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Abstract

Under isothermal conditions, phase transitions occur through a nucleation event when conditions

are sufficiently close to coexistence. The formation of a nucleus of the new phase requires the

system to overcome a free energy barrier of formation, whose height rapidly rises as supersaturation

decreases. This phenomenon occurs both in the bulk and under confinement, and leads to a very

slow kinetics for the transition, ultimately resulting in hysteresis, where the system can remain

in a metastable state for a long time. This has broad implications, for instance, when using

simulations to predict phase diagrams or screen porous materials for gas storage applications. Here,

we leverage simulations in an adiabatic statistical ensemble, known as adiabatic grand-isochoric

ensemble (µ, V, L) ensemble, to reach equilibrium states with a greater efficiency than its isothermal

counterpart, i.e., simulations in the grand-canonical ensemble. For the bulk, we show that at low

supersaturation, isothermal simulations converge slowly while adiabatic simulations exhibit a fast

convergence over a wide range of supersaturation. We then focus on adsorption and desorption

processes in naoporous materials, assess the reliability of (µ, V, L) simulations on the adsorption of

Argon in IRMOF-1, and demonstrate the efficiency of adiabatic simulations to predict efficiently

the equilibrium loading during the adsorption and desorption of Argon in MCM-41, a system

that exhibits significant hysteresis. We provide quantitative measures of the increased rate of

convergence when using adiabatic simulations. Adiabatic simulations explore a wide temperature

range, leading to a more efficient exploration of the configuration space.
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I. INTRODUCTION

Systems undergoing a first-order phase transition often exhibit hysteresis. This behavior

can be characterized as a delay in the transition process. Such a lag is further enhanced when

the conditions are close to the temperature at coexistence. Rather than transitioning directly

to the thermodynamically stable phase, the system can remain in a metastable state for a

significant amount of time1. In single-component systems, this is, for instance, the case for

a supercooled liquid prior to the formation of the stable crystal phase or of a supersaturated

vapor prior to the onset of the stable liquid phase2,3. The phenomenon of hysteresis can

be traced back to the large free energy barrier associated with the nucleation of the new,

thermodynamically stable, phase. Theories, like the classical nucleation theory (CNT),

account for the existence of this free energy barrier under isothermal conditions1. CNT

shows that this barrier is due to a competition between a favorable free energy contribution,

arising from the conversion of the metastable phase into the stable phase, and an unfavorable

free energy contribution, arising from the creation of an interface between the metastable

and the stable phase. This result applies to the bulk, but also to nanoconfined systems for

adsorption and desorption processes under subcritical conditions4–12. This has prompted the

development of advanced sampling simulation strategies including, among others, umbrella

sampling2,3, Wang-Landau sampling13–15, or transition-matrix methods16,17. These methods

allow the system to overcome free energy barriers, enabling the simulation of the phase

transition process and providing direct access to the transition pathway. The success of

these methods, most notably of the flat-histogram methods, relies on the extensive sampling

of the configuration space and thus requires generating a very large number of configurations.

Implementing these detailed and computationally intensive simulation methods can become

unpractical in many practical cases such as, for instance, when performing a high-throughput

screening of nanoporous materials for gas storage applications18–26.

There is therefore a need for a robust and efficient method that provides a direct and

rapid access to the equilibrium limit, i.e., the equilibrium phase diagram for the bulk or the

equilibrium value for the loading when studying the adsorption of a fluid in a nanoporous

material. Since the issue can be traced back to the existence of free energy barriers that

are difficult to overcome under isothermal conditions, performing simulations in an adia-

batic ensemble27–29 has emerged as a promising option30–34. For instance, recent work using
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either the adiabatic grand-isochoric (µ, V, L) ensemble35,36 and the adiabatic grand-isobaric

ensemble (µ, P,R) ensemble37,38 has recently been applied to determine bulk phases of single-

component systems39–41 and mixtures42. To our knowledge, simulations in adiabatic ensem-

bles have focused so far on bulk phases and have not been extended yet to explore adsorption

in confined systems. Furthermore, an assessment of their efficiency relative to simulations

in the corresponding isothermal ensemble is needed to establish their potential usefulness in

screening protocols. In this work, we focus on the case of simulations performed in the adia-

batic grand-isochoric (µ, V, L) ensemble and on the corresponding isothermal ensemble, i.e.,

the grand-canonical (µ, V, T ) ensemble. The aim of this work is two-fold. First, we extend

the use of simulations in the (µ, V, L) ensemble for fluid adsorption in nanoporous materials.

To achieve this, we study an adsorption process under supercritical conditions, i.e., a system

for which there is no free energy barrier under isothermal conditions and show that (µ, V, L)

and (µ, V, T ) simulations give results in excellent agreement with each other. Second, we as-

sess the efficiency of adiabatic simulations through a systematic comparison with isothermal

simulations for subcritical systems, both in the bulk and under nanoconfinement. In the

bulk, we show that the convergence rate of adiabatic simulations is essentially independent

of the degree of supersaturation, while the convergence rate of isothermal simulations rapidly

increases as the degree of supersaturation decreases, exhibiting a behavior expected for an

activated process. We show that a similar behavior takes place under nanoconfinement for

high enough degrees of supersaturation. For a low supersaturation, we find that isothermal

simulations exhibit a strong hysteresis and remain in metastable states over the entire course

of the simulations, while adiabatic simulations converge towards the equilibrium state. We

show that this behavior can be traced back to the ability of adiabatic simulations to sample

a wide range of temperature and potential energy, thereby enabling the efficient exploration

of the configuration space and the faster convergence of adiabatic simulations.

The paper is organized as follows. We first present the adiabatic formalism and how

simulations are implemented in the adiabatic grand-isochoric (µ, V, L) ensembles. We then

discuss the potential models used for Argon and for the two nanoporous materials (IRMOF-

1 and MCM-41) considered in this work. Section IV consists of a discussion of the results

obtained in this work, starting with a comparison of adiabatic and isothermal simulations

of the onset of the liquid (bulk) phase of Argon, followed by the validation of (µ, V, L)

simulations to model the supercritical adsorption of Argon in IRMOF-1. We then examine
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the adsorption (condensation) and desorption (evaporation) process in a MCM-41 capillary,

a system known to exhibit hysteresis, to assess the efficiency of adiabatic simulations and

their ability to access the equilibrium value for the loading under conditions that lead to

hysteresis in isothermal simulations. We finally draw the main conclusions from this work

in Section V.

II. FORMALISM

Isothermal ensembles are in thermal contact with a reservoir, allowing for the system’s

temperature T to remain constant, and equal to that of the reservoir, through heat exchanges

between the system and the reservoir43,44. On the other hand, adiabatic ensembles are ther-

mally insulated from their surroundings27,28. This means that energy heat exchanges are

prevented, although other types of energy exchanges may still occur. As a result, temper-

ature is allowed to change and another function, known as heat function, remains constant

in adiabatic ensembles28,38.

As discussed by Graben and Ray38, isothermal and adiabatic ensembles can be seen as

pairs of ensembles whose thermodynamic potentials are related to each other by Legendre

transforms45. An example of such a pair are the canonical ensemble (N, V, T ) and micro-

canonical ensemble (N, V,E), whose thermodynamic potentials are related through

A(N, V, T ) = E − TS(N, V,E) (1)

Here the internal energy E plays the role of heat function, the Helmholtz energy A(N, V, T ) is

the thermodynamic potential for the (N, V, T ) ensemble, and the entropy S(N, V,E) denotes

the thermodynamic potential for the (N, V,E) ensemble.

In this work, we focus the isothermal-adiabatic pair of ensembles that allows for changes

in the number of particles in a system with a constant volume. This pair28,44,46 involves the

well-known grand-canonical ensemble (µ, V, T ) and the adiabatic grand-isochoric (µ, V, L)

ensemble33,35,36,41,47–49. The thermodynamic potentials for the two ensembles are related

through

J(µ, V, T ) = L− TS(µ, V, L) (2)

where the heat function L is the Hill energy defined as

L = E − µN (3)
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and where the functions J(µ, V, T ) and S(µ, V, L) are the thermodynamic potentials for the

grand-canonical and grand-isochoric adiabatic ensemble, respectively.

In an adiabatic ensemble28,37,39,40,42,49, the thermodynamic potential S can be written as

a function of the phase space volume through

S = kB log Ω (4)

This relation applies to the microcanonical ensemble (N, V,E), isobaric-isoenthalpic en-

semble (N,P,H), grand-isobaric adiabatic ensemble (µ, P,R), and to the grand-isochoric

adiabatic ensemble (µ, V, L) we examine in this work. We add for completeness that alter-

native definitions for the entropy using the density of states ω instead of Ω have been shown

to provide equivalent results in the thermodynamic limit40,50.

In the (µ, V, L) ensemble, the phase space volume can be obtained by performing the

following multi-dimensional integral

Ω(µ, V, L) =
∞∑

N=0

1

N !h3N

∫
...

∫
Θ(L+ µN −H) dr3Ndp3N (5)

where Θ denotes the Heaviside function, dr3N and dp3N indicates that the integration is

performed over the 3N position and momenta coordinates for the N particles of the system,

H = K + U is the Hamiltonian for the N -particle system.

Ω(µ, V, L) can then be evaluated using Laplace-transform techniques42,49,51 to provide the

following equation

Ω(µ, V, L) =
∞∑

N=0

1

N !h3N

(2πm)3N/2

Γ(3N
2
+ 1)

∫
...

∫
(L+ µN − U)3N/2 Θ(L+ µN − U) dr3N (6)

After performing the variable change qi = ri/V
1/3 to make the position coordinates

dimensionless, we obtain

Ω(µ, V, L) =
∞∑

N=0

1

N !h3N

(2πm)3N/2

Γ(3N
2
+ 1)

∫
...

∫
V N (L+ µN − U)3N/2 Θ(L+ µN − U) dq3N

(7)

The density of states ω(µ, V, L) can then be obtained by differentiating Ω(µ, V, L) with

respect to L as

ω(µ, V, L) =
∞∑

N=0

(2πm)3N/2

N !h3NΓ(3N
2
)

∫
...

∫
V N (L+ µN − U)3N/2−1 Θ(L+ µN − U) dq3N (8)
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The density of states can then be used to determine the weight factors involved in the

Metropolis acceptance rules29,42,49. Specifically, the general acceptance rule for a move from

an “old” configuration, denoted by o and associated with a weight factor Wo, to a “new”

configuration, denoted by n and associated with a weight factor Wn, can be written as

acc(o → n) =

(
1,

Wn

Wo

)
(9)

with, for instance, the following expression for the weight factor Wo extracted from the

density of states as

Wo =
(2πm)3No/2

No!h3NoΓ(3No

2
)
V N
o (L+ µNo − Uo)

3No/2−1 (10)

in which No and Uo denote the number of particles and potential energy for the old config-

uration o.

This leads to the following acceptance rules for the three types of Monte Carlo moves

involved in the sampling of the (µ, V, L) ensemble. For the translation (No = Nn = N), the

acceptance rule is given by

acc(o → n) =

(
1,

(
L+ µN − Un

L+ µN − Uo

)3N/2−1
)

(11)

For the insertion of a particle (Nn = No + 1), the acceptance rule becomes

acc(o → n) =

(
1,

(2πm)3/2V Γ(3No

2
)

(No + 1)h3Γ(3(No+1)
2

)
× (L+ µ(No + 1)− Un)

(3(No+1)/2)

(L+ µNo − Uo)
3No/2−1

)
(12)

and the acceptance rule for the deletion of a particle (Nn = No − 1) is given by

acc(o → n) =

(
1,

Noh
3Γ(3No

2
)

(2πm)3/2V Γ(3(No−1)
2

)
× (L+ µ(No − 1)− Un)

(3(No−1)/2)

(L+ µNo − Uo)
3No/2−1

)
(13)

III. SIMULATION PROTOCOLS AND MODELS

A. Relation between (µ, V, T ) and (µ, V, L) simulations

We carry out Monte Carlo (MC) simulations in the grand-canonical (µ, V, T ) ensemble

and in the grand-isochoric adiabatic (µ, V, L) ensemble for bulk Ar, as well as for Ar adsorbed

in IRMOF-1 and in MCM-41. There are 3 different types of MC moves in both types of

simulations: (i) random translation of an Ar atom (50% of the MC moves), (ii) insertion
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of an additional Ar atom at a randomly selected position in the system (25 % of the MC

moves), and (iii) deletion of a randomly selected Ar atom from the system (25 % of the MC

moves). The two ensembles and thus the two types of simulations share the same (µ, V ),

which means that we only need to identify the L ↔ T correspondence to define equivalent

sets of (µ, V, L) and (µ, V, T ) simulations. The average Hill energy ⟨L⟩ can be evaluated

directly during (µ, V, T ) simulations according to

⟨L⟩ = ⟨U⟩+ 3

2
⟨N⟩ kBT − µ ⟨N⟩ (14)

where U denotes the potential energy of the system and 3
2
⟨N⟩ kBT is the kinetic energy

for an atomic fluid. Similarly, the average temperature of the system ⟨T ⟩ can be evaluated

during a (µ, V, L) simulation according to the following equation

⟨T ⟩ = L− ⟨U⟩+ µ < N >

3/2 ⟨N⟩ kB
(15)

Averages reported in the next section were collected over simulations of 109 MC steps.

Simulations were carried out using an in-house Monte Carlo code. We provide below the

equations and parameters used to model the interactions for each of the systems examined

in this work.

B. Argon

We model Argon as point particles interacting through a Lennard-Jones interaction pair

potential. The potential energy ULJ(rij) between two atoms i and j is given by

ULJ(rij) = 4ϵ

[(
σ

rij

)12

−
(

σ

rij

)6
]

(16)

where rij denotes the distance between i and j, ϵ denotes the well-depth for the interac-

tion, and σ the exclusion diameter. We use the following values9,52 for the two Lennard-Jones

parameters σ = 3.4 Å and ϵ/kB = 119.8 K. In simulations of bulk liquid Ar, the volume

of the system is equal to V = 512σ3 and periodic boundary conditions are applied in all 3

directions. Interactions between Argon atoms are calculated explicitly up to a distance of

2.5σ with the conventional long-range corrections applied beyond the cutoff distance53.
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C. Adsorption in IRMOF-1

In recent years, metal-organic frameworks20,54–59 and covalent organic frameworks60,61

have emerged as high-performance nanoporous materials for the storage of light gases62,63 in-

cluding, among others, carbon dioxide14,64–67, hydrogen19,60,63,68, noble gases22,69,70, methane

and other light hydrocarbons21,23,71–76. Following previous simulation studies of adsorption

in IRMOF-115,65,66,69, we model the IRMOF-1 structure as a rigid cubic structure with a

lattice constant of 25.832 Å and atomic coordinates as provided by Yaghi et al.55. We add

that the approximation of considering the structure to be rigid was validated for the simula-

tion of adsorption isotherms for light gases in previous work by Greathouse et al.69. In line

with prior work15,65,66, we model the IRMOF-1 structure with the DREIDING force field77,

whose accuracy for the prediction of adsorption isotherms has been established in previous

simulation studies62,63,78. All interactions between Ar atoms from the adsorbed fluid and

the atoms from the IRMOF-1 structure are thus modeled with Lennard-Jones potentials,

and the parameters for the interactions between unlike sites are calculated according to the

Lorentz-Berthelot combining rules79.

D. Adsorption and Desorption in MCM-41

We then model the adsorption and desorption of Argon in a cylindrical pore of 10 atomic

diameters, aligned with the z-axis and with a length, or lateral dimension, denoted by Lz.

The functional form and parameters for the Lennard-Jones model for Argon (σ = 3.4 Å and

ϵ/kB = 119.8 K) and for the nanopore are chosen so as to model a MCM-41 silica mesoporous

molecular sieve and taken from prior work5,9,80. The interactions between the adsorbed

Argon atoms and the nanopore are thus modeled with the following functional form5,52,81,82

Usf (r, R) =

π2ρsϵsfσ
2
sf

{
63
32

[
R−r
σsf

(
1 + r

R

)]−10

F
[
−9

2
,−9

2
; 1;
(
r
R

)2]− 3
[
R−r
σsf

(
1 + r

R

)]−4

F
[
−3

2
,−3

2
; 1;
(
r
R

)2]}
(17)

in which r is the radial coordinate of the Ar atom adsorbed in the pore, R is the pore

radius (here 5σ), ρs is the surface density of adsorption centers and F (α, β; γ; δ) is the

hypergeometric series. The parameters for the solid-fluid interactions were taken as ρsϵsf =

2253 K/nm2 and σsf = 3.17 Å. This functional form accurately models the interaction
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between adsorbate and the structureless cylindrical layer of adsorption centers on the pore

wall83. We carry out simulations of capillary condensation and evaporation in nanopores

with a long lateral dimension Lz = 30σ to allow for the sampling of symmetry breaking

configurations containing bubbles and liquid bridges5,9,10. Periodic boundary conditions are

applied along this lateral direction z. We also calculate explicitly the interactions between

Argon atoms up to a distance of 5σ and neglect the fluid-fluid interactions beyond that cutoff

distance. Finally, for this series of results, we report results in terms of units reduced with

respect to the Lennard-Jones parameters and mass of Argon to facilitate the comparison

with prior work.

IV. RESULTS AND DISCUSSION

A. Argon

We first comment on the results obtained for the bulk. We start by examining the

dependence of L as a function of T and how a correspondence between (µ, V, T ) and (µ, V, L)

simulations can be established. The top left graph in Fig. 1 shows a comparison between

results obtained during (µ, V, T ) and (µ, V, L) simulations for Argon at µ = −230 kJ/kg.

As discussed above, gradually increasing the imposed value for the Hill energy in (µ, V, L)

simulations results in a quasi-linear increase in the average temperature ⟨T ⟩ given by Eq. 15

as shown by the plot. Moreover, we find that an input value of L/kB = 2.356 × 105 K

results in an average temperature ⟨T ⟩ = 93.64 K. We confirm this result by carrying out a

(µ, V, T ) simulation for the state point studied here (µ = −230 kJ/kg, T = 93.64 K) and

calculating the value taken by ⟨L⟩ using Eq. 14. The match observed for the two types

of simulations extends to other properties as shown for the number of atoms in the top

right graph in Fig. 1, which shows that the two types of simulations sample configurations

corresponding to the same state point. The bottom left plot in Fig. 1 extends these findings

to a wider range of µ at T = 93.64 K and shows that an excellent agreement is obtained

between the results obtained with the two types of simulations for the dependence of the

Hill energy as a function of µ. Furthermore, we provide a comparison between (µ, V, T ) and

(µ, V, L) simulation results for the dependence of density on µ at two different temperatures

(T = 93.64 K and T = 120 K) and obtain again an excellent agreement between the results
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FIG. 1: (Top Left) Argon at µ = −230 kJ/kg. Hill Energy L vs. temperature T for a series of

(µ, V, L) simulations for increasing L values (filled triangles) and for a (µ, V, T ) simulation at T =

93.64 K (open circle). (Top Right) Argon at µ = −230 kJ/kg. Comparison between the number of

Argon atoms after the simulations have converged for a (µ, V, L) simulation with L = 2.356× 105

and a (µ, V, T ) simulation at T = 93.64 K. (Bottom Left) Argon at T = 93.64 K. Variation of L as

a function of µ for a series of (µ, V, T ) simulations (open circles) and the corresponding (µ, V, L)

simulations (filled triangles). (Bottom Right) Density ρ vs µ at T = 93.64 K (black) and T = 120 K

(red) obtained with (µ, V, L) simulations (filled triangles) and a (µ, V, T ) simulations (open circles)

obtained with both methods.

The next step consists in comparing the performance of the two methods for state points

that are closer to coexistence and thus more susceptible to a delayed onset of the phase

transition process. We focus on the results obtained at T = 120 K for which the chemical
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FIG. 2: Average number of atoms (top) and average potential energy per particles (bottom) in

bulk Ar at T = 120 K collected over 200 realizations of MC runs of 107 MC steps each. The left

panel shows results obtained for simulations in the (µ, V, T ) ensemble while the right panel shows

results for the corresponding (µ, V, L) simulations. The plots show that the rate at which (µ, V, T )

converge decrease as the conditions approach coexistence (µ = −287.3 kJ/kg) while convergence

is reached within the first 5 × 105 MC steps of the (µ, V, L) simulations for all conditions.

potential at the vapor-liquid coexistence is µcoex = −287.3 kJ/kg for the model14,16. We

examine the number of MC steps necessary to reach convergence for both types of simulations

over many realizations. Each realization is defined as a new set of initial conditions, i.e.,

here, an empty simulation cell (N = 0) and a different seed, and thus sequence, for the

generation of the random numbers used in the simulations. We carry out simulations at

a given temperature (T = 120 K) and selected chemical potentials, ranging from µ =
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−276.52 kJ/kg to µ = −278.6 kJ/kg, both in the (µ, V, T ) and (µ, V, L) ensembles. In the

latter, we fine-tune for each µ the value of the Hill energy L so that the average temperature

matches the temperature of 120 K used in the (µ, V, T ) simulations. The average number of

atoms and average potential energy are plotted against the number of MC steps for each set

of conditions and each type of simulations. During the (µ, V, T ) simulations, as the chemical

potential decreases and approaches the chemical potential at coexistence, the number of

MC steps necessary for filling the box and obtaining the liquid phase becomes larger and

larger. For instance, it takes on average 5×105 MC steps to converge at µ = −276.52 kJ/kg

while it takes 1.8 × 106 MC steps to converge when the chemical potential decreases to

µ = −277.6 kJ/kg and more than 107 MC steps when µ = −278.6 kJ/kg. On the other hand,

Fig. 2 shows that convergence is reached within the first 5 × 105 MC steps of the (µ, V, L)

simulations for all µ values. This is evidenced by both the average number of atoms in the

system (top panels) and the average potential energy per atom (bottom panels). This points

to a much faster convergence of the (µ, V.L) simulations as conditions approach coexistence.

To better understand the reason for the increased efficiency of the adiabatic simulations,

we turn to the computation of the average temperature of the system using Eq. 15 and plot

its variation as a function of the number of MC steps in the left panel of Fig. 3. For all

conditions, the results show that the average temperature of the system takes very large

values at the beginning of the simulations before undergoing a steady decrease towards the

equilibrium value of 120 K. This is a major difference with how configurations are sampled

during a (µ, V, T ) simulation, where the temperature is kept constant at the equilibrium

value and the system has to overcome a free energy barrier close to coexistence. We explore

this point further by showing Nτ the characteristic number of MC steps for convergence in

the right panel of Fig. 3. To obtain Nτ , we fit the change in the average number of atoms

⟨N⟩, averaged over all realizations, as a function of NMC the number of MC steps with the

following functional form

⟨N⟩ = N∞

[
1− exp

(
NMC

Nτ

)]
(18)

in which N∞ denotes the number of atoms in the system when the simulation has con-

verged. The results obtained for the (µ, V, L) and (µ, V, T ) simulations are shown in the right

panel of Fig. 3 as a function of the supersaturation ∆µ = µ−µcoex. Nτ exhibits a markedly

different behavior for the two types of simulations. In the case of (µ, V, T ) simulations, Nτ
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FIG. 3: (Left) Average temperature in bulk Ar collected over 200 realizations of MC runs with 107

MC steps for the µV L simulations (same conditions as in Fig. 2). The dashed line indicates the

equilibrium temperature of 120 K towards which all simulations converge. In the early stages of

the simulation, the average temperature overshoots the equilibrium value thereby ensuring a faster

equilibration than for (µ, V, T ) simulations. (Right) Characteristic number of MC steps Nτ against

the supersaturation ∆µ = µ−µcoex. For (µ, V, T ) simulations, Nτ increases as conditions approach

coexistence and ∆µ decreases. On the other hand, in µV L simulations, Nτ remains constant over

the entire ∆µ range.

increases rapidly as the supersaturation decreases as expected with all nucleation-controlled

events which require the system to overcome a free energy barrier1–3. On the other hand,

Nτ remains quasi-constant over the range of supersaturation studied here. This behavior is

consistent with the absence of any barrier under adiabatic conditions and accounts for the
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increased efficiency of (µ, V, L) simulations as the conditions approach coexistence.

B. Adsorption in IRMOF-1

We now examine the adsorption of Argon in IRMOF-1. First, since prior (µ, V, L) simu-

lation studies have focused on bulk phases so far35,36,41,47–49, we provide an assessment of the

method on a “simple” case, i.e. the adsorption of Argon under supercritical conditions at

T = 150 K and T = 200 K. This means that, since there are no free energy barriers involved

and thus no hysteresis in this case, we can carry out a validation of the (µ, V, L) simulation

method for adsorption processes by comparing the results so obtained to the corresponding

(µ, V, T ) simulation results.

Fig. 4 shows a summary of the results obtained during both sets of simulations, together

with results obtained in prior work using a flat-histogram method15. For both (µ, V, T ) and

(µ, V, L) simulations, gradually increasing the imposed value for µ results in an increase in

the number of atoms adsorbed in IRMOF-1. As with the (µ, V, L) simulations for the bulk,

we fine-tune the value of L for a given µ to obtain an average temperature < T > equal

to either 150 K or 200 K. Fine-tuning L allows us to match the temperature T used in

isothermal simulations or experiments and, as a result, enables a direct comparison with

the adsorption and desorption branches obtained under isothermal conditions. Examples

of snapshots of the configurations so obtained show an unit cell for IRMOF-1, together

with the adsorbed Argon atoms, obtained at different stages of the loading process during

(µ, V, L) simulations at T = 150 K. To facilitate comparison with other work, we plot

the adsorption isotherms as a function of pressure, using data for the µ − P relationship

from previous work14. The absolute isotherms are shown in the left panel of Fig. 4(c) and

show an excellent agreement between the (µ, V, L) and (µ, V, T ) simulation results and with

prior work. To further assess the validity of the (µ, V, L) approach, we also compute the

excess adsorption isotherm obtained using the excess number N e of adsorbed Argon atoms

calculated according to

N e = N − Vvoidρg (19)

in which N is the absolute number of adsorbed Argon atoms computed during the simula-

tions, Vvoid is the void (accessible) volume for the porous material69,84, and ρg is the molar

density of the gas phase in equilibrium with the adsorbed fluid. The excess adsorption
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(a) (b)

(c)

FIG. 4: (a and b) Argon adsorbed in IRMOF-1 at T = 150 K. Snapshot of a unit cell with Ar

atoms adsorbed (shown as pink spheres) obtained during (µ, V, L) simulations for µ = −475 kJ/kg

and L = 3.5 × 104 K (a) and for µ = −375 kJ/kg and L = 1.78 × 105 K (b). (c-Left) Absolute

adsorption isotherms at T = 150 K and T = 200 K obtained in prior work using a flat-histogram

method15 (solid lines), µV T simulations (this work - open symbols), and µV L simulations (this

work - filled symbols). (c-Right) Comparison between excess adsorption isotherms. The excess

isotherms exhibit a maximum since adsorption takes place in the supercritical regime.
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isotherms are shown in the right panel of Fig. 4(c). As discussed by Myers and Monson84,

the presence of a maximum in the excess isotherms indicates that the adsorption process

takes place in the supercritical regime, thereby confirming that, under these conditions,

there is no free energy barrier for the condensation undergone by the adsorbed fluid dur-

ing adsorption. This means that the isothermal and adiabatic simulations both converge

very quickly and thus provide a reliable self-consistency check. Furthermore, the plots show

that there is an excellent agreement between the results obtained for the excess adsorption

isotherms between the results from (µ, V, L) and (µ, V, T ) simulation methods, and with

prior work. Overall, this set of results establish the reliability of the (µ, V, L) simulation

method for the prediction of adsorption isotherms in nanoporous materials.

C. Adsorption and Desorption in MCM-41

To explore the efficiency of the (µ, V, L) simulations and compare it to the (µ, V, T )

simulations, we turn in this section to a system that has been shown previously to exhibit

hysteresis5,9,52, i.e., the adsorption and desorption of Argon in MCM-41.

Peterson and Gubbins80 previously located the conditions for liquid-vapor coexistence for

this system at T ∗ = 0.73 and found a chemical potential at coexistence equal to µ∗
coex =

−10.53. At µ∗
coex, the confined fluid can coexist as a low-density (vapor) adsorbed phase

and as a high-density (liquid) phase. Representative snapshots of these two phases obtained

during (µ, V, L) simulations are shown for the low-density (µ∗ < µ∗
coex) and high-density

(µ∗ > µ∗
coex) phases are shown in Figs. 5(a) and (b). Under isothermal conditions, the system

exhibits hysteresis5,52 over a range of chemical potentials bracketing µ∗
coex and shown in

Fig. 5(c) as dotted lines. This can be seen by carrying out (µ, V, T ) simulations runs starting

from configurations that are initially empty (results labeled as Adsorption - µV T in Fig. 5(c))

or from a completely filled MCM-41 pore (results labeled as Desorption - µV T in Fig. 5(c)).

As shown in Fig. 5(c), this leads to the formation of metastable states beyond the coexistence

line for both the low-density→high-density and high-density→low-density transitions. This

hysteresis is due to the free energy barrier of nucleation of liquid bridges during capillary

condensation and of the free energy barrier of nucleation of vapor bubbles during capillary

evaporation as shown in previous work5,9,52. As shown in Fig. 5, we observe an hysteresis in

the onset of the low-density→high-density transition for µ∗ up to about −10.4 (adsorption
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(c)

FIG. 5: (a and b) Argon adsorbed in MCM-41 at T ∗ = 0.73. The pore structure is omitted and only

the adsorbed Ar atoms are shown as pink spheres. Snapshots taken during (µ, V, L) simulations

in (a) for µ∗ = −10.8 and L∗ = 1709 and in (b) for µ∗ = −10.45 kJ/kg and L∗ = 5083. (c)

Adsorption isotherms. Filled triangles are (µ, V, L) simulation results, open squares are (µ, V, T )

simulation results obtained during desorption (starting from a completely filled MCM-41 pore) and

open circles are (µ, V, T ) simulation results obtained during adsorption (starting from an empty

pore). Black dotted lines bracket the hysteresis region in gray, and the red dashed line is the

coexistence line80.
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FIG. 6: Adsorption of Ar in MCM-41 at T ∗ = 0.73. Average number of atoms (top) and average

potential energy per particles (bottom) collected over 75 realizations of MC runs of 2 × 107 MC

steps each. The left panel shows results obtained for simulations in the (µ, V, T ) ensemble while

the right panel shows results for the corresponding (µ, V, L) simulations.

branch) and in the onset of the high-density→low-density transition for µ∗ down to about

−10.7 (desorption branch). On the other hand, we do not observe any hysteresis under

adiabatic conditions and obtain a single loading curve regardless of the initial configurations

used in the (µ, V, L) simulations. Adiabatic simulations thus provide a direct access to the

equilibrium value for the loading for the entire range of chemical potentials without requiring

the use of advanced and enhanced sampling simulation techniques5,9,52.

To compare the efficiency of the (µ, V, T ) and (µ, V, L) simulation methods, we exam-

ine the rate of convergence for the two approaches as µ∗ approaches the hysteresis region.

First, we start with the adsorption branch and collect averages over many realizations, i.e..
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simulation runs of 2 × 107 MC steps starting from an empty pore and a different sequence

of random numbers. The results so obtained are presented in Fig. 6. Looking at the num-

ber of Argon atoms adsorbed in the pore (top panel of Fig. 6), we find that the rate of

convergence of the simulations towards the high-density adsorbed phase for the (µ, V, T )

simulations decreases as µ∗ decreases from −10.225 to −10.3and approaches the hysteresis

region. Furthermore, as the conditions enter the hysteresis region, the system remains in

the low-density phase when µ∗ is below −10.4 and becomes close to the coexistence value

(µ∗
coex = −10.48). On the other hand, the convergence of the (µ, V, L) simulations quickly

occurs for all values of µ∗. The filling mechanisms are, however, markedly different as evi-

denced by the plots of the potential energy per particle (bottom panels of Fig. 6 - see also

MovieS1 and MovieS2 in the supporting information). In the early stages of the (µ, V, T )

simulations, the Ar atoms are all inserted at energetically favorable locations, resulting in a

low potential energy per particle. On the other hand, early during the (µ, V, L) simulations,

the adiabatic conditions allow atoms to be inserted at energetically unfavorable locations,

leading to an initially positive potential energy per particle for all µ values. This enables

the convergence of the (µ, V, L) simulations towards the equilibrium loading for conditions

that are within the isothermal hysteresis region.

In line with what we observed for the bulk in Fig. 3, the average temperature overshoots

the equilibrium value in the early stages of the simulation, thereby ensuring a faster equili-

bration than for (µ, V, T ) simulations (see Fig. 7). To quantify this, we determine numerically

the characteristic number of MC steps Nτ necessary to reach a loading greater than N∞/e,

where N∞ is the equilibrium value for the loading. We plot Nτ against the supersaturation

∆µ = µ∗ − µ∗
coex for both sets of simulations. For (µ, V, T ) simulations, Nτ increases as

conditions approach coexistence and ∆µ decreases. However, Nτ remains much lower and

of the order of 1.2× 106 steps for the (µ, V, L) simulations over the ∆µ range, which further

shows the efficiency of the adiabatic approach to predict the equilibrium isotherm.

We finally turn to the desorption process for Argon adsorbed in MCM-41 and show the

results collected over a series of realizations, i.e. simulation runs of 20 × 107 MC steps

using different configurations with a filled pore as starting points and different sequences

of random numbers. The results obtained for the number of Argon atoms adsorbed in

the pore are shown for the two simulation methods in the top panels of Fig. 8. In the

case of the isothermal (µ, V, T ) simulations, the rate of convergence towards the low-density
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FIG. 7: Adsorption of Ar in MCM-41 at T ∗ = 0.73. (Left) Average temperature collected over

80 realizations of (µ, V, L) runs of 2 × 107 MC steps. The dashed line indicates the equilibrium

temperature of T ∗ = 0.73 towards which all simulations converge.

adsorbed phase decreases as µ∗ increases from −10.85 to −10.8, and the system remains

in the high-density adsorbed phase when µ is within the isothermal hysteresis region and

µ∗ is close to the coexistence value. On the other hand, under adiabatic conditions, the

convergence of the (µ, V, L) simulations towards the equilibrium value of the loading takes

place more quickly than for isothermal simulations for all conditions and we do not observe

any hysteresis. As provided in the Supplementary Material (MovieS3 and MovieS4), the

emptying mechanisms are very different and account for the different kinetics observed.

During isothermal simulations, emptying the pore involves the system overcoming a free

energy barrier of nucleation of a capillary bubble as shown in Fig. 8(b). This is in agreement

with findings from prior work under isothermal conditions5,9. Under adiabatic conditions,
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(b)

FIG. 8: (a) Desorption of Ar in MCM-41 at T ∗ = 0.73. Average number of atoms (µV T - top

left, µV L - top right), average temperature (µV L - bottom left), and Nτ (both methods - bottom

right) collected over 80 realizations of 2×107 MC steps. (b) Snapshot obtained after 1.8×107 MC

steps of a realization of a desorption (µ, V, T ) run at µ∗ = −10.8 showing the formation of a gas

bubble on the left.
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as can be seen on MovieS4, no such bubbles form and the pore quickly becomes empty.

The temperature plot shown in the bottom left panel of Fig. 8(a) provides further insight

into the efficiency of the adiabatic simulations. The initial configurations for the desorption

runs consist of filled pores and out-of-equilibrium, i.e., are effectively at a temperature much

lower than the equilibrium temperature. As previously discussed, the temperature of the

system can change during adiabatic simulations. As Argon atoms desorb, the temperature

of the system increases (see Fig. 8(b)) and the system evolves towards equilibrium. When µ∗

increases beyond −10.65 and approaches µ∗
coex, the initial temperature increases and becomes

close to the equilibrium temperature. We find that its evolution towards the equilibrium

value for the temperature is slower, resulting in an overall lower rate of convergence observed

in the right panel of Fig. 8(b). We observe nonetheless, for all µ∗ and supersaturation

values, the adiabatic (µ, V, L) simulations converge towards the equilibrium loading, in sharp

contrast with their isothermal (µ, V, T ) counterparts.

V. CONCLUSIONS

In this work, we examine how adiabatic simulations can alleviate the impact of free

energy barriers on the efficiency of isothremal simulations in bulk and nanoconfined sys-

tems. The main results from this work are as follows. We demonstrate the reliability of

adiabatic simulations in the adiabatic grand-isochoric (µ, V, L) ensemble for adsorption pro-

cesses through the example of the supercritical adsorption of Argon in the metal-organic

framework IRMOF-1. This system, in which the supercritical conditions ensure that there

is no free energy barrier, provides a benchmark to validate the first application of (µ, V, L)

simulations to study adsorption in a nanoporous material. Results are found to be in excel-

lent agreement with the adsorption isotherms predicted by the isothermal grand-canonical

(µ, V, T ) simulations and by flat-histogram methods15, thereby establishing the reliability of

the (µ, V, L) approach to predict adsorption properties. The results also show how the value

for the Hill energy L that corresponds to a specific temperature can be rapidly interpolated

and allow for a direct comparison with data obtained experimentally at a given T (see, it

e.g., Fig. 1 for a plot of the L − T interdependence. Furthermore, we provide a thorough

asssessment of the efficiency of (µ, V, L) simulations, when compared to isothermal (µ, V, T )

simulations, both in the bulk and in nanoconfined systems. In the bulk, we show that the
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convergence rate of adiabatic simulations is essentially independent of the degree of supersat-

uration, while the convergence rate of isothermal simulations rapidly increases as the degree

of supersaturation decreases, exhibiting a behavior expected for an activated process. Under

nanoconfinement, we observe a similar behavior at high supersaturation. Moreover, at low

supersaturation, isothermal simulations exhibit a strong hysteresis and remain in metastable

states. On the other hand, adiabatic simulations converge towards the equilibrium state.

We relate these results to the ability of adiabatic simulations to sample a wide range of

temperature and potential energy. Thus, adiabatic simulation efficiently explore the con-

figuration space and exhibit a faster convergence than isothermal simulations. Adiabatic

(µ, V, L) simulations therefore provide a robust and efficient method that gives a direct and

rapid access to the equilibrium loading and phase diagram under nanoconfinement when

studying the adsorption and desorption of a fluid in a nanoporous material. The success

and efficiency of adiabatic simulation methods could be especially useful in many practical

cases such as, for instance, when performing a high-throughput screening of nanoporous

materials for gas storage applications18–26.

VI. SUPPLEMENTARY MATERIAL

Movies in .mp4 format are provided for the filling mechanism of MCM-41 under isothermal

conditions (MovieS1) and under adiabatic conditions (MovieS2). We also provide movies

for the emptying mechanism of MCM-41 under isothermal conditions (MovieS3) and under

adiabatic conditions (MovieS4).

Acknowledgments

Partial funding for this research was provided by the National Science Foundation through

award CHE-2240526. This work used the Open Science Grid through allocation TG-

CHE210056 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services &

Support (ACCESS) program85, which is supported by National Science Foundation grants

24



#2138259, #2138286, #2138307, #2137603, and #2138296.

1 P. G. Debenedetti, Metastable liquids: concepts and principles (Princeton University Press,

2020).

2 S. Auer and D. Frenkel, Nature 409, 1020 (2001).

3 C. Desgranges and J. Delhommelle, Phys. Rev. Lett. 123, 195701 (2019).

4 D. N. Theodorou, Ind. Eng. Chem. Res. 49, 3047 (2010).

5 A. Vishnyakov and A. V. Neimark, J. Chem. Phys. 119, 9755 (2003).
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24 M. Erdoôs, M. F. De Lange, F. Kapteijn, O. A. Moultos, and T. J. Vlugt, ACS Appl. Mater.

Interfaces 10, 27074 (2018).

25 G. Ercakir, G. O. Aksu, and S. Keskin, J. Chem. Phys. 160 (2024).

26 W. Park, K. H. Oh, D. Lee, S.-Y. Kim, and Y.-S. Bae, Chem. Eng. J. 452, 139189 (2023).

27 J. Haile and H. Graben, Mol. Phys. 40, 1433 (1980).

28 H. Graben and J. R. Ray, Phys. Rev. A 43, 4100 (1991).

29 J. R. Ray, Phys. Rev. A 44, 4061 (1991).
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58 T. Düren, Y.-S. Bae, and R. Q. Snurr, Chem. Soc. Rev. 38, 1237 (2009).

59 C. Desgranges and J. Delhommelle, Mol. Syst. Des. Eng. 6, 52 (2021).

60 S. S. Han, H. Furukawa, O. M. Yaghi, and W. A. I. Goddard, J. Am. Chem. Soc. 130, 11580

(2008).

61 P. J. Waller, F. Gándara, and O. M. Yaghi, Acc. Chem. Res. 48, 3053 (2015).

62 G. Garberoglio, A. I. Skoulidas, and J. K. Johnson, J. Phys. Chem. B 109, 13094 (2005).

63 G. Garberoglio, Langmuir 23, 12154 (2007).
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