to perform 
hardware and software co-optimization for implementing 
value-adaptive sparsity patterns on the analog CIM. 

C. Multi-Level Local Computing Unit 
First, it should be discussed how to represent a signed 

number. There are two possible implementations: two’s 
complement encoding and signed binary encodings. In this 

 
Fig. 4. The insight into (a) low-bit quantization method, and different 
existing optimization dilemmas towards (b) high dynamic range (but low 
resolution) and (c) high resolution (but low dynamic range). 

 
Fig. 5. Proposed value-adaptive sparsity patterns based on 8-bit 
quantization with (a) Option I: dynamic range and resolution tradeoff, (b) 
Option II: interleaving pattern; (c) CIM method; (d) Potential solutions. 

 
Fig. 6. The operation diagram of (a) the ML-LCU in situations of (b) weight 
bit (W)=0, (c) W=1, pattern selection bit (P) = 0, and (d) W=1, P=1. 

(a)

0 0 1 1 0 0 0 0

0 0 1 1 0 0 1 1

Floating Point: 0.51

8-bit Quant 4-bit Quant

SparsityFP32

(b)

0 1 1 0 0 0 00

0 0 1 1

High
Dynamic
Range

High
Resolution

(c)

0 0 0 1 1 1 1 0

Low
Dynamic
Range

Low
Resolution

Scale (0.01) X Q (51) = 0.51 Scale (0.16) X Q (3) = 0.48 

Scale (0.08) X Q (6) = 0.48 

Clamp

Scale (0.02) X Q (15) = 0.3

0.51 0.51

6 15

W3 W2 W1 W0

Pattern
Selection

Raw Data
W3 W2 W1 W0

Pattern
Selection

Raw Data

0 W3 0W2 0W1 0W0

0W20 W30 W10 W0

248163264

0 W3 0 W2 0 W1 0 W0

0W3 0 W2 0 W1 0 W0

248163264 1128

(a) (b)
Pattern
Selection Raw Data

(c)

Option I: S = 4 Option II : S = 2

x1

Op. I <<1<<2

W3

<<4

Op. II

(d)

0

1

Mul0

1
Pattern
Selection LCC

Mul

<<3

0:

1:

0:

1:

x1

W2

x1

W1

x1

W0

xS

W31

xS

W2

xS

W1

xS

W0

MUX & ADCs

or
<<0<<2<<6 <<4

x1

xS

Scaling (S)

0

1
Pattern
Selection LCC

x1

xS

Scaling (S)

xS-1
Mul

Mul

‘0’

IA1

IA2

P

G
BL

G
BL

P

P

Vcm

Vcm

(a)

W

W

W

W

(b)

VA

P

Vcm

Vcm

W

W

W

W
VA

G
BL

P

P

Vcm

Vcm

(c)

W

W

W

W
VA

G
BL

P

P

Vcm

Vcm

(d)

W

W

W

W
VA

C1

C2

C1

C2

C1

C2

C1

C2



work, to obtain a bitwise ‘0’ pattern, the signed binary 
encoding of weights with a sign bit is necessary. As shown in 
Fig. 7, there are two ways to implement signed binary 
encoding in CIM. The first approach uses separated 
positive/negative weight arrays shown in Fig. 7(a). However, 
it is associated with a severe density overhead due to 
redundant memory cells. Alternatively, adding a sign bit is 
more promising, as shown in Fig. 7(b). This option requires a 
specialized design of the computing unit, but its area overhead 
is much smaller than that of the first scheme. 
Second, to reduce the area overhead introduced by the extra 

computing units, local computing units that share computing 
units with multiple rows are more promising in ZEBRA. 
Based on the discussions above, this work proposes a Multi-

Level Local Computing Unit (ML-LCU) to perform value-
adaptive bitwise sparsity patterns for high-robustness analog 
CIM in the charge domain with low-bit quantization.  
As shown in Fig. 8 (a), the computing macro includes a 

weight array, local computing units (LCUs), multi-level 
signed input units (ML-SIUs), and the peripherals such as 
MUXs and ADCs. The input activations are sent in parallel to 
ML-SIUs for input signal generation. The ML-LCUs read the 
weights from the array and perform multiplication with the 
input signal. The results are then accumulated onto the global 
bitlines (GBL) and sensed by ADCs.  
Fig. 8(b) and (c) depict the circuit design of the ML-LCU 

and the ML-SIU. The ML-SIU handles multi-level activations 
with value-adaptive zero-bit patterns by generating two pairs 
of differential signals based on the input activation (IA) and 
pattern selection bits (IAP). These signals determine the 
bitwise ‘0’ pattern of the input activation. VP and VN 
represent the positive and negative values of the input 
activation bit, respectively. This work implements the signed 
binary encoding by setting the common-mode voltage level to 
‘0’. The IA and IAB indicate the bit value of input activation.  

The waveform diagram of the ML-SIU is shown in Fig. 8(d). 
ML-LCUs perform multiplication based on the signals from 
ML-SIU, the pattern selection bit of the weight, and the 
corresponding data bit. The activation voltage (VA) is selected 
between VP and VN by the sign bit from the weights array.  
Fig. 6(a) presents the detailed structure and operation 

diagram of the proposed ML-LCU. The weights (W) and 
pattern selection bit (P) are read from the local bitline. When 
the weight bit of this column is 0, as shown in Fig. 6(b), the 
lower plate of computing capacitors is set to the common-
mode voltage as value ‘0’. When the weight bit is 1, as shown 
in Fig. 6(c) and (d), the lower plate of capacitors will be 
charged to the input voltage (VA) from the ML-SIU. For 
example, when using value-adaptive zero-bit pattern Option II, 
if the pattern selection bit is 0, the weight scaling is 1. In this 
case, one of the computing capacitors is connected to the VA 
while another one is connected to the common-mode voltage. 
Conversely, if the pattern selection bit is 1, the weight scaling 
is 2, so both computing capacitors should be connected to the 
VA to perform value-adaptive zero-bit patterns. In pattern II, 
C2 = C1, while in pattern I, C2 = 3C1.  
In conclusion, the proposed ML-LCU and ML-SIU 

implement low-cost multi-level signed multiplication with 
only 14T compared with the original 6T LCC. The hardware 
and software co-optimization enables robust zero-bit patterns 
to perform lightweight models on the analog CIM. 

IV. EXPERIMENT 

A. Experiment Setup 
Software Setup. The robustness study in this work is 

evaluated on an end-to-end emulator based on PyTorch. The 
impact on Gaussian noise based on the deviation normalized 
to LSB of weights as prior works [23], [25] is evaluated in the 
emulator to get the output of the CIM macro.  
Hardware Setup. This work is based on the charge-domain 

local computing cell [18], [26]. The layout of ZEBRA is 
implemented in a 28nm CMOS process to evaluate area, 
power, and latency overhead compared with 4-bit quantization. 
The macro-level performance is evaluated on SPICE post-

 
Fig. 7. Two approaches to performing signed binary encoding in the analog 
CIM: (a) separate positive and negative array and (b) sign bit with negative 
accumulation. 

 
Fig. 8. Proposed multi-level local computing unit (ML-LCU) design in (a) 
macro level and (b) array level with (c) multi-level signed input unit circuits 
(ML-SIU) and (d) its waveform diagram. 

 
Fig. 9. Low-bit quantization noise study on (a) L1 norm of quantization 
noise, and different weight distribution on (b) VGG and (c) MobileNetV2. 

 
Fig. 10. Accuracy comparison between the proposed ZEBRA and prior low-
bit quantization methods on (a) CIFAR10 and (b) CIFAR100. 

(a) (b)

Positive 
Weight

ADC ADC

-1

Sign Bit

Negative 
Weight

Conventional Approach This Work

Signed
Binary
Weight

ADC

0 1

0 1

1 0

0

1

1

MSB LSB

1

1

0

Weight

1

-1

-2
Vcm

Vcm

Vcm

Vss

Vcm Vdd

BLM BLL

Sign
Cell

Pat.
Cell

Mag.
Cell

Mag.
Cell

Mag.
Cell

Mag.
Cell

Sign
Cell

Pat.
Cell

Mag.
Cell

Mag.
Cell

Mag.
Cell

Mag.
Cell

Vcm

LCU

MUX

W2

W16

...

LCU

...

...

ADCs

W1

IA

IAB

IAP

IAP

4L
IA

3L
IA

VP
IAP

IAP

LI
A

G
N
D

VN

VP

VN

IA

IAB

IA

Vcm

Vcm

LCU

W2

W16

...

LCU

...

...

W1

M
LS
IU

M
LS
IU

MLLCU 
#1

MLLCU 
#2

MLLCU 
#3

MLSIU

VA

VA

IA

IAP

Sign

3LIA 4LIA 2LIA:Vcm
1LIA GND

(c) (d)

(a) (b)

G
BL

G
BL

(2)

(1)

(-1)

(-2)

0 0 1 2 0 1 2Input 0

LIA: voltage level of input activation (150mV)
Q
ua
nt
iz
at
io
n
N
oi
se

Quantization Level

W
ei
gh
tD
is
tri
bu
tio
n

conv1_2 conv2_1 conv2_2 conv3_1 conv3_2

4-bit
Option I
Option II

conv0 conv1 conv2 conv3 fc

4-bit
Option I
Option II

L1
N
or
m
of
Q
ua
nt
iz
at
io
n

N
oi
se
pe
rL
ay
er
on
VG
G
-8

L1
N
or
m
of
Q
ua
nt
iz
at
io
n

N
oi
se
pe
rL
ay
er
on
M
ob
ile
N
et

(a)

(b) (c)

VGG-8
MobileNet

4-bit
Option I
Option II
Log2

88
89
90
91
92
93
94
95

VGG8 MobileNetV2A
cc
ur
ac
y
on
C
IF
AR
-1
0

FP32 INT8 INT4 Option I Option II

55

60

65

70

75

80

VGG8 MobileNetV2

A
cc
ur
ac
y
on
C
IF
AR
-

10
0

FP32 INT8 INT4 Option I Option II

(a) (b)

A
cc
ur
ac
y 
on
 C
IF
A
R
-1
00

60
55



simulations. The system-level performance is evaluated by 
considering computing arrays with the peripheral same as the 
baseline including read/write IO, control units, and ADCs. 
Dataset Setup. The models explored cover different 

redundancy NNs including VGG-8 and MobileNetV2. The 
datasets evaluated in this work are CIFAR-10 and CIFAR-100. 
Two options mentioned in Section III are discussed as follows. 
(i) Dynamic range and resolution tradeoff: Four data bits 

with a pattern selection bit that decides the zero-bit patterns 
between higher dynamic range and higher resolution. 
(ii) Interleaving pattern: Four data bits with a pattern 

selection bit that decides whether the odd locations are sparse 
or even locations are sparse. 

B. Analysis and Insight 
Fig. 9(a) shows the classical weight distributions on one 

typical convolutional layer of VGG-8 and MobileNetV2 
trained on CIFAR-10 and the quantization noise relative to 
standard 8-bit quantization. The noise introduced by three 
low-bit quantization methods is presented, including 
conventional 4-bit quantization (“4-bit” in Fig. 9), logarithmic 
quantization with a base of 2 (“Log2” in Fig. 9) [24], and 
proposed ZEBRA methods (Option I and Option II).  
Fig. 9(b) and (c) visually reflect the L1 norm quantization 

noise on each layer of VGG-8 and MobileNetV2. Overall, the 
comparison of the noise is consistent with the discussion 
above. However, the conv2 layer in MobileNetV2 is perverse. 
The reason for this exception is that the conv2 layer is a 
channel-wise convolutional layer. The weights of these layers 
do not match the typical distribution. 
Fig. 10 shows the accuracy comparison among different 

methods. It could be found that the low-bit quantization of the 
proposed bitwise value-adaptive zero-bit pattern achieves      
<1% accuracy drop in VGG-8 and <3% accuracy drop in 
MobileNetV2, compared with ~2-3x intolerant accuracy loss 
of the same bitwidth 4-bit quantization.  
Despite the accuracy improvement thanks to lower 

quantization noise, the advantages of the value-adaptive zero-
bit pattern in accuracy may still not motivate the ZEBRA 
design. Therefore, insight is provided into the following 
robustness study. 

C. Robustness Evaluation 
The robustness issue of low-bit quantization is an intrinsic 

difficulty due to the more sensitive output to disturbances. The 
lower quantization resolution makes the impact of noise on 
accuracy greater. Although it is possible to compress the 
quantization range by clamping to improve resolution, the 

shrinking dynamic range also results in more outliers, which 
finally causes an accuracy drop. The proposed value-adaptive 
bitwise zero-bit patterns combine the larger dynamic range at 
the large value and the higher resolution at the small value to 
achieve software accuracy with high robustness. 
Fig. 11 shows the robustness comparison between the 

conventional 4-bit quantization and the proposed ZEBRA. 
Considering the actual analog compute-in-memory hardware, 
there are many possible error sources, such as non-ideal ADCs, 
capacitor mismatching, and external noise injection by 
attackers. To evaluate the robustness of low-bit quantization 
methods without certain hardware, this work abstracts the 
magnitude of noise into the standard deviation of equivalent 
noise [23], [25]. Fig. 11(a) shows the accuracy of VGG-8 with 
noise injection. It could be found that VGG-8 with higher 
redundancy could work on the analog CIM. On the contrary, 
the lightweight MobileNet fails. As shown in Fig. 11(b), 
ZEBRA improves the deviation tolerance with 1% accuracy 
loss by 3-5x. The advantage of the proposed ZEBRA is that it 
enables a lightweight model structure on the analog CIM for 
higher area/energy efficiency and accuracy.  
It is noticed that experiments prove that the robustness 

improvement of Option I is more significant than Option II. 
However, Option II performs higher area and energy 
efficiency than Option I because of the lower capacitor C2 in 
Option II enabled by the lower scaling factor of the weight bit. 

D. Macro Evaluation with Deployment Considerations. 
According to the robustness evaluation above, the proposed 

value-adaptive bitwise zero-bit patterns are proved to have 
high robustness similar to 8-bit quantization in the analog CIM 
and achieve almost no accuracy degradation, overcoming the 
deployment issue of lightweight models in noisy analog CIM. 
However, the proposed sparsity utilization method could not 
be directly mapped into conventional analog CIM, such as the 
SRAM-based charge-domain CIM. Thus, the extra overhead 
introduced by the ML-LCU and ML-SIU should be discussed. 
Table I shows the metrics comparison between the 

conventional charge-domain LCC of baseline and the 
proposed ML-LCU and ML-SIU under the SPICE simulation 
on a 28nm CMOS process. Compared with 8-bit quantization 
with similar accuracy, ZEBRA achieves 20% higher 
parameters density, 3.1x higher energy efficiency, and 2.9x 

 
Fig. 11. Robustness enhancement based on weight equivalent noise on 
CIFAR-10 with (a) VGG-8 (4W-4A) and (b) MobileNet (4W-8A). 

TABLE I.  MACRO-LEVEL PERFORMANCE COMPARISON 

Metrics 
Charge-domain CIM Methodologies 
Baseline a ZEBRA 

Option I 
ZEBRA 
Option II 

Process 28 nm CMOS 
Area of LCC (µm!) 1.04 3.58 2.17 
Macro area (mm!) 0.32 0.36 0.34 
Precision (I-W) 4-4 8-8 8-8 8-8 
Parameter density 

(M/mm2) 0.97 0.50 0.58 0.61 

Energy efficiencyb 
(TOPS/W) 65.4 15.9 64.3 64.6 

Area efficiencyb 
(GOPS/mm2) 390 95.25 346 367 

Accuracyc under noise 80.1% 94.2% 93.7% 93.3% 
SNR Robustness No Yes Yes Yes 
VGG-8 support     
MobileNet support     
Robustness     

a. Charge-domain local computing cell with 16 SRAM rows [18], [26] 
b. OP is defined with the precision of the same column 

c. Accuracy is obtained based on MobileNetV2 (4-8) under a variance of 0.03LSB  

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3C
IF
AR
-1
0
Ac
cu
ra
cy
on

VG
G
-8
(%
)

Noise Normalized to Weight Deviation (LSB)

4-bit
Option I
Option II

50

60

70

80

90

100

0 0.01 0.02 0.03 0.04 0.05C
IF
AR
-1
0
Ac
cu
ra
cy
on

M
ob
ile
N
et
V2
(%
)

Noise Normalized to Weight Deviation (LSB)

4-bit
Option I
Option II

(a)

(b)

3.5X variance tolerance with 1% loss

3X variance tolerance
with 1% loss



higher area efficiency improvement. The improvement of 
ZEBRA in area/energy efficiency comes from the low 
operation numbers by reducing computing bits, which still 
maintains the accuracy and robustness of the original 8-bit 
quantization by value-adaptive zero-bit patterns. 

E. Overhead Discussion and Future Works 
Table I demonstrates that the parameter density of ZEBRA 

suffers 37% overhead compared with 4-bit quantization. This 
is because though only 4-bit is used in sparse computing, 2 
extra bits are still occupied as a sign bit and a pattern selection 
bit. Also, the energy efficiency of ML-LCU and ML-SIU 
deteriorates by 1.8-1.9x compared with the conventional LCC. 
However, only 2% energy efficiency overhead at the system 
level because the computing power consumption of the ML-
LCU and ML-SIU occupies a small proportion of the overall 
system power consumption. What’s more, thanks to the much 
higher noise tolerance compared with the 4-bit quantization 
method, the parallelism of the ZEBRA could be higher to 
improve the performance or the computing capacitors could 
be smaller to improve the energy efficiency. 
In this work, the number of sparsity patterns in a single 

scheme is limited to two due to the hardware overhead 
introduced by the pattern selection bit and the ML-LCU. In 
addition, using multiple options on demand keeps unexplored. 
A reconfigurable ZEBRA architecture with multiple options 
and a hybrid encoding scheme for more patterns will promise 
better system performance and accuracy. 

V. CONCLUSION 
This paper proposes a high-robustness charge-domain 

compute-in-memory (CIM) architecture ZEBRA by value-
adaptive zero-bit patterns to deal with the bottleneck of 
deploying a low-redundancy neural network on analog-based 
CIM. Experiments from the macro level to the system level 
are completed to evaluate the accuracy and the hardware 
performance. On the one hand, ZEBRA is capable of 
tolerating noise due to mismatches, non-ideal interfaces, noise 
injection, etc. On the other hand, ZEBRA shows about 2.9x 
higher area efficiency and 3.1x higher energy efficiency 
compared to existing schemes with the same accuracy, thanks 
to the higher robustness enabled by ZEBRA. 

ACKNOWLEDGMENT 
This work is supported in part by the National Key R&D 

Program of China (2019YFA0706100), in part by NSFC 
(U21B2030, 92264204), and in part by NSF (2008365, 
2132918, 2246149). 

REFERENCES 
[1] L. Floridi and M. Chiriatti, “GPT-3: Its Nature, Scope, Limits, 

and Consequences,” in Minds & Machines, vol. 30, no. 4, pp. 
681–694, Dec. 2020. 

[2] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a 
Tensor Processing Unit,” in ISCA’ 17, Jun. 2017, pp. 1–12. 

[3] X. Si et al., “A Dual-Split 6T SRAM-Based Computing-in-
Memory Unit-Macro With Fully Parallel Product-Sum 
Operation for Binarized DNN Edge Processors,” IEEE Trans. 
Circuits Syst. I, vol. 66, no. 11, pp. 4172–4185, Nov. 2019. 

[4] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An 
Energy-Efficient SRAM With In-Memory Dot-Product 
Computation for Low-Power Convolutional Neural 
Networks,” JSSC, vol. 54, no. 1, pp. 217–230, Jan. 2019. 

[5] S. Ha et al., “A 36.2 dB High SNR and PVT/Leakage-Robust 
eDRAM Computing-In-Memory Macro With Segmented BL 

and Reference Cell Array,” IEEE Trans. Circuits Syst. II, vol. 
69, no. 5, pp. 2433–2437, May 2022. 

[6] S. Xie et al., “16.2 eDRAM-CIM: Compute-In-Memory 
Design with Reconfigurable Embedded-Dynamic-Memory 
Array Realizing Adaptive Data Converters and Charge-
Domain Computing,” in ISSCC’21, San Francisco, CA, USA: 
IEEE, Feb. 2021, pp. 248–250. 

[7] L. Xia et al., “Technological Exploration of RRAM Crossbar 
Array for Matrix-Vector Multiplication,” J. Comput. Sci. 
Technol., vol. 31, no. 1, pp. 3–19, Jan. 2016. 

[8] T. Soliman et al., “Ultra-Low Power Flexible Precision FeFET 
Based Analog In-Memory Computing,” in IEDM' 20, San 
Francisco, CA, USA: IEEE, Dec. 2020, p. 29.2.1-29.2.4. 

[9] Y. Chen et al., “YOLoC: deploy large-scale neural network by 
ROM-based computing-in-memory using residual branch on a 
chip,” in DAC ’22, ACM, Jul. 2022, pp. 1093–1098. 

[10] A. G. Howard et al., “MobileNets: Efficient Convolutional 
Neural Networks for Mobile Vision Applications,” 
arXiv:1704.04861 [cs], Apr. 2017. Accessed: Oct. 18, 2021. 

[11] X. Zhang et al., “ShuffleNet: An Extremely Efficient 
Convolutional Neural Network for Mobile Devices,” in CVPR 
’16, Salt Lake City, UT: IEEE, Jun. 2018, pp. 6848–6856. 

[12] G. Li et al., “SCWC: Structured channel weight sharing to 
compress convolutional neural networks,” Information 
Sciences, vol. 587, pp. 82–96, Mar. 2022. 

[13] C. Hong et al., “Adaptive sparse tiling for sparse matrix 
multiplication,” in PPoPP' 19, pp. 300–314. 

[14] W. Wen et al., “Learning Structured Sparsity in Deep Neural 
Networks,” arXiv: 1608.03665, Oct. 2016. 

[15] S. Dai et al., “VS-Quant: Per-vector Scaled Quantization for 
Accurate Low-Precision Neural Network Inference”. 

[16] C. Eckert et al., “Neural Cache: Bit-Serial In-Cache 
Acceleration of Deep Neural Networks,” in ISCA’18, Los 
Angeles, CA: IEEE, Jun. 2018, pp. 383–396. 

[17] Jintao Zhang et al., “A machine-learning classifier 
implemented in a standard 6T SRAM array,” in ISVLSI ’16, 
Honolulu, HI, USA, Jun. 2016, pp. 1–2. 

[18] H. Jia et al., “A Programmable Heterogeneous Microprocessor 
Based on Bit-Scalable In-Memory Computing,” IEEE J. Solid-
State Circuits, vol. 55, no. 9, pp. 2609–2621, Sep. 2020. 

[19] J. Song et al., “TD-SRAM: Time-Domain-Based In-Memory 
Computing Macro for Binary Neural Networks,” IEEE Trans. 
Circuits Syst. I, pp. 1–11, 2021. 

[20] C.-J. Jhang et al., “Challenges and Trends of SRAM-Based 
Computing-In-Memory for AI Edge Devices,” IEEE Trans. 
Circuits Syst. I, vol. 68, no. 5, pp. 1773–1786, May 2021. 

[21] Y.-D. Chih et al., “16.4 An 89TOPS/W and 16.3TOPS/mm 2 
All-Digital SRAM-Based Full-Precision Compute-In Memory 
Macro in 22nm for Machine-Learning Edge Applications,” in 
ISSCC ’21, San Francisco, CA, USA, Feb. 2021, pp. 252–254. 

[22] F. Tu et al., “A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W 
INT8 Reconfigurable Digital CIM Processor with Unified 
FP/INT Pipeline and Bitwise In-Memory Booth Multiplication 
for Cloud Deep Learning Acceleration,” in ISSCC 2022, San 
Francisco, CA, USA: IEEE, Feb. 2022, pp. 1–3. 

[23] S. K. Gonugondla et al., “Fundamental limits on the precision 
of in-memory architectures,” in ICCAD' 20, Virtual Event 
USA, Nov. 2020, pp. 1–9. 

[24] S.-E. Chang et al., “Mix and Match: A Novel FPGA-Centric 
Deep Neural Network Quantization Framework,” in HPCA' 
21, Seoul, Korea (South): IEEE, Feb. 2021, pp. 208–220. 

[25] A. S. Rekhi et al., “Analog/Mixed-Signal Hardware Error 
Modeling for Deep Learning Inference,” in DAC' 19, Las 
Vegas NV USA: ACM, Jun. 2019, pp. 1–6. 

[26] X. Si et al., “A Local Computing Cell and 6T SRAM-Based 
Computing-in-Memory Macro With 8-b MAC Operation for 
Edge AI Chips,” IEEE J. Solid-State Circuits, vol. 56, no. 9, 
pp. 2817–2831, Sep. 2021. 


