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Genome sequencing for agriculturally important Rosaceous crops has made rapid progress both in completeness and annotation qual-
ity. Whole genome sequence and annotation give breeders, researchers, and growers information about cultivar-specific traits such as
fruit quality and disease resistance, and inform strategies to enhance postharvest storage. Here we present a haplotype-phased,
chromosomal-level genome of Malus domestica, ‘WA 38’, a new apple cultivar released to market in 2017 as Cosmic Crisp®. Using
both short and long-read sequencing data with a k-mer-based approach, chromosomes originating from each parent were assembled
and segregated. This is the first pome fruit genome fully phased into parental haplotypes in which chromosomes from each parent are
identified and separated into their unique, respective haplomes. The two haplome assemblies, ‘Honeycrisp’ originated HapA and
‘Enterprise’ originated HapB, are about 650 Megabases each, and both have a BUSCO score of 98.7% complete. A total of 53,028
and 54,235 genes were annotated from HapA and HapB, respectively. Additionally, we provide genome-scale comparisons to ‘Gala’,
‘Honeycrisp’, and other relevant cultivars highlighting major differences in genome structure and gene family circumscription. This as-
sembly and annotation was done in collaboration with the American Campus Tree Genomes project that includes "WA 38" (Washington
State University), ‘d’Anjou’ pear (Auburn University), and many more. To ensure transparency, reproducibility, and applicability for any
genome project, our genome assembly and annotation workflow is recorded in detail and shared under a public GitLab repository. All
software is containerized, offering a simple implementation of the workflow.

Keywords: apple genomics; Malus domestica "WA 38'; genome sequence; comparative genomics; plant genomics; haplotype-resolved
assembly; genome annotation

2022). One such cultivar is ‘WA 38’, commercially released as
Cosmic Crisp® in 2017 by the Pome Fruit Breeding Program at
Washington State University’'s (WSU) Tree Fruit Research and
Extension Center (Fig. 1a, b) and has reached the top 10 best selling
apple cultivars in the United States (Truscott 2023). ‘WA 38’ is a

Introduction

For economically important crop species, having full-resolution
reference genomes aids in the understanding of traits associated
with commodity quality, disease resistance, long-term storage,

and shelflife. Apple (Malus domestica) is the number one consumed
fruitin the United States, with a Farm-Gate Revenue of $3.2 billion
in the United States (USApple 2024) and $78 billion globally (FGN
2020). There are over 7,000 apple varieties grown worldwide
(Washington Apple Commission 2021), each with unique colors,
flavors, and textures (NC State Extension n.d.). Therefore, a single
genome is unlikely to capture the complexity of all cultivars with-
in this highly heterozygous species (Li et al. 2022b; Zhang et al.

cross between ‘Honeycrisp’ and ‘Enterprise’, made using classical
breeding methods in 1997. One parent, ‘Honeycrisp’, is well-
known for its crisp texture, firmness retention in storage, disease
resistance, and cold hardiness, butis highly susceptible to produc-
tion and postharvest issues (Khan et al. 2022). The other parent,
‘Enterprise’, is an easy-to-grow cultivar that has extended
postharvest storage capabilities, however, it is not widely culti-
vated commercially due to its less desirable eating quality
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Fig. 1. ‘WA 38’, a cultivar of apple developed by the Washington State University Apple Breeding Program (a cross between ‘Honeycrisp’ and ‘Enterprise’),
marketed as Cosmic Crisp®. a) ‘WA 38’ apples ready for harvest on the mother tree, located at the WSU and USDA-ARS Columbia View Research Orchard
near Orondo, WA, USA. b) The ‘WA 38 mother tree. c, d) Green spot, a corking disorder which results in green blemishes on the fruit peel and brown, corky
cortex tissue. Symptom severity generally increases during fruit maturation and time in storage, resultingin cullage. e) Natural peel greasiness as a result
of more advanced maturity at harvest can interfere with artificial waxes applied in the packinghouse after removal from postharvest storage, creating
unappealing, dull spots. f) Green Spot symptoms can begin to appear while fruit is still developing on the tree. Photo Credits: A&B: Heidi Hargarten/
USDA-ARS; C&D: Bernardita Sallato/WSU; E: Carolina Torres/WSU; F: Ross Courtney/Good Fruit Grower.

(Crosby et al. 1994). Their resulting cross has been met with favor-
able reviews for its appealing color, texture, flavor, cold hardiness,
long-term storage capabilities (>1 year), and scab resistance (Evans
et al. 2012). However, it inherited undesirable traits as well (Fig. 1c,
d, e, and f), such as a propensity for physiological symptoms that
may be related to mineral imbalances (Sallato et al. 2021; Sheick
etal. 2023) and maturity at harvest (Serra et al 2023), and an “off” fla-
vor that has been brought up by consumers that may be the result
of improper picking times, crop load management, handling/pack-
ing practices or other postharvest processes (Mendoza et al. 2022).
Most concerning is green spot (Fig. 1c, d, and {), a corking disorder
that seems to be unique to ‘WA 38’, but with etiology similar to dis-
orders assoclated with mineral imbalances such as bitter pit and
drought spot (Sheick et al. 2022, 2023). The propensity for and cause
of physiological disorders often differs on a cultivar-by-cultivar ba-
sis (Pareek 2019), and a genetic basis for such predispositions is like-
ly (Liebhard et al. 2003; Johnston and Brookfield 2012; Di Guardo
et al. 2013; Lum et al. 2016). Thus, improved resolution of cultivar-
specific genomic differences is critical for advancing our under-
standing of how economically important traits are inherited and
how they can be managed more efficiently.

Todevelop full-resolution reference genomes of superior quality,
having skilled bioinformaticians is required. To train the next gen-
eration of bioinformaticians for agricultural genomic research, a
national effort spearheaded by Auburn University, HudsonAlpha
Institute for Biotechnology, and Washington State University was
started in 2021—The American Campus Tree Genomes project
(ACTG, http://hudsonalpha.org/actg). ACTG aims to break through
institutional barriers that have traditionally prevented many stu-
dents from accessing valuable, hands-on research projects and ex-
perience in bioinformatics (Sharman n.d.). To accomplish this goal,
a course has been developed to involve students in genome projects
from inception, through analysis, to publication (Harkess 2022).
Duringthe course, studentslearn genome assembly and annotation
workflows using the raw sequence data from genomes of beloved
trees (e.g. Toomer’s oak and ‘d’Anjou’ pear (Yocca et al. 2024) at
Auburn University, Sabal palm at University of South Carolina
Aiken) and are listed as authors on the final publication. The ‘WA

38’ genome introduced here was developed through ACTG by stu-
dents from Washington State University, presenting three major
outcomes: (1) a fully annotated, chromosomal level, haplotype-
resolved genome of ‘WA 38 utilizing PacBio HiFi, Dovetail
Omni-C, and [llumina DNA and RNA sequencing data, (2) develop-
ment of a comparative genomics framework with other economic-
ally important M. domestica cultivars including ‘Gala’, ‘Fuji’, and
‘Honeycrisp’, and (3) establishment of a containerized, reprodu-
cible, flexible, high-performance computing workflow for complete
genome assembly and annotation (Fig. 2, Supplementary Fig. 1).

Methods

Workflows developed for each stage of the project and the
summary workflow of the whole project are available in
Supplementary Fig. 1. Scripts with parameters for each computa-
tion step and methods in markdown format are available in
GitLab at: https:/gitlab.com/ficklinlab-public/wa-38-genome
(Zhang and Ficklin 2024).

Sample collection, DNA isolation, and sequencing

Approximately 20 grams of young leaf material was harvested
from the Malus domestica ‘“WA 38 mother tree at the Washington
State University and USDA-ARS Columbia View Research
Orchard near Orondo, WA, USA and flash-frozen in liquid nitro-
gen. Tissue was sent with dry ice to the HudsonAlpha Institute
for Biotechnology in Huntsville, AL, USA for DNA extraction, se-
quencing library preparation, and sequencing, following the
same protocol used to generate the ‘d’Anjou’ pear genome data
(Yocca et al. 2024). This protocol is described in detail below.

To assess heterozygosity and genome size of “WA 38’, DNA was
extracted using a standard CTAB isolation method (Doyle and
Doyle 1987). Illumina TruSeq shotgun DNA PCR-free libraries
were constructed from 3 ug of input DNA following the manufac-
turer’s instruction and sequenced on an Illumina NovaSeq6000.

For PacBio HiFi sequencing, high molecular weight DNA was iso-
lated using a Nanobind Plant Nuclei Big DNA kit (Circulomics-
PacBio, Menlo Park, CA), with 4 g of input tissue and a 2-hour lysis.
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Fig. 2. Schematic chart of the ‘WA 38’ genome project.

DNA purity, quantity, and fragment sizes were measured via spec-
trophotometry, Qubit dsDNA Broad Range assay (Invitrogen), and
Femto Pulse system (Agilent, Santa Clara, CA), respectively. DNA
that passed quality control was sheared with a Megaruptor
(Diagenode, Denville, NJ) and size-selected to roughly 25 kb on a
BluePippin (Sage Science, Beverly, MA). The SMRTbell Express
Template Prep Kit 2.0 (PacBio, Menlo Park, CA) was used to con-
struct the PacBio sequencing library, and HiFireads were produced
using circular consensus sequencing (CCS) mode with two 8 M flow
cells on a PacBio Sequel II long-read system.

To scaffold PacBio HiFi contigs into chromosome pseudomole-
cules, a Dovetail Genomics Omni-C library was generated using
1 g of flash-frozen young leaf material as input following the man-
ufacturer’s instruction (Dovetail Genomics, Scotts Valley, CA),
and sequenced on an Illumina NovaSeq6000 S4 PE150 flow cell.

Sequence quality assessment and genome
complexity analysis

Adapter sequences were trimmed from the raw Illumina shot-gun
DNA reads using fastp (v0.23.2) (Chen et al. 2018) with all the other
trimming functions disabled. Both the raw and trimmed Illumina
reads, PacBio HiFi reads, and Omni-C Illumina reads were as-
sessed for quality with FastQC (v0.11.9) (Andrews 2010). Genome
complexity, i.e. nuclear genome size and ploidy, was estimated
using Jellyfish (v2.2.10) (Marcais and Kingsford 2011), with
trimmed paired-end Illumina reads or PacBio reads as input and
a k-mer size set to 21. The k-mer histogram, also created by
Jellyfish, was visualized in GenomeScope (v1.0) (Vurture et al.
2017) with the following parameters: k-mer size =21, Read length
=151, and Max k-mer coverage = 1000. A summary statistic report
of the sequence quality and complexity analysis was generated
with MultiQC (v1.13a).

Genome assembly
Genome assembly and scaffolding

Phased haplomes were assembled by Hifiasm (v0.16.1) (Cheng
et al. 2021) with default parameters, using both the Omni-C data
and the PacBio HiFilong reads. The statistical summary of the as-
sembly was produced following methods described in (Earl et al.
2011). Both hifiasm-assembled haplotype unitigs were then sorted

by MUMmer (v3.23) (Kurtz et al. 2004) using the “nucmer” function
with flag -maxmatch. Structural variations in the two haplotype
unitigs were visualized using the Assemblytics web server
(http:/assemblytics.com; Nattestad and Schatz 2016) with default
settings.

The Omni-C reads were aligned to the initial assembly using bwa
(Li and Durbin 2009) for data quality assessment and scaffolding.
The overall quality of the library was validated with Phase
Genomics’ hic_qc script (https:/github.com/phasegenomics/hic_
qc; Phasegenomics, N.D.). Both assembled haplomes were scaf-
folded into chromosomes using SAMtools and YaHS (Danecek
et al. 2021; Zhou et al. 2022) with default parameters.

Assembly curation, quality control, and completeness
assessment

Hi-C files were generated using YaHS Juicer Pre (v1.2a.2-0) with
flag -a allowing manual curation. The resulting files were used
as input for Juicer Tools Pre (v 1.22.01) to generate Hi-C contact
maps (Durand et al. 2016; Zhou et al. 2022). Juicebox Assembly
Tools (v1.11.08) was used to explore the Hi-C maps for miss-
assemblies (Robinson et al. 2018). After manual examination of
the Hi-C maps, the final genome assembly was generated by link-
ing the remaining files from YaHS Juicer Pre and original HiFi scaf-
fold, using YaHS Juicer Post (v 1.2a.2-0, (Durand et al. 2016)).

For consistency and reproducibility, ‘WA 38 chromosomes
were renamed and reorientated to match published genomes.
First, MUMmer (v3.23) was used to align the ‘WA 38’ assembly to
the ‘Gala’ v1 HapA assembly using the same parameters as de-
scribed above (Kurtz et al. 2004; Sun et al. 2020). Next,
Assemblytics dotplot was used to identify ‘WA 38’ scaffolds that
aligned with the ‘Gala’ v1 chromosomes and ‘WA 38’ scaffolds
were renamed accordingly. To determine orientation, each ‘"WA
38" chromosome was aligned to the corresponding ‘Gala’ v1
HapA chromosomes using LASTZ (v 1.02.00) implemented in
Geneious (v9.0.5; Harris 2007) with the “search both strands” op-
tion. The chromosomes on the reverse stand were reoriented
with the Reverse Complement (RC) function in Geneious
(Supplementary Fig. 2). The resulting assembly was searched
against NCBI's RefSeq Plastid database (NCBI Organelle genome
resources, n.d.) using megablast and a custom virus and bacteria
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database using Kraken (v2.1.3; Wood and Salzberg 2014) to iden-
tify contaminants. Scaffolds identified as plastid or microbe con-
taminants were removed in the assembly.

The cleaned assembly was compared to the ‘Honeycrisp’ gen-
ome assembly with a k-mer approach using meryl (v1.4.1, Rhie
et al. 2020). Chromosomes with a ‘Honeycrisp’ origin were placed
in HapA, whereas the others were placed in HapB. To validate as-
sembly quality and parental phasing, high-quality phased 8 K SNP
array data for ‘WA 38 and corresponding genetic map were ob-
tained from Vanderzande et al (2019) and validation was per-
formed following (Vanderzande et al. 2024).

The two final haplome assemblies were compared to each
other using MUMmer and Assemblytics as described above to
identify structural variants. Benchmarking universal single-copy
orthologs (BUSCO, v5.4.3_cv1) analysis was performed in genome
mode with the eudictos_odb10 database to assess completeness
(Manni et al. 2021).

Structural and functional annotation
Repeat annotation

Repetitive elements from both haplomes were annotated using
EDTA (v2.0.0; Ou et al. 2019), with flags “sensitive=1" and “anno
=1". The full coding sequence from ‘Gala’ vl HapA, obtained
from the Genome Database for Rosaceae (GDR,; Jung et al. 2019),
was used as reference to aid repeat finding. The custom transpos-
able element library generated by EDTA was then imported to
RepeatMasker (Smit et al. n.d.) to further identify potentially
overlooked repetitive elements and create masked versions of
the genome. Three masked versions were generated: softmasked,
N masked, and X masked.

Telomeres were identified by tidk (v0.2.41; Brown et al. 2023)
with the following parameters: explore -minimum 2 -maximum
20 and the default database provided by the software.

Gene annotation

To annotate the gene space, a combination of ab initio prediction
and evidence-based prediction were performed on the soft-
masked assemblies with two rounds of BRAKER using transcrip-
tome and homologous protein evidence. PASA (v2.5.2; Haas et al.
2003) was then used to refine gene models and add untranslated
region (UTR) annotation. Lastly, a custom script was used for fil-
tering. The detailed methods are described below.

BRAKERI—annotation with transcriptome evidence. To perform
transcriptome guided annotation, same RNA-seq data from Khan
etal. (2022) (eight tissue types from six pome fruit cultivars includ-
ing ‘“WA 38’, BioProject: PRINA791346) were aligned to the ‘WA 38’
haplomes using the STAR aligner implemented in GEMmaker
(v2.1.0) Nextflow workflow (Hadish et al. 2022). The resulting
read alignments were used as extrinsic evidence in BRAKER1
(Hoff et al. 2016) to predict gene models in each softmasked hap-
lome with the following parameters: —softmasking, ~-UTR = off,
—species = malus_domestica.

BRAKER2—annotation with homologous protein evidence. To
provide protein evidence for BRAKER? (Brina et al. 2021), protein
sequences from three sources were used: (1) Predicted protein se-
quences of 13 Rosaceae genomes retrieved from GDR (Fragaria ves-
ca v4a2 (Li et al. 2019), Malus baccata v1.0 (Chen et al. 2019), M.
domestica var.Gala v1 (Sun et al. 2020), M. domestica var.GDDH13
v1.1 (Daccord et al. 2017), M. domestica ‘Honeycrisp’ v1.0 (Khan
et al. 2022), M. sieversii v1 (Sun et al. 2020), M. sylvestris v1 (Sun
et al. 2020), Prunus persica v2.0.a1 (Verde et al. 2017), Pyrus betulifolia

v1.0 (Dong et al. 2020), P. communis ‘d’Anjou’ v2.3 (Yocca et al. 2024),
P. pyrifolia ‘Nijisseikiv’ v1.0 (Shirasawa et al. 2021), Rosa chinensis
‘Old Blush’ v2.0.a1 (Raymond et al. 2018), and Rubus occidentalis
v3 (VanBuren et al. 2018)); (2) Peptide sequences predicted from
de novo transcriptome assemblies used in the ‘Honeycrisp’
genome annotation (Khan et al. 2022); and (3) Viridiplantae
OrthoDBv11 protein sequences (Kuznetsov et al. 2022). In the
same manner as BRAKER1, the softmasked haplome assemblies
were used as input.

TSEBRA—transcript selection. The gene annotation results from
BRAKER1 and BRAKER2 were merged and filtered based on the
supporting evidence using TSEBRA (v.1.0.3; Gabriel et al. 2021)
with the default configuration (file obtained in August 2022).

PASA—gene model curation and UTR annotation. Two sources of
transcriptome assembly evidence were obtained to facilitate
PASA annotation: (1) Transcript sequences predicted from de
novo transcriptome assemblies used by ‘Honeycrisp’ genome an-
notation; and (2) Reference guided assemblies created with read
alignment files from GEMmaker (see the BRAKER1 section for de-
tails) using Trinity (Grabherr et al. 2011) with max intron size set to
10,000. Four rounds of PASA (v2.5.2) curation were performed
using the aforementioned evidence and a starting annotation.
The first round of PASA curation used TSEBRA annotation as the
starting annotation, and annotations from the previous round
were used as the starting annotation for rounds two through
four. The curation results from each round were manually in-
spected using the PASA web portal. No significant improvement
was observed after the fourth round of curation, therefore no fur-
ther rounds of curation were performed.

Gene model filtering and gene renaming. Repeat and gene model
annotations were visualized and inspected in IGV (v2.15.1;
Robinson et al. 2011). Three types of erroneous gene models
were observed consistently throughout the annotations. Type 1:
Genes overlapping with repeat regions (e.g. transposon was
wrongly annotated as a gene), Type 2: Gene models overlapping
with each other on the same strand (e.g. single gene was wrongly
annotated with multiple gene models), and Type 3: Gene models
with splice variants that had no overlap (e.g. different genes
were wrongly annotated as the single gene’s splice variants). A
custom script was used to address these errors. The Type 1 error
was resolved by removing genes with 90% of their coding region
overlapping with repeat regions. The Type 2 error was resolved
by removing the shorter gene of a pair that overlaps on the
same strand. The Type 3 error was resolved by splitting splice vari-
ant models with no overlap into separate gene models. Finally,
custom scripts were used to generate the final annotation files
(gene, mRNA, cds, protein, gff3) and rename genes to match the
naming convention proposed by GDR (https://www.rosaceae.org/
nomenclature/genome). The longest isoforms of each transcript
were needed for some downstream analysis and were extracted
using a modified version of the get_longest_isoform_seq_per_tri-
nity_gene.pl script (Trinityrnaseq n.d.) provided by Trinity
(Grabherr et al. 2011).

Functional annotation

The final gene sets from both ‘WA 38’ haplomes were annotated
using EnTAPnf (Hart et al. 2020) with Interproscan, Panther,
RefSeq, and uniprot_sprot databases that are automatically
downloaded by the software.
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Comparative analysis

Synteny analysis

A synteny comparison was performed using GENESPACE (Lovell
et al. 2022) with five Malus domestica assemblies and annotations
(GDDH13 from Daccord et al. 2017, both haplomes of ‘Honeycrisp’
from Khan et al. 2022, and both haplomes from ‘WA 38’). Default
parameters were used. Only the longest isoforms were used for
‘WA 38’

Gene family analysis

Gene family, or orthogroup, analyses were carried out to identify
shared and unique gene families in “WA 38’ and other pome fruit
genomes (i.e. Malus sp. and Pyrus sp. A full list of genomes
analyzed can be found in Supplementary Table 1) following the
method described by (Khan et al. 2022). Briefly, predicted protein
sequences from the selected pome fruit genomes were classified
into a pre-computed orthogroup database (26Gv2.0) using the
“both HMMscan and BLASTp” option implemented in the
GeneFamilyClassifier tool from PlantTribes2 (Wafula et al. 2022).
Overlapping orthogroups among M. domestica genomes were cal-
culated and visualized with the UpSet plot function implemented
in TBtools v2.030 (Chen et al. 2023).

A Core OrthoGroup (CROG)—Rosaceae gene count analysis was
carried out following the method described by (Wafula et al. 2022).
First, a CROG gene count matrix was created by counting genes
classified into CROGs from each pome fruit genome. Next, the ma-
trix was visualized as a clustermap using the Seaborn clustermap
package (CROGs with standard deviation of 0 were removed prior
to plotting) with rows normalized by z-score. Finally, the derived
z-score of CROGs in each genome was summarized into a boxplot
to illustrate z-score distribution using the boxplot function in
Seaborn.

Gene evidence source mapping

Each gene was screened against the following evidence source:
Transcriptome evidence covering the entire gene (Full RNA sup-
port); Transcriptome evidence covering part of the gene (Any
RNA support); Homologous protein evidence covering the entire
gene (Full protein support); Homologous protein evidence cover-
ing part of the gene (Any protein support); Has a EnTAP functional
annotation from any database; Assignment to a PlantTribes2
Orthogroup. Transcriptome and homologous protein evidence
were mapped to genes with the selectSupportedSubsets.py script
provided by BRAKER (Bruna et al. 2021) and BEDtools (Quinlan and
Hall 2010). Summaries of evidence source mapping are available
in Supplementary Tables 2 and 3. The following subsets of genes
were extracted and were subject to BUSCO completeness analysis
and CROG gene count analysis: Subset 1, Genes with full support
from either RNAseq or homologous protein evidence; Subset 2,
Genes with any support from either RNAseq or homologous pro-
tein evidence; Subset 3, Genes from Subset 1 plus gene with
both EnTAP and PlantTribes2 annotation; Subset 4, Genes from
Subset 1 plus genes with either ENTAP or PlantTribes2 annotation.

Chloroplast and mitochondria assembly and
annotation

The chloroplast genome was assembled from trimmed Illumina
shotgun DNA reads using NOVOplasty (v4.3.1; Dierckxsens et al.
2017) with the Malus sierversii chloroplast genome (NCBI accession
ID: MH890570.1; Naizaier et al. 2019) as the reference sequence
and the NOVOplasty Zea mays RUBP gene as the seed sequence.

The assembled chloroplast was annotated using the GeSeq Web
Server (website accessed on Dec. 19th, 2023; Tillich et al. 2017)
with settings for “circular plastid genomes for land plants” and
the following parameters: annotating plastid inverted repeats
and plastid trans-spliced rps12. Additionally, annotations from
third-party software Chloé (v0.1.0) and ARAGORN (v1.2.38), as
well as a BLAT (v.35x1) search against all land plant chloroplast
reference sequences (CDS and rRNA), were integrated with the
GeSeq results. Genes identified by multiple tools were manually
reviewed to produce the final, curated annotation. The curated
chloroplast annotation was visualized by OGDRAW (v1.3.1;
Greiner et al. 2019).

The mitochondrial genome sequence was isolated from the
Hifiasm assembled contigs using MitoHifi (v3.2; Uliano-Silva
et al. 2023). The M. domestica mitochondria sequence from NCBI
(NC_018554.1; Goremykin et al. 2012), which contained 57 genes
consisting of four rRNAs, 20 tRNAS, and 33 protein-coding genes,
was used as the closely related reference sequence. Briefly,
MitoHifi compares the assembled contigs to the reference mito-
genome using the BLAST algorithm. The resulting contigs were
manually filtered by size and redundancy and then are circulated.
To increase the annotation quality, GeSeq was deployed in mito-
chondrial mode with the M. domestica NCBI RefsSeq sequence to
annotate the ‘WA 38 mitochondria assembly. Fragmented genes
from the annotation were manually removed prior to visualiza-
tion in OGDRAW (v1.3.1; Greiner et al. 2019).

Results

A complete, reproducible, publicly-available
workflow

To ensure transparency and reproducibility, the ‘WA 38" Whole
Genome Assembly and Annotation (‘WA 38 WGAA) project work-
flow was made publicly accessible through a GitLab repository
(https:/gitlab.com/ficklinlab-public/wa-38-genome, Zhang et al.
2024). This repository contains the complete manual workflow for
assembly and annotation of the genome as well as the comparative
genomics analyses. It organizes each step in order of execution,
using ordered, numeric directory prefixes where each directory in-
cludes detailed method documentation and scripts that were exe-
cuted for each analysis. All parameter settings, as well as any
command line manipulation of the files generated, are noted in
the scripts or methods. Summary diagrams for the manually exe-
cuted workflow are available in Supplementary Fig. 1. All software
utilized in the project has been containerized and shared on
Docker Hub (https:/hub.docker.com/u/systemsgenetics). Users
who follow the workflow can retrieve the public data and repeat
the steps to reproduce the results. Leveraging these resources
from the ‘WA 38 WGAA project, and as part of our commitment
to knowledge sharing, we have initiated an American Campus
Tree Genome (ACTG) course GitHub organization (https:/github.
com/actg-course/). This organization comprises three main reposi-
tories: (1) wgaa-compute: a generic whole genome assembly and an-
notation workflow template, derived from the ‘WA 38 WGAA
project, that can be adapted for other species; (2) wgaa-docker:
the Docker recipes for all the software employed in the project;
and (3) wgaa-doc: an open-source and editable documentation re-
pository containing teaching materials for current and future
ACTG instructors, providing a collaborative space for instructors
to learn from and contribute to the enhancement of the course
materials.
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Nuclear genome assembly
Sequence quality assessment

Raw sequencing data (Table 1) was assessed for read quality. The
Illumina shotgun short read data consisted of 807.2 million total
reads with a mean length of 151 bp for a total of 121.9 Gigabases
(Gb) of data and 38% GC content after adapter trimming. The
Q20 and Q30 quality scores are 91.8 and 83.4%, respectively.
Duplication rates ranged from 23.3 to 27.8%. PacBio long read
raw data consisted of 3.9 million reads from 85 to 49,566 bp in
length for a total of 60.0 GB. Sequence duplication rates ranged
from 2.2 to 2.4%. PacBio sequence GC content is 38%, same as
the Mllumina data. In addition, a 402 x coverage (201 x for each
haplome) of Omni-C data was generated to facilitate the assembly
and phasing.

Genome complexity

Using a k-mer frequency approach, genome characteristics such
as heterozygosity and genome size were estimated (Fig. 3).
Analysis of both short and long reads resulted in an estimated het-
erozygosity of ~1.35%, similar to estimates from the ‘Honeycrisp’
cultivar (1.27%; Khan et al. 2022). Estimated genome size was
467Mb from the short reads and 606Mb from the long reads.

Table 1. Yield of Illumina DNA short reads (Shotgun and Omni-C)
and PacBio HiFi sequencing reads from young leaf tissues of “WA
38"

Long Read Short Read
PacBio HiFi Shotgun DNA OmniC-Seq
seq
Total read number 3,870,263 807,220,896 1,730,268,360
Number of bases 60.0 121.9 261.3
(Gb)

Coverage* 92x 188x 402x
Average length (bp) 15,495 151 151

* Calculated with the size of a haploid genome (650 Mb).

a Ien:606,516,399bp uniq:53.4% het:1.34% Kcov:20.1 err:0.171% dup:0.301% k:21
S ; T T T
- | 3 ‘ '
[t} ! ! ~— observed
— —— full model
ﬂ\ ' unigue sequence
] —— errors
i —— kmer-peaks
[ "
o i
= = i
1] |
o |
- )
Q ]
c i
9] i
= i
o i
o ] |
L o | )
4 | i
+ | i
@ 1 '
] ' '
0 |
:
i
:
o \ i i
g |
& [T
L B : : : 1
d T T I T ! T
0 20 40 60 80 100
Coverage

These estimates are lower than expected from other apple gen-
omes (‘Honeycrisp’ at 660-674 Mb; Khan et al. 2022, and ‘Golden
Delicious’ at ~701 Mb; Li et al. 2016) and the final assembly
(Table 2). Additionally, the percent of unique sequence was esti-
mated at 69.5% for the short reads and 53.4% for the long reads,
with the longread estimate being more consistent with whatis ex-
pected from the ‘Honeycrisp’ (51.7%; Khan et al. 2022) and of wild
apple species Malus baccata (58.6%; Chen et al. 2019).

Genome assembly, scaffolding, and curation

For initial assembly, scaffolding, and curation, two unsorted,
phased haplomes, called Hapl and Hap2, were assembled and
scaffolded using both PacBio long reads and Omni-C short reads.
Hi-C maps of the haplome assemblies show no mis-assemblies
(Supplementary Fig. 3). For Hapl and Hap2, a total of 22 joins
and 20 joins, respectively, were made in the scaffolding step to
build the final assemblies into 17 chromosomes each, with the
remaining scaffolds representing unincorporated contigs.
Unincorporated contigs were investigated and found to be bacter-
ial or other contamination and were removed. After removing
contaminants, Hap1 is 645.41 Mb in length with an N50 of 36.1
Mb, while Hap2 is 651.07 Mb in length with an N50 of 37.2 Mb.
Additional assembly statistics for both haplomes are included in
Supplementary Table 4. ‘WA 38’ has a comparable genome size
to other previously sequenced apple cultivars, including its parent
‘Honeycrisp’ (Khan et al. 2022). Notably, the ‘WA 38’ scaffold N501is
among the longest across all published apple genomes, indicating
high levels of assembly contiguity (Supplementary Table 5).

Haplotype-binning, structural comparison, and
completeness assessment

The k-mer based binning method identified the origin of chromo-
somes in each haplome assembly. After reorganizing the chromo-
somes based on parent contribution, the haplome containing all
the ‘Honeycrisp’ origin chromosomesis designated as HapA, where-
as the ‘Enterprise’ originated haplome is designated as HapB.
Further validation against the phased ‘WA 38’ SNP array did not
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Fig. 3. Genome complexity of ‘WA 38’ genome using PacBio long read data (a) and illumina short read (b). The output figures were generated by

GenomeScope (k=21).
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Table 2. Comparison of genomic features and assembly statistics of the “WA 38” genome and previously published apple genomes.

‘WA 38’ ‘Honeycrisp’ ‘Antonovka’ ‘Gala’ ‘GDDH13’ ‘Fuji’
HapA HapB HapA  HapB

Number of Scaffold 17 17 473 215 168 812 1,081 1,358
Haploid genome size (Mb) 645.41 651.07 674 660 643.5 652.4 709.6 736.9
N50 (Mb) 36.1 37.2 31.6 32.8 35.85 23.9 5.5 36.8
L50 8 8 8 8 8 8 NA 9
Number of protein-coding genes 53,028 54,235 47,563 48,655 45,085 45,352 45116 49,972
Complete BUSCO (%) Assembly 98.7 98.7 98.6 98.7 97.6 97.9 98 98.8
Complete BUSCO (%) Annotation 98.5 98.4 96.8 97.4 97.25 95.5 96.1 97.2
Number of orthogroups in 10,494 10,511 10,350 10,366 10,293 10,095 10,117 10,243

26Gv2.0
Reference

This paper

Khan et al. 2022

Svara et al. 2024 Sunetal. 2020 Daccord et al. 2017  Li et al. (2024)

NA: Data not available. For consistency, genome statistics and BUSCO analyses were performed on the publicly available genomes using the same methods used for
‘WA 38, except for N50 and L50 of ‘GDDH13’ as the scaffold assembly is not publicly available. ‘Antonovka’ data is the average of the two haplomes. The unphased
version of ‘Fuji’ was used. A more in-depth comparison is available in Supplementary Table 5.

Table 3. Summary of repetitive element annotation in the “WA 38” and other apple genomes.

Class ‘WA 38’ (%) ‘Honeycrisp’ (%) ‘d’Anjou’ pear (%)
HapA HapB HapA HapB Hap1l Hap2
LTR Copia 9.37 10.22 9.73 9.6 5.6 5.73
Gypsy 17.19 18.32 20.29 17.8 12.32 12.88
unknown 16.37 14.52 14.89 16.86 8.46 10
TIR CACTA 1.94 2.15 2.21 1.95 1.4 14
Mutator 3.96 4.18 4.16 4.25 3.47 3.41
PIF Harbinger 24 2.52 2.43 2.6 1.81 1.81
Tcl_Mariner 0.16 0.24 0.15 0.27 0.13 0.11
hAT 2.15 2.37 2.3 2.31 0.58 0.84
polinton 0 0 0 0.01 0 0
nonLTR LINE_element 0.14 0.16 0.18 0.17 0.14 0.14
unknown 0.11 0.09 0.09 0.18 0.06 0.06
nonTIR helitron 3.41 2.20 2.95 3.18 1.56 1.92
Other repeat region 1.52 1.74 291 2.78 3.98 4.22
RM* 3.98 3.99 NA NA NA NA
Total 62.71 62.71 62.43 61.97 39.78 42.52
Reference This paper Khan et al. (2022) Yocca et al. (2024)

*

Repeat regions annotated by RepeatMakser.

identify any potential error in the assembly, phasing, or haplotype
binning (Supplementary Fig. 4). HapA and HapB are structurally
similar; a total of ~44 Mb are affected by structural variants and
are mainly contributed by indels and repeat expansion and contrac-
tions (Supplementary Table 6 and Supplementary Fig. 5).
Additionally, three large inversions are observed on chromosomes
1, 11, and 13 (Supplementary Fig. 6). Based on the BUSCO analysis,
both the HapA and HapB assemblies were 98.7% complete, with
only 19 BUSCOs missing and 12 partially detected (Supplementary
Table 7). This BUSCO score suggests high genome completeness
for both haplomes, comparable to the ‘Fuji’ apple genome assem-
blies, which is most contiguous of all apple genomes to date
(Table 2 and Supplementary Table 5; Li et al. 2024).

Nuclear genome structural annotation
Repeat annotation

In both haplomes, approximately 58.7% of the assembly was pre-
dicted to be repetitive regions by EDTA (Ou et al. 2019; Table 3).
RepeatMasker identified an additional 4% repeat elements, result-
ingin a total of 62.7% repeat regions in both HapA and HapB, com-
parable to the ‘Honeycrisp’ genome (Khan et al. 2022). In both
haplomes, the most dominant type of repeat element is long ter-
minal repeat (LTR), followed by terminal inverted repeat (TIR)

(Table 3, Supplementary Table 8), consistent with that in
‘Honeycrisp’. We also compared the repeat landscape of ‘WA 38
with ‘d’Anjou’ pear which was annotated with the same method-
ology. While they share the major repeat classes, ‘d’Anjou’ pear
has a much lower percentage of repeat elements (Table 3).

Through telomere search in each haplotype, we discover that
telomere repeat regions are present in almost every chromosome
of each haplome. The most enriched telomere repeat unit is a
7-mer “AAACCCT” and its reverse complement “AGGGTTT”, which
has been reported as overrepresented in the Arabidopsis thaliana
genome (Choi et al. 2021), opposed to “CCCATTT” and
“TTTTAGGG” reported in the most recent T2T ‘Golden Delicious’
apple genome (Su et al. 2024). A list of telomere repeat regions
and units for both haplotypes were deposited in Supplementary
Table 9.

Gene space annotation

To annotate the gene space, we utilized a combination of ab initio
prediction and evidence-based prediction with transcriptome and
homologous protein, functions implemented in BRAKER? (Bruna
et al. 2021). However, BRAKER2 was unable to annotate UTRs
and yielded erroneous gene models and splice variants
(Supplementary Fig. 7). Therefore, the gene models were further

Gzoz Atenuer L¢ uo ysenb Aq 85£6G///zzzeeNlizL /v L/epie/feuinolgh/woo dno-oiwepeoe//:sdiy woly papeojumod


http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae222#supplementary-data

8 | H.Zhangetal.

processed with PASA (Haas et al. 2003) and a custom script. A total
of 53,028 and 54,235 genes were annotated from HapA and Hap3,
respectively, more than most published apple genomes (Table 2,
Supplementary Table 10). The complete BUSCO scores for HapA
and HapB annotations are 98.5 and 98.4%, respectively, the high-
est score among all M. domestica genomes sequenced to date
(Supplementary Tables 5 and 7). The average protein annotated
from HapA and HapB contains 361.3 and 356.4 amino acids, re-
spectively, similar to that of other M. domestica annotations
(Supplementary Table 11). On average, 1.3 splice variants were
identified for each gene in both HapA and HapB annotations.
The only other apple genome with splice variant annotation is
‘Honeycrisp’, and on average, 1.05 splice variants were annotated
per gene (Supplementary Table 11). Additionally, 53.5 and 52.2%
of the annotated transcripts from HapA and HapB, respectively,
contain UTRs. Notably, ‘WA 38’ is the only other apple genome be-
sides ‘GDDH13’ and ‘Fuji’ that has more than half of the genes an-
notated with UTRs.

The ‘WA 38’ genes were named in accordance with the conven-
tion following guidance from the Genome Database for Rosaceae
(GDR). This convention was first proposed by our group for the
‘Honeycrisp’ genome and was later adopted with modification by
GDR (Gene name example: drMalDome.wa38.v1al.ch10A.g00001.t1).
This convention meets recommendations proposed by the
AgBioData consortium to reduce gene ID ambiguity and improve
reproducibility.

Nuclear genome functional annotation

EnTAP (Hart et al. 2020) functional annotation assigned functional
terms to 89.5 and 88.8% of proteins annotated from HapA and
HapB, respectively. Specifically, an average of 83 and 55% of all
proteins (including both HapA and HapB) have strongly supported
hits in the NCBI RefSeq (O'Leary et al. 2016) and UniProt database,
respectively, 75% were annotated with an InterPro term, and 88%

'GDDH13'

'WA 38'
hapA

'Honeycrisp'
hapA

'Honeycrisp'

have functional annotations from at least one of the databases in-
cluded in InterProScan. EggNOG (O’Leary et al. 2016; Huerta-Cepas
et al. 2019) search provided additional function information:
90% of the annotated proteins were assigned into EggNOG
orthogroups, 84% were annotated with protein domains, 21%
were classified into KEGG pathways, and 63%, 53%, and 61% pro-
teins were annotated with GO biological process, cellular compo-
nent, and molecular function terms, respectively (Supplementary
Table 12).

Comparative analyses

Synteny and gene family analyses were performed to investigate
the similarity and unique features of ‘WA 38’ genome to other
closely related species and cultivars.

Synteny analysis was performed to compare the genomes of
‘WA 38’, one of its parents, ‘Honeycrisp’, and the most referenced
apple genome, ‘GDDH13’, using GENESPACE (Lovell et al. 2022).
The two ‘WA 38" haplomes are highly collinear with each other
and with the other apples, especially the two ‘Honeycrisp’ hap-
lomes. Although inversions at various scales were observed be-
tween the two ‘WA 38 haplomes (e.g. large inversions on
chromosomes 1, 11, 13 in Supplementary Figs. 6 and 8), they
have minor effects on gene order (Fig. 4), likely due to the small
number of genes annotated from those inverted regions.

Gene family analysis is performed using PlantTribes2 and the
pre-constructed 26Gv2.0 scaffold orthogroup database (Wafula
et al. 2022). Out of the 18,110 pre-constructed orthogroups, pro-
teins from all apple annotations (including six published scion
cultivar genomes, two rootstock genomes, and the ‘WA 38’ gen-
ome from this work) are found in 11,698 orthogroups. ‘Golden
Delicious’ Genome v1.0 (Velasco et al. 2010) was omitted from
this analysis due to poor annotation quality. Proteins from HapA
and HapB of ‘WA 38" were classified into 10,494 and 10,511
orthogroups, respectively, similar or slightly higher in number
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Fig. 4. Riparian plot comparing ‘WA 38" Haplome A and B with ‘Honeycrisp’ Haplome A and B and the ‘Golden Delicious’ (GDDH13) genome by gene rank

order.
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Fig. 5. Upset plot of shared and unique orthogroups among Malus domestica genomes. Rows in the bottom of the figure are genomes used for the
comparison. Columns (categories, x-axis of the bar graph) are annotated with black or gray dots where black is present and gray is absent. The height of
the black bars (y-axis of the bar graph) is scaled to match the number of orthogroup in each category, which are also printed above the bars.

compared to previously published M. domestica genomes, includ-
ing ‘Honeycrisp’, ‘Gala’, and ‘GDDH13’ (Table 2, Fig. 5). An investi-
gation into shared and unique orthogroups across all the
scion genomes showed that most orthogroups (8,800 or 75%) are
shared by all six apple genomes considered. Additionally, 824
orthogroups are shared by both “WA 38’ haplomes and the seven
other annotations (each of the two haplomes from ‘Honeycrisp’
and ‘Antonovka 172670-B’ are counted as unique annotations).
‘Honeycrisp’ shared the largest number of orthogroups with
‘WA 38’, as expected due to being a parent of ‘WA 38
(Supplementary Table 13). These results indicate that the WA
38’ annotation captures genes in virtually all M. domestica
orthogroups. Additionally, 39 orthogroups were unique to ‘WA
38’ (i.e. present only in the two ‘WA 38" haplomes) and each hap-
lome of ‘WA 38’ contains 44 unique orthogroups (Fig. 5).

In addition to identifying the shared and unique orthogroup, a
CoRe OrthoGroup (CROG)—Rosaceae analysis was performed to
further investigate orthogroup contents. As expected, in the
CROG gene count clustermap (Fig. 6), ‘WA 38’ clustered closely
with ‘Honeycrisp’. The ‘WA 38’ + ‘Honeycrisp’ group is clustered
with ‘GDDH13’, as expected based on pedigree (Howard et al.
2017). Interestingly, a strong “publication bias”, first mentioned
by Wafula et al. (2022), is observed: genomes released in the
same publication or annotated by the same researcher clustered
together. Such groups are: ‘Gala’, Malus sieversii, and M. sylvestris
(Sun et al. 2020); ‘Fuji’, ‘M9’, and ‘MM106’ (Li et al. 2024); M. fusca
(Mansfeld et al. 2023) and Pyrus communis ‘d’Anjou’ (Yocca et al.
2024); ‘Honeycrisp’ (Khan et al. 2022) and ‘WA 38’. The CROG
gene count z-score box plot shows (Fig. 7) that the average z-score
of ‘WA 38’ gene counts are slightly higher than expected (with 0 as
the perfect score), indicating that there are a number of CROGs
containing more genes from the ‘WA 38’ annotations compared
to other apples.

Gene model evidence source mapping

The final gene model annotation contains ab initio prediction and
genes with transcript evidence and/or homologous protein sup-
port. Although high BUSCO completeness scores are obtained
from both haplome annotations, their gene numbers are greater
than expected (45,000-49,000 based on previous publications).
Therefore, we explored evidence supporting a gene model to be
a true positive, including extrinsic evidence (from transcript and
homologous protein) used in gene model annotation and com-
parative genomic evidence (EnTAP functional annotation and
gene family circumscription). Four subsets of genes were ex-
tracted based on different evidence filtering stringencies and the
completeness of each set was assessed via a BUSCO analysis
(Table 4). The most stringent filter, the same strategy deployed
in the ‘Honeycrisp’ genome annotation, was to remove genes
without full support from both transcript and homologous protein
evidence (Subset 1 in Table 4). This strategy removed ~10,000
genes from both haplomes and left ~43,000 genes in each annota-
tion. Complete BUSCO score for this gene set decreased by ~1%
compared to the original full gene set. In the other three subsets
(2-4) of genes, where less stringent criteria were applied, ~3,000-
4,000 genes were removed and complete BUSCO scores main-
tained above 98%. In two of the subsets where the genes with
functional and gene family were taken into consideration
(Subset 3 & 4), complete BUSCO scores remained the same as
the original gene set even after removing thousands of genes.
CROG gene count analyses were performed on the original full
set, Subset 1 and Subset 3. The CROG gene count clustermaps
from the three gene sets showed highly similar clustering patterns
(Fig. 6 and Supplementary Fig. 9), indicating that removing genes
did not alter the overall gene family circumscription. The average
CROG gene count z-score decreased from 0.330 in the original full
set, t0 0.297 in Subset 3, and to 0.008 in Subset 1, indicating values
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Fig. 6. CoRe OrthoGroup (CROG)—Rosaceae gene count clustermap. Each row represents a CROG and each column represents a genomes. Color indicates

the number of genes in each cell relative to the row average (z-score). Warmer/Red color indicates more genes. Cooler/Blue color indicates fewer genes.
The darker a color, the closer the value is to the row average. Genome and annotation abbreviations can be found in Supplementary Table 1.

closer to expectation as more rigorous evidence categories are
applied.

Plastid genomes assembly and annotation

The chloroplast genome of the “WA 38’ apple is 159,915 bp in
length, which is smaller than most assembled Malus chloroplast
genomes (Naizaier et al. 2019; Yan et al. 2019; Zhao et al. 2019; Ha
et al. 2020; Miao et al. 2022; Li et al. 2022a). The plastome consisted

of a typical quadripartite structure with a pair of inverted repeat
(IR) regions of the same length (26,352 bp) separated by a long sin-
gle copy (LSC) region (88,052 bp) and a short single copy (SSC)
region (19,159 bp). The IR regions and the SSC regions were all
similar in length to that of other Malus chloroplasts (Naizaier
et al. 2019; Yan et al. 2019; Zhao et al. 2019; Ha et al. 2020; Miao
et al. 2022; Li et al. 2022a). A total of 134 unique genes were
annotated, including 86 protein-coding genes, 42 tRNA genes,
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Fig. 7. Boxplot summarizing z-score distribution of CROG gene counts in selected pome fruit genomes. Genome and annotation abbreviations can be

found in Supplementary Table 1.

Table 4. Summary of genes mapped with various evidence source
and completeness assessments of those gene subsets.

Number of Complete
genes BUSCO (%)
HapA HapB HapA HapB
Original full set 53,028 54,235 985 984
Subset 1. Genes with full support® 43,079 43,590 97.5 97.6
Subset 2. Genes with any support® 49,829 50,861 98.2 98.2
Subset 3. Genes with full support+ 49,417 50,005 985 98.4
EnTAP & PT2
Subset 4. Genes with full support+ 50,087 50,743 985 98.4
EnTAP or PT2

*

Full or any support from either RNA transcriptome or homologous protein
evidence.

and seven rRNA genes. Moreover, eight protein-coding genes (ycf1,
yef2, 1pl2, rpl23, ndhB, rps7, rps12, rps19-fragment), ten tRNA genes
(trmE-UUC, trl-GAU, trnA-UGC, tmL-CAA, trmM-CAU, trmN-GUU,
trmR-ACG, trml-CAU, tmN-GUU, tmV-GAC), all four rRNA genes
(rm16, rm23, 1m4.5, rb5) were located wholly within the IR regions
(Fig. 8). Twelve protein-coding genes, eight tRNA genes, and one
RNA gene (rmml6) contain introns, the majority of which

contained one intron (19 genes), with only two genes (pafl and
clpP1) containing two introns.

The mitochondrial genome of the ‘WA 38’ apple is 451,423 bp
long and contains 64 annotated genes. This annotation includes
four rRNA genes (two copies of 26S, and one copy of both 18S
and 5S), 20 tRNA genes (including two copies of trnaA-FME and
three copies of trnaF-GAA), and 40 protein-coding genes (including
two copies of atpl, apt8, cox3, nad6é, nad’/, maseH, rps12, rps3, and
sdh4) (Fig. 9).

Discussion

Genomes are essential resources for research communities. In or-
der to provide accessible, hands-on training to the next generation
of plant genome scientists, we engaged students in the construc-
tion of a genome for the ‘WA 38’ (Cosmic Crisp®) apple. Our guid-
ing philosophy is “inclusion and novelty”, where we aim to build a
high-quality reference genome that is useful to a wide range of
current and future research communities.

We emphasized assembly quality by leveraging our recent
‘Honeycrisp’ genome (Khan et al. 2022) to fully resolve haplotypes,
i.e. the specific genetic contributions of each parent are known
and are represented in each respective haplome. As the first
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pome fruit genome to achieve this level of resolution, the ‘WA 38’
genome provides a unique resource for researchers across various
fields to explore genome-scale genomic signatures that were pre-
viously unattainable for pome fruit research. Examples include a
more in-depth understanding of genetic variation and inherit-
ance, identification of alleles associated with specific traits (pav-
ing the way for allele specific expression experiments), and
opportunities to perform trait association analyses with higher
resolution (useful for breeding programs to identify new genetic
markers linked to desirable traits) (Talbot et al. 2024).

We also emphasized genome annotation quality, aiming to pro-
vide a hierarchy of hypothesized gene models, where we compile a
more complete list of putative genes, with increasingly stringent
evidence categories allowing users to access and use the appropri-
ate set of annotations for their application. By breaking from con-
vention where a single stringency for genome annotation has
historically been setin published genomes, our approach provides

an annotation matrix that allows users to explore gene space as a
function of annotation support. Our original, full gene set con-
tains ~54,000 putative gene models, almost 9,000 more than
most other Malus genomes (Supplementary Table 5). Subsequent
filtering using various evidence sources successfully adjusted
the gene number closer to expected, although this resulted in re-
duced completeness in some cases (Table 4). Subset 1, where only
genes with full support were selected, is the most stringent cri-
teria we used for gene selection. Although the BUSCO complete-
ness score dropped by ~1%, it’s still among the highest in Malus
annotations and the average CROG gene count z-score indicates
that the overall number of genes in CROG are very close to expect-
ation (Supplementary Fig. 9). However, a collection of “cold”
orthogroups (containing fewer than expected number of genes
compared to the rest annotations) emerged in the ‘Honeycrisp’
plus ‘WA 38’ cluster from the CROG analysis (highlighted with
boxes in Supplementary Fig. 9). Since these cold spots were not
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observed in the original full gene set nor the less rigorously filtered
Subset 3, and are unique to the genomes annotated with the same
method and same filtering strategy, they are likely the result of a
methodological bias. This subset, Subset 1, is expected to contain
fewer false positives at the cost of also dropping a small amount of
true positives; suitable for analysis that requires high-confidence
gene models, such as reconstructing species or pedigree relation-
ships. Subset 3, which contains all genes from Subset 1 and genes
with both EnTAP and PlantTribes2 evidence, has a similar gene
number to the most recently published apple genomes, namely
‘Honeycrisp’, ‘Fuji’, ‘M9’, and ‘MM106’. Subset 3 maintained the
same BUSCO completeness score and did not have the “cold”
orthogroups observed in Subset 1. Thus, Subset 3 may contain
more false positive genes, but it also retains the most true posi-
tives; suitable for most analyses that can tolerate a small amount
of false positive gene models. Furthermore, similar to the
‘Honeycrisp’ plus ‘WA 38’ cluster with shared unique “cold”
orthogroup zones in the Subset 1 CROG analysis, genomes

annotated by the same research group tend to exhibit similar
gene count patterns (CROG analysis—Fig. 6), suggesting that
methodological bias in a seemingly subjective analysis may lead
to a more similar gene landscape within those annotations. The
most surprising examples are the cluster of ‘Gala’ with the two
wild Malus progenitors (i.e. different species), and the cluster of
M. fusca with Pyrus communis ‘d’Anjou’ (i.e. different genera). In
addition, although most of the published Malus genome annota-
tions have a similar number of genes (~45,000, Supplementary
Table 5), the CROG analysis identified different collections of
orthogroups with higher (warm color) or lower (cool color) than
average gene counts across clusters. These “warm” and “cool”
orthogroup spots are not necessarily indicative of gene family ex-
pansions or contractions (a separate analysis would be required),
but does provide valuable insight into the gene space within the
context of lineage-specific genome annotations and highlights po-
tential areas for genome resource improvement. We believe the
methodological bias revealed by the CROG analysis should be
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addressed or acknowledged before further analyses of gene family
expansions and contractions in Malus are performed.

Throughout this project, we emphasized community engage-
ment and enforce standardization of genome resources. The
AgBioData Genome Nomenclature working group is dedicated to
providing recommendations for consistent genome and gene
model nomenclature that meets the FAIR (Findable, Accessible,
Interoperable and Reproducible) data principle (Wilkinson et al.
2016). We worked together with this working group and the
Rosaceae community genome database (Genome Database for
Rosaceae, GDR, (Jung et al. 2019)) to improve the existing nomen-
clature for Rosaceae genomes. The adoption of standardized
nomenclature for plant genomes represents a significant ad-
vancement in the field of plant genomics as it helps reduce confu-
sion and potential errors, thereby enhancing the reliability
and reproducibility of genomic research. In addition, we followed
a previously-established gene family classification protocol
(Wafula et al. 2022; Khan et al. 2022) that circumscribed genes
into pre-computed orthogroups. Such a practice not only reduces
computational resource requirements but also allows researchers
to more easily compare findings across studies. The uniformity,
achieved by taking advantage of the already-existing community
resource, facilitates clearer communication, ensuring that discov-
eries are accurately attributed and understood in the context of
existing knowledge.

Our work emphasized the “reproducibility” of FAIR principles.
All bioinformatics analyses follow some workflow whether it is
manually developed as work progresses by the researcher or is
the product of an automated workflow managed by software tools
like Galaxy (The Galaxy Community 2022) (graphical interface),
Nextflow (di Tommaso et al. 2017) or Snakemake (Mdlder et al.
2021) (command-line interface). Automated workflows create re-
producible analyses because the version and parameters are easily
documented and software is commonly dockerized. For manually
developed workflows, the process is prone to being haphazard and
disorganized and difficult to share. Thus, many workflows are sim-
ply reduced to a brief description of software tools in Methods sec-
tions of journal articles with software versions and important
parameters often missing. As introduced in the Results section,
we provide a complete set of scripts and dockeried software to
completely recreate every analysis in the assembly and annota-
tion of the “WA 38’ genome. The organizational structure of the re-
pository follows the Bioinformatics Notebook protocol developed
by our team (https:/gitlab.com/ficklinlab-public/bioinformatics-
notebook/). The goal of this protocol is to ensure that complex
manually executed workflows can be shared for reproducibility,
the format is readable by others and backups of critical data are
supported. Briefly, the directories are ordered using a numeric pre-
fix indicating the order that analyses should be performed. Inside
each directory are sub-directories with smaller tasks. For each
task, all relevant scripts and instructions are provided. All soft-
ware used by the project is dockerized and scripts contain the
full parameter set used for every step. While there are areas forim-
provement, the protocol, when followed, allows for easy sharing of
the workflow via a Gitrepository. In our view, this approach is a no-
vel contribution towards FAIR data by ensuring that non-
automated workflows can be shared and are fully reproducible.

In addition to providing a fully reproducible workflow for the
‘WA 38’ genome project, we generalized the scripts for any gen-
ome project and shared those as part of the three American
Campus Tree Genome (ACTG) GtiHub repositories mentioned in
the Results section. The new ACTG general workflow is designed
to provide training that is applicable for a wide range of species.

The ACTG repositories are a work in progress as we seek to create
a generic, species-agnostic workflow that will serve the broader
ACTG community.

Availability of source code and requirements

Project name: ‘WA 38" whole genome assembly and annotation.
Project home page: https:/gitlab.com/ficklinlab-public/wa-38-
genome. Operating system(s): Platform independent. Programming
language: bash, python, awk, perl. Other requirements: singularity,
nextflow, java, python. License: MIT. Any restrictions to use by non-
academics: No restrictions. RRID: Not applicable.

Data availability

Raw reads generated for this project are publicly available at
NCBI under BioProject: PRJNA1072127. The assemblies are
available at NCBI under BioProjects PRINA1118822 (HapA) and
PRJNA1118823 (HapB). NCBI GenBank accession numbers for
HapA chromosomes 1 to 17 are CP165701-CP165717, and HapB
chromosomes 1 to 17 are CP165684-CP165700. Genome assembly
and annotation are available on GDR: https://www.rosaceae.org/
Analysis/20220983.
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