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Abstract
Polynomial functions have been employed to represent shape-related information in 2D and 3D computer vision, even from
the very early days of the field. In this paper, we present a framework using polynomial-type basis functions to promote shape
awareness in contemporary generative architectures. The benefits of using a learnable form of polynomial basis functions as
drop-inmodules into generative architectures are several—includingpromoting shape awareness, a noticeable disentanglement
of shape from texture, and high quality generation. To enable the architectures to have a small number of parameters, we
further use implicit neural representations (INR) as the base architecture. Most INR architectures rely on sinusoidal positional
encoding, which accounts for high-frequency information in data. However, the finite encoding size restricts the model’s
representational power. Higher representational power is critically needed to transition from representing a single given
image to effectively representing large and diverse datasets. Our approach addresses this gap by representing an image
with a polynomial function and eliminates the need for positional encodings. Therefore, to achieve a progressively higher
degree of polynomial representation, we use element-wisemultiplications between features and affine-transformed coordinate
locations after every ReLU layer. The proposed method is evaluated qualitatively and quantitatively on large datasets such as
ImageNet. The proposed Poly-INRmodel performs comparably to state-of-the-art generativemodels without any convolution,
normalization, or self-attention layers, and with significantly fewer trainable parameters. With substantially fewer training
parameters and higher representative power, our approach paves the way for broader adoption of INR models for generative
modeling tasks in complex domains. The code is publicly available at https://github.com/Rajhans0/Poly_INR.
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1 Introduction

Implicit neural representation (INR)Mildenhall et al. (2021),
Sitzmann et al. (2020) is a widely used approach for
representing signals as a continuous function, where the
continuous function is parameterized by a neural network.
INRs offer significant flexibility and expressivity, even when
employing a simple neural network architecture. For exam-
ple, when applied to an image, an INR allows easy zooming
in or out and sampling images at any desired resolution. This
capability results in enhanced performance, particularly in
tasks like super-resolution.
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INRs have demonstrated efficacy in 3D scene reconstruc-
tion and rendering from very few training imagesMildenhall
et al. (2021), Barron et al. (2022), Martin-Brualla et al.
(2021), Yu et al. (2021). However, they are usually trained
to represent a single given scene, signal, or image. Recently,
INRs have been implemented as a generative model to gener-
ate entire image datasets leveraging various techniques such
as Normalizing Flows Dupont et al. (2022a), GANs Chen
and Zhang (2019), Skorokhodov et al. (2021), Anokhin et al.
(2021), and Diffusion Models Dupont et al. (2022a), Zhuang
et al. (2022). While they exhibit performance comparable
to state-of-the-art generative models Rombach et al. (2022),
Peebles and Xie (2023) on perfectly curated datasets like
human faces Karras et al. (2019), their scalability to large,
diverse datasets like ImageNet Deng et al. (2009) remains a
challenge.

An INR typically comprises a positional encodingmodule
and a multi-layer perceptron model (MLP). The positional
encoding in INR commonly relies on sinusoidal functions,
often referred to as Fourier features. Despite its widespread
use, the capacity of such INR designs can be limiting for
two key reasons. First, the size of the embedding space is
limited; hence only a finite and fixed combination of peri-
odic functions can be used, limiting its application to smaller
datasets. Largediverse datasets inherently contain a variety of
shapes, and current INR models struggle to represent com-
plex geometries. Second, such an INR design needs to be
mathematically coherent. These INR models can be inter-
preted as a non-linear combination of periodic functions
where periodic functions define the initial part of the net-
work, and the later part is often a ReLU-based non-linear
function. Contrary to this, classical transforms (Fourier, sine,
or cosine) represent an image by a linear summation of peri-
odic functions. However, simply using a linear combination
of the positional embedding in a neural network is also limit-
ing, making it difficult to represent large and diverse datasets.

In this paper, we aim to construct an INR-based model
capable of representing intricate shapes and generating large,
diverse datasets such as ImageNet. We hypothesize that rep-
resenting an image as a polynomial function of its coordinate
location can effectively capture diverse structures in large
datasets. Hence, rather than utilizing periodic functions, we
propose Poly-INR, which models images as a polynomial
function of their coordinate location. The main advantage
of polynomial representation is the easy parameterization
of polynomial coefficients with MLP. However, convention-
ally, MLP can only approximate lower-order polynomials.
One can use a polynomial positional embedding of the form
x p yq in the first layer to enable the MLP to approximate
higher order. However, such a design is limiting, as a fixed
embedding size incorporates only fixed polynomial degrees.
In addition, we do not know the importance of each polyno-
mial degree beforehand for a given image. Hence, we do not
use any positional encoding, but we progressively increase
the degree of the polynomial with multiple levels of MLP.

Reconstructing imageusing polynomial bases comes from
geometric moment literature. Rigid and non-rigid aspects of
shape can be described in terms of geometric moments. Geo-
metric moments have a long history in the vision community
for a wide variety of applications ranging from invariant pat-
tern recognition Hu (1962), Khotanzad and Hong (1990),
Alajlan et al. (2008), Flusser and Suk (1993), segmenta-
tion Reeves et al. (1988), Foulonneau et al. (2006) and 3D
shape recognition Tuceryan (1994), Sadjadi and Hall (1980),
Elad and Kimmel (2003). Geometric moments are a very
specific type of weighted averages of image pixel intensities,
where the weights are drawn from specific polynomial-type
basis functions. This operation can be expressed as a projec-
tion of the image on the bases. Despite classic theoretical
developments around moments using specific choices of
basis functions, their application to challenging tasks such
as image classification and generation has remained limited.
In this paper, we reintroduce geometric moments as a learn-

Fig. 1 Samples generated by
our Poly-INR model on the
ImageNet dataset at various
resolutions. Our model
generates images with high
fidelity without using
convolution, upsample, or
self-attention layers, i.e., no
interaction between the pixels
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able spatial operation, presenting modules inspired by the
image-projection analogy. We propose the Deep Geometric
Moment (DGM) module as a fundamental building block in
Poly-INR, designed to generate features that enhance shape
awareness. Within the DGM framework, bases are learned in
an end-to-end, differentiable manner. The DGM model con-
ducts element-wise multiplication between the feature and
affine transformed coordinate location, obtained after every
ReLU layer. The affine parameters are parameterized by the
latent code sampled from a known distribution. This way,
our network learns the required polynomial order and rep-
resents complex datasets with considerably fewer trainable
parameters.

In particular, the key highlights are summarized as fol-
lows:

• Poly-INR as a generative model performs comparably to
the state-of-the-art CNN-based GANmodel (StyleGAN-
XL Sauer et al. (2022)) on the ImageNet dataset with 3−
−4× fewer trainable parameters (depending on output
resolution).

• Poly-INR outperforms the previously proposed INR
models on the FFHQ dataset Karras et al. (2019), using
a significantly smaller model.

• Poly-INR is extensively evaluated for interpolation,
inversion, style-mixing, high-resolution sampling, and
extrapolation.

• We demonstrate the applicability of Poly-INR in various
applications such as multi-view image generation and
text-to-image generation.

2 RelatedWork and Background

In this section, we discuss several INR-based generative
models and recent advancements in the field of image genera-
tion. Additionally, we also provide an overview of geometric
moment.

2.1 INR-Based Generative Models

Numerous studies have investigated the application of INR
in generative modeling, capitalizing on its continuous nature
and expressive capabilities. For example, CIPS Anokhin
et al. (2021) uses Fourier features and learnable vectors
for each spatial location as positional encoding and uses
StyleGAN-like weight modulation for layers in the MLP.
Similarly, INR-GAN Skorokhodov et al. (2021) proposes a
multi-scale generator model where a hyper-network deter-
mines the parameters of theMLP. INR-GANhas been further
extended to generate an ‘infinite’-size continuous image
using anchors Skorokhodov et al. (2021). Zhuang et al.
(2022) employs diffusion models to explicit signal fields to

generate samples at different modalities such as 2D images
and 3D geometry. Meanwhile, others Dupont et al. (2022b),
Dupont et al. (2022a), Du et al. (2021) try to model the
weight distribution of INRs with GANs or diffusion mod-
els. However, these INR-based models encounter scalability
challenges when applied to large-scale datasets and have
only demonstrated promising results on smaller datasets. Our
work scales easily to large datasets like ImageNet (Table 1)
owing to the significantly fewer parameters.

Other approaches have combined CNNs with coordinate-
based features. For example, the Local Implicit Image Func-
tion (LIIF) Chen et al. (2021) and Spherical Local Implicit
Image Function (SLIIF) Yoon et al. (2022) use a CNN-based
backbone to generate feature vectors corresponding to each
coordinate location.Arbitrary-scale image synthesisNtavelis
et al. (2022) uses a multi-scale convolution-based genera-
tor model with scale-aware position embedding to generate
scale-consistent images. StyleGAN model, further extended
by Karras et al. (2021) (StyleGAN-3) to use coordinate
location-based Fourier features. In addition, StyleGAN-3
uses filter kernels equivariant to the coordinate grid’s transla-
tion and rotation.However, the rotation equivariant version of
the StyleGAN-3model fails to scale to the ImageNet dataset,
as reported in Sauer et al. (2022). Instead of using convolu-
tion layers, the Poly-INR only uses linear and ReLU layers.

2.2 Image Generation

Diffusion models Ho et al. (2020), Ho et al. (2022), Song et
al. (2021) have shown notable success in image generation
tasks, consistently delivering high-quality results and broad
distribution coverage Dhariwal and Nichol (2021), often out-
performing GANs. However, their iterative reverse process,
which typically involves a large number of steps (e.g., 1000
steps), makes them significantly slower and less efficient
compared to GANs. In this paper, our INR model is built
upon GANs. GANs have been widely used for image gener-
ation and synthesis tasks Goodfellow et al. (2020). In recent
work, several improvements have been proposed Radford et
al. (2016),Karras et al. (2019),Miyato et al. (2018),Arjovsky
et al. (2017), Gulrajani et al. (2017) over the original archi-
tecture. For example, the popularly used StyleGAN Karras
et al. (2019) model uses a mapping network to generate style
codes, which are then used to modulate the weights of the
Conv layers. StyleGAN improves image fidelity, as well as
enhances inversion and image editing capabilities Härkönen
et al. (2020). StyleGAN has been scaled to large datasets like
ImageNet Sauer et al. (2022), using a discriminator that uses
projected features from a pre-trained classifier Sauer et al.
(2021). More recently, transformer-based models have also
been used as generators Zhao et al. (2021), Lee et al. (2021),
Gao et al. (2023); however, the self-attention mechanism
is computationally costly for achieving higher resolution.
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Unlike these methods, our generator is free of convolution,
normalization, and self-attention mechanisms and only uses
ReLU and Linear layers to achieve competitive results, but
with far fewer parameters (Tables 1 and 2). Concurrently,
recent advancements in generative models have introduced
patch-wise training Skorokhodov et al. (2024), Ding et al.
(2023), Zheng et al. (2023), Arakawa et al. (2023), Wang et
al. (2024), Wang et al. (2022), Skorokhodov et al. (2022), a
method where images are divided into smaller patches that
are processed independently to enhance training efficiency
and effectively manage memory usage. Additionally, Zheng
et al. (2023) incorporated neural operators for more efficient
training and evaluations. In contrast, the Poly-INR approach
processes the entire image at once but generates each pixel
independently, rather than generating image patches, and
thus offers a fundamentally different methodology for image
synthesis. However, Poly-INR can also adopt patch-based
methods to expedite training and reduce memory demands,
providing adaptability for memory-constrained devices.

In recent years, there has been increasing interest in a new
class of architectures termed deep polynomial neural net-
works Chrysos et al. (2022), Wu et al. (2022). The goal of
these approaches is to specifically model the input–output
relationship of a neural network using a polynomial func-
tion defined in the high-dimensional spaces matched to the
input and output dimensions. Our approach may be consid-
ered related to these approaches but is more specific to 2D
polynomial functions, defined on image-grids, which allow
us to interpret the learned polynomials specifically as pro-
moting shape-awareness. This interpretation is supported by
the prior work in using similar type of polynomials for 2D
(and 3D) shape representations Hu (1962).

2.3 Geometric Moment

A moment for a given two-dimensional piece-wise continu-
ous function f (x, y) is defined as:

mpq =
∫ ∞

−∞

∫ ∞

−∞
x p yq f (x, y)dxdy, (1)

where, (x, y) is the 2D coordinate and (p+q) is the order of
the moment. By uniqueness theorem Hu (1962), if f (x, y) is
a piece-wise bounded continuous function (i.e. it is non-zero
only on a compact part of the xy plane), then the moment
sequence mpq is uniquely defined for all orders (p + q) by
f (x, y). Conversely, f (x, y) is uniquely determined by the
sequencempq . The geometricmoment for a discrete 2D func-
tion I (x, y) is given by the discrete version of (1):

mpq =
∑
x

∑
y

x p yq I (x, y) (2)

where, x, y are the 2D coordinates and (p + q) is the order
of the moment. Equivalently, moments can also be seen as a
‘projection’ of the 2D function on certain bases of the form
x p yq . Instead of using the bases function of type x p yq , one
can instead also use orthogonal functions like Legendre or
Zernike polynomials Teague (1980) for better reconstruction.
Image moments are well-known invariant shape descriptors
with a long history of use in the computer vision literature to
capture the geometrical properties of an image. For example,
m00 (0th order) represents average pixel intensity, m10 (1st

order) and m01 (1st order) represent xy centroid coordinate
and the combination of 1st and 2nd order can be used to
compute orientation.

An early work by Hu (1962) introduced a way to find
invariant moments for images. The Hu moments consist
of seven moments, mostly a combination of lower-order
moments invariant under scaling, translation, and rotation.
While these basic sets of seven Hu moments are provably
invariant to rotation, translation, and scale, their use has been
limited since their discriminative power is not very high.
Developing invariant moments for the Legendre and Zernike
polynomials for any arbitrary order is also possible Chong et
al. (2004), Zhang et al. (2011), Zhang et al. (2009), Khotan-
zad andHong (1990), Kim and Lee (2003),Wang andHealey
(1998), Yap and Paramesran (2005), Flusser et al. (2003).
However, they also have not significantly impacted contem-
porary image classification or generative tasks.

In this paper, we seek to advance a new approach for
defining spatial operations for image generation and clas-
sification networks, whose structure is motivated by classic
moment computation but whose basis functions are left to
be learned end-to-end by a deep learning network in a task-
specific way. This implies that we are not seeking to replicate
anyof the classicalmoments in an exact sense but tofindways
to fuse moment-like computations and let networks learn the
suitable basis functions for a given task. This approach is
described in the next section.

2.3.1 Geometric Moments and Deep Networks

There has been prior work in integrating geometric moments
with deep networks, as specifically applied to 3D shape
classification, from point-cloud data. For example, geodesic
moment-based features from an auto-encoder were used to
classify 3D shapes Luciano and Hamza (2018). On the other
hand, CNNs were used as a polynomial function to learn
bases and the needed affine transformation parameters for 3D
point cloud data-based shape classification Joseph-Rivlin et
al. (2019). This line of work was extended in Li et al. (2020),
which uses graph CNN to capture local features of the 3D
object. More recently, Theodoridis et al. (2021) andWu et al.
(2017) replaced the conventional global average pooling in
CNN models with invariant Zernike moment-based pooling
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Fig. 2 Overview of our proposed Polynomial Implicit Neural Repre-
sentation (Poly-INR) based generator architecture. Our model consists
of two networks: (1) Mapping network, which generates the affine

parameters from the latent code z, and (2) Synthesis network, which
synthesizes the RGB value for the given pixel location. Our Poly-INR
model is defined using only Linear and ReLU layers end-to-end

for image classification tasks. In contrast to these approaches,
ourmethod is specifically tailored for generative tasks, where
we differentially learn bases and affine parameters.

3 Poly-INR

We are interested in a class of functions that represent an
image in the form:

G(x, y) = g00 + g10x + g01y + ... + gpq x
p yq , (3)

where (x, y) is the normalized pixel location sampled from
a coordinate grid of size (H × W ), while the coefficients of
the polynomial (gpq) are parameterized by a latent vector z
sampled from a known distribution and are independent of
the pixel location. Therefore, to form an image, we evaluate
the generator G for all pixel locations (x, y) for a given fixed
z:

I = {G(x, y; z) | (x, y) ∈ Grid(H ,W )}, (4)

where, Grid(H ,W ) = {( x
W−1 ,

y
H−1 ) | 0 ≤ x < W , 0 ≤

y < H}. By sampling different latent vectors z, we generate
different polynomials and represent images over a distribu-
tion of real images.

Our goal is to learn the polynomial defined by (3) using
only Linear and ReLU layers to represent diverse datasets
inherently containing a variety of shapes and geometries.
However, the conventional definition of MLP usually takes

the coordinate location as input, processed by a few Lin-
ear and ReLU layers. This definition of INR can only
approximate low-order polynomials and hence only gen-
erates low-frequency information. Although, one can use
a positional embedding consisting of polynomials of the
form x p yq to approximate a higher-order polynomial. How-
ever, this definition of INR is limiting since a fixed-size
embedding space can contain only a small combination of
polynomial orders. Furthermore,wedonot knowwhichpoly-
nomial order is essential to generate the image beforehand.
Hence, we progressively increase the polynomial order in
the network and let it learn the required orders. We imple-
ment this using the DGMmodule. Within the DGMmodule,
we conduct element-wise multiplication of features with the
affine-transformed coordinate location at different levels,
shown in Fig. 2. Our model consists of two parts: 1) Map-
ping network, which takes the latent code z and maps it to
affine parameters spaceW, and 2)Synthesis network, which
takes the pixel location and generates the correspondingRGB
value.

3.1 Mapping Network

Themapping network takes the latent code z ∈ R
64 andmaps

it to the space W ∈ R
512. Our model adopts the mapping

network used in Sauer et al. (2022). It consists of a pre-trained
class embedding, which embeds the one hot class label into
a 512 dimension vector and concatenates it with the latent
code z. Then, the mapping network consists of an MLP with
two layers, which maps it to the space W. We use this W to
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generate affine parameters by using additional linear layers;
hence, we refer to the set of Ws as affine parameters space.

3.2 Synthesis Network

The synthesis network generates the RGB (R3) value for
the given pixel location (x, y). We are interested in recon-
structing images with a diverse set of shapes and structures.
Geometric moments capture the shape information excep-
tionally well and provide discriminative cues; however, their
discrimination power is quite limited and generally requires
a salient object over a homogeneous background. To address
this limitation, we blend the strength of geometric moment
and neural networks. We propose Deep Geometric Moment
(DGM) that uses geometric moments along with neural net-
works to provide both shape and texture features.

In the traditional usage of moments in vision, the num-
ber and the order of moments is an experimental design
choice. Choosing the right number and order of moments
depends on the underlying tasks; large moments are useful
for image reconstruction, whereas, for image classification,
higher-order moments are affected by noise and, hence, not
very useful. Thus, selecting the correct moment order is
essential. In our method, we specify the required number of
moments (in terms of feature dimension), but the exact basis
functions and orders are learned by the networks end-to-end.

TheDGMmodule is defined by (5),we project the relevant
features f (x, y) into the learned coordinate bases:

DGM(A, g, f ) = (A × g(x, y)) � f (x, y), (5)

where, g(x, y) is a learnable 2D polynomial function,
f (x, y) is image feature at coordinate location (x, y), A
refers to the affine transformation parameters and � is
element-wise multiplication. Affine transformations include
four basic transformations: translation, scaling, rotation, and
shear. For a 2D point represented by coordinates x, y, its
affine transformation can be described by ax+by+c. Here, a
and b are parameters influencing the transformation through
scaling, rotation, or shearing effects, while c typically repre-
sents translation, allowing modification of the point within
the 2D space. To account for varying locations, sizes, poses,
and deformation, we allow our network to learn affine param-
eters to appropriately deform the 2D coordinate grid during
moment computation (as shown in Fig. 2).

The synthesis network consists of multiple levels; at each
level, it receives the affine transformation parameters from
the mapping network and the pixel coordinate location. At
level-0, we affine transform the coordinate grid and feed
it to a Linear layer followed by a Leaky-ReLU layer with
negative_slope = 0.2. At later levels, we use the DGM
module to conduct element-wise multiplication between the
feature from the previous level and the affine-transformed

coordinate grid and then feed it to Linear and Leaky-ReLU
layers.With the element-wisemultiplication at each level, the
network retains the flexibility to either elevate the order of the
x or y coordinate positions or maintain the current order by
setting the corresponding affine transformation coefficients
a = b = 0 and c = 1. In our model, we use 10 levels, which
is sufficient to generate large datasets like ImageNet. Mathe-
matically, the synthesis network can be expressed as follows:

Fi =
{

σ(W0(A0 × X)), i = 0

σ(Wi × DGMi (Ai , X , Fi−1), i > 0
(6)

where Fi represents the output at level-i, X ∈ R
3×HW is the

coordinate grid of size H ×W with an additional dimension
for the bias, Ai ∈ R

n×3 is the affine transformation matrix
from the mapping network for level-i, Wi ∈ R

n×n is the
weight of the linear layer at level-i and σ is the Leaky-ReLU
layer. Here, n is the dimension of the feature channel in the
synthesis network, which is the same for all levels. For large
datasets like ImageNet, we choose the channel dimension
n = 1024, and for smaller datasets like FFHQ, we choose
n = 512. Note that with this definition, our model only uses
Linear and ReLU layers end-to-end and synthesizes each
pixel independently.
Relation to StyleGAN: StyleGANs Karras et al. (2019),
Karras et al. (2020), Karras et al. (2021) can be seen as a
special case of our formulation. By keeping the coefficients
(a j ,b j ) in the affine transformation matrix of x and y coor-
dinate location equal to zero, the bias term c j would act as
a style code. However, our affine transformation adds loca-
tion bias to the style code rather than just using the same
style code for all locations in StyleGAN models. This loca-
tion bias makes the model very flexible in applying a style
code only to a specific image region, making it more expres-
sive. In addition, our model differs from the StyleGANs in
many aspects. First, our method does not use weight modula-
tion/demodulation or normalizing Karras et al. (2020) tricks.
Second, our model does not employ low-pass filters or con-
volutional layers. Finally, we do not inject any spatial noise
into our synthesis network. We can also use these tricks
to improve the model’s performance further. However, our
model’s definition is straightforward compared to otherGAN
models.

4 Experiments

The effectiveness of our model is evaluated on two datasets:
1) ImageNet Deng et al. (2009) and 2) FFHQ Karras et al.
(2019). The ImageNet dataset consists of 1.2M images over
1K classes, whereas the FFHQ dataset contains ∼ 70K
images of curated human faces. All our models have 64
dimensional latent space sampled from a normal distribution
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Table 1 Quantitative
comparison of Poly-INR method
with CNN-based generative
models on ImageNet datasets

(a) ImageNet 128 × 128

Model FID ↓ sFID ↓ rFID ↓ IS ↑ Pr ↑ Rec ↑
BigGAN 6.02 7.18 6.09 145.83 0.86 0.35

CDM 3.52 – - 128.80 – –

ADM 5.91 5.09 13.29 93.31 0.70 0.65

ADM-G 2.97 5.09 3.80 141.37 0.78 0.59

StyleGAN-XL 1.81 3.82 1.82 200.55 0.77 0.55

Poly-INR 2.08 3.93 2.76 179.64 0.70 0.45

(b) ImageNet 256 × 256

Model FID ↓ sFID ↓ rFID ↓ IS ↑ Pr ↑ Rec ↑
BigGAN 6.95 7.36 75.24 202.65 0.87 0.28

ADM 10.94 6.02 125.78 100.98 0.69 0.63

ADM-G 3.94 6.14 11.86 215.84 0.83 0.53

DiT-XL/2-G 2.27 4.60 – 278.54 0.83 0.57

StyleGAN-XL 2.30 4.02 7.06 265.12 0.78 0.53

Poly-INR 2.86 4.37 7.79 241.43 0.71 0.39

(c) ImageNet 512 × 512

Model FID ↓ sFID ↓ rFID ↓ IS ↑ Pr ↑ Rec ↑
BigGAN 8.43 8.13 312.00 177.90 0.88 0.29

ADM 23.24 10.19 561.32 58.06 0.73 0.60

ADM-G 3.85 5.86 210.83 221.72 0.84 0.53

DiT-XL/2-G 3.04 5.04 – 240.82 0.84 0.54

StyleGAN-XL 2.41 4.06 51.54 267.75 0.77 0.52

Poly-INR 3.81 5.06 54.31 267.44 0.70 0.34

(d) Number of parameters in millions (M)

Model 642 1282 2562 5122

BigGAN - 141.0 164.3 164.7

ADM 296.0 422.0 554.0 559.0

DiT-XL - - 675.0 675.0

StyleGAN-XL 134.4 158.7 166.3 168.4

Poly-INR 46.0 46.0 46.0 46.0

(d) compares the number of parameters used in all models at various resolutions. The results for existing
methods are quoted from the StyleGAN-XL paper

Table 2 Quantitative
comparison of Poly-INR
method with CNN and
INR-based generative models on
FFHQ dataset at 256 × 256

Model # Params (M) FID ↓ Inference time (sec/img)

StyleGAN2 30.0 3.83 0.016

StyleGAN-XL 67.9 2.19 0.047

CIPS 45.9 4.38 0.067

INR-GAN 72.4 4.95 0.024

Poly-INR 13.6 2.72 0.054
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with mean 0 and standard deviation 1. The affine parame-
ters space W of the mapping network is 512 dimensions,
and the synthesis network consists of 10 levels with feature
dimension n = 1024 for the ImageNet and n = 512 for
FFHQ. We follow the training scheme of the StyleGAN-XL
method Sauer et al. (2022) and use a projected discrimina-
tor based on the pre-trained classifiers (DeiT Touvron et al.
(2021), and EfficientNet Tan and Le (2019)) with an addi-
tional classifier guidance loss Dhariwal and Nichol (2021).

We train our model progressively with increasing resolu-
tion, i.e., we start by training at low resolution and continue
training with higher resolutions as training progresses. Since
the computational cost is less at low resolution, the model is
trained for a large number of iterations, followed by train-
ing for high resolution. Since the model is already trained at
low resolution, fewer iterations are needed for convergence
at high resolution. However, unlike StyleGAN-XL, which
freezes the previously trained layers and introduces new lay-
ers for higher resolution, Poly-INR uses a fixed number of
layers and trains all the parameters at every resolution.

4.1 Quantitative Results

We compare our model against CNN-based GANs (Big-
GAN Brock et al. (2018) and StyleGAN-XL Sauer et al.
(2022)) and diffusion models (CDMHo et al. (2022), ADM,
ADM-G Dhariwal and Nichol (2021), and DiT-XL Pee-
bles and Xie (2023)) on the ImageNet dataset. We also
report results on the FFHQ dataset for INR-based GANs
(CIPS Anokhin et al. (2021) and INR-GAN Skorokhodov
et al. (2021)) as they do not train models on ImageNet.
Quantitativemetrics:Weuse Inception Score (IS) Salimans
et al. (2016), Frechet Inception Distance (FID) Heusel et al.
(2017), Spatial Frechet Inception Distance (sFID) Nash et
al. (2021), random-FID (rFID) Sauer et al. (2022), preci-
sion (Pr), and recall (Rec) Kynkäänniemi et al. (2019). IS
(higher the better) quantifies the quality and diversity of the
generated samples based on the predicted label distribution
by the Inception network but does not compare the distri-
bution of the generated samples with the real distribution.
The FID score (lower the better) overcomes this drawback
by measuring the Frechet distance between the generated
and real distribution in the Inception feature space. Further,
sFID uses higher spatial features from the Inception network
to account for the spatial structure of the generated image.
Like StyleGAN-XL, we also use the rFID score to ensure
that the network is not just optimizing for IS and FID scores.
We use the same randomly initialized Inception network pro-
vided by Sauer et al. (2022). In addition, we also compare our
model on the precision and recall metric (higher the better),
which measures how likely the generated sample is from the
real distribution.

Fig. 3 Heatmap visualization at different levels of the synthesis net-
work. At initial levels, the model captures the basic shape of the object,
and at higher levels, the image’s finer details are captured

Fig. 4 Few example images showing extrapolation outside the image
boundary (yellow square). The Poly-INR model is trained to generate
images on the coordinate grid [0, 1]2. For extrapolation, we use the grid
size [−0.25, 1.25]2. Our model generates continuous image outside the
conventional boundary (Color figure online)

Table 1 summarizes the results on the ImageNet dataset
at different resolutions. The results for existing methods are
quoted from the StyleGAN-XL paper. We observe that the
performance of the proposedmodel is third best afterDiT-XL
and StyleGAN-XL on the FID and IS metrics. The proposed
model outperforms the ADM and BigGANmodels at all res-
olutions and performs comparably to the StyleGAN-XL at
128 × 128 and 256 × 256. We also observe that with the
increase in image size, the FID score for Poly-INR drops
much more than StyleGAN-XL. The FID score drops more
because our model does not add any additional layers with
the increase in image size. For example, the StyleGAN-XL
uses 134.4M parameters at 64×64 and 168.4M at 512×512,
whereas Poly-INRuses only 46.0Mparameters at every reso-
lution, as reported inTable 1d. The table shows that ourmodel
performs comparably to the state-of-the-art CNN-based gen-
erative models, even with significantly fewer parameters. On
precision metric, the Poly-INR method performs compara-
bly to other methods; however, the recall value is slightly
lower compared to StyleGAN-XL and diffusion models at
higher resolution. Again, this is due to the small model size,
limiting the model’s capacity to represent much finer details
at a higher resolution.

We also compare the proposed method with other INR-
based GANs, such as CIPS and INR-GAN, on the FFHQ
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Fig. 5 Linear interpolation between two random points. The first two
rows represent interpolation in the latent space, while in the last two, we
directly interpolate between the affine parameters. Poly-INR provides
smooth interpolation even in a high dimension of affine parameters.

Our model generates high-fidelity images similar to state-of-the-art
models like StyleGAN-XL but without the need for convolution or
a self-attention mechanism. Comparisons with existing methods are
present in the supplementary material

Fig. 6 Source A and B images are generated corresponding to random
latent codes, and the rest of the images are generated by copying the
affine parameters of source A to source B at different levels. Copying

the higher levels’ (8 and 9) affine parameters leads to finer style changes,
whereas copying the middle levels’ (7, 6, and 5) leads to coarse style
changes

dataset. Table 2 shows that the proposed model signifi-
cantly outperforms thesemodels, evenwith a small generator
model. Interestingly, the Poly-INR method outperforms the
StyleGAN-2 and performs similarly to StyleGAN-XL, using
significantly fewer parameters. Table 2 also reports the infer-
ence speed of these models on a Nvidia-RTX-6000 GPU.
StyleGANs and INR-GAN employ a multi-scale architec-
tural approach, initiating the image synthesis process with
a compact latent representation and subsequently upscal-
ing it progressively to achieve the desired resolution. In
contrast, CIPS and Poly-INR models synthesize each pixel

independently, with all computations performed at the same
resolution as the output image, thus leading to increased
inference time.

4.2 Qualitative Results

Figure 1 shows images sampled at different resolutions by
the Poly-INR model trained on 512 × 512. We observe that
our model generates diverse images with very high fidelity.
Even though the model does not use convolution or self-
attention layers, it generates realistic images over datasets
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Fig. 7 The Poly-INR model generates smooth interpolation with embedded images in affine parameters space. The leftmost image (first row) is
from the ImageNet validation set, and the last two (rightmost) are the OOD images

like ImageNet. In addition, the model provides flexibility to
generate images at different scales by changing the size of the
coordinate grid, making the model efficient if low-resolution
images are needed for a downstream task. In contrast, CNN-
based models generate images only at the training resolution
due to the non-equivariant nature of the convolution kernels
to image scale.

4.2.1 Heatmap Visualization

Figure 3 visualizes the heatmap at different levels of our
synthesis network. To visualize a feature as a heatmap, we
first compute the mean along the spatial dimension of the
feature and use it as a weight to sum the feature along the
channel dimension. In the figure, we observe that in the ini-
tial levels (0–3), the model forms the basic structure of the
object. Meanwhile, in the middle levels (4–6), it captures
the object’s overall shape, and in the higher levels (7–9), it
adds finer details about the object. Furthermore, we can inter-
pret this observation in terms of polynomial order. Initially,
it only approximates low-order polynomials and represents
only basic shapes. However, at higher levels, it approximates
higher-order polynomials representing finer details of the
image.

4.2.2 Extrapolation

The INR model is a continuous function of the coordinate
location; hence,we extrapolate the image by feeding the pixel
location outside the conventional image boundary. Our Poly-
INR model is trained to generate images on the coordinate
grid defined by [0, 1]2. We feed the grid size [−0.25, 1.25]2
to the synthesis network to generate the extrapolated images.
Figure4 shows a few examples of extrapolated images. In
the figure, the region within the yellow square represents the
conventional coordinate grid [0, 1]2. The figure shows that
our INRmodel not only generates a continuous image outside

Fig. 8 Style-mixing with embedded images in affine parameters space.
Source B is the embedded image from the ImageNet validation set,
mixed with the style of randomly sampled source A image

the boundary but also preserves the geometry of the object
present within the yellow square. However, in some cases,
the model generates a black or white image border, resulting
from the image border present in some real images of the
training set.

4.2.3 Sampling at Higher-Resolution

Another advantage of usingourmodel is theflexibility to gen-
erate images at any resolution, even if the model is trained
on a lower resolution.We generate a higher-resolution image
by sampling a dense coordinate grid within the [0, 1]2 range.
Table 3 shows the FID score evaluated at 512 × 512 for
models trained on the lower-resolution ImageNet dataset.
We compare the quality of upsampled images generated by
our model against the classical interpolation-based upsam-
pling methods. The table shows that our model generates
crisper upsampled images, achieving a significantly better
FID score than the classical interpolation-based upsampling
method. However, we do not observe significant FID score
improvement for our Poly-INR model trained on 128 × 128
or higher resolution against the classical interpolation tech-
niques. This could be due to the limitations of the ImageNet
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Table 3 FID score (lower the
better) evaluated at 512 × 512
for models trained at a lower
resolution and compared against
classical interpolation-based
upsampling

Training Resolution Nearest Neighbour Bilinear Bicubic Poly-INR

32 × 32 184.39 112.28 73.86 65.15

64 × 64 89.24 72.41 42.97 36.30

We conduct a qualitative comparison of images generated by all methods in Sect.A.7 of the Appendix

dataset, which primarily consists of lower-resolution images
than the 512 × 512. We used bilinear interpolation to pre-
pare the training dataset at 512 × 512. We believe this
performance can be improved when the model has access
to higher-resolution images for training. We also compare
the upsampling performance with other INR-basedGANs by
reporting the FID scores at 1024×1024 formodels trained on
FFHQ-256 × 256 as follows: Poly-INR:13.69, INR-GAN:
18.51, CIPS:29.59. Our Poly-INR model provides better
high-resolution sampling than the other two INR-based gen-
erators.

4.2.4 Interpolation

Figure 5 shows that our model generates smooth interpo-
lation between two randomly sampled images. In the first
two rows of the figure, we interpolate in the latent space,
and in the last two rows, we directly interpolate between the
affine parameters. In our synthesis network, only the affine
parameters depend on the image, and other parameters are
fixed for every image.Hence interpolating in affine parameter
space means interpolation in INR space. Our model provides
smoother interpolation even in the affine parameters space
and interpolates with the geometrically coherent movement
of different object parts. For example, in the first row, the
eyes, nose, and mouth move systematically with the whole
face.

4.2.5 Style-Mixing

Similar to StyleGANs, our Poly-INR model transfers the
style of one image to another. Our model generates smooth
style mixing even though we do not use any style-mixing
regularization during the training. Figure6 shows examples
of style-mixing from source A to source B images. For style
mixing,wefirst obtain the affine parameters corresponding to
the source A and B images and then copy the affine param-
eters of A to B at various levels of the synthesis network.
Copying affine parameters to higher levels (8 and 9) leads
to finer changes in the style, while copying to middle levels
(7, 6, and 5 ) leads to the coarse style change. Mixing the
affine parameters at initial levels changes the shape of the
generated object. In the figure, we observe that our model
provides smooth style mixing while preserving the original
shape of the source B object.

4.2.6 Inversion

Embedding a given image into the latent space of the GAN
is an essential step for image manipulation. In our Poly-
INR model, for inversion, we optimize the affine parameters
to minimize the reconstruction loss, keeping the synthesis
network’s parameters fixed. We use VGG feature-based per-
ceptual loss for optimization. We embed the ImageNet vali-
dation set in the affine parameters space for the quantitative
evaluation. Our Poly-INRmethod effectively embeds images
with high PSNR scores (PSNR:26.52 and SSIM:0.76), out-
performing StyleGAN-XL (PSNR: 13.5 and SSIM: 0.33).
However, our affine parameters dimension is much larger
than the StyleGAN-XL’s latent space. Even though the
dimension of the affine parameters is much higher, the Poly-
INR model provides smooth interpolation for the embedded
image. Figure7 shows examples of interpolationwith embed-
ded images. In the figure, the first row (leftmost) is the
embedded image from the validation set, and the last two
rows (rightmost) are the out-of-distribution images. Surpris-
ingly, our model provides smooth interpolation for OOD
images. In addition, Fig. 8 shows smooth style-mixing with
the embedded images. In some cases, we observe that the
fidelity of the interpolated or style-mixed image with the
embedded image is slightly lower compared to samples from
the training distribution. This is due to the large dimen-
sion of the embedding space, which sometimes makes the
embedded point farther from the training distribution. It is
possible to improve interpolation quality further by using the
recently proposed pivotal tuning inversion method Roich et
al. (2022), which finetunes the generator’s parameters around
the embedded point.

4.3 Multi-View Consistent Images

In this section, we leverage PolyINR to generate multi-
view-consistent images and 3D geometries in real-time. We
employ the EG3D Chan et al. (2022), a pipeline intro-
duced for unsupervised 3D representation learning from
single-view2D images.EG3Dadopts a tri-plane formulation,
aligning explicit features along three axis-aligned orthogonal
feature planes, each characterized by a spatial resolution of
N × N × C , where N represents spatial resolution and C
denotes the number of channels.

To generate a 3Dpoint x ∈ R
3, EG3Dprojects it onto each

of the three feature planes, retrieving the corresponding fea-
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Fig. 9 Multi-view images
generated at 128 × 128
synthesized by PolyINR model
trained on FFHQ dataset. We
use PTI Roich et al. (2022) to fit
a target image generated from
PolyINR trained along with the
EG3D pipeline and recover the
underlying 3D shape

ture vectors (Fxy, Fyz, Fxz) through bilinear interpolation,
and aggregates these vectors via summation. Subsequently,
a lightweight decoder network, implemented as a smallMLP,
interprets the aggregated 3D features F to derive color and
density. These quantities are then rendered into RGB images
using (neural) volume rendering Mildenhall et al. (2021)
techniques.

The tri-plane representation facilitates efficient image ren-
dering via neural volume rendering. In this section, we
generate tri-plane features using Poly-INR backbone. We
set N and C to 64 and 32. The neural renderer aggregates
features from each of the 32-channel tri-planes and pre-
dicts 32-channel feature images from a given camera pose.
Following Chan et al. (2022), a “super-resolution” mod-
ule is employed to upsample and refine these raw neurally
rendered images. The entire pipeline is trained end-to-end
from random initialization, akin to the training scheme in
StyleGAN2 Karras et al. (2020). Figure9 represents images
generated from Poly-INR as the generator along with the

Table 4 Quantitative comparison of Poly-INR for themulti-view image
generation task on the FFHQ dataset at 128 × 128 resolution

Generator FID ↓ # Params (M)

StyleGAN2 6.3 26.5

Poly-INR 8.5 14.3

EG3D pipeline. We train our model on the FFHQ dataset
at 128 × 128 resolution. In Table 4, we compare the model
trained with the Poly-INR and StyleGAN2 within the EG3D
pipeline. StyleGAN2 achieves a better FID score; however,
it possesses 50% more parameters than Poly-INR.

4.4 Text-Guided ImageManipulation

In this section, we explore leveraging the power of Con-
trastive Language-Image Pre-training (CLIP) Radford et al.
(2021) models to construct a text-based interface for manip-
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Table 5 Ablation study on the number of levels used during Poly-INR
training on ImageNet-100 at different resolutions

Levels 322 642 1282 # Params

2 129.3 151.4 193.5 7.9

4 10.3 16.2 22.3 17.4

6 6.6 8.5 12.1 26.8

8 5.9 7.4 9.7 36.3

10 5.7 6.6 8.1 45.8

322, 642 and 1282 represent FID scores corresponding to various num-
ber of levels at resolutions 32×32, 64×64 and 128×128 respectively.
# Params represents number of parameters in millions. The channel
dimension for the latent vector (z) is set to 1024

ulating the PolyINR model without manual intervention.
Following StyleCLIP Patashnik et al. (2021), we adopt a
training approach that employs a CLIP-based loss to opti-
mize an input latent vector in response to user-provided text
prompts. Let w be the input latent vector and t be the input
text prompt. Then we optimise w using (7).

LT 2I = DCLI P (GPoly I N R(w), t) + L I D(w), (7)

where GPoly I N R represents pre-trained PolyINR generator.
The cosine distance between the CLIP embeddings of its two
arguments is denoted by DCLI P . The similarity to the input
image is regulated by the �2-norm in latent space and the
identity loss Richardson et al. (2021), defined as: L I D(w) =
1 – 〈F(G(ws)); F(G(w))〉. Here, F represents a pretrained
ArcFace network Deng et al. (2019) for face recognition,
and 〈·, ·〉 computes the cosine similarity between its argu-
ments. We adhere to the same hyper-parameter settings as
those established in StyleCLIP.

Figure 10 illustrates several examples generated by opti-
mizing the latent input vector to PolyINR models based
on various text prompts. On the left side of the figure, the
transition of the generated image corresponding to each
text prompt is displayed at several different iterations. For
instance, when the input text prompt is “An elderly man with
a beard,” we observe the gradual transformation of the ini-
tially generated face from that of a young man to that of an
older man with a growing beard.

4.5 Ablation Study

In this section, we conduct ablation studies to under-
stand the significance of the number of levels, dimension
of latent vector (z), and affine transformation in the PolyINR
model. We conduct our experiments on ImageNet-100 Tian
et al. (2020) at 32 × 32, 64 × 64 and 128 × 128 resolution.
ImageNet-100 is a subset of ImageNet-1k dataset Rus-
sakovsky et al. (2015) with 100 classes and about 130k
images. In Table 5 and 6, we observe that both increasing lev-

Table 6 Ablation study on channel dimension of latent vector (z) used
during Poly-INR training on ImageNet-100 at different resolutions

z 322 642 1282 # Params

768 230 248 272 27.2

896 11.8 18.3 25.7 35.9

1024 5.7 9.6 14.1 45.8

1280 5.2 8.9 13.3 69.2

322, 642, 1282 and # Params are same as in Table 5. All Poly-INR
models are trained with ten levels

Table 7 An ablation study on the utilization of affine transformation
at each level during Poly-INR training on the ImageNet-100 dataset at
various resolutions

Affine Transf 322 642 1282 # Params

� 5.7 6.6 8.1 45.82

× 6.5 9.2 14.7 45.81

’Affine Transf.’ indicates whether an affine transformation is applied
at each level. 322, 642, 1282 and # Params are same as in Table 5. All
models are trained using ten levels, with the channel dimension of the
latent vector (z) set to 1024

els or latent dimensions improve the model’s performance.
Adding more levels or increasing latent dimension enhances
the model’s capacity. However, the latent dimension in Poly-
INR has a more significant impact on performance than the
number of levels. We observe that Poly-INR with ten lev-
els and z set to 768 performs poorly against Poly-INR with
six levels and z set to 1024, despite both models exhibiting
a similar number of parameters. Furthermore, we find that
decreasing z makes the training unstable. In Table 7, we con-
duct an ablation study to assess the impact of applying affine
transformations at each level of the Poly-INR model. We
observe that the removal of affine transformations fromPoly-
INR leads to a significant drop in the FID score, especially at
higher resolutions. Notably, although affine transformations
add only a minimal number of parameters to the model, their
role in enhancing image quality is crucial. They deform the
2Dcoordinate grid at each level,which is essential for accom-
modating variations in location, size, pose, and deformation.

4.6 Inference Speed Across Different Resolutions

Table 8 shows the inference speed (sec-per-image) across
various resolutions of the Poly-INR model trained on the
ImageNet dataset on aNvidia-RTX-6000GPU.As discussed
in Table 1d, the Poly-INR models use the same number of
parameters, i.e., 46M, at all resolutions. Poly-INR model
synthesizes each pixel independently and performs all com-
putations at the same resolution, resulting in slower inference
time at higher resolutions.
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Fig. 10 Illustration of several
examples of unique
manipulations produced by
PolyINR trained on FFHQ
dataset at 256 × 256. Each row
shows the transitioning of
images generated corresponding
to the text prompt at several
different iterations. We observe
gradual transformation for each
image

Fig. 11 An overview of the proposed DGM-based framework for the image classification task. The model consists of two blocks, Level-0 and
Level-1, that consist of two pipelines: (1) CNN-based image feature extraction and (2) coordinate bases computation. The DGM block can be
repeated to increase depth
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Table 8 Inference speed (sec-per-image) of Poly-INR model trained
on the ImageNet dataset across various resolutions

322 642 1282 2562 5122

0.007 0.013 0.047 0.179 0.720

5 Further Interpretation and Discussion

In this section, we discuss the significance of the DGM
module and evaluate its efficacy in representing intricate
geometries and shapes. In Fig. 3, we visualize the heatmap
at different levels of our synthesis network. We observe that
the initial level forms the basic structure, intermediate lev-
els capture the overall shape, and the higher levels add finer
details about the object. To further investigate the prowess of
the DGM module, we leverage its capabilities in extracting
features for a classification task Singh et al. (2023).

Similar to Poly-INR, our model consists of three compo-
nents. First, the coordinate base computation which utilizes
a 2D coordinate grid as input to generate bases. Second,
ResNet blocks to extract image features and lastly, the Affine
transformation block to transform the 2D coordinate grid and
enable invariance learning.

An overview of the DGM-based model for classification
is shown in Fig. 11. The architecture consists of Level-0 and
Level-1 blocks, where Level-0 is fixed, whereas Level-1 can
be replicatedmultiple times to create deeper networks. Level-
0 uses the canonical coordinate grid to generate bases and the
ResNet block to generate features from the image. We then
project this feature on the bases to compute themoments. The
projected feature acts as an attention map and is added to the
original feature. This feature map and geometric moments
are then passed to a ResNet block. The DGM block at Level-
1 receives image features from the ResNet block. This level
additionally predicts affine parameters based on moments
from the preceding level and transforms the coordinate grid
to regenerate the bases. The moments from the final level
serve as input to a fully connected layer, generating class
probabilities for the classification task. Our proposed model
does not use any spatial dimension reduction module across
the networks. This preserves the shape of the object and thus
enhances its interpretability. We also use the same number
of feature channels in each ResNet layer for simplicity.

Feature Visualization: To visualize the shape awareness
brought by the DGM approach, we visualize the learned fea-
tures that highlight the object’s shape. By the uniqueness
theorem Hu (1962), moments can be used to reconstruct the
original input, provided the bases are complete. In our case,
our learned bases are under-complete. Using the moments as
combination weights on the projected features given by:

Table 9 Performance comparison of the DGM model against the stan-
dard ResNet model on the ImageNet dataset

Model Params (M) Accuracy (%)

ResNet-18 11.69 71.23

DGM ResNet-18 11.88 72.36

ResNet-34 21.80 74.58

DGM ResNet-34 21.32 75.63

ResNet-50 25.56 76.92

DGM ResNet-50 23.51 77.06

V =
∑
c

mc(Gc ⊗ Fc), (8)

Where mc is the moment, Gc is the basis, Fc is the image
feature for channel c, and ⊗ is element-wise multiplication,
we get a visualization of shape-related information in the
features.

Figure 12 compares heatmaps from the DGM-based clas-
sification model against the standard ResNet and ViT model
on the ImageNet dataset. We use GradCAM Selvaraju et al.
(2017) to get visualizations fromResNet-18models.We also
compare our visualization against the attention-based Vision
Transformer Dosovitskiy et al. (2020) (ViT-B-16) model.
ViT-B is pre-trained on the ImageNet-21K and finetuned on
the ImageNet-1Kdataset.As shown inFig. 12, theGradCAM
visualizations of the standard ResNet-18 model generate a
blob-like shape around the critical region in the image, with
no discernible object shape. However, with the DGM-based
model, object shapes are crisp, with improved classification
accuracies (Table 9). Also, our heat map ismuch sharper than
the vision transformer attention map (Vit-B-16).

Additionally, with the DGM-based model, we can visu-
alize features at different levels providing much better-
debugging capability, as shown in Fig. 13. At initial levels,
the heatmap is noisy, and the model is not able to able to sep-
arate the object from the background. We get much sharper
heat maps at higher levels.

Challenges: One of the challenges in our INR method
is the higher computation cost compared to the CNN-based
generator model for high-resolution image synthesis. The
INR method generates each pixel independently; hence, all
the computations take place at the same resolution. In con-
trast, a CNN-based generator uses a multi-scale generation
pipeline, making the model computationally efficient. In
addition, we observe common GAN artifacts in some gen-
erated images. For example, in some cases, it generates
multiple heads and limbs, missing limbs, or the object’s
geometry is not correctly synthesized. We suspect that the
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Fig. 12 Feature visualization of different models on ImageNet. For the standard ResNet model, we use GradCAM for visualization. We also
compare our visualization with the Vision Transformer Dosovitskiy et al. (2020) (ViT-B-16) attention map

Fig. 13 Visualization at different levels for DGM ResNet-34 model on the ImageNet dataset. We note that at higher levels our model is able to
separate the background information from the object’s shape compared to initial levels

CNN-based discriminator only discriminates based on the
object’s parts and fails to incorporate the entire shape.

6 Conclusions and Directions for Future
Work

In this work, we propose polynomial function-based implicit
neural representations for large image datasets using only
linear and ReLU layers. Our Poly-INR model captures
high-frequency information and performs comparably to the
state-of-the-art CNN-based generative models without using

convolution, normalization, upsampling, or self-attention
layers. The Poly-INR model outperforms previously pro-
posed positional embedding-based INR GAN models. We
demonstrate the effectiveness of the proposed model for var-
ious tasks such as interpolation, style-mixing, extrapolation,
high-resolution sampling, and image inversion.

Additionally, it would be an exciting avenue for future
work to extend our Poly-INR method for 3D-aware image
synthesis on large datasets such asShapeNet. Poly-INR’s per-
formance is highly dependent on the latent feature dimension
and number of levels.Apromising direction for improvement
would be to employ neural architecture search to identify the
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Table 10 Poly-INR performance on FFHQ-32x32 across various levels
(lvl) and model size (number of parameters in Millions)

Lvl-2 Lvl-4 Lvl-7 Lvl-10 Lvl-14 Lvl-14

Feat. Dim 512 512 512 512 512 1024

Params (M) 2.98 5.62 9.57 13.52 18.79 64.74

FID ↓ 27.01 3.46 1.92 1.83 1.52 1.12

Precision ↑ 0.85 0.68 0.67 0.68 0.68 0.70

Recall↑ 0.01 0.41 0.56 0.57 0.59 0.63

optimal feature dimension and number of levels. In thiswork,
we use the DGMmodule to promote shape-awareness in the
GAN-based model. A simple extension of this work may be
integrating geometry-inspired modules with diffusion mod-
els.

A Appendix

A.1 Training details

ImageNet: We train the Poly-INR model progressively
with increasing resolution. The Poly-INR model is first
trained on 200M images at 32 × 32 with 2048 batch size,
followed by 72M images at 64 × 64 with 512 batch size,
21M images at 128× 128 with 256 batch size, 10M images
at 256×256with 128 batch size and 2M images at 512×512
with 128 batch size. We use learning rate of 1e−4 for the
generator and 2e − 4 for the discriminator. We use Adam
optimizer for both the generator and discriminator with
beta = (0.0, .99) and eps = 1e−8 and the classifier guid-
ance loss weight is set to 8.0 starting at 128×128 and higher
resolution. We do not use style mixing regularization and
path length regularization.

FFHQ: We also train the Poly-INR model progressively
with increasing resolution on the FFHQdataset.We first train
our model with 64×64 on 60M images using a batch size of
2048, followed by 15M images at 128× 128 with 256 batch
size and 15M images at 256× 256 with 256 batch size. The
other training hyperparameters are same as the ImageNet
experiments described above.

A.2 Ablation Study on the Number of Levels and
Feature Dimension

We present an ablation study in Table 10, demonstrating
the Poly-INR performance on the FFHQ-32x32 dataset as
levels increase. We observe that with increasing levels, the
model’s performance improves. We utilize 10 levels in our
experiments because of training stability and also achieve
comparable performance compared to CNN-based models.
In case of training with more than 10 levels, we can incre-

mentally increase the number of levels by first training the
model on a lower number, such as 10, and gradually addmore
levels as training progresses.

In Table 10, we increase the model capacity either by
adding more levels (layers) or increasing the feature dimen-
sion on FFHQ-32x32. We observe that when the model
capacity is very small, the recall score is also very poor, but
as we increase the model parameters, the recall score gets
much better.

A.3 Affine Parameters Mixing

An advantage of representing an image in the polynomial
form is that it inherently breaks the image into shape and
style. For example, the lower polynomial orders represent
the object’s shape, whereas the higher orders represent finer
details like the style of the image. In our Poly-INR model,
manipulating the lower levels’ affine parameters changes the
object’s shape, andmanipulating higher levels’ affine param-
eters changes the style. Figure 14 shows examples of style
mixing from sourceA to sourceB images. In the figure, copy-
ing the affine parameters of source A to source B at higher
levels (8 and 9) brings fine change in the style, whereas mid-
dle levels (5, 6, and 7) bring coarse style change. Figure 15
shows affine parameters mixing at initial levels (0–5). In the
figure, we observe that copying the affine parameters at these
levels changes the shape of the source B image to the source
A image.

A.4 Interpolation

Figure 16 shows linear interpolation between samples of
different classes in the affine parameters space. The Poly-
INR model provides smooth interpolation between different
classes.

A.5 Qualitative Comparison with StyleGAN-XL

We also compare the quality of images generated by Poly-
INR model against state-of-the-art CNN-based StyleGAN-
XL model for different classes. Figures 17, 18, and 19 show
examples of images generated from different classes for the
models trained on ImageNet at 256 × 256. The Poly-INR
generates samples qualitatively similar to the StyleGAN-XL
model but without using any convolution or self-attention
layers.

A.6 Qualitative Comparison with CIPS and INR-GAN
on FFHQ Dataset

We also provide qualitative comparison of Poly-INR model
against previously proposed INR-based generative models
like CIPS and INR-GAN. Figure 20 shows samples gener-
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Fig. 14 Source A and B images generated from random latent codes,
and the remaining images are generated by copying the affine param-
eters of source A to source B at different levels. Copying the higher

levels’ (8 and 9) affine parameters leads to finer style changes, whereas
copying the middle levels’ (7, 6, and 5) leads to coarse style changes
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Fig. 15 SourceAandB images are generated from random latent codes,
and remaining images are generated by copying the affine parameters of
source A to source B at different levels. Copying the initial levels’ (0, 1,

and 2) affine parameters leads to finer shape changes, whereas copying
slightly higher levels’ (3, 4, and 5) leads to coarse shape changes
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Fig. 16 The poly-INR model generates smooth interpolations between samples of different classes

ated by the three models trained on the FFHQ dataset at
256× 256. Our Poly-INR model generates qualitatively bet-
ter samples than the CIPS and INR-GAN using significantly
fewer parameters.

A.7 Qualitative Comparison with
Interpolation-Based UpsamplingMethods on
ImageNet Dataset

In this section, we illustrate the flexibility of Poly-INR
to generate images at any desired resolution. We generate
higher-resolution images by densely sampling coordinate
grids within the [0, 1]2 range. Table 3 presents the FID
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Fig. 17 Qualitative comparison between StyleGAN-XL (left column) and Poly-INR (right column). Classes from top to bottom: agaric, daisy,
volcano, seashore, cup, and beer glass
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Fig. 18 Qualitative comparison between StyleGAN-XL (left column) and Poly-INR (right column). Classes from top to bottom: type writer, valley,
pizza, wardrobe, spider web, barn spider
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Fig. 19 Qualitative comparison between StyleGAN-XL (left column) and Poly-INR (right column). Classes from top to bottom: maltese dog,
german shepherd, persian cat, bulbul, robin, american coot
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Fig. 20 Qualitative comparison between INR-GAN (left column), CIPS (middle column), and Poly-INR (right column) on FFHQ dataset at
256 × 256
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Fig. 21 Qualitative comparison of images upscaled from 32 × 32 to 512 × 512 resolution using classical interpolation-based methods versus
Poly-INR, evaluated on the ImageNet dataset. ’Original’ denotes images initially generated by Poly-INR at 32× 32 resolution. Please zoom in for
a more detailed examination
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Fig. 22 Qualitative comparison of images upscaled from 64 × 64 to 512 × 512 resolution using classical interpolation-based methods versus
Poly-INR, evaluated on the ImageNet dataset. ’Original’ denotes images initially generated by Poly-INR at 64× 64 resolution. Please zoom in for
a more detailed examination
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scores evaluated at 512 × 512 resolution for models ini-
tially trained on a lower-resolution ImageNet dataset. In
Figs. 21 and 22, we qualitatively compare the quality of
images upsampled by our model against those upsampled
using classical interpolation-basedmethods. Among all eval-
uated methods, Poly-INR and bicubic interpolation produce
the highest quality images. Notably, images generated by
Poly-INRexhibit superior detail sharpness compared to those
upscaled using bicubic interpolation. For instance, consider
the dog in the first row of Fig. 21; the left leg of the dog ren-
dered by Poly-INR exhibits significantly greater sharpness
compared to its bicubic-interpolated counterpart.
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