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Abstract—Safety- and mission-critical cyber-physical systems
(CPSs) require temporal correctness to ensure safe physical
behavior. This manifests as strict timing requirements, which
cannot be missed at runtime. Counter-intuitively, this implies that
real-time tasks can be delayed so long as they remain guaranteed
to meet their deadlines. This paper explores how extra time in
a schedule can be analytically recapitalized for the purpose of
applying stronger security protection within individual tasks at
compile time. This is achieved through the development of a
partial context-sensitive pointer-integrity framework (ParCSPI).
In this framework, more fine-grained policies can be enforced,
with greater runtime overheads, where so doing does not violate
real-time constraints. A whole-system optimization framework
based upon a mixed-integer linear programming approach to
fixed-priority response-time analysis is used to identify precisely
which contexts can be checked within the available system-wide
time while maximizing system-wide security.

ParCSPI leverages Arm pointer authentication (PA) to en-
code context-based equivalence classes into the modifiers of
the pointer signature and is implemented using a customized
program analyzer and LLVM compiler passes. An evaluation
of ParCSPI is presented that includes per-task and system-wide
overhead and security tradeoffs, as well as a demonstration on
a real-world CPS. Empirical results are presented showing that
ParCSPI achieves up to 62% pointer-integrity protection with
only 10% worst-case execution time (WCET) overhead, and can
find optimal security trade-offs in complex real-time task sets as
well as approximate them in reasonable time.

I. INTRODUCTION

With the recent advances in autonomous systems, cyber-
physical systems (CPSs) are playing increasingly important
roles in supporting the daily necessities of our society [1].
Despite their lack of memory safety, C, C++ and other
memory-unsafe languages are still pervasive in modern soft-
ware, especially in embedded and real-time systems. Given
the ubiquity and importance of many CPSs, their security
is paramount. While enhanced security measures are highly
desirable, there exists a well-known dilemma concerning the
trade-off between security and performance. This paper ad-
dresses the fundamental question of how to maximize security
protection without compromising the temporal correctness of
the system.

The particular defensive approach we consider is pointer
integrity. To understand the protection afforded by pointer
integrity, we must first consider the mechanics of memory-
corruption-based attacks. Attackers have demonstrated how
memory-corruption vulnerabilities, such as buffer overflows,
can be exploited to corrupt code pointers to redirect control

*Equal Contribution.

Virginia Tech

flow in a program to a malicious target, or to corrupt data
pointers to modify critical memory content [2], [3], [4], [5],
[6], [7]. Pointer integrity seeks to mitigate these types of
threats by ensuring that the pointers that are traversed at
runtime have not been maliciously corrupted, thereby not
diverting control flow to an attacker-controlled target.

One such recent approach to ensuring pointer integrity is
through the use of pointer authentication (PA). Modern Arm
processors have support for a technology called Pointer Au-
thentication, which is a hardware-assisted security capability to
verify that a pointer has not been corrupted. Arm PA has been
used in prior work to realize pointer integrity to thwart large
classes of memory-corruption vulnerabilities [8], [9], [10], [11]
while keeping the performance overhead low.

The PA works by using the pointer value and a modifier,
along with a system-maintained key, to generate a pointer
authentication code (PAC) as a signature for authenticating
access to the pointer. Upon memory access, built-in hardware-
based pointer-authentication checks enforce various pointer-
security policies. It is common practice to encode specific
security contexts using the modifier to further customize the
granularity of the security policy [8], [9], [10].

The direct application of PA cannot defend against more
advanced pointer-reuse attacks. In such attacks, the adversary
overwrites one pointer with another pointer value and its
corresponding modifier and PAC. In this case, the attacker
does not need to reverse engineer the PAC; instead, they can
copy it along with another valid pointer value. However, this
limits the attacker in terms of the valid pointer targets they can
encode in a malicious pointer to only those pointers that are
valid at that point, given the adopted policy. More formally,
there exists an equivalence class (EC) of possible valid pointer
targets [8], [10]. Inspired by context-sensitive information-flow
analysis [12], [13], [14], one possible solution to reduce the
size of the ECs and protect both code and data pointers is
to leverage context sensitivity. For example, a pointer may be
valid at a particular line of code, but it is only valid for one
specific sequence of function invocations that lead to that line
of code, not for all sequences. In other words, it is only valid
in one calling context.

Unique Challenges for Context Sensitivity in Real-time
Cyber-physical Systems: While context sensitivity is a
powerful mechanism to significantly improve system secu-
rity, context maintenance often imposes prohibitive run-time
overheads. This is because maintaining context requires track-
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ing this information dynamically at runtime. Furthermore,
checking this context information can also incur significant
runtime overhead. While full context-sensitive pointer integrity
provides the strongest security, it may not be practical given
its high runtime overhead. Indeed, in preliminary experiments,
we found worst-case overheads of 273% in ArduPilot [15]
when applying full context sensitivity (See §III for additional
details). This paper addresses the question of which context
is worth preserving given a limited amount of allowable
overhead.

ParCSPI: Partial Context-Sensitive Pointer Integrity.
Building on the observation that full context sensitivity im-
poses prohibitive runtime overhead on real-time systems, we
propose to only leverage partial context sensitivity for pointer
integrity (ParCSPI). Context-sensitive pointer integrity can be
relaxed along two dimensions, the granularity of context and
coverage of protection. Our goal is to maximize the protection
possible for a given level of inflation of the WCET. From
the context perspective, the selection of most effective subset
of contexts to maintain and leverage to improve security is
challenging. Some context maintenance has no additional cost,
if it is only maintained and checked on a control-flow path that
is not the worst case — such checks should be applied wherever
possible, while others along the worst-case execution path
(WCEP) do affect the WCET. From the coverage perspective,
we’ve found through analyzing the ArduPilot source code,
many of the paths are never executed in certain configurations
and environments. Adding protection to them will expand the
WCET, but provide limited security benefits in the intended
operating environment. Based on this observation, ParCSPI
supports incorporating the expected input distribution (cy-
ber and physical inputs) into the quantification of security
protection, providing a more realistic threat model for the
intended environment. Through this exercise, protection for
certain regions of the application is reduced or removed
because of low probability of execution (such as extreme
physical conditions) or zero probability of execution (such
as different platform configurations). Ultimately, our analysis
profiles these execution paths and considers which context to
maintain, as well as the size of the EC reduction (and hence
security) afforded by different degrees of context sensitivity.
To offer holistic protection at the system level, it important
to temporally tailor context sensitivity not just to a single task,
but to the system as a whole. Not all tasks have the same
level of security criticality (e.g., some tasks may not process
remote inputs or control safety-critical devices). Furthermore,
providing stronger protection to certain tasks may allow for
reduced protection in others. To address this problem, we
build upon our per-task results and develop an optimization
approach based on Mixed Integer Linear Programming (MILP)
response-time analysis. This approach optimizes the per-task
protection level to maximize system-wide protection (§V-D).

Implementation and Evaluation: We have implemented a
prototype of ParCSPI, including a partial context-sensitive
data-flow analysis tool, a customized LLVM-based compiler
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Fig. 1: Pointer authentication.

that leverages efficient hardware features such as PA and
Arm branch target identification (BTI). We validate the sys-
tem using real-time CPS applications and benchmarks, and
compare it to full context sensitivity on CPS: the WCET
runtime overhead is reduced by 163% while still achieving
62% protection. Finally, we evaluate our MILP optimizer to
determine the trade-offs between security and performance for
real-time task sets and explore how solving time affects the
determined security policy.

In summary, we have made the following contributions:

« We propose partial context-sensitive pointer integrity in
§III, with the goal to maximize security protection for
the cyber-physical system in the intended environment,
by prioritizing coverage and context to reduce the equiv-
alence class size for both data and code pointer integrity.
We propose a real-time model for the enforcement of
ParCSPI to balance the trade-off between real-time con-
straints and context granularity in §V. The real-time
model accepts a user-defined security policy trade-off
space as input and can automatically optimize the policy
security while satisfying real-time constraints.

We implement a prototype' of ParCSPI using a cus-
tomized SVF-based tool and a LLVM-based compiler
in §VI. We evaluated ParCSPI prototype on Armv8-A
platforms on both real-time benchmarks and CPS to show
feasibility in §VII-A and § VII-B.

We develop in §V-D, and evaluate in §VII-C, an
MILP response-time analysis that allows for system-
wide ParCSPI optimization of the appropriate context(s)
to maintain and check for each task while maximizing
system-wide security.

II. BACKGROUND
A. Arm Pointer Authentication

Pointer integrity is a security primitive aiming to ensure
that pointer targets are not maliciously modified. Pointer
Authentication (PA) is a security extension on Arm designed to
enforce pointer integrity by signing the pointer at its creation
and authenticating it whenever it is dereferenced. Figure 1
shows the workflow of the PA feature on AArch64 (the 64-bit
architecture of the Arm architecture family). Specifically, PA
works by adding instructions for creating and authenticating
pointer authentication codes (PAC), where the PAC is a
keyed message authentication code (MAC) calculated with a

IThe source code is available on the website: https://parcspi.github.io/.
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void func(intx ptr){
intx p=ptr;
...//attacker reuses p and PAC generated...
//under ctx2 with the one generated under ctxl
cout<<xkp<<endl;

}
func(&a);//ctxl
func(&b);//ctx2

Fig. 2: An example of pointer-reuse attack.

modifier, the pointer value, and a secret key stored in a special
register accessible only by the kernel. During pointer creation,
a PAC is generated and stored in (insecure) memory for pointer
signing and validation. During the validation process, a new
PAC is calculated, and the pointer is considered valid only if
the two PACs match. As a result, since the PAC is a keyed
MAC on the pointer value, which can only be calculated by
the instrumented PA instructions, PA can prevent arbitrary
modification of the pointer value.

B. Pointer-Reuse Attacks Against Pointer Integrity

Although PA can prevent arbitrary pointer corruption, an
attacker can still reuse authenticated pointers (including the
pointer values, modifiers, and PAC values). An example of a
pointer-reuse attack [10] is shown in Fig. 2. The PAC for the
pointer is calculated twice with different targets at line 2 under
different contexts, i.e., function call sites ctx1l and ctx2.
The calculated PAC and the pointers are stored in insecure
memory. At line 5, when using the pointers, both the pointer
and the PAC are fetched from the insecure memory and go
through pointer integrity checks. However, an attacker at line
3 can obtain the authenticated pointers (including the pointer
values, modifiers, and PAC values) during the first invocation
under context ctx1, and reuse them later during the second
invocation under context ct x2 to alter the pointer targets. This
leads to alteration of the pointer targets without being detected
by basic pointer integrity checks because the combination of
the pointer value, modifier, and PAC is still valid.

C. Context Sensitivity

The reason behind the pointer-reuse attack is the over-
approximation nature of static analysis, which makes the set
of targets considered valid larger than the actual valid set
of targets. This set of targets considered valid is referred
to as the equivalence class (EC). A smaller EC contains
fewer false negatives (i.e., targets considered valid but ac-
tually invalid), indicating better precision and thus stronger
security protection. To increase protection precision, context
sensitivity—such as callsite, path, and heap context sensitivity
[12], [13], [14]—can be leveraged to narrow the EC. The key
idea is to use runtime execution context information to further
eliminate infeasible targets. As discussed in §III-C, to provide
finer-grained protection against pointer-reuse attacks, context
sensitivity is applied to pointer integrity to narrow the EC of
pointer-integrity checks.
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Fig. 3: Context-sensitive pointer integrity.

III. MOTIVATION OF PARTIAL CONTEXT SENSITIVITY

In this section, we illustrate the workflow of context sen-
sitivity in defending against pointer-reuse attacks, and the
motivation for applying partial context sensitivity to enable a
flexible trade-off between security and runtime performance.

A. Context-Sensitive Pointer Integrity

Pointer integrity is vulnerable to pointer-reuse attacks,
where attackers can reuse authenticated pointers (including
the pointer values, modifiers, and PAC values). To mitigate this
attack, existing work has utilized runtime context to restrict the
set of pointers considered valid [8], [9], [16]. The workflow of
this process is shown in Fig. 3, including two key components:
encoding context into the modifiers and using context to
validate the pointer value. This process and figure are further
explained below.

First, at the pointer-creation location, the runtime context
and the compile-time-assigned location ID are encoded into
the pointer modifiers (Step 1). The encoded runtime context
can be used to capture the temporal information, representing
when this pointer is created; the compile-time-assigned loca-
tion ID can be viewed as spatial information, representing
where this pointer is created. Then, in Step 2, such temporal
and spatial information is bound to the pointer by signing the
modifier with the pointer value to create a signature value, i.e.,
PAC. Afterwards, the PAC value, modifier, and pointer value
are stored in insecure memory.

Upon usage of the pointer, the PAC value, modifier, and
pointer value are retrieved from non-secure memory. Rather
than using a static modifier, context-sensitive modifier for
the specific dereference is looked up from a pre-computed
table that maps context and dereference location into a unique
modifier that represents all the possible valid defs within the
given context (Step 3). As a result, the previous example
of pointer-reuse attack, shown in Fig. 2, which can bypass
basic pointer integrity checks, can be detected with the use of
context. Specifically, execution context (e.g., calling context
reflected as call site in this example) is leveraged to narrow
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down the EC. The call site can be recorded as runtime context
at line 7 and line 8.

B. High Overhead of Full Context Sensitivity.

However, using full context for runtime maintenance and
pointer-integrity checks can significantly increase overhead.
Figure 4 shows the WCET expansion when ArduPilot [15], an
autopilot system, uses full context-sensitive pointer integrity
to defend against pointer-reuse attacks. During runtime, the
full calling context, recorded as function call site, is used at
each pointer use point to check its validity. According to our
preliminary results of utilizing full context, the new WCET
can increase by 273% and exceed the deadline of its real-
time tasks, which can be detrimental to real-time CPS (e.g.,
causing crashes). As a result, system designers have to face the
trade-off between lightweight security primitives with limited
protection or costly security primitives that can provide strong
protection but will significantly impact real-time performance.

C. Partial Context-sensitive Pointer Integrity

Due to the high cost of full context sensitivity, exist-
ing work either uses lightweight context or protects only
a portion of pointers for runtime efficiency [8], [10], [16].
Existing approaches lack support for enabling a flexible trade-
off between security and real-time performance. We propose
using partial context-sensitive pointer integrity (ParCSPI) for
different computation and security demands, such that only
a subset of program locations is associated with context and
only a subset of pointer-use points is checked according to a
precomputed security policy under partial context sensitivity.

IV. THREAT MODEL AND SYSTEM GOALS

We assume there are memory-corruption vulnerabilities
that an attacker can leverage to perform arbitrary memory
reads/writes. In line with the threat models from previous
work [9], [10], [17], we do not assume there is dedicated
secure memory storage in unprivileged mode. We assume
code injection is prevented using existing memory-protection
technology such as a Memory Management Unit (MMU), and
all instrumented code, kernel stack and hardware stack are
trustworthy. We assume that the attacker cannot infer the PA
keys, as they are in registers not directly readable from user
space. We assume the program to be protected does not contain
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PA-related instructions, and the generated PAC values cannot
be brute-forced. We only consider attacks that exploit memory-
corruption vulnerabilities to launch code-reuse attacks; other
attack vectors such as hardware attacks [18] and side-channel
attacks [19] are out of scope.

System goals: The system goals are described as follows:

Goal 1: Detecting data- and code-pointer-reuse attacks: Even
when pointer integrity is deployed, attackers may alter pointer
values by reusing previously authenticated pointers. ParCSPI
aims to detect reuse attacks by enforcing statically com-
puted context-sensitive def-use relationships on pointers using
runtime execution context. Like previous work on pointer
integrity [8], [9], [10], [20], [21], we exclude protection against
pure non-pointer data-corruption attacks from the system
goals. Since our protection is probabilistic and subject to real-
time constraints, the prevention aims to protect those that are
prioritized based on the intended operating environment.

Goal 2: Meeting the security goal under real-time constraints:
Since program execution can generate rich context informa-
tion, naively using execution context to detect reuse attacks
can be expensive. Since high runtime overhead will delay
tasks from their deadlines, causing serious consequences [22],
[23], ParCSPI provides a policy-based framework to enable
a flexible trade-off between context granularity and real-time
performance.

V. PARCSPI DESIGN
A. System Overview

The goal of ParCSPI is to enable a flexible trade-off between
context/coverage of attack detection and performance under
different real-time requirements. The overview of ParCSPI is
shown in Figure 5, with three key steps. First, to detect reuse
attacks while enabling a flexible security and performance
trade-off, ParCSPI introduces partial context to pointer in-
tegrity. To reason about the provided security, ParCSPI devel-
ops a set of rules to derive the corresponding equivalence class
under the partial context. To ensure coherency of the defense, it
is crucial that the context selection at various pointer definition
and usage points remains consistent. Inconsistent protection,
particularly if initial pointer operations are safeguarded with
a coarse-grained context, can render subsequent fine-grained
protections ineffective. This inconsistency allows reuse attacks
to exploit the initial coarse-grained safeguards, thereby bypass-
ing later protections. Second, the problem of selecting pointers
and contexts is formulated as a system-wide optimization
problem, with the goal of maximizing security protection while
meeting real-time constraints. Finally, ParCSPI instruments the
program(s) according to the generated security policy. During
runtime, execution context is recorded and maintained, and
the pointer def and use are enforced to follow the statically
computed context-sensitive def-use relations to detect reuse
attacks.

B. Security Policy under Partial Context Sensitivity

As discussed in §III-C, the def-use relationships of pointers
are validated during runtime according to a pre-defined se-
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void func(intx p){ ..//reuse attacks against p
cout<<kp<<endl; }
void func_ql(intx ql1){ ..//reuse attacks against gl
__CTX_RECORD__; func(ql);//p's context recorded }
void func_g2(intx g2){ ..//reuse attacks against g2
__CTX_RECORD__; func(q2);//p's context recorded }

func_ql(&a); func_ql(&b);//ql's context NOT recorded
func_q2(&c); func_qg2(&d);//q2's context NOT recorded

Fig. 6: Example of security coherence.

To illustrate this security-coherence issue, consider the
example shown in Fig. 6. In this example, the def-use en-
forcement of pointer p can distinguish its two definitions at
lines 4 and 6 with its recorded context, such that a reuse attack
at line 1, which substitutes between these two definitions, can
be detected. However, since its source pointers, g1 and g2 in
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this case, are not protected against reuse attacks, reuse attacks
at lines 3 and 5 targeting p’s source pointers gl and g2 can
indirectly alter the pointer p.

As a result, to ensure the consistency between the analyzed
and achieved security guarantees, when protecting a pointer,
ParCSPI automatically includes all its dependent pointers into
partial context-sensitive pointer integrity checks at the same
context level as the pointer’s partial context-sensitive def-use
equivalence class.

C. Per-Task Optimization

A security policy includes: 1) which pointers to check
and 2) the context granularity for checks. Different security
policies exhibit different security and real-time impacts. The
goal of per-task optimization is to generate the optimal security
policy to maximize security protection under a given WCET
expansion constraint. The per-task WCET expansion constraint
can be determined by system-wide optimization, as discussed
in §V-D, to maximize system-wide security while ensuring
schedulability.

Security quantification: We follow the existing work on
context sensitivity [12] by using the largest EC size of a
pointer, derived from Eq. 3, to quantitatively measure the
protection granularity. Even though a common approach to-
wards EC minimization considers all elements in the EC with
equal security criticality, it also supports the incorporation of
domain knowledge by tuning the weights. The security score
of a single pointer [ under a security policy 7 is denoted as
S;(m) and is defined as the ratio of the full context sensitivity
to partial context sensitivity:

q

I if [ is selected by 7.

-
max |{c,)

Sl(ﬂ') =

max_ [(c™
cTeC™

“

0, otherwise.

where max |{c,1)¢| is a constant representing the EC size of
ce
full context, and max [{(c™,1);| is the EC size under the
creCn™

partial context of the security policy 7. Since the full context
always has the smallest EC size (as it provides the strongest
protection), S; is therefore in the range [0, 1]. A higher score
means a smaller EC size, thus finer protection granularity.
Moreover, when a pointer is not selected for protection, the
security score becomes 0 because the pointer can be arbitrarily
modified, indicating an infinitely large EC.

With the security quantification of a single pointer, the
security quantification for the entire task, denoted as S(w), is
the (weighted) average security score of individual pointers:

S(m) = wy x Sy(m) %)
l

where w; is the user-specified security preference weight

with Y, w; = 1, to specify application semantics into the

security quantification. By default, pointers have equal pref-

erence. When assessing mission-aware security optimization

with known intended environments, w; can also be determined
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by the probability of hitting the statement given an input
distribution.

Optimization formulation. With the security quantification
as described above, the optimization problem can be formu-
lated as finding the policy 7 that maximizes the security score
S(m) with the WCET expansion percentage € as constraint:

max, S(m) wrt A(r) <e-WCET,,; (©6)
where e WCET,,; is the maximum allowed WCET expansion
and A(w) is the increased WCET, which can be derived
using existing timing analysis tools. The insight behind this
optimization is to select the context and conduct checks on
pointers that can best reduce the EC size while achieving
minimal impact on WCET expansion. Contexts that do not
contribute to EC reduction are not chosen, and pointers and
contexts that are not on the WCEP are more likely to be
selected since they do not impose additional WCET expansion.

The optimization problem is solved in two steps. First, a
one-time preprocessing step computes the security score of
individual pointers under different partial contexts. Since the
optimization requires measuring the WCET impact, which
is often conducted by third-party timing analysis tools [27],
obtaining a closed-form solution can be difficult. In the second
step, we use a greedy algorithm to gradually select the
contexts to maintain and the pointers to protect based on
their impacts on security and WCET overhead. More details
on the optimization can be found in §VI. The final output
of the per-task optimization process is a table of WCET
expansions and optimal security scores with corresponding
security policies. This table is then used for system-wide
optimization to determine the optimal per-task security policy
that best contributes to system-wide security.

D. System-Wide Optimization

We exploit the elasticity of ParCSPI in order to balance
security with runtime. We wish to choose an optimal policy
under real-time constraints in order to maximize the total secu-
rity score without violating schedulability. Thus, we design a
Mixed Integer Linear Programming (MILP) optimization prob-
lem that allows us to maximize the security while guaranteeing
that the task system remains schedulable.

Task Model: Assume that we have a set 7 of n tasks: T =
{71,...,7n}. Bach 7; € T has an original cost of C?, a period
of T;, and a deadline of D;. We assume that we are able to
generate a trade-off table for each task 7;. The trade-off table
entries represent security score and WCET expansion pairs.
Each row £ in the table contains an €;;, and S;; pair for some
policy m;; for 7; (i.e., derived from different values of € in
Eq. 6). Let the number of entries in this table be m;. We will
call the cost of task 7; € T with the overhead of the selected
security policy C;.

MILP Formulation: In order to represent choosing a policy
we define a boolean variable X;; for each m;,. We declare
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that X;; = 1 implies that 7; is using m;; and so achieving a
security score of S;; and incurring an overhead of ;.
Thus, the optimization criterion is as follows:
mg

n
maximizeg E XikSik

i=1 k=1

)

However we must keep the task system schedulable.
A task can only use one policy at a time. We therefore
introduce the constraint:

mg
VreT: Y Xip<1
k=1

®

This enforces that a maximum of one X; is set to 1.

In order to require that all tasks must remain schedulable
we can represent schedulability as an Integer Linear Program
as described by Baruah & Ekberg [28].

We assume deadline-monotonic (DM) scheduling on a sin-
gle processor and that we therefore have sorted our task set
by relative deadlines so that the priority of 7; is greater than
the priority of 7.

The ILP representation of response-time analysis in [28]
proceeds as follows:

For each 7; € T we define a new variable R;; that represents
the response time of 7;. In order for the task system to remain
schedulable, each task must meet its deadline D;, so we
introduce a new constraint:

vVr,eT:R; <D, )

We introduce a new variable to represent the [R,;/7}] term
from standard response time analysis. For each task 7; and
each higher-priority task 7;, we create a new non-negative
integer variable Z;; with the constraint:

(7)

Finally, in order to represent the mathematical model of
schedulability Baruah & Ekberg use the following constraint:

>

Z.; (10)

i—1
VT; GT:Ci+ZZijCj <R;

Jj=1

(an

However, this assumes that the cost for each task is a
constant. We violate that assumption since the overhead of
each possible policy is different. Thus we differentiate between
the original cost of 7; which we notate as C,? and the actual
cost of 7; which is C;. We define C; in terms of CZQ as:

m;

C;=0? <1 + Z(Xikeik)>

k=1

(12)

We note that since only one X; can be true at any time,
and each X; is a binary variable, the original cost will only
be altered by the chosen ¢;.

For ease of presentation, we will define an intermediate
variable H, that represents the effect of higher priority tasks
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on the response time of 7;. In Constraint (11), this is equivalent
to Zl;ll Z;; x Cj, however given the definition of C' in terms
of C”, we can express this as:

i—1 mj
Hi =) [(Z5C)) +C7 Y (2 Xpuep)]  (13)
j=1 k=1

Note that we have distributed Z;; into the summation. Im-
portantly, we can see that there is the multiplication of two
variables Z;;X;;, making the constraint seemingly non-linear.

We get around this problem by leveraging the observation
that the result of the multiplication is either Z;; or 0 since
X is a boolean. Thus, we can use well-known integer-
programming techniques for linearizing products. We define
new variables Y, to represent the product Z;;X;;. Addi-
tionally, we define a constant Z; = [T;/Cf] as an upper
bound for Z;;. Note Z;; represents the number of times that
7; can run during the response time of 7;. Since we require
that everything remain schedulable, and 7; will not run more
often than its period, we can upper bound Z;; with the number
of times that CJQ could fit into 7;. We define the following
constraints for each Y !

0 <Yk

Yijr < XjiZy

0<Z;; =Y,

Zij — Y < (1 - Xj0) 2]

(14)

The first two inequalities ensure that Y;;;, = 0 when X5, =
0. The second two inequalities ensure that Y;;;, = Z;; when
X,x = 1. We can now use Y, to update our definition of
H; so that it is linear:

m;

1—1
j=1

k=1

Finally, we define our schedulability constraint as:

Vr,eT:Ci+H; <R, (16)

Subject to the defined constraints we have defined a MILP
optimization problem where we choose policies that maximize
the sum of the security scores for each task while guaranteeing
that the task set remains schedulable.

VI. IMPLEMENTATION

ParCSPI is built on Armv8-A platform on Raspberry Pi
3 Model B with callsite as context, and the implementation
consists of three parts: security policy generation, context
metadata protection, and program instrumentation.

Security-policy generation. To choose the security policy
for a task, both the security and runtime impact of different
security instrumentations, such as different levels of partial
context-sensitive checks, are calculated. To calculate the se-
curity score for each partial context-sensitive pointer integrity
check, ParCSPI builds a customized static program analyzer
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Algorithm 1: Per-task optimization

Input: [, S, ¢, P
Output: I,
1 I+ {}
2 while I not empty do
is < max;er{ratio(s, Is)}
if C{is}UIsUP)) < (1+4¢)* WCET,;) then
Is «+ {is}UIs // select ig
1.pop(is)

// selected instrumentation

o B W

=

else
3 | break

9 return /g

10 Function ratio (7,1s):
/% calculate the ratio of (1 Sec)/(1 Cost) */
r« [SUIs U{i}) — SUs)]/[K(Is UPU{i}) — K(Is U P)]

return r

11
12

Note: I: candidate security-instrumentation points, S: security score, e:
WCET overhead threshold, P: original program, X: WCET measurement,
I: selected instrumentation points.

based on SVF [24], [26], a state-of-the-art static analysis
tool, to conduct partial context-sensitive analysis. The static
program analyzer first performs full context-sensitive data-
flow analysis and then derives the def-use equivalence class
under partial context from the analysis results of full context
sensitivity, as described in §V-B. From this, the security score,
S, for each pointer under partial context is calculated.

With the calculated security scores of individual pointers
and partial contexts, ParCSPI uses a greedy algorithm to
find an approximation of the optimal security policy, I,
from all candidate security-instrumentation points (i.e., pointer
checks and context maintenance operations), /. As shown in
Alg.1, the algorithm iteratively computes the ratio between the
increased security score and the increased WCET overhead for
each security-instrumentation candidate. Since a larger ratio
value indicates increased security with minimal WCET impact,
ParCSPI gradually selects the security instrumentation with the
maximal ratio (line 3) until the WCET threshold ¢ is exceeded.
The final computed security policy and security score under
different WCET thresholds are then used for system-wide
optimization to determine time allocation for individual tasks.

Context Metadata Protection Given that the recorded context
is stored in untrusted memory, to prevent attackers from cor-
rupting the context metadata, we use PA to sign the recorded
context into a hash chain and store the final hash value in a
reserved register, similar to the existing work on protecting
the return address using a hash chain [9].

auth;_1 < R,
auth; < P(auth;_1,c)
R, < auth;

an

where P is the PA signing process, c is the recorded context,
and auth;—; and auth; are the previous and updated final
hash chain values that are stored in the reserved register R,.
To verify the calling context metadata, ParCSPI first loads the
value from R,, along with auth;_; and the context metadata
c from the untrusted memory. Then, ParCSPI performs PA
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verification A(R,, auth;_1,c), where the verification A trig-
gers an exception if R, # P(auth;_1,c). Thus, this process
can verify the integrity of the context metadata because any
malicious modification of ¢ or auth;_; will be detected by the
last verification. Since an attacker cannot manipulate the value
in R,, any metadata modification will generate a mismatch
that is detected.

Program Instrumentation. To conduct pointer integrity
checks against runtime context, the equivalence classes are
encoded as a lookup table, and the table is protected from at-
tacker modification by configuring the memory region as read-
only using MMU hardware, and security instrumentation is
inserted into the protected code by customized LLVM passes.
However, an attacker can trigger malicious control flow to
jump directly into the middle of the instrumented code, thereby
bypassing security enforcement. To prevent such attacks on
instrumented security primitives, ParCSPI utilizes the Branch
Target Identification (BTI) security hardware feature on Arm.
BTI ensures that all indirect jumps can only target BTI-specific
instructions that are inserted into the program code. Therefore,
BTI serves as an efficient but coarse-grained control-flow
integrity (CFI) enforcement. To this end, ParCSPI inserts BTI
instructions at function entries and after call sites to prevent
attackers from executing injected code in the middle.

VII. EVALUATION

The evaluation focuses on measuring the ability of ParCSPI
to balance security and performance in real-time systems.
We evaluate ParCSPI using both real-time benchmarks and
cyber-physical applications on the Arm Cortex-A platform.
ParCSPI is implemented using the hardware features PA and
BTI; however, to our knowledge, there is no publicly available
embedded platform that supports both features. Therefore, in-
struction analogs are used to assess the performance overhead.
Instruction analogs are a series of instructions that consume
the same CPU cycles and the same memory footprint as the
PA/BTI instructions but do not perform an actual check [11],
[16], [29]. For PA, we adopt the same PA analogs as PAL [16]
such that one PA operation equals to seven exclusive-or
(EOR) instructions. As for BTI analogs, we analog a BTI
instruction as one NOP instruction. We analog BTI in this
way because it checks a register bit field PSTATE.BTYPE [30],
[31], which we assume is efficient for hardware-implemented
BTI. The expanded WCET is then measured with the replaced
instructions.

A. Security and Performance Trade-offs

To demonstrate the trade-offs between the provided security
and the corresponding WCET impacts, we conducted mea-
surements on the BEEBS embedded benchmark [32] treat-
ing all pointers with equal preference. Table I shows the
basic pointer integrity WCET impact as well as ParCSPI’s
security protection (quantified as security score in Eq. 5)
under different WCET expansions, while Fig. 7 illustrates
the detailed relationship between the security protection and
WCET expansion trade-off.
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TABLE I: Security score under different WCET expansions.

Program sg_dllist | mergesort | huffbench ndes picojpeg | sg_queue | qrduino il cubic st sg_| edn wikisort stb_perlin fir
Sr/ex 0.02/138% | 0.33/46% 0.16/10% 0.15/23% | 0.18/39% | 0.05/1% 0.15/11% 0.4/17% 0.21/1% 0.3/18% 0.05/115% 0.11/26% 0.09/58% 0.5/11% 0.07/48%
e=10% 0.81 0.64 0.76 0.52 0.70 1.00 0.95 0.70 1.00 0.58 0.75 0.58 0.88 0.25 0.79

e =50% 0.85 0.84 1.00 0.74 0.81 1.00 1.00 0.90 1.00 0.79 0.81 0.92 0.92 0.75 0.86
= 100% 0.91 0.90 1.00 0.93 0.89 1.00 1.00 0.97 1.00 0.84 0.88 0.97 0.95 1.00 1.00
Program slre dijkstra insertsort t fasta frac h sg_rbtree | arcfour listsort rijndael nbody matmult_int aes

Sr/€ex 0.07/56% 0.18/26% | 0.04/121% | 0.29/44% | 0.34/20% | 0.06/19% 0.16/6% 0.02/93% 0.1/45% | 0.05/129% 0.03/10% 0.13/20% 0.3/26% 0.04/40%

e=10% 0.69 0.31 0.85 0.14 0.86 0.18 0.48 0.83 0.52 0.22 0.74 0.33 0.70 0.39

e =50% 0.84 0.91 0.94 0.29 0.90 0.59 1.00 0.91 0.71 0.46 0.99 0.80 0.70 0.81

e = 100% 0.93 1.00 0.96 0.43 0.93 0.88 1.00 0.95 0.81 0.73 1.00 0.93 0.80 0.96

Sr: security score of basic pointer integrity. €.: WCET expansion of basic pointer integrity. e: WCET expansion of ParCSPI.

sg_dllist 0 levenshtein
@ @
S mergesort S cubic
@ huffbench a0 st
> uffbencl > sf
T ndes T sg_hashtable
3 —— picojpeg 3 — edn‘
0.2 —— sg_queue 0.2 —— wikisort
qrduino stb_perlin
0.0 0.0
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WCET Overhead (%)

100 150 200 250
WCET Overhead (%)

0 50 300 350 400 0 50

whetstone
sg_rbtree
arcfour
listsort
rijndael
nbody
matmult_int
aes

°
®

fir
slre

—— dijkstra
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bubblesort
fasta
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o
>

Security Score
o
2

Security Score
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Fig. 7: Security and performance tradeoff.

With only 10% WCET expansion, ParCSPI can achieve
an average security protection of 0.62, while basic pointer
integrity incurs 41% WCET overhead with only 0.16 security
protection. This is due to the per-task optimization engine
that selects the maintained context and protected pointers,
which can achieve the largest security protection with minimal
WCET overhead. On the contrary, due to the insufficient
context information of basic pointer integrity, pointer targets
are considered valid if the PAC generation is valid. Attackers
can reuse any authenticated pointers to alter the pointer targets,
incurring a large EC size compared to full context sensitivity,
thus achieving a low security score.

There is a small, fixed WCET impact from BTI (1.05% on
average) to provide basic CFI protection. One observation is
that ParCSPI can still provide protection with this negligible
fixed WCET impact because the instrumented security code
that is not on the WCEP can provide protection without
impacting WCET. The security score increases rapidly when
€ starts to grow. This is because most pointers start to be
protected by pointer integrity with lightweight context, which
is cost-efficient and contributes the most to the security quan-
tification. Afterward, ParCSPI reaches full context-sensitive
protection (i.e., Sy = 1) with an average WCET overhead
of 173%.

Moreover, ParCSPI provides different levels of protection
for different programs under the same WCET expansions
due to several reasons. First, the distribution of pointers dif-
fers among programs. Examples include benchmark programs
sg_dllst and cubic, where the pointers to be protected in
the former concentrate more on the WCEP, requiring larger
computational resources to achieve the same level of security
protection. The second reason is the sensitivity of programs
to context. Since the security score measures the distance
between full context and partial context, programs that rely
more on context to narrow the EC and those with context
concentrating more on the WCEP exhibit a larger WCET
expansion to achieve a similar level as full context.

TABLE II: Applying ParCSPI to real-time CPSs.

Application WCET (us) Deadline (us) Policy Security Score
ArduCopter 67 120 o 0.64

1 0.51
ArduRover 340 400 Gl 0.39

T 0.34
ArduPlane 175 300 o 0.65

1 0.54

Note: 7o: default policy where each pointer has equal preference. 7r1: code pointers
have 2 times the preference weight of data pointers.

B. Applying ParCSPI to Real-Time CPSs

To demonstrate the effectiveness of applying ParCSPI to
real-world applications, we conducted measurements on three
real-time CPSs from Ardupilot, an open-source self-driving
project [15]: ArduCopter, ArduRover, and ArduPlane. The
tasks selected are update_batt_compass, ahrs_update, and up-
date_GPS_50Hz correspondingly. The task deadlines, obtained
from the source code, are regarded as the WCET expansion
constraints. The evaluation was conducted under two user-
specified policies with different preferences on the pointers to
be protected, where 7 is the default policy treating all pointers
with equal preference, and 7; assigns the code pointers with
higher preference than data pointers.

Quantitative analysis. Table II shows the provided secu-
rity score under the real-time constraints. The security score
is calculated by treating all pointers with equal preference
weights. The results show that ParCSPI can still provide
51% security protection coverage within the allowable WCET
expansion. In general, the default policy achieves a higher
security score because optimization under policy definitions
with user-specific preference has an additional constraint than
full automatic approach: the optimal policy tends to prioritize
the code pointers even the gained security (EC reduction) is
less than the data pointers for the same time budget.

Case study. To assess the security gain of ParCSPI, a qual-
itative case study was conducted. In autonomous vehicles, a
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01: void Rover::radio_failsafe_check(uint16_t pwm){

02: if (AP_HAL::millis() - failsafe.last_valid_rc_ms > 500) {

03: failed = true;} ...

04: failsafe_trigger(FAILSAFE_EVENT_THROTTLE, "Radio", failed);} //callsite 1
05:
06:

07:

void Rover::gcs_failsafe_check(void){...

failsafe_trigger (FAILSAFE_EVENT_GCS, "GCS", do_failsafe);} //callsite 0

void Rover::failsafe_trigger(uint8_t failsafe_type, const chars type_str, bool on){...
float ret_waypoint = [10];

09: read_block(ret_waypoint, storage_path); //the attacker substitutes pointer from

‘type_str="GCS"’ to ‘type_str=“Radio”’

return_home(ret_waypoint); //guide vehical to return home

if ((failsafe.triggered == 0) & (failsafe.bits !'= 0)) {...

: gcs (). send_text (MAV_SEVERITY_WARNING, "%s Failsafe", type_str)j...}...}

: void GCS::send_text(MAV_SEVERITY severity, const char sfmt, charx type_str){...

pointer_dereference_check(type_str);...}

Fig. 8: Code of the case study.

Optimal Security Scores
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® ©
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°
3

o
o
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0.5
Utilization
Fig. 9: Optimal average security scores per task vs total
utilization of synthetic task sets.

fail-safe controller is often customized to keep autonomous ve-
hicles safe under emergency conditions. In this case study, the
fail-safe controller reads pre-stored home way points in storage
and guides vehicle to return. We inserted a buffer-overflow
vulnerability in the fail-safe controller within the code base of
ArduRover. Specifically, reading home way points can over-
write the pointer type_str from “GCS” (ground control station)
to “Radio” by a pointer-reuse attack as shown in Fig. 8. Then,
function send_text inside function failsafe_trigger may send
out the wrong message (“Radio Failsafe” instead of “GCS
Failsafe”). The vehicle operator will not make emergency
responses in time if the wrong message is received.

ParCSPI can detect this attack with partial context genera-
tion. Assuming that context is only partially generated in the
protected program, as shown in the example. During offline
context-sensitive analysis, the EC under the context callsite
0 for pointer dereferencing type_str is the set that only
contains the pointer definition "type_str=“GCS” ’. There-
fore, the above attack, which alters the pointer type_str
from "GCS” to “Radio”, can be detected during the pointer
dereferencing checking inside function send_text. ParCSPI
detects the above attack within the task’s deadline constraint.
However, under full context sensitivity, the task’s WCET
expansion is 143%, exceeding the deadline.

C. System-Wide Optimization Evaluation

In order to evaluate our system-wide optimization MILP
implementation we present two experiments. The first experi-
ment aims to determine the optimal security level of synthetic
task sets given different original system-utilization levels. The
second experiment evaluates the trade off between solver
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Fig. 10: Average security score found over time.

performance vs. execution time. We ran these experiments over
a randomly generated synthetic task set assigning each task
real-world security vs. overhead trade-offs determined from
the BEEBS dataset [32] as shown in Figure 7.

We represented these trade-offs in a “trade off table” for
each task. For our synthetic task-set generation, we utilized
the Schedcat [33] TaskGenerator. We utilized the GNU Linear
Programming Kit (GLPK) solver using the PuLP API on an
8 Core, 3.0GHz CPU with 16 GiB Memory.

For the optimal security level experiment, we ran the solver
for each system utilization level under test. We considered total
utilizations in {0.1,0.2,...,0.9}. Task periods were generated
by sampling uniformly among [10, 100]ms. This is equivalent
to the built-in ‘uni-moderate’ distribution as used in [33], [34].
For the task utilizations, we choose uniformly random from
[0.1,0.4]. This is the built-in "uni-medium’ distribution.

We generated over 3000 task sets per utilization level. We
discarded any task sets that were not schedulable without
instrumentation. We randomly assigned a trade-off table to
each task in the task set from the tables measured from the
BEEBS benchmark. Finally we performed the optimization on
each task set using a time limit of 1 hour per optimization.
We averaged the security score per task for each task set and
then averaged this per generated system utilization value. We
graph the results of this in Figure 9.

We observe the average per-task security score decreases
as the original system utilization increases. This is because
in order to achieve higher security there is more overhead.
Thus, when the original utilization is higher and there is less
available time, we cannot achieve as high a security score.

Scalability. MILP is a known NP-complete problem, so we
evaluated the scalability of our optimization. We found that
for task systems with more than approximately 10 tasks, the
execution time was often over one hour. However, MILP
solvers can often quickly find feasible solutions, and much
of the execution time can often be spent finding the optimal
value. Therefore, we evaluated the solution quality over time
that the solver is able to generate. We compared the solutions
given by the solver after 5 seconds, 10 seconds, 20 seconds,
1 minute, 5 minutes, 15 minutes, 30 minutes, and 1 hour.
For this experiment we generated five unique task sets.
We defined the maximum utilization to be 0.6, and used the
same ‘uni-moderate’ period distribution. In this experiment we
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TABLE III: Pointer integrity protection.

Target Attack
Code Pointer

Not Req.
Cust. HW

Not Req.
Sec. Str.

RT

Data Pointer Ada.

System

Ret. Addr
Arb. Mod Reuse
v
v

Ind. Call
Arb. Mod Reuse

Arb. Mod Reuse

PACStack [9]
CPI[21]
PARTS [10]
PACTIGHT [8]
PAC-PL [35]
PAL [16] 7 7
ParCSPI v v v v v

Arb. Mod: Arbitrary Modification, Reg. Cust. HW: Require Customized Hardware, Req. Sec. Str.: Require Dedicated
Secure Storage, RT Ada.: Real-Time Adaptation

<

v

v

v v

ENENENENENENEN
ENENENENENEN
ENENIRENENENEN
ENENENENEN

sampled the ‘uni-light’ distribution, which is drawn uniformly
from [0.001, 0.1] in order to increase the number of generated
tasks. These settings were chosen to make the optimization
more difficult is to force the number of tasks in the task set
to be higher and thus to make the optimization more difficult.
Additionally we limited the tasks to using a singe trade-off
table for consistency. Specifically we used the table for the
BEEBS st program.We ran the solver for each task set and
time limit and plot the per-task average security score. The
results of this experiment can be found in Figure 10.

We observe that while 1 hour may not be long enough to
find the optimal solution, the average security score converges
quickly, demonstrating that while the optimal solution may not
be easily found, this formulation can be practically applied to
improve the security posture of the system, even for larger
task systems.

VIII. RELATED WORK

Pointer integrity. As shown in Table III, various systems have
been proposed to protect pointer integrity, and among them,
only PAC-PL [35] requires customized hardware. To protect
pointers against reuse attacks, existing work [21] assumes
the existence of dedicated secure storage to protect pointers
that are only accessible by trusted instrumentation code. In
contrast, ParCSPI follows [9], [10], [16], [35] which do not
impose such an assumption but rather assumes attackers can
manipulate any memory values. Moreover, none of them can
detect reuse attacks for both code and data pointers due to the
high runtime overhead. This motivates the design of ParCSPI
to be the first to protect both code and data pointers with
real-time adaptation using partial context to achieve a flexible
trade-off between security protection and real-time impact.

Pointer authentication-assisted security mechanisms. The
PAC is considered as a MAC and is used to authenticate
pointer or data values. Besides pointer integrity protection,
this property has been leveraged in other security mechanisms
such as memory safety and compartmentalization [11], [29],
[36]. For example, PTAuth [36] leverages PA to protect
temporal memory safety by checking temporal information of
each object. PACMem [29] is a PA-based memory sanitizer
that checks both temporal and spatial information of objects.
HAKC [11] uses PA and Memory Tagging Extension (MTE)
to do compartmentalization.

Control and data flow integrity: Control-flow integrity (CFI)
aims at preventing attacks from subverting the control flow of
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the program by forcing the program execution to follow a pre-
defined control-flow graph, which contains the intended pro-
gram behavior information [12], [37], [38]. Context-sensitive
CFI enhances this protection by leveraging context information
recorded during runtime to provide more fine-grained control
flow protection [12], [13], [14], [37], [39], [40]. While CFI
hardens control flow, data flow can be protected with Data-flow
Integrity (DFI), which ensures the runtime data flow follows
the data-flow graph computed during static analysis [41], [17].

IX. DISCUSSION AND LIMITATIONS

Quantification of security: ParCSPI quantifies the security
based on the EC size, a commonly used security metric in
existing works [12], [42], [43]. This metric measures the gap
between full and partial context-sensitive pointer integrity.
While this quantification approach is fully automatic, it lacks
application-specific semantic information, given that not all
pointers are equally security critical in the application con-
text. ParCSPI also allows users with domain knowledge to
specify the criticality of each pointer to protect, and performs
optimization accordingly.

Incorporating more context types. The consideration
of execution context enhances the granularity of existing
pointer integrity protection mechanisms by reducing the over-
approximation in the security policy generated by static analy-
sis of the program. However, the effectiveness of this reduction
can vary depending on the type of context used. Consequently,
even with the inclusion of context, equivalence classes may
still contain multiple pointer targets, leaving some room for
potential adversarial manipulation, even though it might be
very difficult to meet the condition for exploitation. Besides
call site context, context can take various forms, including
stronger forms such as heap and path context sensitivity [13],
which can be more effective in narrowing the EC and provid-
ing stronger security. To make other context types compatible
with ParCSPI, it is necessary to design a new context-metadata
maintenance scheme to protect the metadata, as well as a
partial context-sensitive analysis algorithm for unsupported
context models to reason about the provided security.

X. CONCLUSION

We have proposed a security primitive, partial context-
sensitive pointer integrity, to defend against pointer-reuse
attacks in real-time CPS. To enforce this security primitive,
a system, ParCSPI, is proposed to provide a flexible trade-
off between real-time performance and security protection. A
prototype is developed on Armv8-A and evaluated on both
real-time CPSs and benchmarks, demonstrating its effective-
ness.
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