

https://doi.org/10.1093/g3journal/jkae222

Advance Access Publication Date: 17 September 2024

Genome Report

A haplotype-resolved, chromosome-scale genome for *Malus domestica* Borkh. 'WA 38'

Huiting Zhang (), 1,2,† Itsuhiro Ko (), 3,4,† Abigail Eaker, 3,4,† Sabrina Haney (), 5 Ninh Khuu, 3 Kara Ryan (), 6 Aaron B. Appleby, 7 Brendan Hoffmann, 8 Henry Landis, 6 Kenneth A. Pierro, 8 Noah Willsea, 9 Heidi Hargarten (), 2 Alan E. Yocca (), 2,10 Alex Harkess (), 10 Loren Honaas, 2,* Stephen Ficklin (), 1,*

*Corresponding author: Loren Honaas, USDA Agricultural Research Service, 1104 N. Western Ave, Wenatchee, WA 98801, USA. Email: loren.honaas@usda.gov; Stephen Ficklin, Department of Horticulture, Washington State University, 1772 NE Stadium way, Pullman, WA 99164, USA. Email: stephen.ficklin@wsu.edu

Genome sequencing for agriculturally important Rosaceous crops has made rapid progress both in completeness and annotation quality. Whole genome sequence and annotation give breeders, researchers, and growers information about cultivar-specific traits such as fruit quality and disease resistance, and inform strategies to enhance postharvest storage. Here we present a haplotype-phased, chromosomal-level genome of *Malus domestica*, 'WA 38', a new apple cultivar released to market in 2017 as Cosmic Crisp®. Using both short and long-read sequencing data with a k-mer-based approach, chromosomes originating from each parent were assembled and segregated. This is the *first* pome fruit genome fully phased into parental haplotypes in which chromosomes from each parent are identified and separated into their unique, respective haplomes. The two haplome assemblies, 'Honeycrisp' originated HapA and 'Enterprise' originated HapB, are about 650 Megabases each, and both have a BUSCO score of 98.7% complete. A total of 53,028 and 54,235 genes were annotated from HapA and HapB, respectively. Additionally, we provide genome-scale comparisons to 'Gala', 'Honeycrisp', and other relevant cultivars highlighting major differences in genome structure and gene family circumscription. This assembly and annotation was done in collaboration with the American Campus Tree Genomes project that includes 'WA 38' (Washington State University), 'd'Anjou' pear (Auburn University), and many more. To ensure transparency, reproducibility, and applicability for any genome project, our genome assembly and annotation workflow is recorded in detail and shared under a public GitLab repository. All software is containerized, offering a simple implementation of the workflow.

Keywords: apple genomics; Malus domestica 'WA 38'; genome sequence; comparative genomics; plant genomics; haplotype-resolved assembly; genome annotation

Introduction

For economically important crop species, having full-resolution reference genomes aids in the understanding of traits associated with commodity quality, disease resistance, long-term storage, and shelf life. Apple (Malus domestica) is the number one consumed fruit in the United States, with a Farm-Gate Revenue of \$3.2 billion in the United States (USApple 2024) and \$78 billion globally (FGN 2020). There are over 7,000 apple varieties grown worldwide (Washington Apple Commission 2021), each with unique colors, flavors, and textures (NC State Extension n.d.). Therefore, a single genome is unlikely to capture the complexity of all cultivars within this highly heterozygous species (Li et al. 2022b; Zhang et al.

2022). One such cultivar is 'WA 38', commercially released as Cosmic Crisp® in 2017 by the Pome Fruit Breeding Program at Washington State University's (WSU) Tree Fruit Research and Extension Center (Fig. 1a, b) and has reached the top 10 best selling apple cultivars in the United States (Truscott 2023). 'WA 38' is a cross between 'Honeycrisp' and 'Enterprise', made using classical breeding methods in 1997. One parent, 'Honeycrisp', is well-known for its crisp texture, firmness retention in storage, disease resistance, and cold hardiness, but is highly susceptible to production and postharvest issues (Khan et al. 2022). The other parent, 'Enterprise', is an easy-to-grow cultivar that has extended postharvest storage capabilities, however, it is not widely cultivated commercially due to its less desirable eating quality

¹Department of Horticulture, Washington State University, Pullman, WA 99164, USA

²Physiology and Pathology of Tree Fruits Research Unit, USDA Agricultural Research Service, Wenatchee, WA 98801, USA

³Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA

⁴Program of Molecular Plant Sciences, Washington State University, Pullman, WA 99164, USA

Department of Animal Science, Washington State University, Pullman, WA 97104, USA

⁶The School of Biological Sciences, Washington State University, Pullman, WA 99164, USA

⁷Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, USA

⁸Integrated Plant Sciences Program, Washington State University, Pullman, WA 99164, USA

⁹Department of Horticulture, WSU Tree Fruit Research and Extension Center, Wenatchee, WA, 98801, USA

 $^{^{10}\}mbox{HudsonAlpha}$ Institute for Biotechnology, Huntsville, AL 35806, USA

Fig. 1. 'WA 38', a cultivar of apple developed by the Washington State University Apple Breeding Program (a cross between 'Honeycrisp' and 'Enterprise'), marketed as Cosmic Crisp®. a) 'WA 38' apples ready for harvest on the mother tree, located at the WSU and USDA-ARS Columbia View Research Orchard near Orondo, WA, USA. b) The 'WA 38' mother tree, c, d) Green spot, a corking disorder which results in green blemishes on the fruit peel and brown, corky cortex tissue. Symptom severity generally increases during fruit maturation and time in storage, resulting in cullage. e) Natural peel greasiness as a result of more advanced maturity at harvest can interfere with artificial waxes applied in the packinghouse after removal from postharvest storage, creating unappealing, dull spots. f) Green Spot symptoms can begin to appear while fruit is still developing on the tree. Photo Credits: A&B: Heidi Hargarten/ USDA-ARS; C&D: Bernardita Sallato/WSU; E: Carolina Torres/WSU; F: Ross Courtney/Good Fruit Grower.

(Crosby et al. 1994). Their resulting cross has been met with favorable reviews for its appealing color, texture, flavor, cold hardiness, long-term storage capabilities (>1 year), and scab resistance (Evans et al. 2012). However, it inherited undesirable traits as well (Fig. 1c, d, e, and f), such as a propensity for physiological symptoms that may be related to mineral imbalances (Sallato et al. 2021; Sheick et al. 2023) and maturity at harvest (Serra et al 2023), and an "off" flavor that has been brought up by consumers that may be the result of improper picking times, crop load management, handling/packing practices or other postharvest processes (Mendoza et al. 2022). Most concerning is green spot (Fig. 1c, d, and f), a corking disorder that seems to be unique to 'WA 38', but with etiology similar to disorders associated with mineral imbalances such as bitter pit and drought spot (Sheick et al. 2022, 2023). The propensity for and cause of physiological disorders often differs on a cultivar-by-cultivar basis (Pareek 2019), and a genetic basis for such predispositions is likely (Liebhard et al. 2003; Johnston and Brookfield 2012; Di Guardo et al. 2013; Lum et al. 2016). Thus, improved resolution of cultivarspecific genomic differences is critical for advancing our understanding of how economically important traits are inherited and how they can be managed more efficiently.

To develop full-resolution reference genomes of superior quality, having skilled bioinformaticians is required. To train the next generation of bioinformaticians for agricultural genomic research, a national effort spearheaded by Auburn University, HudsonAlpha Institute for Biotechnology, and Washington State University was started in 2021—The American Campus Tree Genomes project (ACTG, http://hudsonalpha.org/actg). ACTG aims to break through institutional barriers that have traditionally prevented many students from accessing valuable, hands-on research projects and experience in bioinformatics (Sharman n.d.). To accomplish this goal, a course has been developed to involve students in genome projects from inception, through analysis, to publication (Harkess 2022). During the course, students learn genome assembly and annotation workflows using the raw sequence data from genomes of beloved trees (e.g. Toomer's oak and 'd'Anjou' pear (Yocca et al. 2024) at Auburn University, Sabal palm at University of South Carolina Aiken) and are listed as authors on the final publication. The 'WA

38' genome introduced here was developed through ACTG by students from Washington State University, presenting three major outcomes: (1) a fully annotated, chromosomal level, haplotyperesolved genome of 'WA 38' utilizing PacBio HiFi, Dovetail Omni-C, and Illumina DNA and RNA sequencing data, (2) development of a comparative genomics framework with other economically important *M. domestica* cultivars including 'Gala', 'Fuji', and 'Honeycrisp', and (3) establishment of a containerized, reproducible, flexible, high-performance computing workflow for complete genome assembly and annotation (Fig. 2, Supplementary Fig. 1).

Methods

Workflows developed for each stage of the project and the summary workflow of the whole project are available in Supplementary Fig. 1. Scripts with parameters for each computation step and methods in markdown format are available in GitLab at: https://gitlab.com/ficklinlab-public/wa-38-genome (Zhang and Ficklin 2024).

Sample collection, DNA isolation, and sequencing

Approximately 20 grams of young leaf material was harvested from the *Malus domestica* 'WA 38' mother tree at the Washington State University and USDA-ARS Columbia View Research Orchard near Orondo, WA, USA and flash-frozen in liquid nitrogen. Tissue was sent with dry ice to the HudsonAlpha Institute for Biotechnology in Huntsville, AL, USA for DNA extraction, sequencing library preparation, and sequencing, following the same protocol used to generate the 'd'Anjou' pear genome data (Yocca et al. 2024). This protocol is described in detail below.

To assess heterozygosity and genome size of 'WA 38', DNA was extracted using a standard CTAB isolation method (Doyle and Doyle 1987). Illumina TruSeq shotgun DNA PCR-free libraries were constructed from 3 ug of input DNA following the manufacturer's instruction and sequenced on an Illumina NovaSeq6000.

For PacBio HiFi sequencing, high molecular weight DNA was isolated using a Nanobind Plant Nuclei Big DNA kit (Circulomics-PacBio, Menlo Park, CA), with 4 g of input tissue and a 2-hour lysis.

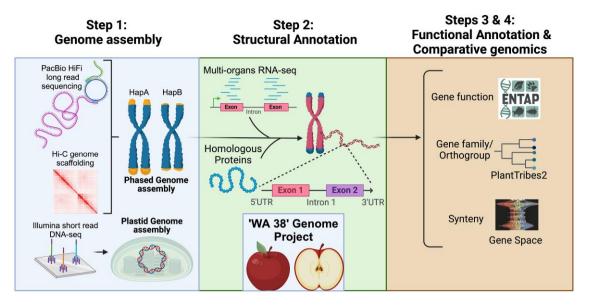


Fig. 2. Schematic chart of the 'WA 38' genome project.

DNA purity, quantity, and fragment sizes were measured via spectrophotometry, Qubit dsDNA Broad Range assay (Invitrogen), and Femto Pulse system (Agilent, Santa Clara, CA), respectively. DNA that passed quality control was sheared with a Megaruptor (Diagenode, Denville, NJ) and size-selected to roughly 25 kb on a BluePippin (Sage Science, Beverly, MA). The SMRTbell Express Template Prep Kit 2.0 (PacBio, Menlo Park, CA) was used to construct the PacBio sequencing library, and HiFi reads were produced using circular consensus sequencing (CCS) mode with two 8 M flow cells on a PacBio Sequel II long-read system.

To scaffold PacBio HiFi contigs into chromosome pseudomolecules, a Dovetail Genomics Omni-C library was generated using 1 g of flash-frozen young leaf material as input following the manufacturer's instruction (Dovetail Genomics, Scotts Valley, CA), and sequenced on an Illumina NovaSeq6000 S4 PE150 flow cell.

Sequence quality assessment and genome complexity analysis

Adapter sequences were trimmed from the raw Illumina shot-gun DNA reads using fastp (v0.23.2) (Chen et al. 2018) with all the other trimming functions disabled. Both the raw and trimmed Illumina reads, PacBio HiFi reads, and Omni-C Illumina reads were assessed for quality with FastQC (v0.11.9) (Andrews 2010). Genome complexity, i.e. nuclear genome size and ploidy, was estimated using Jellyfish (v2.2.10) (Marçais and Kingsford 2011), with trimmed paired-end Illumina reads or PacBio reads as input and a k-mer size set to 21. The k-mer histogram, also created by Jellyfish, was visualized in GenomeScope (v1.0) (Vurture et al. 2017) with the following parameters: k-mer size = 21, Read length = 151, and Max k-mer coverage = 1000. A summary statistic report of the sequence quality and complexity analysis was generated with MultiQC (v1.13a).

Genome assembly

Genome assembly and scaffolding

Phased haplomes were assembled by Hifiasm (v0.16.1) (Cheng et al. 2021) with default parameters, using both the Omni-C data and the PacBio HiFi long reads. The statistical summary of the assembly was produced following methods described in (Earl et al. 2011). Both hifiasm-assembled haplotype unitigs were then sorted by MUMmer (v3.23) (Kurtz et al. 2004) using the "nucmer" function with flag -maxmatch. Structural variations in the two haplotype unitigs were visualized using the Assemblytics web server (http://assemblytics.com; Nattestad and Schatz 2016) with default settings.

The Omni-C reads were aligned to the initial assembly using bwa (Li and Durbin 2009) for data quality assessment and scaffolding. The overall quality of the library was validated with Phase Genomics' hic_qc script (https://github.com/phasegenomics/hic_ qc; Phasegenomics, N.D.). Both assembled haplomes were scaffolded into chromosomes using SAMtools and YaHS (Danecek et al. 2021; Zhou et al. 2022) with default parameters.

Assembly curation, quality control, and completeness assessment

Hi-C files were generated using YaHS Juicer Pre (v1.2a.2-0) with flag -a allowing manual curation. The resulting files were used as input for Juicer Tools Pre (v 1.22.01) to generate Hi-C contact maps (Durand et al. 2016; Zhou et al. 2022). Juicebox Assembly Tools (v1.11.08) was used to explore the Hi-C maps for missassemblies (Robinson et al. 2018). After manual examination of the Hi-C maps, the final genome assembly was generated by linking the remaining files from YaHS Juicer Pre and original HiFi scaffold, using YaHS Juicer Post (v 1.2a.2-0, (Durand et al. 2016)).

For consistency and reproducibility, 'WA 38' chromosomes were renamed and reorientated to match published genomes. First, MUMmer (v3.23) was used to align the 'WA 38' assembly to the 'Gala' v1 HapA assembly using the same parameters as described above (Kurtz et al. 2004; Sun et al. 2020). Next, Assemblytics dotplot was used to identify 'WA 38' scaffolds that aligned with the 'Gala' v1 chromosomes and 'WA 38' scaffolds were renamed accordingly. To determine orientation, each 'WA 38' chromosome was aligned to the corresponding 'Gala' v1 HapA chromosomes using LASTZ (v 1.02.00) implemented in Geneious (v9.0.5; Harris 2007) with the "search both strands" option. The chromosomes on the reverse stand were reoriented with the Reverse Complement (RC) function in Geneious (Supplementary Fig. 2). The resulting assembly was searched against NCBI's RefSeq Plastid database (NCBI Organelle genome resources, n.d.) using megablast and a custom virus and bacteria

database using Kraken (v2.1.3; Wood and Salzberg 2014) to identify contaminants. Scaffolds identified as plastid or microbe contaminants were removed in the assembly.

The cleaned assembly was compared to the 'Honeycrisp' genome assembly with a k-mer approach using meryl (v1.4.1, Rhie et al. 2020). Chromosomes with a 'Honeycrisp' origin were placed in HapA, whereas the others were placed in HapB. To validate assembly quality and parental phasing, high-quality phased 8 K SNP array data for 'WA 38' and corresponding genetic map were obtained from Vanderzande et al (2019) and validation was performed following (Vanderzande et al. 2024).

The two final haplome assemblies were compared to each other using MUMmer and Assemblytics as described above to identify structural variants. Benchmarking universal single-copy orthologs (BUSCO, v5.4.3_cv1) analysis was performed in genome mode with the eudictos_odb10 database to assess completeness (Manni et al. 2021).

Structural and functional annotation

Repeat annotation

Repetitive elements from both haplomes were annotated using EDTA (v2.0.0; Ou et al. 2019), with flags "sensitive = 1" and "anno = 1". The full coding sequence from 'Gala' v1 HapA, obtained from the Genome Database for Rosaceae (GDR; Jung et al. 2019), was used as reference to aid repeat finding. The custom transposable element library generated by EDTA was then imported to RepeatMasker (Smit et al. n.d.) to further identify potentially overlooked repetitive elements and create masked versions of the genome. Three masked versions were generated: softmasked, N masked, and X masked.

Telomeres were identified by tidk (v0.2.41; Brown et al. 2023) with the following parameters: explore -minimum 2 -maximum 20 and the default database provided by the software.

Gene annotation

To annotate the gene space, a combination of ab initio prediction and evidence-based prediction were performed on the softmasked assemblies with two rounds of BRAKER using transcriptome and homologous protein evidence. PASA (v2.5.2; Haas et al. 2003) was then used to refine gene models and add untranslated region (UTR) annotation. Lastly, a custom script was used for filtering. The detailed methods are described below.

BRAKER1—annotation with transcriptome evidence. To perform transcriptome guided annotation, same RNA-seq data from Khan et al. (2022) (eight tissue types from six pome fruit cultivars including 'WA 38', BioProject: PRJNA791346) were aligned to the 'WA 38' haplomes using the STAR aligner implemented in GEMmaker (v2.1.0) Nextflow workflow (Hadish et al. 2022). The resulting read alignments were used as extrinsic evidence in BRAKER1 (Hoff et al. 2016) to predict gene models in each softmasked haplome with the following parameters: -softmasking, -UTR = off, -species = malus_domestica.

BRAKER2—annotation with homologous protein evidence. To provide protein evidence for BRAKER2 (Bruna et al. 2021), protein sequences from three sources were used: (1) Predicted protein sequences of 13 Rosaceae genomes retrieved from GDR (Fragaria vesca v4a2 (Li et al. 2019), Malus baccata v1.0 (Chen et al. 2019), M. domestica var.Gala v1 (Sun et al. 2020), M. domestica var.GDDH13 v1.1 (Daccord et al. 2017), M. domestica 'Honeycrisp' v1.0 (Khan et al. 2022), M. sieversii v1 (Sun et al. 2020), M. sylvestris v1 (Sun et al. 2020), Prunus persica v2.0.a1 (Verde et al. 2017), Pyrus betulifolia v1.0 (Dong et al. 2020), P. communis 'd'Anjou' v2.3 (Yocca et al. 2024), P. pyrifolia 'Nijisseikiv' v1.0 (Shirasawa et al. 2021), Rosa chinensis 'Old Blush' v2.0.a1 (Raymond et al. 2018), and Rubus occidentalis v3 (VanBuren et al. 2018)); (2) Peptide sequences predicted from de novo transcriptome assemblies used in the 'Honeycrisp' genome annotation (Khan et al. 2022); and (3) Viridiplantae OrthoDBv11 protein sequences (Kuznetsov et al. 2022). In the same manner as BRAKER1, the softmasked haplome assemblies were used as input.

TSEBRA—transcript selection. The gene annotation results from BRAKER1 and BRAKER2 were merged and filtered based on the supporting evidence using TSEBRA (v.1.0.3; Gabriel et al. 2021) with the default configuration (file obtained in August 2022).

PASA—gene model curation and UTR annotation. Two sources of transcriptome assembly evidence were obtained to facilitate PASA annotation: (1) Transcript sequences predicted from de novo transcriptome assemblies used by 'Honeycrisp' genome annotation; and (2) Reference guided assemblies created with read alignment files from GEMmaker (see the BRAKER1 section for details) using Trinity (Grabherr et al. 2011) with max intron size set to 10,000. Four rounds of PASA (v2.5.2) curation were performed using the aforementioned evidence and a starting annotation. The first round of PASA curation used TSEBRA annotation as the starting annotation, and annotations from the previous round were used as the starting annotation for rounds two through four. The curation results from each round were manually inspected using the PASA web portal. No significant improvement was observed after the fourth round of curation, therefore no further rounds of curation were performed.

Gene model filtering and gene renaming. Repeat and gene model annotations were visualized and inspected in IGV (v2.15.1; Robinson et al. 2011). Three types of erroneous gene models were observed consistently throughout the annotations. Type 1: Genes overlapping with repeat regions (e.g. transposon was wrongly annotated as a gene), Type 2: Gene models overlapping with each other on the same strand (e.g. single gene was wrongly annotated with multiple gene models), and Type 3: Gene models with splice variants that had no overlap (e.g. different genes were wrongly annotated as the single gene's splice variants). A custom script was used to address these errors. The Type 1 error was resolved by removing genes with 90% of their coding region overlapping with repeat regions. The Type 2 error was resolved by removing the shorter gene of a pair that overlaps on the same strand. The Type 3 error was resolved by splitting splice variant models with no overlap into separate gene models. Finally, custom scripts were used to generate the final annotation files (gene, mRNA, cds, protein, gff3) and rename genes to match the naming convention proposed by GDR (https://www.rosaceae.org/ nomenclature/genome). The longest isoforms of each transcript were needed for some downstream analysis and were extracted using a modified version of the get_longest_isoform_seq_per_trinity_gene.pl script (Trinitymaseq n.d.) provided by Trinity (Grabherr et al. 2011).

Functional annotation

The final gene sets from both 'WA 38' haplomes were annotated using EnTAPnf (Hart et al. 2020) with Interproscan, Panther, RefSeq, and uniprot_sprot databases that are automatically downloaded by the software.

Comparative analysis

Synteny analysis

A synteny comparison was performed using GENESPACE (Lovell et al. 2022) with five Malus domestica assemblies and annotations (GDDH13 from Daccord et al. 2017, both haplomes of 'Honeycrisp' from Khan et al. 2022, and both haplomes from 'WA 38'). Default parameters were used. Only the longest isoforms were used for

Gene family analysis

Gene family, or orthogroup, analyses were carried out to identify shared and unique gene families in 'WA 38' and other pome fruit genomes (i.e. Malus sp. and Pyrus sp. A full list of genomes analyzed can be found in Supplementary Table 1) following the method described by (Khan et al. 2022). Briefly, predicted protein sequences from the selected pome fruit genomes were classified into a pre-computed orthogroup database (26Gv2.0) using the "both HMMscan and BLASTp" option implemented in the GeneFamilyClassifier tool from PlantTribes2 (Wafula et al. 2022). Overlapping orthogroups among M. domestica genomes were calculated and visualized with the UpSet plot function implemented in TBtools v2.030 (Chen et al. 2023).

A Core OrthoGroup (CROG)—Rosaceae gene count analysis was carried out following the method described by (Wafula et al. 2022). First, a CROG gene count matrix was created by counting genes classified into CROGs from each pome fruit genome. Next, the matrix was visualized as a clustermap using the Seaborn clustermap package (CROGs with standard deviation of 0 were removed prior to plotting) with rows normalized by z-score. Finally, the derived z-score of CROGs in each genome was summarized into a boxplot to illustrate z-score distribution using the boxplot function in

Gene evidence source mapping

Each gene was screened against the following evidence source: Transcriptome evidence covering the entire gene (Full RNA support); Transcriptome evidence covering part of the gene (Any RNA support); Homologous protein evidence covering the entire gene (Full protein support); Homologous protein evidence covering part of the gene (Any protein support); Has a EnTAP functional annotation from any database; Assignment to a PlantTribes2 Orthogroup. Transcriptome and homologous protein evidence were mapped to genes with the selectSupportedSubsets.py script provided by BRAKER (Bruna et al. 2021) and BEDtools (Quinlan and Hall 2010). Summaries of evidence source mapping are available in Supplementary Tables 2 and 3. The following subsets of genes were extracted and were subject to BUSCO completeness analysis and CROG gene count analysis: Subset 1, Genes with full support from either RNAseq or homologous protein evidence; Subset 2, Genes with any support from either RNAseq or homologous protein evidence; Subset 3, Genes from Subset 1 plus gene with both EnTAP and PlantTribes2 annotation; Subset 4, Genes from Subset 1 plus genes with either EnTAP or PlantTribes2 annotation.

Chloroplast and mitochondria assembly and annotation

The chloroplast genome was assembled from trimmed Illumina shotgun DNA reads using NOVOplasty (v4.3.1; Dierckxsens et al. 2017) with the Malus sierversii chloroplast genome (NCBI accession ID: MH890570.1; Naizaier et al. 2019) as the reference sequence and the NOVOplasty Zea mays RUBP gene as the seed sequence.

The assembled chloroplast was annotated using the GeSeq Web Server (website accessed on Dec. 19th, 2023; Tillich et al. 2017) with settings for "circular plastid genomes for land plants" and the following parameters: annotating plastid inverted repeats and plastid trans-spliced rps12. Additionally, annotations from third-party software Chloë (v0.1.0) and ARAGORN (v1.2.38), as well as a BLAT (v.35×1) search against all land plant chloroplast reference sequences (CDS and rRNA), were integrated with the GeSeg results. Genes identified by multiple tools were manually reviewed to produce the final, curated annotation. The curated chloroplast annotation was visualized by OGDRAW (v1.3.1; Greiner et al. 2019).

The mitochondrial genome sequence was isolated from the Hifiasm assembled contigs using MitoHifi (v3.2; Uliano-Silva et al. 2023). The M. domestica mitochondria sequence from NCBI (NC_018554.1; Goremykin et al. 2012), which contained 57 genes consisting of four rRNAs, 20 tRNAS, and 33 protein-coding genes, was used as the closely related reference sequence. Briefly, MitoHifi compares the assembled contigs to the reference mitogenome using the BLAST algorithm. The resulting contigs were manually filtered by size and redundancy and then are circulated. To increase the annotation quality, GeSeq was deployed in mitochondrial mode with the M. domestica NCBI RefsSeg sequence to annotate the 'WA 38' mitochondria assembly. Fragmented genes from the annotation were manually removed prior to visualization in OGDRAW (v1.3.1; Greiner et al. 2019).

Results

A complete, reproducible, publicly-available workflow

To ensure transparency and reproducibility, the 'WA 38' Whole Genome Assembly and Annotation ('WA 38' WGAA) project workflow was made publicly accessible through a GitLab repository (https://gitlab.com/ficklinlab-public/wa-38-genome, Zhang et al. 2024). This repository contains the complete manual workflow for assembly and annotation of the genome as well as the comparative genomics analyses. It organizes each step in order of execution, using ordered, numeric directory prefixes where each directory includes detailed method documentation and scripts that were executed for each analysis. All parameter settings, as well as any command line manipulation of the files generated, are noted in the scripts or methods. Summary diagrams for the manually executed workflow are available in Supplementary Fig. 1. All software utilized in the project has been containerized and shared on Docker Hub (https://hub.docker.com/u/systemsgenetics). Users who follow the workflow can retrieve the public data and repeat the steps to reproduce the results. Leveraging these resources from the 'WA 38' WGAA project, and as part of our commitment to knowledge sharing, we have initiated an American Campus Tree Genome (ACTG) course GitHub organization (https://github. com/actg-course/). This organization comprises three main repositories: (1) wgaa-compute: a generic whole genome assembly and annotation workflow template, derived from the 'WA 38' WGAA project, that can be adapted for other species; (2) wgaa-docker: the Docker recipes for all the software employed in the project; and (3) wgaa-doc: an open-source and editable documentation repository containing teaching materials for current and future ACTG instructors, providing a collaborative space for instructors to learn from and contribute to the enhancement of the course materials.

Nuclear genome assembly

Sequence quality assessment

Raw sequencing data (Table 1) was assessed for read quality. The Illumina shotgun short read data consisted of 807.2 million total reads with a mean length of 151 bp for a total of 121.9 Gigabases (Gb) of data and 38% GC content after adapter trimming. The Q20 and Q30 quality scores are 91.8 and 83.4%, respectively. Duplication rates ranged from 23.3 to 27.8%. PacBio long read raw data consisted of 3.9 million reads from 85 to 49,566 bp in length for a total of 60.0 GB. Sequence duplication rates ranged from 2.2 to 2.4%. PacBio sequence GC content is 38%, same as the Illumina data. In addition, a $402 \times$ coverage ($201 \times$ for each haplome) of Omni-C data was generated to facilitate the assembly and phasing.

Genome complexity

Using a k-mer frequency approach, genome characteristics such as heterozygosity and genome size were estimated (Fig. 3). Analysis of both short and long reads resulted in an estimated heterozygosity of $\sim 1.35\%$, similar to estimates from the 'Honeycrisp' cultivar (1.27%; Khan et al. 2022). Estimated genome size was 467Mb from the short reads and 606Mb from the long reads.

Table 1. Yield of Illumina DNA short reads (Shotgun and Omni-C) and PacBio HiFi sequencing reads from young leaf tissues of "WA 38".

	Long Read	Short Read			
	PacBio HiFi	Shotgun DNA seq	OmniC-Seq		
Total read number Number of bases (Gb)	3,870,263 60.0	807,220,896 121.9	1,730,268,360 261.3		
Coverage* Average length (bp)	92x 15,495	188x 151	402x 151		

^{*} Calculated with the size of a haploid genome (650 Mb).

These estimates are lower than expected from other apple genomes ('Honeycrisp' at 660–674 Mb; Khan et al. 2022, and 'Golden Delicious' at ~701 Mb; Li et al. 2016) and the final assembly (Table 2). Additionally, the percent of unique sequence was estimated at 69.5% for the short reads and 53.4% for the long reads, with the long read estimate being more consistent with what is expected from the 'Honeycrisp' (51.7%; Khan et al. 2022) and of wild apple species Malus baccata (58.6%; Chen et al. 2019).

Genome assembly, scaffolding, and curation

For initial assembly, scaffolding, and curation, two unsorted, phased haplomes, called Hap1 and Hap2, were assembled and scaffolded using both PacBio long reads and Omni-C short reads. Hi-C maps of the haplome assemblies show no mis-assemblies (Supplementary Fig. 3). For Hap1 and Hap2, a total of 22 joins and 20 joins, respectively, were made in the scaffolding step to build the final assemblies into 17 chromosomes each, with the remaining scaffolds representing unincorporated contigs. Unincorporated contigs were investigated and found to be bacterial or other contamination and were removed. After removing contaminants, Hap1 is 645.41 Mb in length with an N50 of 36.1 Mb, while Hap2 is 651.07 Mb in length with an N50 of 37.2 Mb. Additional assembly statistics for both haplomes are included in Supplementary Table 4. 'WA 38' has a comparable genome size to other previously sequenced apple cultivars, including its parent 'Honeycrisp' (Khan et al. 2022). Notably, the 'WA 38' scaffold N50 is among the longest across all published apple genomes, indicating high levels of assembly contiguity (Supplementary Table 5).

Haplotype-binning, structural comparison, and completeness assessment

The k-mer based binning method identified the origin of chromosomes in each haplome assembly. After reorganizing the chromosomes based on parent contribution, the haplome containing all the 'Honeycrisp' origin chromosomes is designated as HapA, whereas the 'Enterprise' originated haplome is designated as HapB. Further validation against the phased 'WA 38' SNP array did not

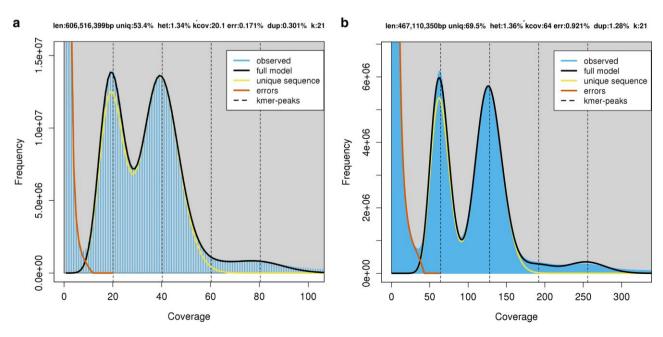


Fig. 3. Genome complexity of 'WA 38' genome using PacBio long read data (a) and illumina short read (b). The output figures were generated by GenomeScope (k = 21).

Table 2. Comparison of genomic features and assembly statistics of the "WA 38" genome and previously published apple genomes.

	'WA 38'		'Honeycrisp'		'Antonovka'	'Gala'	'GDDH13'	'Fuji'
	НарА	НарВ	НарА	НарВ				
Number of Scaffold	17	17	473	215	168	812	1,081	1,358
Haploid genome size (Mb)	645.41	651.07	674	660	643.5	652.4	709.6	736.9
N50 (Mb)	36.1	37.2	31.6	32.8	35.85	23.9	5.5	36.8
L50	8	8	8	8	8	8	NA	9
Number of protein-coding genes	53,028	54,235	47,563	48,655	45,085	45,352	45,116	49,972
Complete BUSCO (%) Assembly	98.7	98.7	98.6	98.7	97.6	97.9	98	98.8
Complete BUSCO (%) Annotation	98.5	98.4	96.8	97.4	97.25	95.5	96.1	97.2
Number of orthogroups in 26Gv2.0	10,494	10,511	10,350	10,366	10,293	10,095	10,117	10,243
Reference	This	paper	Khan et	al. 2022	Švara et al. 2024	Sun et al. 2020	Daccord et al. 2017	Li et al. (2024)

NA: Data not available. For consistency, genome statistics and BUSCO analyses were performed on the publicly available genomes using the same methods used for 'WA 38', except for N50 and L50 of 'GDDH13' as the scaffold assembly is not publicly available. 'Antonovka' data is the average of the two haplomes. The unphased version of 'Fuji' was used. A more in-depth comparison is available in Supplementary Table 5.

Table 3. Summary of repetitive element annotation in the "WA 38" and other apple genomes.

Class		'WA 38' (%)		'Honeycrisp' (%)		'd'Anjou' pear (%)		
		НарА	НарВ	НарА	НарВ	Hap1	Hap2	
LTR	Copia	9.37	10.22	9.73	9.6	5.6	5.73	
	Gypsy	17.19	18.32	20.29	17.8	12.32	12.88	
	unknown	16.37	14.52	14.89	16.86	8.46	10	
TIR	CACTA	1.94	2.15	2.21	1.95	1.4	1.4	
	Mutator	3.96	4.18	4.16	4.25	3.47	3.41	
	PIF Harbinger	2.4	2.52	2.43	2.6	1.81	1.81	
	Tc1_Mariner	0.16	0.24	0.15	0.27	0.13	0.11	
	hAT	2.15	2.37	2.3	2.31	0.58	0.84	
	polinton	0	0	0	0.01	0	0	
nonLTR	LINE_element	0.14	0.16	0.18	0.17	0.14	0.14	
	unknown	0.11	0.09	0.09	0.18	0.06	0.06	
nonTIR	helitron	3.41	2.20	2.95	3.18	1.56	1.92	
Other repeat region		1.52	1.74	2.91	2.78	3.98	4.22	
RM*	3	3.98	3.99	NA	NA	NA	NA	
Total		62.71	62.71	62.43	61.97	39.78	42.52	
Reference	Reference		This paper		Khan et al. (2022)		Yocca et al. (2024)	

 $^{^{}st}$ Repeat regions annotated by RepeatMakser.

identify any potential error in the assembly, phasing, or haplotype binning (Supplementary Fig. 4). HapA and HapB are structurally similar; a total of ~44 Mb are affected by structural variants and are mainly contributed by indels and repeat expansion and contractions (Supplementary Table 6 and Supplementary Fig. 5). Additionally, three large inversions are observed on chromosomes 1, 11, and 13 (Supplementary Fig. 6). Based on the BUSCO analysis, both the HapA and HapB assemblies were 98.7% complete, with only 19 BUSCOs missing and 12 partially detected (Supplementary Table 7). This BUSCO score suggests high genome completeness for both haplomes, comparable to the 'Fuji' apple genome assemblies, which is most contiguous of all apple genomes to date (Table 2 and Supplementary Table 5; Li et al. 2024).

Nuclear genome structural annotation Repeat annotation

In both haplomes, approximately 58.7% of the assembly was predicted to be repetitive regions by EDTA (Ou et al. 2019; Table 3). RepeatMasker identified an additional 4% repeat elements, resulting in a total of 62.7% repeat regions in both HapA and HapB, comparable to the 'Honeycrisp' genome (Khan et al. 2022). In both haplomes, the most dominant type of repeat element is long terminal repeat (LTR), followed by terminal inverted repeat (TIR)

(Table 3, Supplementary Table 8), consistent with that in 'Honeycrisp'. We also compared the repeat landscape of 'WA 38' with 'd'Anjou' pear which was annotated with the same methodology. While they share the major repeat classes, 'd'Anjou' pear has a much lower percentage of repeat elements (Table 3).

Through telomere search in each haplotype, we discover that telomere repeat regions are present in almost every chromosome of each haplome. The most enriched telomere repeat unit is a 7-mer "AAACCCT" and its reverse complement "AGGGTTT", which has been reported as overrepresented in the *Arabidopsis thaliana* genome (Choi et al. 2021), opposed to "CCCATTT" and "TTTTAGGG" reported in the most recent T2T 'Golden Delicious' apple genome (Su et al. 2024). A list of telomere repeat regions and units for both haplotypes were deposited in Supplementary Table 9.

Gene space annotation

To annotate the gene space, we utilized a combination of ab initio prediction and evidence-based prediction with transcriptome and homologous protein, functions implemented in BRAKER2 (Brůna et al. 2021). However, BRAKER2 was unable to annotate UTRs and yielded erroneous gene models and splice variants (Supplementary Fig. 7). Therefore, the gene models were further

processed with PASA (Haas et al. 2003) and a custom script. A total of 53,028 and 54,235 genes were annotated from HapA and HapB, respectively, more than most published apple genomes (Table 2, Supplementary Table 10). The complete BUSCO scores for HapA and HapB annotations are 98.5 and 98.4%, respectively, the highest score among all M. domestica genomes sequenced to date (Supplementary Tables 5 and 7). The average protein annotated from HapA and HapB contains 361.3 and 356.4 amino acids, respectively, similar to that of other M. domestica annotations (Supplementary Table 11). On average, 1.3 splice variants were identified for each gene in both HapA and HapB annotations. The only other apple genome with splice variant annotation is 'Honeycrisp', and on average, 1.05 splice variants were annotated per gene (Supplementary Table 11). Additionally, 53.5 and 52.2% of the annotated transcripts from HapA and HapB, respectively, contain UTRs. Notably, 'WA 38' is the only other apple genome besides 'GDDH13' and 'Fuji' that has more than half of the genes annotated with UTRs.

The 'WA 38' genes were named in accordance with the convention following guidance from the Genome Database for Rosaceae (GDR). This convention was first proposed by our group for the 'Honeycrisp' genome and was later adopted with modification by GDR (Gene name example: drMalDome.wa38.v1a1.ch10A.g00001.t1). This convention meets recommendations proposed by the AgBioData consortium to reduce gene ID ambiguity and improve reproducibility.

Nuclear genome functional annotation

EnTAP (Hart et al. 2020) functional annotation assigned functional terms to 89.5 and 88.8% of proteins annotated from HapA and HapB, respectively. Specifically, an average of 83 and 55% of all proteins (including both HapA and HapB) have strongly supported hits in the NCBI RefSeq (O'Leary et al. 2016) and UniProt database, respectively, 75% were annotated with an InterPro term, and 88%

have functional annotations from at least one of the databases included in InterProScan. EggNOG (O'Leary et al. 2016; Huerta-Cepas et al. 2019) search provided additional function information: 90% of the annotated proteins were assigned into EggNOG orthogroups, 84% were annotated with protein domains, 21% were classified into KEGG pathways, and 63%, 53%, and 61% proteins were annotated with GO biological process, cellular component, and molecular function terms, respectively (Supplementary Table 12).

Comparative analyses

Synteny and gene family analyses were performed to investigate the similarity and unique features of 'WA 38' genome to other closely related species and cultivars.

Synteny analysis was performed to compare the genomes of 'WA 38', one of its parents, 'Honeycrisp', and the most referenced apple genome, 'GDDH13', using GENESPACE (Lovell et al. 2022). The two 'WA 38' haplomes are highly collinear with each other and with the other apples, especially the two 'Honeycrisp' haplomes. Although inversions at various scales were observed between the two 'WA 38' haplomes (e.g. large inversions on chromosomes 1, 11, 13 in Supplementary Figs. 6 and 8), they have minor effects on gene order (Fig. 4), likely due to the small number of genes annotated from those inverted regions.

Gene family analysis is performed using PlantTribes2 and the pre-constructed 26Gv2.0 scaffold orthogroup database (Wafula et al. 2022). Out of the 18,110 pre-constructed orthogroups, proteins from all apple annotations (including six published scion cultivar genomes, two rootstock genomes, and the 'WA 38' genome from this work) are found in 11,698 orthogroups. 'Golden Delicious' Genome v1.0 (Velasco et al. 2010) was omitted from this analysis due to poor annotation quality. Proteins from HapA and HapB of 'WA 38' were classified into 10,494 and 10,511 orthogroups, respectively, similar or slightly higher in number

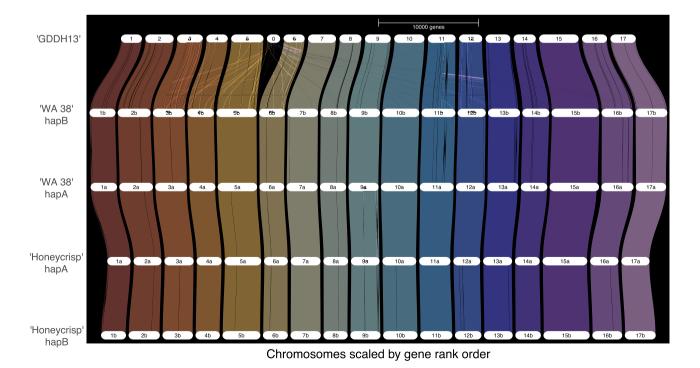
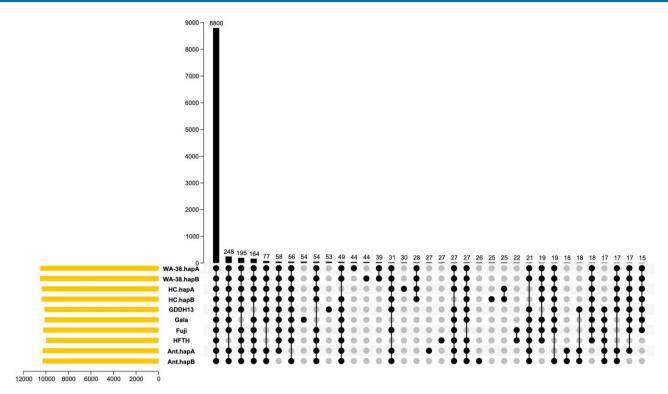



Fig. 4. Riparian plot comparing 'WA 38' Haplome A and B with 'Honeycrisp' Haplome A and B and the 'Golden Delicious' (GDDH13) genome by gene rank order.

Fig. 5. Upset plot of shared and unique orthogroups among *Malus domestica* genomes. Rows in the bottom of the figure are genomes used for the comparison. Columns (categories, x-axis of the bar graph) are annotated with black or gray dots where black is present and gray is absent. The height of the black bars (y-axis of the bar graph) is scaled to match the number of orthogroup in each category, which are also printed above the bars.

compared to previously published *M. domestica* genomes, including 'Honeycrisp', 'Gala', and 'GDDH13' (Table 2, Fig. 5). An investigation into shared and unique orthogroups across all the scion genomes showed that most orthogroups (8,800 or 75%) are shared by all six apple genomes considered. Additionally, 824 orthogroups are shared by both 'WA 38' haplomes and the seven other annotations (each of the two haplomes from 'Honeycrisp' and 'Antonovka 172670-B' are counted as unique annotations). 'Honeycrisp' shared the largest number of orthogroups with 'WA 38', as expected due to being a parent of 'WA 38' (Supplementary Table 13). These results indicate that the 'WA 38' annotation captures genes in virtually all *M. domestica* orthogroups. Additionally, 39 orthogroups were unique to 'WA 38' (i.e. present only in the two 'WA 38' haplomes) and each haplome of 'WA 38' contains 44 unique orthogroups (Fig. 5).

In addition to identifying the shared and unique orthogroup, a CoRe OrthoGroup (CROG)—Rosaceae analysis was performed to further investigate orthogroup contents. As expected, in the CROG gene count clustermap (Fig. 6), 'WA 38' clustered closely with 'Honeycrisp'. The 'WA 38' + 'Honeycrisp' group is clustered with 'GDDH13', as expected based on pedigree (Howard et al. 2017). Interestingly, a strong "publication bias", first mentioned by Wafula et al. (2022), is observed: genomes released in the same publication or annotated by the same researcher clustered together. Such groups are: 'Gala', Malus sieversii, and M. sylvestris (Sun et al. 2020); 'Fuji', 'M9', and 'MM106' (Li et al. 2024); M. fusca (Mansfeld et al. 2023) and Pyrus communis 'd'Anjou' (Yocca et al. 2024); 'Honeycrisp' (Khan et al. 2022) and 'WA 38'. The CROG gene count z-score box plot shows (Fig. 7) that the average z-score of 'WA 38' gene counts are slightly higher than expected (with 0 as the perfect score), indicating that there are a number of CROGs containing more genes from the 'WA 38' annotations compared to other apples.

Gene model evidence source mapping

The final gene model annotation contains ab initio prediction and genes with transcript evidence and/or homologous protein support. Although high BUSCO completeness scores are obtained from both haplome annotations, their gene numbers are greater than expected (45,000-49,000 based on previous publications). Therefore, we explored evidence supporting a gene model to be a true positive, including extrinsic evidence (from transcript and homologous protein) used in gene model annotation and comparative genomic evidence (EnTAP functional annotation and gene family circumscription). Four subsets of genes were extracted based on different evidence filtering stringencies and the completeness of each set was assessed via a BUSCO analysis (Table 4). The most stringent filter, the same strategy deployed in the 'Honeycrisp' genome annotation, was to remove genes without full support from both transcript and homologous protein evidence (Subset 1 in Table 4). This strategy removed ~10,000 genes from both haplomes and left ~43,000 genes in each annotation. Complete BUSCO score for this gene set decreased by ~1% compared to the original full gene set. In the other three subsets (2-4) of genes, where less stringent criteria were applied, ~3,000-4,000 genes were removed and complete BUSCO scores maintained above 98%. In two of the subsets where the genes with functional and gene family were taken into consideration (Subset 3 & 4), complete BUSCO scores remained the same as the original gene set even after removing thousands of genes. CROG gene count analyses were performed on the original full set, Subset 1 and Subset 3. The CROG gene count clustermaps from the three gene sets showed highly similar clustering patterns (Fig. 6 and Supplementary Fig. 9), indicating that removing genes did not alter the overall gene family circumscription. The average CROG gene count z-score decreased from 0.330 in the original full set, to 0.297 in Subset 3, and to 0.008 in Subset 1, indicating values

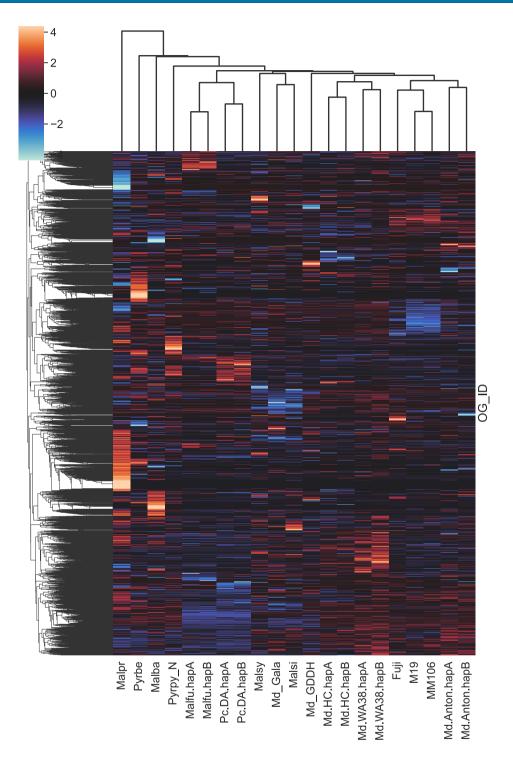


Fig. 6. CoRe OrthoGroup (CROG)—Rosaceae gene count clustermap. Each row represents a CROG and each column represents a genomes. Color indicates the number of genes in each cell relative to the row average (z-score). Warmer/Red color indicates more genes. Cooler/Blue color indicates fewer genes. The darker a color, the closer the value is to the row average. Genome and annotation abbreviations can be found in Supplementary Table 1.

closer to expectation as more rigorous evidence categories are applied.

Plastid genomes assembly and annotation

The chloroplast genome of the 'WA 38' apple is 159,915 bp in length, which is smaller than most assembled Malus chloroplast genomes (Naizaier et al. 2019; Yan et al. 2019; Zhao et al. 2019; Ha et al. 2020; Miao et al. 2022; Li et al. 2022a). The plastome consisted of a typical quadripartite structure with a pair of inverted repeat (IR) regions of the same length (26,352 bp) separated by a long single copy (LSC) region (88,052 bp) and a short single copy (SSC) region (19,159 bp). The IR regions and the SSC regions were all similar in length to that of other Malus chloroplasts (Naizaier et al. 2019; Yan et al. 2019; Zhao et al. 2019; Ha et al. 2020; Miao et al. 2022; Li et al. 2022a). A total of 134 unique genes were annotated, including 86 protein-coding genes, 42 tRNA genes,

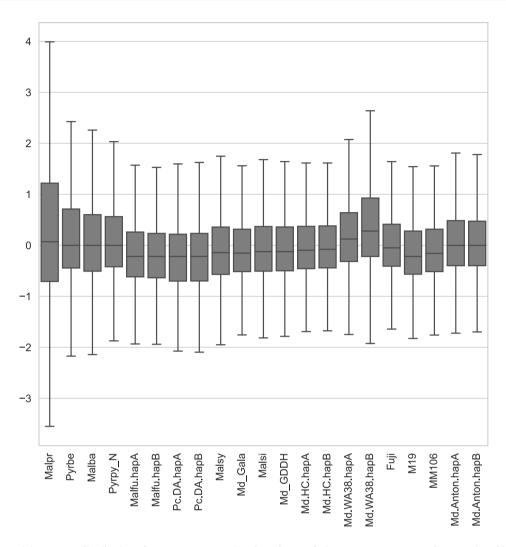


Fig. 7. Boxplot summarizing z-score distribution of CROG gene counts in selected pome fruit genomes. Genome and annotation abbreviations can be found in Supplementary Table 1.

Table 4. Summary of genes mapped with various evidence source and completeness assessments of those gene subsets.

		ber of nes	Complete BUSCO (%)		
	НарА	НарВ	НарА	НарВ	
Original full set Subset 1. Genes with full support* Subset 2. Genes with any support* Subset 3. Genes with full support + EnTAP & PT2	53,028 43,079 49,829 49,417	54,235 43,590 50,861 50,005	98.5 97.5 98.2 98.5	98.4 97.6 98.2 98.4	
Subset 4. Genes with full support + EnTAP or PT2	50,087	50,743	98.5	98.4	

 $^{^{\}ast}~$ Full or any support from either RNA transcriptome or homologous protein evidence.

and seven rRNA genes. Moreover, eight protein-coding genes (ycf1, ycf2, rpl2, rpl23, ndhB, rps7, rps12, rps19-fragment), ten tRNA genes (tmE-UUC, tmI-GAU, tmA-UGC, tmL-CAA, tmM-CAU, tmN-GUU, tmR-ACG, tmI-CAU, tmN-GUU, tmV-GAC), all four rRNA genes (rm16, rm23, rm4.5, rm5) were located wholly within the IR regions (Fig. 8). Twelve protein-coding genes, eight tRNA genes, and one rRNA gene (rm16) contain introns, the majority of which

contained one intron (19 genes), with only two genes (pafl and clpP1) containing two introns.

The mitochondrial genome of the 'WA 38' apple is 451,423 bp long and contains 64 annotated genes. This annotation includes four rRNA genes (two copies of 26S, and one copy of both 18S and 5S), 20 tRNA genes (including two copies of *tmaA-FME* and three copies of *tmaF-GAA*), and 40 protein-coding genes (including two copies of *atp1*, *apt8*, *cox3*, *nad6*, *nad7*, *maseH*, *rps12*, *rps3*, and *sdh4*) (Fig. 9).

Discussion

Genomes are essential resources for research communities. In order to provide accessible, hands-on training to the next generation of plant genome scientists, we engaged students in the construction of a genome for the 'WA 38' (Cosmic Crisp®) apple. Our guiding philosophy is "inclusion and novelty", where we aim to build a high-quality reference genome that is useful to a wide range of current and future research communities.

We emphasized assembly quality by leveraging our recent 'Honeycrisp' genome (Khan et al. 2022) to fully resolve haplotypes, i.e. the specific genetic contributions of each parent are known and are represented in each respective haplome. As the first

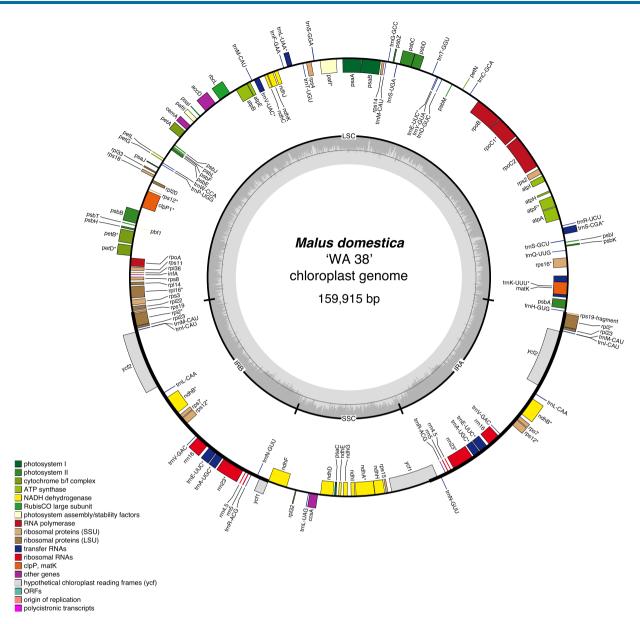


Fig. 8. Chloroplast genome map of 'WA 38' with annotation. The outer circle shows the locations of genes, colored according to their function and biological pathways as shown in the figure legend. Forward-encoded genes are drawn on the outside of the circle, while reverse-encoded genes are on the inside of the circle. The middle circle shows locations of the four major sections of the chloroplast: LSC (long single copy), SSC (short single copy), IRA (inverted repeat A), and IRB (inverted repeat B). The inner gray circle shows GC content across the chloroplast genome.

pome fruit genome to achieve this level of resolution, the 'WA 38' genome provides a unique resource for researchers across various fields to explore genome-scale genomic signatures that were previously unattainable for pome fruit research. Examples include a more in-depth understanding of genetic variation and inheritance, identification of alleles associated with specific traits (paving the way for allele specific expression experiments), and opportunities to perform trait association analyses with higher resolution (useful for breeding programs to identify new genetic markers linked to desirable traits) (Talbot et al. 2024).

We also emphasized genome annotation quality, aiming to provide a hierarchy of hypothesized gene models, where we compile a more complete list of putative genes, with increasingly stringent evidence categories allowing users to access and use the appropriate set of annotations for their application. By breaking from convention where a single stringency for genome annotation has historically been set in published genomes, our approach provides an annotation matrix that allows users to explore gene space as a function of annotation support. Our original, full gene set contains ~54,000 putative gene models, almost 9,000 more than most other Malus genomes (Supplementary Table 5). Subsequent filtering using various evidence sources successfully adjusted the gene number closer to expected, although this resulted in reduced completeness in some cases (Table 4). Subset 1, where only genes with full support were selected, is the most stringent criteria we used for gene selection. Although the BUSCO completeness score dropped by ~1%, it's still among the highest in Malus annotations and the average CROG gene count z-score indicates that the overall number of genes in CROG are very close to expectation (Supplementary Fig. 9). However, a collection of "cold" orthogroups (containing fewer than expected number of genes compared to the rest annotations) emerged in the 'Honeycrisp' plus 'WA 38' cluster from the CROG analysis (highlighted with boxes in Supplementary Fig. 9). Since these cold spots were not

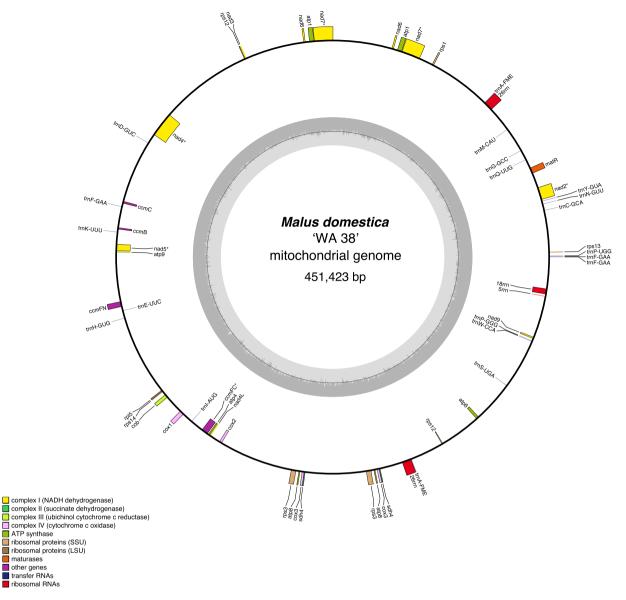


Fig. 9. Mitochondrial genome map of 'WA 38' with annotation. The outer circle shows the locations of genes, colored according to their function and biological pathways as shown in the figure legend. Forward-encoded genes are drawn on the outside of the circle, while reverse-encoded genes are on the inside of the circle. The inner gray circle shows GC content across the mitochondria genome.

observed in the original full gene set nor the less rigorously filtered Subset 3, and are unique to the genomes annotated with the same method and same filtering strategy, they are likely the result of a methodological bias. This subset, Subset 1, is expected to contain fewer false positives at the cost of also dropping a small amount of true positives; suitable for analysis that requires high-confidence gene models, such as reconstructing species or pedigree relationships. Subset 3, which contains all genes from Subset 1 and genes with both EnTAP and PlantTribes2 evidence, has a similar gene number to the most recently published apple genomes, namely 'Honeycrisp', 'Fuji', 'M9', and 'MM106'. Subset 3 maintained the same BUSCO completeness score and did not have the "cold" orthogroups observed in Subset 1. Thus, Subset 3 may contain more false positive genes, but it also retains the most true positives; suitable for most analyses that can tolerate a small amount of false positive gene models. Furthermore, similar to the 'Honeycrisp' plus 'WA 38' cluster with shared unique "cold" orthogroup zones in the Subset 1 CROG analysis, genomes

annotated by the same research group tend to exhibit similar gene count patterns (CROG analysis—Fig. 6), suggesting that methodological bias in a seemingly subjective analysis may lead to a more similar gene landscape within those annotations. The most surprising examples are the cluster of 'Gala' with the two wild Malus progenitors (i.e. different species), and the cluster of M. fusca with Pyrus communis 'd'Anjou' (i.e. different genera). In addition, although most of the published Malus genome annotations have a similar number of genes (~45,000, Supplementary Table 5), the CROG analysis identified different collections of orthogroups with higher (warm color) or lower (cool color) than average gene counts across clusters. These "warm" and "cool" orthogroup spots are not necessarily indicative of gene family expansions or contractions (a separate analysis would be required), but does provide valuable insight into the gene space within the context of lineage-specific genome annotations and highlights potential areas for genome resource improvement. We believe the methodological bias revealed by the CROG analysis should be

addressed or acknowledged before further analyses of gene family expansions and contractions in Malus are performed.

Throughout this project, we emphasized community engagement and enforce standardization of genome resources. The AgBioData Genome Nomenclature working group is dedicated to providing recommendations for consistent genome and gene model nomenclature that meets the FAIR (Findable, Accessible, Interoperable and Reproducible) data principle (Wilkinson et al. 2016). We worked together with this working group and the Rosaceae community genome database (Genome Database for Rosaceae, GDR, (Jung et al. 2019)) to improve the existing nomenclature for Rosaceae genomes. The adoption of standardized nomenclature for plant genomes represents a significant advancement in the field of plant genomics as it helps reduce confusion and potential errors, thereby enhancing the reliability and reproducibility of genomic research. In addition, we followed a previously-established gene family classification protocol (Wafula et al. 2022; Khan et al. 2022) that circumscribed genes into pre-computed orthogroups. Such a practice not only reduces computational resource requirements but also allows researchers to more easily compare findings across studies. The uniformity, achieved by taking advantage of the already-existing community resource, facilitates clearer communication, ensuring that discoveries are accurately attributed and understood in the context of existing knowledge.

Our work emphasized the "reproducibility" of FAIR principles. All bioinformatics analyses follow some workflow whether it is manually developed as work progresses by the researcher or is the product of an automated workflow managed by software tools like Galaxy (The Galaxy Community 2022) (graphical interface), Nextflow (di Tommaso et al. 2017) or Snakemake (Mölder et al. 2021) (command-line interface). Automated workflows create reproducible analyses because the version and parameters are easily documented and software is commonly dockerized. For manually developed workflows, the process is prone to being haphazard and disorganized and difficult to share. Thus, many workflows are simply reduced to a brief description of software tools in Methods sections of journal articles with software versions and important parameters often missing. As introduced in the Results section, we provide a complete set of scripts and dockeried software to completely recreate every analysis in the assembly and annotation of the 'WA 38' genome. The organizational structure of the repository follows the Bioinformatics Notebook protocol developed by our team (https://gitlab.com/ficklinlab-public/bioinformaticsnotebook/). The goal of this protocol is to ensure that complex manually executed workflows can be shared for reproducibility, the format is readable by others and backups of critical data are supported. Briefly, the directories are ordered using a numeric prefix indicating the order that analyses should be performed. Inside each directory are sub-directories with smaller tasks. For each task, all relevant scripts and instructions are provided. All software used by the project is dockerized and scripts contain the full parameter set used for every step. While there are areas for improvement, the protocol, when followed, allows for easy sharing of the workflow via a Git repository. In our view, this approach is a novel contribution towards FAIR data by ensuring that nonautomated workflows can be shared and are fully reproducible.

In addition to providing a fully reproducible workflow for the 'WA 38' genome project, we generalized the scripts for any genome project and shared those as part of the three American Campus Tree Genome (ACTG) GtiHub repositories mentioned in the Results section. The new ACTG general workflow is designed to provide training that is applicable for a wide range of species.

The ACTG repositories are a work in progress as we seek to create a generic, species-agnostic workflow that will serve the broader ACTG community.

Availability of source code and requirements

Project name: 'WA 38' whole genome assembly and annotation. Project home page: https://gitlab.com/ficklinlab-public/wa-38genome. Operating system(s): Platform independent. Programming language: bash, python, awk, perl. Other requirements: singularity, nextflow, java, python. License: MIT. Any restrictions to use by nonacademics: No restrictions. RRID: Not applicable.

Data availability

Raw reads generated for this project are publicly available at NCBI under BioProject: PRJNA1072127. The assemblies are available at NCBI under BioProjects PRJNA1118822 (HapA) and PRJNA1118823 (HapB). NCBI GenBank accession numbers for HapA chromosomes 1 to 17 are CP165701-CP165717, and HapB chromosomes 1 to 17 are CP165684-CP165700. Genome assembly and annotation are available on GDR: https://www.rosaceae.org/ Analysis/20220983.

Acknowledgments

The authors would like to acknowledge Dr. Stijn Vanderzande for validating genome assembly quality with the high-quality 8K SNP array and corresponding genetic map.

Supplemental material available at G3 online.

Funding

This work was supported by the Washington Tree Fruit Research Commission (WTFRC) project #AP-19-103 to S.F. and L.H, the U.S. National Science Foundation (NSF) IOS-PGRP CAREER award #2239530 to A.H, and US Department of Agriculture -Agricultural Research Service internal appropriation funds.

Author contributions

L.H, S.F, and A.H acquired funding for this project. All authors contributed to data analysis, data interpretation, and manuscript writing.

Conflicts of interest

The author(s) declare no conflict of interest.

Literature cited

Andrews S. 2020 FastQC: a quality control tool for high throughput sequence data. Retrieved November, 2024. [Online]. http:// www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. 2021. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom Bioinform. 3(1):lqaa108. doi:10.1093/nargab/lqaa108.

Chen X, Li S, Zhang D, Han M, Jin X, Zhao C, Wang S, Xing L, Ma J, Ji J, et al. 2019. Sequencing of a wild apple (Malus baccata) genome unravels the differences between cultivated and wild apple species

- regarding disease resistance and cold tolerance. G3 (Bethesda). 9(7):2051-2060. doi:10.1534/g3.119.400245.
- Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Mol Plant. 16(11): 1733-1742. doi:10.1016/j.molp.2023.09.010.
- Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34(17):i884-i890. doi:10. 1093/bioinformatics/bty560.
- Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 18(2):170-175. doi:10.1038/ s41592-020-01056-5.
- Choi JY, Abdulkina LR, Yin J, Chastukhina IB, Lovell JT, Agabekian IA, Young PG, Razzaque S, Shippen DE, Juenger TE, et al. 2021. Natural variation in plant telomere length is associated with flowering time. Plant Cell. 33(4):1118-1134. doi:10.1093/plcell/koab022.
- Crosby JA, Janick J, Pecknold PC, Goffreda JC, Korban SS. 1994. Enterprise' apple. HortScience. 29(7):825-826. doi:10.21273/ HORTSCI.29.7.825.
- Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet. 49(7): 1099-1106. doi:10.1038/ng.3886.
- Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. 2021. Twelve years of SAMtools and BCFtools. Gigascience. 10(2): giab008. doi:10.1093/gigascience/giab008.
- Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18. doi:10.1093/nar/gkw955.
- Di Guardo M, Tadiello A, Farneti B, Lorenz G, Masuero D, Vrhovsek U, Costa G, Velasco R, Costa F. 2013. A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus x domestica Borkh.). PLoS One. 8(10):e78004. doi:10. 1371/journal.pone.0078004.
- di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow enables reproducible computational workflows. Nat Biotechnol. 35(4):316-319. doi:10.1038/nbt.3820.
- Dong X, Wang Z, Tian L, Zhang Y, Qi D, Huo H, Xu J, Li Z, Liao R, Shi M, et al. 2020. De novo assembly of a wild pear (Pyrus betuleafolia) genome. Plant Biotechnol J. 18(2):581-595. doi:10.1111/pbi.13226.
- Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 19:11-15.
- Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, Aiden EL. 2016. Juicer provides a one-click system for analyzing loop-resolution hi-C experiments. Cell Syst. 3(1):95-98. doi:10. 1016/j.cels.2016.07.002.
- Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HOK, Buffalo V, Zerbino DR, Diekhans M, et al. 2011. Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 21(12):2224–2241. doi:10.1101/gr.126599.111.
- Evans KM, Barritt BH, Konishi BS, Brutcher LJ, Ross CF. 2012. 'WA 38' Apple. HortScience. 47(8):1177-1179. doi:10.21273/HORTSCI.47.8. 1177.
- FGN. 2020. Global Apple Market Reached \$78B: set to Continue Moderate Growth. Fruit Growers News. Retrieved May 23, 2024 [online]. https://fruitgrowersnews.com/news/global-apple-marketreached-78m-set-to-continue-moderate-growth/.
- Gabriel L, Hoff KJ, Brůna T, Borodovsky M, Stanke M. 2021. TSEBRA: transcript selector for BRAKER. BMC Bioinformatics. 22(1):566. doi:10.1186/s12859-021-04482-0.

- Goremykin VV, Lockhart PJ, Viola R, Velasco R. 2012. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants. Plant J. 71(4): 615-626. doi:10.1111/j.1365-313X.2012.05014.x.
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I. Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29(7):644-652. doi:10.1038/nbt.1883.
- Greiner S, Lehwark P, Bock R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47(W1): W59-W64. doi:10.1093/nar/gkz238.
- Ha Y-H, Maisupova B, Choi K, Kim H-J, Dosmanvetov D, Mambetov B, Utebekova A, Kim D-K, Chang KS, Kim A, et al. 2020. Report on a complete chloroplast genome sequence of wild apple tree, Malus sieversii (Lebed.) M. Roem. Mitochondrial DNA B Resour. 5(2):1504-1505. doi:10.1080/23802359.2020.1741460.
- Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD, et al. 2003. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31(19):5654-5666. doi: 10.1093/nar/gkg770.
- Hadish JA, Biggs TD, Shealy BT, Bender MR, McKnight CB, Wytko C, Smith MC, Feltus FA, Honaas L, Ficklin SP. 2022. GEMmaker: process massive RNA-Seq datasets on heterogeneous computational infrastructure. BMC Bioinformatics. 23(1):156. doi:10.1186/ s12859-022-04629-7.
- Harkess A. 2022. The American campus tree genomes documentation. Retrieved May 23, 2024 [online]. https://actg-wgaa. readthedocs.io/en/latest/index.html.
- Harris RS. 2007. Improved pairwise alignment of genomic DNA [Ph.D. Thesis]. The Pennsylvania State University. University Park, PA, USA. Retrieved May 23, 2024 [online]. https://www.bx.psu.edu/ ~rsharris/rsharris_phd_thesis_2007.pdf.
- Hart AJ, Ginzburg S, Xu M, Fisher CR, Rahmatpour N, Mitton JB, Paul R, Wegrzyn JL. 2020. EnTAP: bringing faster and smarter functional annotation to non-model eukaryotic transcriptomes. Mol Ecol Resour. 20(2):591-604. doi:10.1111/1755-0998.13106.
- Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. 2016. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics. 32(5): 767-769. doi:10.1093/bioinformatics/btv661.
- Howard NP, van de Weg E, Bedford DS, Peace CP, Vanderzande S, Clark MD, Teh SL, Cai L, Luby JJ. 2017. Elucidation of the 'honeycrisp' pedigree through haplotype analysis with a multi-family integrated SNP linkage map and a large apple (Malus×domestica) pedigree-connected SNP data set. Horticult Res. 4(1):17003. doi: 10.1038/hortres.2017.3.
- Brown M, González De la Rosa PM, Blaxter M. 2023. A Telomere Identification Toolkit (v0.2.41). Zenodo. 10.5281/zenodo.10091385.
- Zhang H, Ficklin S. 2024. WA 38 Genome Assembly and Annotation Scripts and Workflow (v1.0). Zenodo. 10.5281/zenodo.13344719.
- Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47(D1):D309-D314. doi:10.1093/nar/gky1085.
- Johnston JW, Brookfield P. 2012. Delivering postharvest handling protocols for apples and pears faster: integrating "omics" and physiology approaches. Acta Hortic. 945:23-28. doi:10.17660/ ActaHortic.2012.945.1.
- Jung S, Lee T, Cheng C-H, Buble K, Zheng P, Yu J, Humann J, Ficklin SP, Gasic K, Scott K, et al. 2019. 15 years of GDR: new data and

- functionality in the Genome Database for Rosaceae. Nucleic Acids Res. 47(D1):D1137-D1145. doi:10.1093/nar/gky1000.
- Khan A, Carey SB, Serrano A, Zhang H, Hargarten H, Hale H, Harkess A, Honaas L. 2022. A phased, chromosome-scale genome of 'Honeycrisp' apple (Malus domestica). GigaByte. 2022:gigabyte69. doi:10.46471/gigabyte.69.
- Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5(2):R12. doi:10.1186/gb-2004-5-2-r12.
- Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, Zdobnov EM. 2022. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 51(D1):D445-D451. doi:10.1093/nar/gkac998.
- Li W, Chu C, Li H, Zhang H, Sun H, Wang S, Wang Z, Li Y, Foster TM, López-Girona E, et al. 2024. Near-gapless and haplotype-resolved apple genomes provide insights into the genetic basis of rootstock-induced dwarfing. Nat Genet. 56(3):505-516. doi:10. 1038/s41588-024-01657-2.
- Li X, Ding Z, Miao H, Bao J, Tian X. 2022a. Complete chloroplast genome studies of different apple varieties indicated the origin of modern cultivated apples from and. PeerJ. 10:e13107. doi:10. 7717/peerj.13107.
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25(14):1754-1760. doi:10.1093/bioinformatics/btp324.
- Li X, Kui L, Zhang J, Xie Y, Wang L, Yan Y, Wang N, Xu J, Li C, Wang W, et al. 2016. Improved hybrid de novo genome assembly of domesticated apple (Malus x domestica). Gigascience. 5(1):35. doi:10. 1186/s13742-016-0139-0.
- Li W, Liu J, Zhang H, Liu Z, Wang Y, Xing L, He Q, Du H. 2022b. Plant pangenomics: recent advances, new challenges, and roads ahead. J Genet Genomics. 49(9):833-846. doi:10.1016/j.jgg.2022.06.004.
- Li Y, Pi M, Gao Q, Liu Z, Kang C. 2019. Updated annotation of the wild strawberry Fragaria vesca V4 genome. Horticult Res. 6:61. doi:10. 1038/s41438-019-0142-6.
- Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C. 2003. Mapping quantitative physiological traits in apple (Malus x domestica borkh.). Plant Mol Biol. 52(3):511-526. doi:10.1023/A: 1024886500979.
- Lovell JT, Sreedasyam A, Schranz ME, Wilson M, Carlson JW, Harkess A, Emms D, Goodstein DM, Schmutz J. 2022. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. Elife. 11:e7852. doi:10.7554/eLife.78526.
- Lum GB, Shelp BJ, DeEll JR, Bozzo GG. 2016. Oxidative metabolism is associated with physiological disorders in fruits stored under multiple environmental stresses. Plant Sci. 245:143-152. doi:10. 1016/j.plantsci.2016.02.005.
- Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 38(10): 4647-4654. doi:10.1093/molbev/msab199.
- Mansfeld BN, Yocca A, Ou S, Harkess A, Burchard E, Gutierrez B, van Nocker S, Gottschalk C. 2023. A haplotype resolved chromosomescale assembly of north American wild apple Malus fusca and comparative genomics of the fire blight Mfu10 locus. Plant J. 116(4):989–1002. doi:10.1111/tpj.16433.
- Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 27(6): 764-770. doi:10.1093/bioinformatics/btr011.
- Mendoza M, Hanrahan I, Bolaños G. 2022. 2022 Update: Additional WA 38 harvest and storage considerations. Retrieved May 23,

- 2024 [online]. https://treefruit.wsu.edu/article/2022-updateadditional-wa-38-harvest-and-storage-consideration.
- Miao H, Bao J, Li X, Ding Z, Tian X. 2022. Comparative analyses of chloroplast genomes in 'red fuji' apples: low rate of chloroplast genome mutations, Peerl. 10:e12927, doi:10.7717/peeri.12927.
- Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, Forster J, Lee S, Twardziok SO, Kanitz A, et al. 2021. Sustainable data analysis with snakemake [version 2; peer review: 2 approved]. F1000Res. 10:33. doi:10.12688/f1000research. 29032.2.
- Naizaier R, Qu Z, Wu S, Tian X. 2019. The complete chloroplast genome of Malus sieversii (Rosaceae), a wild apple tree in Xinjiang, China. Mitochondrial DNA B Resour. 4(1):983-984. doi:10.1080/ 23802359.2019.1581108.
- Nattestad M, Schatz MC. 2016. Assemblytics: a web analytics tool for the detection of variants from an assembly. Bioinformatics. 32(19):3021-3023. doi:10.1093/bioinformatics/btw369.
- NCBI Organelle genome resources. n.d. Retrieved May 23, 2024 [online]. https://www.ncbi.nlm.nih.gov/genome/organelle/.
- NC State Extension. n.d. Apples—Malus domestica, North Carolina Extension Gardener Plant Toolbox. North Carolina State University. Retrieved May 23, 2024 [online] https://plants.ces. ncsu.edu/plants/malus-domestica/common-name/apples/.
- O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44(D1):D733-D745. doi:10.1093/nar/gkv1189.
- Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, Lugo CSB, Elliott TA, Ware D, Peterson T, et al. 2019. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20(1):275-218. doi: 10.1186/s13059-019-1905-y.
- Pareek STdeFS. 2019. Postharvest Physiological Disorders in Fruits and Vegetables (S. Tonetto de Freitas & S. Pareek, Eds.). CRC Press, Taylor & Francis.
- Phasegenomics. n.d. Hic_QC: a (Very) Simple Script to QC Hi-C Data. GitHub. https://github.com/phasegenomics/hic_qc.
- Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26(6):841-842. doi: 10.1093/bioinformatics/btq033.
- Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, et al. 2018. The Rosa genome provides new insights into the domestication of modern roses. Nat Genet. 50(6):772-777. doi:10.1038/s41588-018-0110-3.
- Rhie A, Walenz BP, Koren S, Phillippy AM. 2020. Mergury: referencefree quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21(1):245. doi:10.1186/s13059-020-02134-9.
- Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nat Biotechnol. 29(1):24-26. doi:10.1038/nbt.1754.
- Robinson JT, Turner D, Durand NC, Thorvaldsdóttir H, Mesirov JP, Aiden EL. 2018. Juicebox.js provides a cloud-based visualization system for hi-C data. Cell Syst. 6(2):256-258.e1. doi:10.1016/j. cels.2018.01.001.
- Sallato B, Whiting MD, Munguia J. 2021. Rootstock and nutrient imbalance leads to "Green Spot" development in 'WA 38' apples. HortScience. 56(12):1542-1548. doi:10.21273/HORTSCI16213-21.
- Serra S, Goke A, Sheick R, Mendoza M, Schmidt T, Hanrahan I, Ross C, Musacchi S. 2023. Effects of harvest timing on maturity, fruit quality, and consumer acceptance of 'WA 38' apples. Acta Hortic. 1366(1366):61-68. doi:10.17660/ActaHortic.2023.1366.7.

- Sharman, S., n.d. Learning from the trees: American Campus Tree Genomes Project pushes equality in genomic science. Retrieved May 23, 2024 [online]. https://hudsonalpha.shorthandstories. com/learning-from-the-trees/.
- Sheick R. Serra S. Musacchi S. Rudell D. 2023. Metabolic fingerprint of 'WA 38' green spot symptoms reveals increased production of epicuticular metabolites by parenchyma. Sci Hortic. 321:112257. doi:10.1016/j.scienta.2023.112257.
- Sheick R, Serra S, Rudell D, Musacchi S. 2022. Investigations of multiple approaches to reduce green spot incidence in 'WA 38' apple. Agronomy (Basel). 12(11):2822. doi:10.3390/agronomy12112822.
- Shirasawa K, Itai A, Isobe S. 2021. Chromosome-scale genome assembly of Japanese pear (Pyrus pyrifolia) variety 'nijisseiki'. DNA Res. 28(2):dsab001. doi:10.1093/dnares/dsab001.
- Smit AFA, Hubley R, Green P. n.d. RepeatMasker Open-4.0.2013-2015. Retrieved May 23, 2024 [online]. http://www.repeatmasker.org.
- Su Y, Yang X, Wang Y, Li J, Long Q, Cao S, Wang X, Liu Z, Huang S, Chen Z, et al. 2024. Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication. Plant Physiol. 195(4):2799-2814. doi:10.1093/plphys/kiae258.
- Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, Duan N, Khan A, Ban S, Xu K, Cheng L, et al. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet. 52(12):1423-1432. doi:10.1038/ s41588-020-00723-9.
- Švara A, Sun H, Fei Z, Khan A. 2024. Chromosome-level phased genome assembly of 'Antonovka' identified candidate apple scab-resistance genes highly homologous to HcrVf2 and HcrVf1 on linkage group 1. G3: Genes, Genomes, Genetics. 14(1). doi:10. 1093/g3journal/jkad253.
- Talbot SC, Vining KJ, Snelling JW, Clevenger J, Mehlenbacher SA. 2024. A haplotype-resolved chromosome-level assembly and annotation of European hazelnut (C. avellana cv. Jefferson) provides insight into mechanisms of eastern filbert blight resistance. G3 (Bethesda). 14(6):jkae021. doi:10.1093/g3journal/jkae021.
- The Galaxy Community. 2022. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50(W1):W345-W351. doi:10.1093/nar/gkac247.
- Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. Geseq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45(W1):W6-W11. doi:10. 1093/nar/gkx391.
- Trinityrnaseq. n.d. Get_Longest_Isoform_seq_per_Trinity_Gene.pl. GitHub. Retrieved May 23, 2024 [online]. https://github.com/ trinityrnaseq/trinityrnaseq/blob/master/util/misc/get longest isoform_seq_per_trinity_gene.pl.
- Truscott S. WSU's Cosmic Crisp® joins top 10 bestselling U.S. apple varieties. CAHNRS News Washington State University. Retrieved May 23, 2024 [online]. https://news.cahnrs.wsu.edu/ article/wsus-cosmic-crisp-joins-top-10-bestselling-u-s-applevarieties/2023.
- Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, Formenti G, Abueg L, Torrance J, Myers EW, Durbin R, Blaxter M, McCarthy SA. 2023. Mitohifi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinformatics. 24(1):288. doi:10.1186/s12859-023-05385-y.
- USApple. 2024. Industry at a glance. Retrieved May 23, 2024 [online]. https://usapple.org/industry-at-a-glance.
- VanBuren R, Wai CM, Colle M, Wang J, Sullivan S, Bushakra JM, Liachko I, Vining KJ, Dossett M, Finn CE, et al. 2018. A near complete, chromosome-scale assembly of the black raspberry

- (Rubus occidentalis) genome. Gigascience. 7(8):giy094. doi:10. 1093/gigascience/giy094.
- Vanderzande S, Howard NP, Cai L, Da Silva Linge C, Antanaviciute L, Bink MCAM, Kruisselbrink JW, Bassil N, Gasic K, Iezzoni A, et al. 2019. High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. PLoS One. 14(6): e0210928. doi:10.1371/journal.pone.0210928.
- Vanderzande S, Peace C, van de Weg E. 2024. Whole genome sequence improvement with pedigree information and reference genotypic profiles, demonstrated in outcrossing apple. bioRxiv. doi:10.1101/2024.08.08.607141
- Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, et al. 2010. The genome of the domesticated apple (Malus \times domestica borkh.). Nat Genet. 42(10):833-839. doi:10.1038/ng.654.
- Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, et al. 2017. The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics. 18(1):225. doi:10.1186/s12864-017-3606-9.
- Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC. 2017. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 33(14): 2202-2204. doi:10.1093/bioinformatics/btx153.
- Wafula EK, Zhang H, Von Kuster G, Leebens-Mack JH, Honaas LA, dePamphilis CW. 2022. PlantTribes2: tools for comparative gene family analysis in plant genomics. Front Plant Sci. 13:1011199. doi:10.3389/fpls.2022.1011199.
- Washington Apple Commission. 2021. Did you know? Apple Facts. Retrieved May 23, 2024 [online]. https://waapple.org/did-you-
- Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 3(1):160018. doi:10.1038/sdata.
- Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15(3):R46. doi:10.1186/gb-2014-15-3-r46.
- Yan M, Zhao X, Zhou J, Huo Y, Ding Y, Yuan Z. 2019. The complete chloroplast genome of cultivated apple (Malus domestica Cv. 'yantai fuji 8'). Mitochondr DNA B Resour. 4(1):1213-1216. doi:10.1080/ 23802359.2019.1591182.
- Yocca A, Akinyuwa M, Bailey N, Cliver B, Estes H, Guillemette A, Hasannin O, Hutchison J, Jenkins W, Kaur I, et al. 2024. A chromosome-scale assembly for 'd'Anjou' pear. G3 (Bethesda). 14.3:jkae003. doi:10.1093/g3journal/jkae003.
- Zhang H, Wafula EK, Eilers J, Harkess AE, Ralph PE, Timilsena PR, dePamphilis CW, Waite JM, Honaas LA. 2022. Building a foundation for gene family analysis in Rosaceae genomes with a novel workflow: a case study in Pyrus architecture genes. Front Plant Sci. 13:975942. doi:10.3389/fpls.2022.975942.
- Zhao X, Yan M, Ding Y, Chen X, Yuan Z. 2019. The complete chloroplast genome of apple rootstock 'M9'. Mitochondr DNA B Resour. 4(2): 2187-2188. doi:10.1080/23802359.2019.1624642.
- Zhou C, McCarthy SA, Durbin R. 2022. YaHS: yet another hi-C scaffolding tool. Bioinformatics. 39(1):btac808. doi:10.1093/bioinformatics/ btac808.