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Abstract—Deploying a lightweight quantized model in
compute-in-memory (CIM) might result in significant accuracy
degradation due to reduced signal-noise rate (SNR). To address
this issue, this paper presents ZEBRA, a zero-bit robust-
accumulation CIM approach, which utilizes bitwise zero
patterns to compress computation with ultra-high resilience
against noise due to circuit non-idealities, etc. First, ZEBRA
provides a cross-level design that successfully exploits value-
adaptive zero-bit patterns to improve the performance in robust
8-bit quantization dramatically. Second, ZEBRA presents a
multi-level local computing unit circuit design to implement the
bitwise sparsity pattern, which boosts the area/energy efficiency
by 2x-4x compared with existing CIM works. Experiments
demonstrate that ZEBRA can achieve <1.0% accuracy loss in
CIFAR10/100 with typical noise, while conventional CIM works
suffer from > 10% accuracy loss. Such robustness leads to much
more stable accuracy for high-parallelism inference on large
models in practice.
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I. INTRODUCTION

In recent years, artificial intelligence (AI) enabled by deep
neural networks (DNN) has made significant breakthroughs in
various fields, such as computer vision (CV), natural language
processing (NLP), and automatic control. It has been proved
that large models have strong generalization and robustness
[1]. Unfortunately, it also results in the memory wall issue [2].

To overcome the challenges of neural network inference,
compute-in-memory (CIM) is proposed as a promising
technique that reduces data movement by performing binary-
format MAC with the support of in-cell or in-array computing
units after clamping and uniformly quantizing trained
floating-point weights. CIM has been explored in various
memory techniques, including SRAM [3], [4], eDRAM [5],
[6], RRAM [7], FeFET [8], and even ROM [9]. Among them,
CMOS-based SRAM-CIM and eDRAM-CIM are highlighted
for their mature fabrication, high reliability, and high energy
efficiency, which effectively mitigates the data movement for
many data-intensive applications.

Nevertheless, despite the macro-level energy efficiency
advantages of SRAM-CIM, it remains severe challenges to
support large models due to the constraints of limited capacity
in the edge devices [9]. The advantages of system-level energy
efficiency will be diminished as the model size increases.
Therefore, to address this issue, several techniques across
different levels have been developed to reduce the parameter
number in the neural network.

First, a possible approach on the architecture level is to
adopt lightweight versions of large models such as MobileNet
[10], and ShuffleNet [11]. However, these lightweight model
structures have lower redundancy. It could be challenging on
analog-based CIM deployment due to low model robustness.
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Fig. 1. Challenges and opportunities in (a) conventional CIM and (b)
proposed ZEBRA architecture.

Second, another approach is employing layer-wise
compression techniques, such as sparse pruning [12]. Sparse
pruning involves skipping unnecessary computations for
certain layers, channels, and feature maps in a large model.
Unstructured sparsity methods [13] perform no accuracy loss,
but may not be well-suited for regular CIM arrays. Structured
layer-wise and channel-wise sparsity methods [12], [14], on
the other hand, could be more feasible for energy-efficient
CIM computations with reduced workloads of NNss.

Third, a parameter-level approach is weight quantization.
Recently, a promising solution has emerged in the form of a
vector-wise quantization [15], which allows for efficient 4-bit
quantization over a wide range and delivers significant
performance improvement on GPUs. Despite the advantages,
due to the irregular quantization scales in matrix-vector
multiplication (MVM), it is difficult to be implemented on the
CIM macro and PE arrays.

This work provides new insights into low-bit quantization
and bitwise structured sparsity in CIM. As shown in Fig. 1(a),
low-bit quantization can be modeled as a form of bitwise
sparsity based on 8-bit quantization. However, there is a
dilemma between the quantization dynamic range and
resolution. It is noticed that low-bit quantization also suffers
from low redundancy, which results in accuracy degradation
under the noise due to hardware non-idealities or malicious
injection during MVM computation. Therefore, we ask this
inspiring question: is it possible to introduce a robust zero-bit
compression method on CIM to deploy a high-efficient
lightweight model?

This question is answered affirmatively in this paper by the
proposed ZEBRA shown in Fig. 1(b) with robust bitwise
sparsity utilization and corresponding hardware-software co-
optimization. ZEBRA has several highlights:

First, by introducing value-adaptive zero-bit patterns, we
prove the key idea that effectively combines the high dynamic
range and high resolution to perform a high-robustness 8-bit
quantization. This makes it possible to achieve dramatic



Activation Buffer

[9)8

Current Domain  Charge Domain Time Domain Digital Domain

(a) (b) (© (@)

Fig. 2. Different CIM implementation methods in (a) current domain, (b)
charge domain, (c) time domain, and (d) digital domain.

improvement by combining the high area/energy efficiency
benefits of 4-bit quantization with the high robustness of 8-bit
quantization. Notably, both uniform and non-uniform
quantization could be utilized for the proposed value-adaptive
zero-bit patterns.

Second, we demonstrate a hardware-software co-optimized
computing implementation of ZEBRA that achieves the
aforementioned versatile robust CIM. This work supports
multi-bit signed input-weight multiplication with the proposed
multi-level local computing unit (ML-LCU) and the multi-
level signed input unit (ML-SIU). With the support of ML-
LCU and ML-SIU, ZEBRA shows 2x-4x energy efficiency
improvement and 3-3.5x noise tolerance compared with prior
CIM works.

The key contributions of this work ZEBRA include:

e Encoding method: a robust low-bitwidth data
encoding method enabled by value-adaptive zero-bi
patterns for the analog CIM. It overcomes the
dilemma between the low efficiency of 8-bit
quantization and the robust issue of 4-bit quantization.

e Circuits implementation: a local computing unit
supports multi-level input and weight multiplication.
Besides, a signed weight mode by signed binary
encoding is adopted to enhance the bitwise sparsity.

e Experiments and evaluation: rich results across
application, macro, and system levels, showing
performance and robustness improvement brought
from value-adaptive zero-bit patterns method and
multi-level local computing unit.

II. BACKGROUND

A. Compute-In-Memory (CIM)

Compute-in-memory is an emerging technique raised
recently to alleviate the memory access bottleneck between
memory cells and computing units.

According to the location of the computing units, CIM
could be divided into in-cell [3] and in-array [16] designs. In-
cell designs use standard memory cells [17] or add additional
transistors to implement bit multiplications. This approach can

greatly increase the upper limit of CIM computing parallelism.

According to the principle of accumulation, the analog CIM
could be divided into current-domain [3], charge-domain [18],
and time-domain [19] designs, as shown in Fig. 2(a)(b)(c),
respectively. The current-domain methodology accumulates
the output of each computing cell by near-linear leakage
current [20]. However, the inherent bottleneck of the current-
domain CIM is the PVT robustness, preventing the current-
domain CIM from achieving higher parallelism. The time
domain methodology accumulates output from cells or local
computing cells (LCC) by the cascaded delay chain. It
overcomes the read-out interface bottleneck. However, the
upper bound of parallelism is still limited by the maximum
latency. The charge-domain methodology accumulates output
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Fig. 3. Existing neural network compression methods: (a) quantization, (b)
lightweight model structure, and (c) structured sparsity utilization.

by the principle of charge redistribution. The accuracy of
charge-domain CIM depends on the capacitors matching,
which usually has a better PVT robustness than transistors
discharging. In this case, much higher parallelism of up to one
thousand rows [18] could be motivated.

Digital-CIM [21], [22] is recently proposed, as shown in
Fig. 2(d). To completely overcome the sensing overhead and
the analog noise margin, the analog-mode accumulation
modules are replaced with a digital adder tree, leading to
higher accuracy. However, digital CIM has difficulty in
exploiting bitwise sparsity by the adder trees with high area
overhead compared to analog CIM.

B. Quantization and Sparsity Utilization

In addition to hardware exploration, software-hardware co-
optimization is also a crucial approach to improving the
inference efficiency of large neural network models.

One promising technique is quantization as shown in Fig.
3(a). One quantization method is quantization-aware training
(QAT) using fine-tuning. It achieves higher accuracy on
lightweight models. However, QAT is vulnerable to noise. On
the contrary, post-training quantization is another practical
technique without extra training. However, with more
sensitive weight bits and activation bits in low-bitwidth
quantization, the robustness would be a challenge in noise-
sensitive analog-based CIM and noisy environments [23].

Lightweight models also motivate energy-efficient edge
smart devices. As shown in Fig. 3(b), the cascaded depthwise
convolution and pointwise convolution could perform as
alternatives to larger-scale convolution layers. However, this
approach poses challenges for other redundancy-dependent
compression strategies, such as low-bit quantization on CIM.

Sparsity utilization is another approach to high-efficient
inference. Thanks to the normal distribution of the weights
and the ReLU activation function, massive weights and
activations with value ‘0’ provide an opportunity to alleviate
the high computing overhead. There are two kinds of sparsity
utilization methods. One is the unstructured sparsity using a
sparse matrix multiplication optimization algorithm, and the
other is the structured sparsity. Unstructured sparsity poses a
significant challenge in regular CIM arrays. To overcome this
issue, a structured sparsity [14], as shown in Fig. 3(c), was
proposed to prune specific parts of the neural network. By
taking advantage of input-wise, layer-wise, and channel-wise
structured sparsity, the operation numbers of NNs can be
significantly reduced, leading to energy-efficient and high-
performance neural network inferences.

III. PROPOSED ARCHITECTURE ZEBRA

A. Challenges and Opportunities

Deployment of low-bit quantized neural networks on the
charge-domain CIM is a promising technique for achieving
high-energy-efficient edge intelligence. As mentioned above,
this design space has been well explored. However, there are
still challenges and opportunities.
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Fig. 5. Proposed value-adaptive sparsity patterns based on 8-bit
quantization with (a) Option I: dynamic range and resolution tradeoff, (b)
Option II: interleaving pattern; (¢) CIM method; (d) Potential solutions.

First, there is a conflict between high dynamic range and
high resolution in low-bit quantization for high-efficient
inference. Improving quantization accuracy by shrinking the
quantization scale without increasing precision will result in
an accuracy loss due to dynamic range reduction.

Second, despite the advantages of improved matching, the
charge-domain CIM still requires robust computing to
maintain accuracy. Non-ideal factors or malicious attackers
that inject noise in the analog CIM can result in significant
accuracy loss in lightweight NNs due to low redundancy.

B. Robust Value-Adaptive Zero-Bit Pattern

To overcome the challenges above, the proposed ZEBRA
first explores opportunities for robust analog CIM by
combining high-dynamic and high-resolution patterns. Note
that ZEBRA is the first work to utilize zero-bit patterns in the
CIM structure. It is orthogonal to other sparsity utilization
techniques and non-uniform quantization methods in the
design space since they work on a different level.

Concerning zero-bit pattern in neural networks, we present
an insight that lower-bit quantization can be viewed as a form
of structured sparsity by fixing specific bit locations as ‘0’.
This concept is illustrated in Fig. 4(a). It is noticed that,
without altering the dynamic range, a 4-bit quantization can
be considered equivalent to sparsing the lower 4-bit of 8-bit
data. As shown in Fig. 4(b) and (c), there is a tradeoff between
the dynamic range and the resolution of quantized parameters:

At low-bit quantization, it is feasible to reduce the dynamic
range by a factor of two, as shown in Fig. 4(b). To maintain a
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Fig. 6. The operation diagram of (a) the ML-LCU in situations of (b) weight
bit (W)=0, (c) W=1, pattern selection bit (P) =0, and (d) W=1, P=1.

high data resolution, aggressive range reduction is also an
option shown in Fig. 4(c), with the overhead of a shrunk
dynamic range. Thus, there exists a dilemma between
dynamic range and resolution, which has been discussed by
various works [15], [24]. The key is to reduce the dynamic
range by reducing the amount of data in a single quantization
process. An efficient approach is a vector-wise quantization
[15]. However, it is a fine-grained dynamic quantization
technique that is unfriendly to regular CIM arrays.

It motivates us: is it possible to achieve both high dynamic
range and high quantized resolution in CIM architecture?

This paper provides an answer: value-adaptive patterns. Fig.
5(a) and (b) show two implementation options, respectively.

Option I presented in Fig. 5(a) attempts to directly apply the
aforementioned insight to represent a value by selecting
between a high dynamic range pattern and a high-resolution
pattern. It switches between two different sparse patterns with
an extra pattern selection bit. One of the patterns fixed the
most significant bit (MSB) and the least 3 significant bits to
‘0’. The other pattern fixed the least significant bit (LSB) and
the most 3 significant bits to 0. This approach tends to achieve
both a broad dynamic range for large values and higher
resolution for small values at different zero-bit patterns while
maintaining structured computing.

Option II tries to employ alternating zero-bit patterns, as
shown in Fig. 5(b), to merge high dynamic range and high
resolution in both patterns. One pattern is fixed to '0' for odd-
bit locations, while the other pattern is fixed to '0' for even-bit
locations. In this case, the scaling of the same bit is reduced
from 4x to 2x.

Additionally, possible circuit implementations of Option I
and Option II in the CIM array are discussed in Fig. 5(c) and
(d), respectively. Fig. 5(d) shows two potential CIM cell
structures that have been designed separately in the current
domain and charge domain. The pattern selection bit of each
parameter determines the gain of local computing units S in
the current domain or the size of computing capacitors in the
charge domain. In Option I, the size of S is 4 while in Option
II, it is 2. This work efficiently implements structured CIM
arrays, thereby avoiding performance degradation due to
unstructured sparsity. However, scaling the LCC presents a
challenge in that more accuracy accumulation is required due
to a larger S, especially in Option I. What’s worse, the
complex computing units by the proposed bitwise sparsity
bring significant area overhead, resulting in a decrease in
overall area efficiency. Therefore, it is crucial to perform
hardware and software co-optimization for implementing
value-adaptive sparsity patterns on the analog CIM.

C. Multi-Level Local Computing Unit

First, it should be discussed how to represent a signed
number. There are two possible implementations: two’s
complement encoding and signed binary encodings. In this
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macro level and (b) array level with (c) multi-level signed input unit circuits
(ML-SIU) and (d) its waveform diagram.

work, to obtain a bitwise ‘0’ pattern, the signed binary
encoding of weights with a sign bit is necessary. As shown in
Fig. 7, there are two ways to implement signed binary
encoding in CIM. The first approach uses separated
positive/negative weight arrays shown in Fig. 7(a). However,
it is associated with a severe density overhead due to
redundant memory cells. Alternatively, adding a sign bit is
more promising, as shown in Fig. 7(b). This option requires a
specialized design of the computing unit, but its area overhead
is much smaller than that of the first scheme.

Second, to reduce the area overhead introduced by the extra
computing units, local computing units that share computing
units with multiple rows are more promising in ZEBRA.

Based on the discussions above, this work proposes a Multi-
Level Local Computing Unit (ML-LCU) to perform value-
adaptive bitwise sparsity patterns for high-robustness analog
CIM in the charge domain with low-bit quantization.

As shown in Fig. 8 (a), the computing macro includes a
weight array, local computing units (LCUs), multi-level
signed input units (ML-SIUs), and the peripherals such as
MUXs and ADCs. The input activations are sent in parallel to
ML-SIUs for input signal generation. The ML-LCUs read the
weights from the array and perform multiplication with the
input signal. The results are then accumulated onto the global
bitlines (GBL) and sensed by ADCs.

Fig. 8(b) and (c) depict the circuit design of the ML-LCU
and the ML-SIU. The ML-SIU handles multi-level activations
with value-adaptive zero-bit patterns by generating two pairs
of differential signals based on the input activation (IA) and
pattern selection bits (IAP). These signals determine the
bitwise ‘0’ pattern of the input activation. VP and VN
represent the positive and negative values of the input
activation bit, respectively. This work implements the signed
binary encoding by setting the common-mode voltage level to
‘0’. The IA and IAB indicate the bit value of input activation.
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The waveform diagram of the ML-SIU is shown in Fig. 8(d).
ML-LCUs perform multiplication based on the signals from
ML-SIU, the pattern selection bit of the weight, and the
corresponding data bit. The activation voltage (VA) is selected
between VP and VN by the sign bit from the weights array.

Fig. 6(a) presents the detailed structure and operation
diagram of the proposed ML-LCU. The weights (W) and
pattern selection bit (P) are read from the local bitline. When
the weight bit of this column is 0, as shown in Fig. 6(b), the
lower plate of computing capacitors is set to the common-
mode voltage as value ‘0’. When the weight bit is 1, as shown
in Fig. 6(c) and (d), the lower plate of capacitors will be
charged to the input voltage (VA) from the ML-SIU. For
example, when using value-adaptive zero-bit pattern Option II,
if the pattern selection bit is 0, the weight scaling is 1. In this
case, one of the computing capacitors is connected to the VA
while another one is connected to the common-mode voltage.
Conversely, if the pattern selection bit is 1, the weight scaling
is 2, so both computing capacitors should be connected to the
VA to perform value-adaptive zero-bit patterns. In pattern II,
C2 =Cl1, while in pattern I, C2 = 3C1.

In conclusion, the proposed ML-LCU and ML-SIU
implement low-cost multi-level signed multiplication with
only 14T compared with the original 6T LCC. The hardware
and software co-optimization enables robust zero-bit patterns
to perform lightweight models on the analog CIM.

IV. EXPERIMENT

A. Experiment Setup

Software Setup. The robustness study in this work is
evaluated on an end-to-end emulator based on PyTorch. The
impact on Gaussian noise based on the deviation normalized
to LSB of weights as prior works [23], [25] is evaluated in the
emulator to get the output of the CIM macro.

Hardware Setup. This work is based on the charge-domain
local computing cell [18], [26]. The layout of ZEBRA is
implemented in a 28nm CMOS process to evaluate area,
power, and latency overhead compared with 4-bit quantization.
The macro-level performance is evaluated on SPICE post-
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simulations. The system-level performance is evaluated by
considering computing arrays with the peripheral same as the
baseline including read/write 1O, control units, and ADCs.
Dataset Setup. The models explored cover different
redundancy NNs including VGG-8 and MobileNetV2. The

datasets evaluated in this work are CIFAR-10 and CIFAR-100.

Two options mentioned in Section III are discussed as follows.
(i) Dynamic range and resolution tradeoft: Four data bits
with a pattern selection bit that decides the zero-bit patterns
between higher dynamic range and higher resolution.
(i1) Interleaving pattern: Four data bits with a pattern
selection bit that decides whether the odd locations are sparse
or even locations are sparse.

B. Analysis and Insight

Fig. 9(a) shows the classical weight distributions on one
typical convolutional layer of VGG-8 and MobileNetV2
trained on CIFAR-10 and the quantization noise relative to
standard 8-bit quantization. The noise introduced by three
low-bit quantization methods is presented, including
conventional 4-bit quantization (“4-bit” in Fig. 9), logarithmic
quantization with a base of 2 (“Log2” in Fig. 9) [24], and
proposed ZEBRA methods (Option I and Option II).

Fig. 9(b) and (c) visually reflect the L1 norm quantization
noise on each layer of VGG-8 and MobileNetV2. Overall, the
comparison of the noise is consistent with the discussion
above. However, the conv2 layer in MobileNetV2 is perverse.
The reason for this exception is that the conv2 layer is a
channel-wise convolutional layer. The weights of these layers
do not match the typical distribution.

Fig. 10 shows the accuracy comparison among different
methods. It could be found that the low-bit quantization of the
proposed bitwise value-adaptive zero-bit pattern achieves
<1% accuracy drop in VGG-8 and <3% accuracy drop in
MobileNetV2, compared with ~2-3x intolerant accuracy loss
of the same bitwidth 4-bit quantization.

Despite the accuracy improvement thanks to lower
quantization noise, the advantages of the value-adaptive zero-
bit pattern in accuracy may still not motivate the ZEBRA
design. Therefore, insight is provided into the following
robustness study.

C. Robustness Evaluation

The robustness issue of low-bit quantization is an intrinsic
difficulty due to the more sensitive output to disturbances. The
lower quantization resolution makes the impact of noise on
accuracy greater. Although it is possible to compress the
quantization range by clamping to improve resolution, the

TABLE L. MACRO-LEVEL PERFORMANCE COMPARISON

Charge-domain CIM Methodologies
Metrics Baseline® ZEBRA ZEBRA
aseitne Option1 | Option I
Process 28 nm CMOS
Area of LCC (um?) 1.04 3.58 2.17
Macro area (mm?) 0.32 0.36 0.34
Precision (I-W) 4-4 8-8 8-8 8-8
Parameter density -
8 0.6
(M/mm?) 0.97 0.50 0.58 ).61
Energy efficiency®
(TOPS/W) 65.4 159 64.3 64.6
Area efficiency®
(GOPS/mm?) 390 95.25 346 367
Accuracy® under noise 80.1% 94.2% 93.7% 93.3%
SNR Robustness No Yes Yes Yes
VGG-8 support @ @ @
MobileNet support @ @ @ @
Robustness @ @ @ @

& Charge-domain local computing cell with 16 SRAM rows [18], [26]
b OP is defined with the precision of the same column
< Accuracy is obtained based on MobileNetV2 (4-8) under a variance of 0.03LSB

shrinking dynamic range also results in more outliers, which
finally causes an accuracy drop. The proposed value-adaptive
bitwise zero-bit patterns combine the larger dynamic range at
the large value and the higher resolution at the small value to
achieve software accuracy with high robustness.

Fig. 11 shows the robustness comparison between the
conventional 4-bit quantization and the proposed ZEBRA.
Considering the actual analog compute-in-memory hardware,
there are many possible error sources, such as non-ideal ADCs,
capacitor mismatching, and external noise injection by
attackers. To evaluate the robustness of low-bit quantization
methods without certain hardware, this work abstracts the
magnitude of noise into the standard deviation of equivalent
noise [23], [25]. Fig. 11(a) shows the accuracy of VGG-8 with
noise injection. It could be found that VGG-8 with higher
redundancy could work on the analog CIM. On the contrary,
the lightweight MobileNet fails. As shown in Fig. 11(b),
ZEBRA improves the deviation tolerance with 1% accuracy
loss by 3-5x. The advantage of the proposed ZEBRA is that it
enables a lightweight model structure on the analog CIM for
higher area/energy efficiency and accuracy.

It is noticed that experiments prove that the robustness
improvement of Option I is more significant than Option II.
However, Option II performs higher area and energy
efficiency than Option I because of the lower capacitor C2 in
Option II enabled by the lower scaling factor of the weight bit.

D. Macro Evaluation with Deployment Considerations.

According to the robustness evaluation above, the proposed
value-adaptive bitwise zero-bit patterns are proved to have
high robustness similar to 8-bit quantization in the analog CIM
and achieve almost no accuracy degradation, overcoming the
deployment issue of lightweight models in noisy analog CIM.
However, the proposed sparsity utilization method could not
be directly mapped into conventional analog CIM, such as the
SRAM-based charge-domain CIM. Thus, the extra overhead
introduced by the ML-LCU and ML-SIU should be discussed.

Table I shows the metrics comparison between the
conventional charge-domain LCC of baseline and the
proposed ML-LCU and ML-SIU under the SPICE simulation
on a 28nm CMOS process. Compared with 8-bit quantization
with similar accuracy, ZEBRA achieves 20% higher
parameters density, 3.1x higher energy efficiency, and 2.9x



higher area efficiency improvement. The improvement of
ZEBRA in area/energy efficiency comes from the low
operation numbers by reducing computing bits, which still
maintains the accuracy and robustness of the original 8-bit
quantization by value-adaptive zero-bit patterns.

E. Overhead Discussion and Future Works

Table I demonstrates that the parameter density of ZEBRA
suffers 37% overhead compared with 4-bit quantization. This
is because though only 4-bit is used in sparse computing, 2
extra bits are still occupied as a sign bit and a pattern selection
bit. Also, the energy efficiency of ML-LCU and ML-SIU
deteriorates by 1.8-1.9x compared with the conventional LCC.
However, only 2% energy efficiency overhead at the system
level because the computing power consumption of the ML-
LCU and ML-SIU occupies a small proportion of the overall
system power consumption. What’s more, thanks to the much
higher noise tolerance compared with the 4-bit quantization
method, the parallelism of the ZEBRA could be higher to
improve the performance or the computing capacitors could
be smaller to improve the energy efficiency.

In this work, the number of sparsity patterns in a single
scheme is limited to two due to the hardware overhead
introduced by the pattern selection bit and the ML-LCU. In
addition, using multiple options on demand keeps unexplored.
A reconfigurable ZEBRA architecture with multiple options
and a hybrid encoding scheme for more patterns will promise
better system performance and accuracy.

V. CONCLUSION

This paper proposes a high-robustness charge-domain
compute-in-memory (CIM) architecture ZEBRA by value-
adaptive zero-bit patterns to deal with the bottleneck of
deploying a low-redundancy neural network on analog-based
CIM. Experiments from the macro level to the system level
are completed to evaluate the accuracy and the hardware
performance. On the one hand, ZEBRA is capable of
tolerating noise due to mismatches, non-ideal interfaces, noise
injection, etc. On the other hand, ZEBRA shows about 2.9x
higher area efficiency and 3.1x higher energy efficiency
compared to existing schemes with the same accuracy, thanks
to the higher robustness enabled by ZEBRA.
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