
Mathematical Programming
https://doi.org/10.1007/s10107-024-02137-5

FULL LENGTH PAPER

Series A

Complexity of chordal conversion for sparse semidefinite
programs with small treewidth

Richard Y. Zhang1

Received: 12 June 2023 / Accepted: 10 August 2024
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2024

Abstract
If a sparse semidefinite program (SDP), specified over n × n matrices and subject
to m linear constraints, has an aggregate sparsity graph G with small treewidth, then
chordal conversion will sometimes allow an interior-point method to solve the SDP
in just O(m + n) time per-iteration, which is a significant speedup over the Ω(n3)
time per-iteration for a direct application of the interior-point method. Unfortunately,
the speedup is not guaranteed by an O(1) treewidth in G that is independent of m and
n, as a diagonal SDP would have treewidth zero but can still necessitate up to Ω(n3)
time per-iteration. Instead, we construct an extended aggregate sparsity graph G ⊇ G
by forcing each constraint matrix Ai to be its own clique in G. We prove that a small
treewidth in G does indeed guarantee that chordal conversion will solve the SDP in
O(m+n) time per-iteration, to ε-accuracy in at most O(

√
m + n log(1/ε)) iterations.

This sufficient condition covers many successful applications of chordal conversion,
including the MAX-k-CUT relaxation, the Lovász theta problem, sensor network
localization, polynomial optimization, and the AC optimal power flow relaxation,
thus allowing theory to match practical experience.

1 Introduction

Consider directly applying a general-purpose interior-point method solver, like
SeDuMi [37], SDPT3 [42], andMOSEK [32], to solve the standard-form semidefinite
program to high accuracy:

min
X∈Sn

〈C, X〉 s.t. X � 0, 〈Ai , X〉 ≤ bi for all i ∈ {1, 2, . . . ,m}. (SDP)

Financial support for this work was provided in part by the NSF CAREER Award ECCS-2,047,462 and in
part by C3.ai Inc. and the Microsoft Corporation via the C3.ai Digital Transformation Institute.

B Richard Y. Zhang
ryz@illinois.edu

1 Dept. of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign,
306 N Wright St, Urbana, IL 61801, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-024-02137-5&domain=pdf
http://orcid.org/0000-0003-3980-2791

R. Y. Zhang

Here, Sn denotes the set of n × n real symmetric matrices with inner product
〈Ai , X〉 = tr(Ai X), and X � 0 means that X is positive semidefinite. At each iter-
ation, the n × n matrix variable X is generally fully dense, even when the problem
data C, A1, . . . , Am ∈ S

n and b1, . . . , bm ∈ R are sparse. The per-iteration cost of
the solver is usually at least Ω(n3) time, which in practice limits the value of n to no
more than a few thousand.

Instead, to handlen as large as a hundred thousand, researchers have found empirical
success by first performing a simple preprocessing step called chordal conversion
(CC), which was first introduced in by Fukuda et al. [16]. Suppose that every S =
C −∑i yi Ai 	 0 factors as S = LLT into a lower-triangular Cholesky factor L that
is sparse. It turns out, by defining J j = {i : L[i, j]
= 0} as the possible locations of
nonzeros in the j-th column of L , that (SDP) is exactly equivalent,1 to the following

min
X∈Sn

〈C, X〉 s.t.
〈Ai , X〉 ≤ bi for all i ∈ {1, 2, . . . ,m},
X [J j , J j] � 0 for all j ∈ {1, 2, . . . , n}. (CC)

While not immediately obvious, (CC) is actually an optimization over a sparsematrix
variable X , because the matrix elements that are not indexed by a constraint 〈Ai , X〉
or X [J j , J j] can be set to zero without affecting the optimization. Hence, the point of
the reformulation is to reduce the number of optimization variables, from 1

2n(n + 1)
in (SDP) to at most ω · n in (CC), where ω = max j |J j | is defined as the maximum
number of nonzeros per column of the Cholesky factor L .

Clearly, chordal conversion needs ω � n in order to be efficient. Where this
condition holds, the interior-point method solver is consistently able to solve (CC) in
just O(m+n) time per-iteration, thereby solving some of the largest instances of (SDP)
ever considered. Unfortunately, a small ω does not actually guarantee the empirically
observed O(m + n) time figure. Consider the following counterexample, which has
ω = 1, but would nevertheless incur a cost of at least Ω(n3) time per-iteration.

Example 1.1 (Diagonal SDP) Given vectors c, a1, . . . , am ∈ R
n , consider the follow-

ing instance of (SDP):

min
X∈Sn

〈diag(c), X〉 s.t. X � 0, 〈diag(ai), X〉 ≤ bi for all i ∈ {1, 2, . . . ,m}.

One can verify that J j = {i : L[i, j]
= 0} = { j}, so the corresponding (CC) is a
linear program over n variables and m constraints:

min
x∈Rn

〈c, x〉 s.t. x ≥ 0, 〈ai , x〉 ≤ bi for all i ∈ {1, 2, . . . ,m}.

Despite ω = max j |J j | = 1, if the number of linear constraints is at least m = Ω(n),
then it would take any method at least Ω(n3) time to take a single iteration.
�
While a small ω � n is clearly necessary for chordal conversion to be fast, Exam-
ple 1.1 shows that it is not sufficient. In this paper, we fill this gap, by providing

1 The equivalence is due to Grone, Johnson, Sá andWolkowicz [20, Theorem 7]; see also [16, Theorem 2.3]
and [44, Theorem 10.1].

123

Complexity of chordal conversion for sparse semidefinite…

a sufficient condition for a general-purpose interior-point method to solve (CC) in
O(m + n) time per-iteration. The sufficient condition covers many successful appli-
cations of chordal conversion, including the MAX-k-CUT relaxation [16, 24, 33], the
Lovász theta problem [16, 24, 33], sensor network localization [23, 24], polynomial
optimization [26, 35, 45], and the AC optimal power flow relaxation in electric grid
optimization [13, 22, 29, 31], thus allowing theory to match practical experience.

1.1 Our results: complexity of chordal conversion

In order for chordal conversion to be fast, a well-known necessary condition is for the
underlying aggregate sparsity graph, which is defined G = (V , E) with

V = {1, 2, . . . , n}, E = spar(C) ∪ spar(A1) ∪ · · · ∪ spar(Am), (1)

where spar(C) ≡ {(i, j) : C[i, j]
= 0 for i > j},

to be “tree-like” with a small treewidth tw(G) � n. We defer a formal definition of
the treewidth to Definition 2.4, and only note that the value of ω is lower-bounded as
ω ≥ 1+tw(G). In other words, whileω can be decreased by symmetrically reordering
the columns and rows of the data matrices, as inC ← ΠCΠT and Ai ← Π AiΠ

T for
some permutation matrixΠ , actually achievingω � n is possible only if tw(G)� n.
However, as illustrated by Example 1.1, even on a graph with tw(G) = 0, and even
when using the optimal ω = 1, chordal conversion may still not be fast.

In this paper, we show that a sufficient condition for chordal conversion to be fast is
for a supergraphG ⊇ G, that additionally captures the correlation between constraints,
to also2 be “tree-like” with a small treewidth tw(G) � n. Concretely, we construct
the extended aggregate sparsity graph G = (V , E) by forcing each constraint matrix
Ai to be its own clique in G:

V = {1, 2, . . . , n}, E = spar(C) ∪ clique(A1) ∪ · · · ∪ clique(Am) (2)

where clique(A) = {(i, j) : A[i, k]
= 0 or A[k, j]
= 0 for some k}.

This is the union between G and the constraint intersection graph [17] (or the dual
graph [12] or the correlative sparsity [25, 45]) for the rank-1 instance of (SDP). In other
words, we add a new edge (i, j) to E whenever xi and x j appear together in a common
constraint xT Akx ≤ bk for some k. The fact that this contributes clique(Ak) ⊆ E
reflects the reality that each xT Akx ≤ bk densely couples all affected elements of x
together, forcing them to be optimized simultaneously. In contrast, the cost xTCx can
be optimized sequentially over the elements of x , which is why clique(C) is absent.

Our main result Theorem 3.3 says that if the extended graph G has small treewidth
tw(G) = O(1) with respect to m and n, then one can find a fill-reducing permutation
Π such that, after reordering the data as C ← ΠCΠT and Ai ← Π AiΠ

T , the
resulting instance of (CC) is solved by a general-purpose interior-point method in
guaranteed O(m+n) time per-iteration, over at most O(

√
m + n log(1/ε)) iterations.

2 Note that tw(G) ≥ tw(G) holds by virtue of G ⊇ G.

123

R. Y. Zhang

In practice, a “good enough” permutation Π is readily found by applying an efficient
fill-reducing heuristic toG, and a primal-dual interior-point method often converges to
ε accuracy in dimension-free O(log(1/ε)) iterations (without the square-root factor).
If we take these two empirical observations3 as formal assumptions, then a small
treewidth tw(G) = O(1) in the extended graph G is indeed sufficient for chordal
conversion to solve the instance of (SDP) in O((m + n) log(1/ε)) empirical time.

In the case thatG andG coincide, our analysis becomes exact; a small treewidth inG
is both necessary and sufficient for chordal conversion to achieve O((m+n) log(1/ε))
empirical time. This is the case for theMAX-k-CUT relaxation [15, 19] and the Lovász
theta problem [28], two classic SDPs that constitute a majority of test problems in the
SDPLIB [7] and the DIMACS [36] datasets. Here, G = G because each constraint
matrix Ai indexes just a single matrix element, as in 〈Ai , X〉 = αi · X [ji , ki]. Below,
we write e j as the j-th column of the identity matrix, and 1 = [1, 1, . . . , 1]T .

Example 1.2 (MAX-k-CUT) Let C be the (weighted) Laplacian matrix for a graph
G = (V, E) with V = {1, 2, . . . , d}. Frieze and Jerrum [15] proposed a randomized
algorithm to solve MAX k-CUT with an approximation ratio of 1 − 1/k based on
solving

max
X�0

k − 1

2k
〈C, X〉 s.t.

X [i, i] = 1 for all i ∈ V
X [i, j] ≥ −1

k−1 for all (i, j) ∈ E
The classic Goemans–Williamson 0.878 algorithm [19] for MAXCUT is recovered
by setting k = 2 and removing the redundant constraint X [i, j] ≥ −1.
�
Example 1.3 (Lovász theta) The Lovász number ϑ(G) of a graph G = (V, E) with
V = {1, 2, . . . , d} is the optimal value to the following [28]

min
λ,yi, j∈R

λ s.t. 11T −
∑

(i, j)∈E
yi, j (ei e

T
j + e j e

T
i) � λI .

Given that ϑ(G) ≥ 1 holds for all graphs G, dividing through by λ and applying the
Schur complement lemma yields a sparse reformulation

min
X�0

〈[
I 1
1T 0

]

, X

〉

s.t.
X [d + 1, d + 1] = 1,

X [i, j] = 0 for all (i, j) ∈ E .

�
We also have G = G in the sensor network localization problem, one of the first
successful applications of chordal conversion to a real-world problem [23], because
spar(Ai) = clique(Ai) holds for all i . (Assume without loss of generality that each
ak below contains only nonzero elements.)

Example 1.4 (Sensor network localization) We seek to find unknown sensor points
x1, . . . , xn ∈ R

d such that

‖xi − x j‖ = ri, j for all (i, j) ∈ Nx , ‖xi − ak‖ = ρi,k for all (i, k) ∈ Na

3 In Sect. 5, we provide detailed numerical experiments to validate these empirical observations on real-
world datasets.

123

Complexity of chordal conversion for sparse semidefinite…

given a subset Nx of distances ri, j between the i-th and j-th sensors, and a subset Na

of distances ρi,k between the i-th sensor and the k-th known anchor point ak ∈ R
d .

Biswas and Ye [6] proposed the following SDP relaxation

min
X�0 〈0, X〉 s.t.

〈[
1 −1
−1 1

]

,

[
X [i, i] X [i, j]
X [i, j] X [j, j]

]〉

= r2i, j for all (i, j) ∈ Nx ,

〈[
1 −aTk−ak akaTk

]

,

[
X [i, i] X [i, K]
X [K , i] X [K , K]

]〉

= ρ2
i,k for all (i, k) ∈ Na,

X [K , K] = Id ,

where K = (n + 1, . . . , n + d).
�
Our result can also be applied to the chordal conversion of SDPs that arise in

polynomial optimization. The following class of polynomial optimization coversmany
of the unconstrained test problems in the original paper [45] that first introduced
chordal conversion to this setting. Below, a matrix U ∈ R

p×p is said to be Hankel if
its skew-diagonals are constant, i.e. U [i, j] = U [i + 1, j − 1] for all 1 ≤ i, j ≤ p.
We see that G = G holds because the Hankel constraint is dense over its support.

Example 1.5 (Unconstrained polynomial optimization) Given Ci, j ∈ R
p×p for i, j ∈

{1, 2, . . . , n}, consider the following

min
x1,...,xn

n∑

j=1
uTi Ci, j u j where u j = [1, x j , x2j , . . . , x p−1

j]T .

The basic Lasserre–Parrilo SDP relaxation [26, 35] for this problem (without cross
terms) reads

min
[Ui, j]ni, j=1�0

n∑

j=1

〈
Ci, j ,Ui, j

〉
s.t. Ui,i is Hankel, Ui,i [1, 1] = 1 for all i,

where [Ui, j]ni, j=1 denotes an np × np matrix, comprising of n × n blocks of p × p,
with Ui, j ∈ R

p×p as its (i, j)-th block.
�
But the real strength of our result is its ability to handle cases for which G ⊂ G holds
strictly. An important real-world example is the SDP relaxation of the AC optimal
power flow problem [4, 27], which plays a crucial role in the planning and operations
of electricity grids.

Example 1.6 (AC optimal power flow relaxation) Given a graph G = (V, E) on d
vertices V = {1, . . . , d}, we say that Ai ∈ S

2d implements a power flow constraint at
vertex k ∈ V if it can be written in terms of αi,k ∈ S

2 and αi, j ∈ R
2×2 as:

Ai = eke
T
k ⊗ αi,k + 1

2

∑

(j,k)∈E

[
e j e

T
k ⊗ αi, j + eke

T
j ⊗ αT

i, j

]
.

123

R. Y. Zhang

An instance of the AC optimal power flow relaxation is written

min
X�0
∑

j

〈
C j , X
〉

s.t. blbi ≤ 〈Ai , X〉 ≤ bubi

in which every Ai and C j implements a power flow constraint at some vertex
v ∈ V .
�
It can be verified that tw(G) = 2 · tw(G) and tw(G) = 2 · tw(G2), where the square
graph G2 is defined so that (i, j) ∈ G2 if and only if i and j are at most a distance of
2 away in G. In fact, knowing that an electric grid G is “tree-like” does not in itself
guarantee chordal conversion to be fast, because it does not imply thatG2 would also be
“tree-like”. While chordal conversion is already widely used to solve the AC optimal
power flow relaxation [13, 22, 29, 31], our finding in Sect. 5 that tw(G2) � n holds
for real-world power systems (see Table 2) provides the first definitive explanation for
its observed O((m + n) log(1/ε)) empirical time complexity.

It remains future work to understand the cases where tw(G) and tw(G) are very
different. In the case of the AC optimal power flow relaxation, it is not difficult to
construct a counterexample where tw(G) = 2 and tw(G) = n− 2 (set G to be the star
graph, so that G2 is the complete graph) and observe Ω(n3) per-iteration cost after
chordal conversion. This counterexample, along with the trivial Example 1.1, both
hint at the possibility that a small treewidth in G is both necessary and sufficient for
O(m + n) time per-iteration, but more work is needed establish this rigorously.

1.2 Prior results: complexity of clique-tree conversion

Our result is related to a prior work of Zhang and Lavaei [46] that studied a differ-
ent conversion method called clique-tree conversion, also due to Fukuda et al. [16].
This can best be understood as a second step of conversion added on top of chordal
conversion. Recall that chordal conversion converts (SDP) into (CC), and then solves
the latter using an interior-point method. Clique-tree conversion further converts (CC)
into the following problem by splitting each submatrix X j ≡ X [J j , J j] into its own
variable:

min
X1,...,Xn

n∑

j=1

〈
C j , X j

〉
s.t.

∑n
j=1
〈
Ai, j , X j

〉 ≤ bi for all i ∈ {1, 2, . . . ,m},
X j � 0 for all j ∈ {1, 2, . . . , n},

Nu,v(Xv) = Nv,u(Xu) for all (u, v) ∈ T .

(CTC)

The constraint Nu,v(Xv) = Nv,u(Xu) is added to enforce agreement between over-
lapping submatrices, over the edges of the eponymous clique tree T .

The point of converting (CC) to (CTC) is to force a favorable sparsity pattern in
the Schur complement equations solved at each iteration of the interior-point method,
which is known as the Schur complement sparsity [44, Section 13.1] or the correlative
sparsity [24, 25]. In fact, Zhang and Lavaei [46] pointed out that the Schur complement
sparsity of (CTC) is particularly simple to analyze.Under small treewidth assumptions,
they proved that an interior-point method solves (CTC) in guaranteed O(m + n) time

123

Complexity of chordal conversion for sparse semidefinite…

per-iteration, over at most O(
√
m + n log(1/ε)) iterations; see also Gu and Song [21].

But a major weakness of this result is that it critically hinges on the second step of
conversion, from (CC) to (CTC). On a basic level, it does not explain the plethora
of numerical experiments showing that interior-point methods are able to solve (CC)
directly in O(m+ n) time per-iteration without a second conversion step [22–24, 45].

Indeed, the numerical experiments of Kim et al. [24] strongly suggest, for instances
of (CTC) with favorable Schur complement sparsity, that the Schur complement spar-
sity of (CC) had already been favorable in the first place, so the second conversion
step was unnecessary, other than for the sake of a proof. Unfortunately, the Schur
complement sparsity of (CC) is much more complicated than that of (CTC). Prior
to this work, Kobayashi et al. [25] provided a characterization for when the Schur
complement sparsity of (CC) is favorable. However, their characterization can only
be checked numerically, in a similar amount of work as performing a single itera-
tion of the interior-point method, and so gives no deeper insight on what classes of
SDPs can be efficiently solved. Our main technical contribution in this paper is The-
orem 3.1, which characterizes the complicated Schur complement sparsity in terms
of the much-simpler extended sparsity E . It is this simplicity that allowed us to ana-
lyze many successful applications of chordal conversion, as detailed in the previous
section.

In practice, the second conversion step from (CC) to (CTC) results in a massive
performance penalty, both in preprocessing time and in the solution time. In our large-
scale experiments in Sect. 5, the second step of converting from (CC) into (CTC) can
sometimes take more than 100 times longer than the first step of converting (SDP)
into (CC). Also, we find that the state-of-the-art solver MOSEK [32] takes a factor of
2 to 100 times more time to solve (CTC) than the original instance of (CC). Previ-
ously, clique-tree conversion was used to solve an instance of AC optimal power flow
relaxation with n = 8.2× 104 and m ≈ 2.5× 105 on a high-performance computing
(HPC) node with 24 cores and 240 GBmemory in 8h [13]. In this paper, we solve this
same problem using chordal conversion on a modest workstation with 4 cores and 32
GB of RAM in just 4h.

1.3 Other approaches

In this paper, we focus on chordal conversion in the context of high-accuracy interior-
point methods. We mention that chordal conversion has also been used to reduce the
per-iteration cost of first-order methods to O(m + n) time [40, 47], but these can
require many iterations to converge to high accuracy. Also, nonconvex approaches [8,
9] have recently become popular, but it remains unclear how these could be made to
benefit from chordal conversion.

The recent preprint of Gu and Song [21] combined the fast interior-point method
of Dong et al. [12, Theorem 1.3] and the clique-tree conversion formulation of Zhang
and Lavaei [46] to prove that, if the extended graph G has small treewidth, then
there exists an algorithm to solve (SDP) to ε accuracy in Õ((m + n) log(1/ε)) worst-
case time. This improves over our O(m + n) time per-iteration figure, which must
be spread across O(

√
m + n log(1/ε)) worst-case iterations, for a total of O((m +

123

R. Y. Zhang

n)1.5 log(1/ε)) worst-case time. However, it is important to point out that these “fast”
interior-point methods [12, 21] are purely theoretical; their analysis hides numerous
leading constants, and it is unclearwhether a real-world implementation could bemade
competitive against state-of-the-art solvers. On the other hand, primal-dual solvers
like MOSEK [32] typically converge to ε accuracy in dimension-free O(log(1/ε))
iterations (see our experiments in Sect. 5), so in practice, our algorithm is already able
to solve (SDP) to ε accuracy in O((m + n) log(1/ε)) empirical time.

2 Preliminaries

2.1 Notations and basic definitions

WriteRm×n as the set ofm× n matrices with real coefficients, with associated matrix
inner product 〈A, B〉 = tr AT B and norm ‖A‖F = √〈A, A〉. Write Sn ⊆ R

n×n as the
set of n× n real symmetric matrices, meaning that X = XT holds for all X ∈ S

n , and
write Sn+ ⊆ S

n as the set of symmetric positive semidefinite matrices. WriteRn+ ⊆ R
n

as the usual positive orthant.
The set of n × n symmetric matrices with sparsity pattern E can be defined as

S
n
E ≡
{
X ∈ S

n : X [i, j] = X [j, i] = 0 for all i
= j, (i, j) /∈ E
}
.

Conversely, the minimum sparsity pattern of a symmetric matrix X ∈ S
n is denoted

spar(X) ≡ {(i, j) : X [i, j]
= 0, i ≥ j}.

We also write spar(M) ≡ spar(M + MT) for a nonsymmetric matrix M where there
is no confusion. We write projE (M) ≡ argminX∈SnE ‖M − X‖F as the projection of
M ∈ S

n onto the sparsity pattern E .
We define the dense sparsity pattern induced by J ⊆ {1, 2, . . . , n} as follows

clique(J) = {(i, j) : i, j ∈ J , i ≥ j}.

We also define the vertex support of a possibly nonsymmetric matrix M as the follow-
ing

supp(M) = {i : M[i, j]
= 0 for some j}.
We write clique(A) ≡ clique(supp(A)) where there is no confusion. This notation
is motivated by the fact that spar(A) ⊆ clique(A) for A ∈ S

n , and spar(PDPT) ⊆
clique(P) for P ∈ R

n×d and dense D ∈ S
d .

Let F be a sparsity pattern of order n that contains all of its diagonal elements,
as in F ⊇ {(i, i) : i ∈ {1, 2, . . . , n}}. In this case, dim(SnF) = |F | holds exactly, so
we define a symmetric vectorization operator svecF : SnF → R

|F | to implement an
isometry with the usual Euclidean space, as in

〈svecF (X), svecF (Y)〉 = 〈X ,Y 〉 for all X ,Y ∈ S
n
F .

123

Complexity of chordal conversion for sparse semidefinite…

We will explicitly require svecF (·) to be defined according to a column-stacking
construction

svecF (X) = (x j)
n
j=1 where x j =

(
X [i, i], √2 · (X [i, j] : i > j, (i, j) ∈ F)

)
.

We also define a companion indexing operator idxF (·, ·) to index elements of the
vectorization x = svecF (X):

x[idxF (i, i)] = X [i, i] for all i ∈ {1, 2, . . . , n},
x[idxF (i, j)] = √2X [i, j] for all i > j, (i, j) ∈ F .

As we will see later, the correctness of our proof crucially relies on the fact that
idxF (·, ·) implements a raster ordering over the elements of F .

2.2 Sparse Cholesky factorization

To solve Sx = b with S 	 0 via Cholesky factorization, we first compute the lower-
triangular Cholesky factor L = chol(S) according to the following recursive rule

chol

([
α bT

b D

])

=
[√

α 0
1√
α
b chol

(
D − 1

α
bbT
)

]

, chol(α) = √α,

and then solve two triangular systems Ly = b and LT x = y via back-substitution.
If S is sparse, then L = chol(S) may also be sparse. The sparsity pattern of L can
be directly computed from the sparsity pattern of S, without needing to examine the
numerical values of its nonzeros.

Definition 2.1 (Symbolic Cholesky) The symbolic Cholesky factor chol(E) of a spar-
sity pattern E of order n is defined as chol(E) ≡ En+1 where E1 = E and

Ek+1 = Ek ∪ (k, k) ∪ {(i, j) : (i, k) ∈ Ek, (j, k) ∈ Ek for i > j > k}.

One can verify that chol(spar(S)) = spar(chol(S)). Note that chol(E) can be com-
puted from E in O(| chol(E)|) time and memory [18, Theorem 5.4.4]. The efficiency
of a sparsity-exploiting algorithm for factorizing L = chol(S) and solving Ly = b
and LT x = y is determined by the frontsize of the sparse matrix S.

Definition 2.2 (Frontsize) The frontsize ω(E) of a sparsity pattern E is defined
max j | colF (j)| where F = chol(E) and colF (j) ≡ { j} ∪ {i > j : (i, j) ∈ F}.
The frontsize ω(S) ≡ ω(spar(S)) of a symmetric matrix S is the frontsize of its
minimum sparsity pattern.

Intuitively, the frontsizeω(S) is the maximum number of nonzero elements in a single
column of the Cholesky factor L = chol(S). The following is well-known [18].

123

R. Y. Zhang

Proposition 2.3 (Sparse Cholesky factorization) Given S ∈ S
n, S 	 0, let ω ≡ ω(S).

Sparse Cholesky factorization factors L = chol(S) in T arithmetic operations and M
units of memory, where

1

6
(ω − 1)3 + n ≤ T ≤ ω2 · n,

1

2
(ω − 1)2 + n ≤ M ≤ ω · n.

Proof Let ω j ≡ | colF (j)|. By inspection, T = ∑n
j=1 1

2ω j (ω j + 1) and M =
∑n

j=1 ω j . The bounds follow by substituting ω ≥ ω j+1 ≥ ω j − 1. Indeed,

M =
n∑

j=1
ω j ≥ ω + (ω − 1)+ · · · + 1
︸ ︷︷ ︸

ω terms

+ 1+ · · · + 1︸ ︷︷ ︸
n−ω terms

= 1

2
ω(ω + 1)+ (n − ω)

and similarly T =∑n
j=1 1

2ω j (ω j + 1) ≥ 1
6ω(ω + 1)(ω + 2)+ (n − ω).
�

Note that Proposition 2.3 is sharp up to small additive constants: the upper-bound
is essentially attained by banded matrices of bandwidth ω, while the lower-bound is
essentially attained by a matrix that contains a single dense block of size ω.

2.3 Minimum frontsize and treewidth

The cost of solving Sx = bwith sparse S 	 0 can usually be reduced byfirst permuting
the rows and columns of the matrix symmetrically, and then solving (Π SΠT)Πx =
Πy for some permutation matrix Π . For E = spar(S), we write EΠ ≡ spar(Π SΠT)

to denote its permuted sparsity pattern. It is a fundamental result in graph theory and
linear algebra that the problem ofminimizing the frontsizeω(EΠ) over the set of n×n
permutation matrices Π ∈ Perm(n) is the same problem as computing the treewidth
of the graph G = (V , E).

Definition 2.4 (Treewidth) A tree decomposition of a graph G = (V , E) is a pair
({J j }, T) in which each bag J j ⊆ V is a subset of vertices and T is a tree such that:

– (Vertex cover)
⋃

j J j = V ;
– (Edge cover)

⋃
j (J j × J j) ⊇ E ;

– (Running intersection) Ji ∩ J j ⊆ Jk for every k on the path of i to j on T .

The width of the tree decomposition is max j |J j | − 1. The treewidth of G, denoted
tw(G), is the minimum width over all valid tree decompositions on G.

The connection is an immediate corollary of the following result, which establishes an
equivalence between tree decompositions and the sparsity pattern of Cholesky factors.

Proposition 2.5 (Perfect elimination ordering) Given a sparsity pattern E of order n,
let G = (V , E)where V = {1, 2, . . . , n}. For every tree decomposition ofG withwidth
τ , there exists a perfect elimination orderingΠ ∈ Perm(n) such that ω(EΠ) = 1+τ .

We defer a proof to the texts [18, 44], and only note that, given a tree decomposition of
width τ , the correspondingperfect eliminationorderingΠ canbe found inO((1+τ)·n)

time.

123

Complexity of chordal conversion for sparse semidefinite…

Corollary 2.6 We have 1+ tw(G) = minΠ∈Perm(n) ω(EΠ).

As a purely theoretical result, if we assume that tw(G) = O(1) with respect to the
number of vertices n, then a choice of Π ∈ Perm(n) that sets ω(EΠ) = O(1) can
be found in O(n) time [14] (and so the problem is no longer NP-hard). In practice,
it is much faster to use simple greedy heuristics [1], which often find “good enough”
choices of Π that yield very small values of ω(EΠ), without a rigorous guarantee of
quality.

2.4 General-purpose interior-point methods

The basic approach for solving an SDPusing a general-purpose solver is to reformulate
the problem into the primal or the dual of the standard-form linear conic program

min
x∈Rq
{cT x : Ax = b, x ∈ K} ≥ max

y∈Rp
{bT y : c − AT y ∈ K∗}

where the data are the matrixA ∈ R
p×q , vectors b ∈ R

p and c ∈ R
q , and the problem

closed convex cone K ⊆ R
q , and the notation K∗ means the dual cone of K. We

specify the following basic assumptions on this problem to ensure that it can be solved
in polynomial time using a self-dual embedding [11]. Below, we denote 1K as the
identity element on the cone K, and recall that every semidefinite cone is self-dual
K = K∗.

Definition 2.7 (Standard-formSDP)We say that the problemdataA ∈ R
p×q ,b ∈ R

p,

c ∈ R
q , and K ⊆ R

q describe an SDP in (n, ω)-standard form if:

1. (Dimensions) The coneK = svec(Sω1+)× · · ·× svec(Sω�+) is the Cartesian product
of semidefinite cones whose orders ω1, ω2, . . . , ω� satisfy

ω = max
i

ωi , n =
�∑

i=1
ωi , q = 1

2

�∑

i=1
ωi (ωi + 1).

2. (Linear independence) AT y = 0 holds if and only if y = 0.
3. (Strong duality is attained) There exist a choice of x�, y� that satisfy

Ax� = b, x� ∈ K, c − AT y� ∈ K, cT x� = bT y�.

Definition 2.8 (General-purpose solver) We say that ipm implements a general-
purpose solver if it satisfies the following conditions

1. (Iteration count) Given data (A,b, c,K) in (n, ω)-standard-form, calling (x, y) =
ipm(ε,A,b, c,K) yields iterates (x, y) ∈ K × R

p that satisfy the following, in at
most O(

√
n log(1/ε)) iterations

‖Ax − b‖ ≤ ε, c − AT y + ε · 1K ∈ K, cT x − bT y ≤ ε · n.

123

R. Y. Zhang

Algorithm 1 Chordal conversion
Input. Accuracy parameter ε > 0, problem data C, A1, A2, . . . , Am ∈ S

n , b ∈ R
m , fill-reducing permu-

tation Π .
Output. Approximate solutions U ∈ R

n×ω and v ∈ R
m to the following primal-dual pair:

min
U

{〈
C,UUT

〉
:
〈
Ai ,UUT

〉
≤ bi for all i

}
≥ max

v≤0
{〈b, v〉 :∑ivi Ai � C

}
.

Algorithm.

1. (Symbolic factorization) Pre-order all data matrices Ãi = Π AiΠ
T and C̃ = ΠCΠT . Compute

the permuted aggregate sparsity pattern E = spar(C̃) ∪⋃i spar(Ãi), its lower-triangular symbolic
Cholesky factor F = chol(E), and define the following

J j = colF (j) ≡ { j} ∪ {i > j : (i, j) ∈ F}, ω j ≡ |J j |, ω ≡ max
j

ω j .

2. (Numerical solution) Call (x, y) = ipm(ε,A, b, c,K) where ipm is a general-purpose solver (Defini-
tion 2.8), and the problem data A, b, c,K implement the following

Y � = arg max
Y∈SnF

〈
−C̃, Y

〉
s.t.

bi −
〈
Ãi , Y
〉
≥ 0 for all i ∈ {1, 2, . . . ,m}

Y [J j , J j] � 0 for all j ∈ {1, 2, . . . , n}

as an instance of y� = argmaxy{bT y : c − AT y ∈ K} with y� = svecF (Y �).
3. (Back substitution) Recover Y ∈ S

n
F from y = svecF (Y), and compute δ =

−min j {0, λmin(Y [J j , J j])}. Solve the positive semidefinite matrix completion

find Ũ ∈ R
n×ω such that (ŨŨ T)[J j , J j] = Y [J j , J j] + δ I for all j

using [39, Algorithm 2]. Output v = −(xi)
m
i=1 and U = ΠT Ũ .

2. (Per-iteration costs) Each iteration costs an overhead of O(ω2n) time and O(ωn)

memory, plus the cost of solving O(1) instances of the Schur complement equation

A∇2 f (w)ATΔy = r , f (w) = − log det(w)

by forming H = A∇2 f (w)AT , factoring L = chol(ΠHΠT) and then solving
Lz = Πr and LT (ΠΔy) = z. Here, the fill-reducing permutation Π is required
to be no worse than the natural ordering, as in ω(ΠHΠT) ≤ ω(H).

Note that Definition 2.8 is rigorously satisfied by SeDuMi [37, 38], SDPT3 [42, 43],
and MOSEK [2, 3, 32]. Given that the correctness of our overall claims crucially
depends on the characterization in Definition 2.8, we state a concrete interior-point
method in Appendix B that implements these specifications.

3 Main results

Algorithm 1 summarizes the standard implementation of chordal conversion, which
is known as the “d-space conversion method using basis representation” in Kim et
al. [24]. Our only modification is to recover X = UUT from Y = projF (X) in Step

123

Complexity of chordal conversion for sparse semidefinite…

3 using the low-rank chordal completion [10, Theorem 1.5], instead of the maximum
determinant chordal completion [20, Theorem 2] as originally proposed by Fukuda et
al. [16]. We note that both recovery procedures have the same complexity of O(ω3n)

time and O(ω2n) memory, but the former puts X in a more convenient form [39].
The cost of Algorithm 1 is dominated by the cost of solving the Schur complement

equation at each iteration of the interior-point method in Step 2. At the heart of this
paper is a simple but precise upper-bound on the frontsize of its sparsity pattern E (2),
given in terms of the extended sparsity pattern E . Concretely, our result says that if
ω(E) = O(1), thenω(E (2)) = O(1), so the Schur complement matrix can be formed,
factored, and backsubstituted in O(m + n) time. Hence, the per-iteration cost of the
interior-point method is also O(m + n) time.

To state the Schur complement sparsity E (2) explicitly, note that the problem data
(A,b, c,K) in Step 2 of Algorithm 1 are

A = [svecF (A1), . . . , svecF (Am),−P1, . . . ,−Pn],
b = − svecF (C), c = (b, 0),

K = R
m+ × svec(Sω1+)× svec(Sω2+)× · · · × svec(Sωn+)

(3a)

where ω j ≡ | colF (j)| and each P j is implicitly defined to satisfy

PT
j svecF (Y) = svec(Y [colF (j), colF (j)]) for all Y ∈ S

n
F . (3b)

The resulting Schur complement matrix reads

A∇2 f (w)AT =
m∑

i=1
di svecF (Ai) svecF (Ai)

T +
n∑

j=1
P jD jPT

j (4)

where di = w−2i , D j svec(X j) = svec(W−1j X jW
−1
j)

and w = (w1, . . . , wm, svec(W1), . . . , svec(Wn)) ∈ Int(K) is a scaling point. The
associated sparsity pattern, aggregated over all possible choices of scaling w, is as
follows

E (2) = {(i, j) : (A∇2 f (w)AT)[i, j]
= 0 for some w ∈ Int(K)}

=
(

m⋃

i=1
spar(aia

T
i)

)

∪
⎛

⎝
n⋃

j=1
spar(P jD jPT

j)

⎞

⎠

=
(

m⋃

i=1
clique(supp(ai))

)

∪
⎛

⎝
n⋃

j=1
clique(supp(P j))

⎞

⎠ (5)

where we have written ai = svecF (Ai). The result below says that if ω(E) = O(1),

then ω(E
(2)

) = O(1).

123

R. Y. Zhang

Theorem 3.1 (Frontsize of Schur complement sparsity) Given C, A1, A2, . . . , Am ∈
S
n, define A,K as in (3), and define E (2) as in (5). We have

1

2
ω(ω + 1) ≤ ω(E (2)) ≤ 1

2
ω(ω + 1)

where ω ≡ ω(E) and ω = ω(E) and E, E are defined in (1) and (2). Moreover, if
E = E, then we also have chol(E (2)) = E (2).

In caseswhere E = E , as in theMAX-k-CUT relaxation (Example 1.2) and theLovász
theta problem (Example 1.3), Theorem 3.1 predicts that the Schur complement matrix
H = A∇2 f (w)AT can be factored L = chol(H) with zero fill-in, meaning that
spar(L+ LT) = spar(H). More generally, if ω < ω holds with a small gap, then we
would also expect H to factor with very little fill-in.

As previously pointed out byKobayashi et al. [25], if the Schur complement sparsity
E (2) is known to have frontsize ω(E (2)) = O(1), then the Schur complement matrix
H = A∇2 f (w)A can be formed, factored, and backsubstituted in O(m + n) time.
Hence, the per-iteration cost of the interior-point method is also O(m + n) time.

Corollary 3.2 (Cost of Schur complement equation) Given the data matrix A, scaling
point w ∈ Int(K), and right-hand side g, defineH = A∇2 f (w)AT as in (5). Suppose
that all columns of A are nonzero, and all scaling matrices D j are fully dense. Then,
it takes T arithmetic operations andM units of storage to formH and solveHΔy = g,
where

1

48
(ω − 1)6 + m + n ≤ T ≤ 4ω4 · (m + ωn),

1

8
(ω − 1)4 + m + n ≤ M ≤ 2ω2 · (m + ωn),

in which ω ≡ ω(E) and ω ≡ ω(E) satisfy 1 ≤ ω ≤ ω.

Proof Let ai ≡ svecF (Ai) and ω j ≡ | colF (j)|. We break the solution of HΔy = g
into five steps:

1. (Input) It takes Mdata memory to state the problem data, where m + n ≤ Mdata ≤
2ω2m+3ω2n. Indeed,m+n ≤ nnz(A) ≤ ω2m+ω2n because 1 ≤ nnz(ai) ≤ ω2

(see Step 2 below) and nnz(P j) = 1
2ω j (ω j+1). Also,m+n ≤ nnz(w) ≤ m+ω2n,

and n ≤ nnz(g) ≤ ωn.
2. (Build LP part) It takes TLP time to build

∑m
i=1 diaiaTi , where m ≤ TLP ≤ 2ω4m

time and memory. This follows from 1 ≤ nnz(ai) ≤ ω2, where the upper-bound is
because spar(aiaTi) ⊆ E (2) ⊆ chol(E (2)), and that ω(E (2)) is, by definition, the
maximum number of nonzero elements in a single column of chol(E (2)).

3. (BuildSDPpart) It takesTSDP time tobuild
∑n

j=1 P jD jPT
j ,wheren ≤ TSDP ≤ ω4n

time and memory. This follows from nnz(P j) = 1
2ω j (ω j + 1), which implies

nnz(P jD jPT
j) = 1

4ω
2
j (ω j + 1)2 for a fully-dense D j 	 0.

123

Complexity of chordal conversion for sparse semidefinite…

4. (Factorization) It takes Tfact time and Mfact memory to factor L = chol(H), where
1
48 (ω − 1)6 + n ≤ Tfact ≤ ω5n and 1

8 (ω − 1)4 + n ≤ Mfact ≤ ω3n. The matrix
H has |F | columns and rows, and frontsize ω(E (2)). The desired figures follow by
substituting 1

2ω
2 ≤ ω(E (2)) ≤ ω2 and n ≤ |F | ≤ ωn into Proposition 2.3.

5. (Back-substitution) It takes Mfact time and memory to solve each of Lz = g and
LTΔy = z via triangular back-substitution.

The overall runtime is cumulative, so T = TLP + TSDP + Tfact + 2Mfact. The overall
memory use is M = Mdata +Mfact, because the matrix H can be constructed and then
factored in-place.
�

Let us now give an end-to-end complexity guarantee for Algorithm 1. We will need
the following assumption to ensure that the data (A,b, c,K) previously defined in (3)
specifies an SDP in (N , ω)-standard form, where N = m + ωn and ω ≡ ω(E).

Assumption 1 (Strong duality is attained) There exists a primal-dual pair X� � 0 and
v� ≤ 0 that are feasible 〈Ai , X�〉 ≤ bi for all i and

∑
i v

�
i Ai � C and coincide in

their objectives 〈C, X�〉 = 〈b, v�〉.

Theorem 3.3 (Upper complexity) Let the data C, A1, . . . , Am ∈ S
n and b ∈ R

m

satisfy Assumption 1. Given a tree decomposition of width τ for the extended aggregate
sparsity graph G = (V , E), where

V = {1, 2, . . . , n}, E = spar(C) ∪ clique(A1) ∪ · · · ∪ clique(Am),

set Π as the associated perfect elimination ordering. Then, Algorithm 1 outputs U ∈
R
n×ω and v ∈ R

m with v ≤ 0 such that

〈
Ai ,UUT

〉
− bi ≤ ε for all i,

m∑

i=1
vi Ai − C � ε · I ,

〈
C,UUT

〉
− 〈b, v〉 ≤ ε · N ,

in O(
√
N log(1/ε)) iterations,with per-iteration costs of O(ω4·N) time and O(ω2·N)

memory, where N = m + ω · n and ω = 1+ τ .

Proof One can verify that (A,b, c,K) defined in (3) specifies an SDP in (N , ω)-
standard form (see Appendix A for the regularity conditions). Moreover, it follows
from themonotonicity of the frontsize (Proposition 4.1) thatω ≡ ω(EΠ) ≤ ω(EΠ) ≡
ω. We will track the cost of Algorithm 1 step-by-step:

1. (Front-reducing permutation) Preordering Ai ← Π AiΠ
T and C ← ΠCΠT the

matrices cost O(nnz(C) +∑m
i=1 nnz(Ai)) = O(ω2N) time and memory. This

follows from nnz(C) ≤ |F | ≤ N and nnz(Ai) ≤ ω2.
2. (Conversion) Computing F = chol(E) costs O(|F |) = O(N) time and space,

where we note that |F | ≤ ωn.

123

R. Y. Zhang

3. (Solution)Let K = 2·max{1, | tr(C)|, | tr(A1)|, . . . , | tr(Am)|}.AfterO(
√
N log(K/ε))

iterations, we arrive at a primal v ≤ 0 and Vj � 0 and dual point Y ∈ S
n
F satisfying

〈Ai ,Y 〉 − bi ≤ ε/K , Y [J j , J j] � −(ε/K)I ,
∥
∥
∥
∑

i vi Ai +∑ j Pj Vj PT
j − C

∥
∥
∥ ≤ ε/K ,

〈C,Y 〉 − 〈b, v〉 ≤ N · (ε/K).

Each iteration costs O(ω4N) time and O(ω2N) memory. This cost is fully deter-
mined by the cost of solving O(1) instances of the Schur complement equation,
which dominates the overhead of O(ω3n+nnz(A)) = O(ω2N) time and memory.

4. (Recovery)Using the previously recoveredY , we recoverU such thatΠF (UUT) =
Y + δ I where δ = −min j {0, λmin(Y [J j , J j])} ≤ ε/K . This takes O(ω3n) =
O(ω2N) time and O(ω2n) = O(ωN) memory.

5. (Output)We outputU and v, and check for accuracy. It follows from K ≥ 2| tr(C)|
that

〈
C,UUT

〉
− 〈C,Y 〉 = δ · tr(C) ≤ ε · tr(C)

K
≤ ε · | tr(C)|

2| tr(C)| ≤
1

2
ε,

and from K ≥ 2 and N ≥ 1 that

〈
C,UUT

〉
− 〈b, v〉 ≤ N

K
ε + 1

2
ε = Nε ·

(
1

2
+ 1

2N

)

≤ N · ε.

Similarly, it follows from K ≥ 2| tr(Ai)| and K ≥ 2 that
〈
Ai ,UUT

〉 − bi ≤ ε.
Finally, it follows from v ≥ 0 and Vj � 0 that

∑

i

vi Ai +
∑

j

Pj Vj P
T
j − C � ε · I �⇒

∑

i

vi Ai − C � ε · I .

�
Let τ � ≡ tw(G). In theory, it takes O(τ 8� · n log n) time to compute a tree decom-

position of width τ = O(τ 2�) by exhaustively enumerating the algorithm of Fomin et
al. [14]. Using this tree decomposition, Theorem 3.3 says that Algorithm 1 arrives at
an ε-accurate solution in O((m + n)1/2 · τ � · log(1/ε)) iterations, with per-iteration
costs of O((m+n) ·τ 10�) time and O((m+n) ·τ 6�)memory. Combined, the end-to-end
complexity of solving (SDP) using Algorithm 1 is O(τ 11� · (m+n)1.5 · log(1/ε)) time.

In practice, chordal conversion works even better. In Sect. 5, we provide detailed
numerical experiments to validate that: (i) the minimum degree heuristic usually finds
Π that yield ω = O(1); (ii) a primal-dual interior-point method usually converges to
ε accuracy in dimension-free O(log(1/ε)) iterations. Taking these as formal assump-
tions improves Theorem 3.3 to O((m + n) log(1/ε)) empirical time.

The following establishes the sharpness of Theorem 3.3.

123

Complexity of chordal conversion for sparse semidefinite…

Corollary 3.4 (Lower complexity) Given the data C, A1, . . . , Am ∈ S
n and b ∈ R

m,
let τ� denote the treewidth of the aggregate sparsity graph G = (V , E):

V = {1, 2, . . . , n}, E = spar(C) ∪ spar(A1) ∪ · · · ∪ spar(Am).

There exists no choice of Π that will allow Algorithm 1 to solve (SDP) to arbitrary
accuracy ε > 0 in less than Ω(τ 6� + m + n) time and Ω(τ 4� + m + n) memory.

Proof The cost of Algorithm 1 is at least a single iteration of the interior-point method
in Step 2. This is no less than Ω((ω − 1)6 +m + n) time and Ω((ω − 1)4 +m + n)

memory according to Corollary 3.2, where ω − 1 ≥ τ� due to Corollary 2.6.
�

4 Frontsize of the Schur complement sparsity (Proof of Theorem 3.1)

We now turn to prove the frontsize bound on the Schur complement sparsity E (2)

in Theorem 3.1, which we identified as our key technical contribution. Recall that a
symmetric sparsity pattern E of order n can be viewed as the edge set of an undirected
graph G = (V , E) on vertices V = {1, 2, . . . , n}. The underlying principle behind
our proof is the fact that the frontsize is monotone under the subgraph relation: if
G ′ = (V ′, E ′) is a subgraph of G = (V , E), then ω(E) ≥ ω(E ′).

To state this formally, we denote the sparsity pattern induced by a subset of vertices
U = {u1, u2, . . . , u p} ⊆ V as follows

E[U] ≡ {(i, j) : (ui , u j) ∈ E} where u1 < u2 < · · · < u p.

Note that we always sort the elements of U . Our definition is made so that if
E = spar(X), then E[U] = spar(X [U ,U]), without any reordering of the rows
and columns.

Proposition 4.1 (Subgraph monotonicity) Let E be a sparsity pattern of order n, and
let U ⊆ {1, 2, . . . , n}. Then, for any sparsity pattern D of order |U | that satisfies
E[U] ⊇ D, we have chol(E)[U] ⊇ chol(D), and therefore ω(E) ≥ ω(D).

Proof It is known that (i, j) ∈ chol(E) for i > j holds if and only if there exists
a path (i, p1, p2, . . . , p�, j) whose edges are in E , and whose internal nodes are
ordered p1, p2, . . . , p� < j < i ; see e.g. [44, Theorem 6.1]. It immediately follows
this characterization that chol(·) is monotone with respect to the deletion of edges and
isolated vertices: (1) if D ⊆ E , then chol(D) ⊆ chol(E); (2) we have chol(E[U]) =
chol(E)[U] for U = {1, 2, . . . , n}\v with isolated vertex v. Therefore, chol(·) must
also be monotone under general vertex and edge deletions, because we can always
delete edges to isolate a vertex before deleting it.
�

Our lower-bound is a direct corollary of the following result, which gives an exact
value for the frontsize of a certain “lifted” sparsity pattern.

Lemma 4.2 (Quadratic lift) Let E be an arbitrary sparsity pattern of order n. Define
F = chol(E) and the lifted sparsity pattern F (2) = ⋃n

k=1 clique(Pk) in which each

123

R. Y. Zhang

Pk is implicitly defined to satisfy PT
k svecF (Y) = svec(Y [colF (k), colF (k)]) for all

Y ∈ S
n
F . Then, we have chol(F

(2)) = F (2) and ω(F (2)) = 1
2ω(E)[ω(E)+ 1].

Observe that E (2) ⊇ F (2) =⋃n
k=1 clique(Pk) via (5), so it follows immediately from

Proposition 4.1

ω(E (2)) ≥ ω(F (2)) = 1

2
ω(E)[ω(E)+ 1],

which is precisely the lower-bound in Theorem 3.1. For the upper-bound, we will use
F = chol(E), the symbolic Cholesky factor of the extended aggregate sparsity pattern

E , to construct a similarly lifted F
(2)

. Our key insight is that E (2) can be obtained

from F
(2)

via vertex and edge deletions.

Lemma 4.3 (Sparsity overestimate) Let E and E (2) be the sparsity patterns defined

in (2) and (5). Define F = chol(E) and the lifted sparsity pattern F
(2) =

⋃n
k=1 clique(Pk) in which each Pk is implicitly defined to satisfy P

T
k svecF (Y) =

svec(Y [colF (k), colF (k)]) for all Y ∈ S
n
F
. Then, E (2) ⊆ F

(2)[V (2)] holds for

V (2) = {idxF (i, j) : i, j ∈ F}.

Substituting E (2) ⊆ F
(2)[V (2)] with the exact frontsize of ω(F

(2)
) from Lemma 4.2

yields

ω(E (2)) ≤ ω(F
(2)

) = 1

2
ω(E)[ω(E)+ 1],

which is precisely the upper-bound in Theorem 3.1. Finally, if E = E , then F (2) =
F

(2) = E (2), so chol(E (2)) = E (2) via Lemma 4.2.
In the remainder of this section, we will prove Lemmas 4.2 and 4.3.

4.1 Exact frontsize of a lifted sparsity pattern (Proof of Lemma 4.2)

Our proof ofLemma4.2 is based on a connection between zero-fill sparsity patterns, for
which sequential Gaussian elimination results in no additionally fill-in, and a “sorted”
extension of the running intersection property.

Definition 4.4 (ZF) The sparsity pattern F is said to be zero-fill if F = chol(F).

Equivalently, if F is zero-fill, then (i, k) ∈ F and (j, k) ∈ F implies (i, j) ∈ F for
i > j > k via the definition of the symbolic Cholesky factor (Definition 2.1).

Definition 4.5 (RIP) The sequence of subsets J1, J2, . . . , J� with J j ⊂ N satisfies the
sorted running intersection property if there exists a parent pointer p : {1, 2, . . . , �−
1} → {2, 3, . . . , �} such that the following holds for all 1 ≤ j < �:

p(j) > j, Jp(j) ⊇ J j ∩ (J j+1 ∪ J j+2 ∪ · · · ∪ J�), min{Jp(j)} > max{J j\Jp(j)}.

The symbolic Cholesky factor F = chol(E) for a sparsity pattern E is the canonical
example of a zero-fill sparsity pattern. In turn, the corresponding column sets J j =

123

Complexity of chordal conversion for sparse semidefinite…

colF (j) are the canonical example of sequence of subsets that satisfy the sorted version
of the running intersection property.

Proposition 4.6 (ZF �⇒ RIP) Let F be a zero-fill sparsity pattern of order n. Then,
the sequence of subsets J1, J2, . . . , Jn with J j = colF (j) ≡ { j}∪{i > j : (i, j) ∈ F}
satisfies the sorted running intersection property.

Proof Define p(j) = min{i > j : i ∈ J j } if |J j | > 1 and p(j) = n if |J j | = 1.
Clearly, p(j) > j holds for all 1 ≤ j < n. To prove Jp(j) ⊇ J j ∩⋃�

w= j+1 Jw, let
i ∈ J j ∩ Jw for some w > j . We prove that i ∈ Jp(j) via the following steps:

– We have i > j , because i ∈ Jw implies that i ≥ w > j .
– If i = p(j), then i ∈ Jp(j) by definition.
– If i > p(j), then (i, j) ∈ F and (p(j), j) ∈ F for i > p(j) > j implies

(i, p(j)) ∈ F , and hence i ∈ Jp(j).

Finally, we prove min{Jp(j)} > max{J j\Jp(j)} by noting that max{J j\Jp(j)} = j
with our construction, and that i = min Jp(j) must satisfy i ∈ Jp(j) and therefore
i ≥ p(j) > j .
�

Our proof is based on the fact that the “lifted” sparsity pattern F (2) can be con-
structed as F (2) = ⋃n

k=1 clique(J
(2)
k) with respect to the following “lifted” index

sets

J (2)
k ≡ idxF (clique(Jk)) = {idxF (i, j) : i, j ∈ Jk, i ≥ j}. (6)

We need to show that, if the original index sets J1, J2, . . . , Jk satisfy the running inter-
section property, then the lifted index sets J (2)

1 , J (2)
2 , . . . , J (2)

k will inherit the running
intersection property. Our key insight is that the index operator idxF implements a
raster ordering.

Lemma 4.7 (Raster ordering) The ordering idxF : F → N satisfies the following, for
all (i, j) ∈ F with i ≥ j and (i ′, j ′) ∈ F with i ′ ≥ j ′:
– If j > j ′, then idx(i, j) > idx(i ′, j ′) holds.
– If j = j ′ and i > i ′, then idx(i, j) > idx(i ′, j ′) holds.

Lemma 4.8 Let the sequence of subsets J1, J2, . . . , J� with J j ⊂ N satisfy the sorted

running intersection property. Then, J (2)
1 , J (2)

2 , . . . , J (2)
� also satisfy the sorted run-

ning intersection property.

Proof Let p(·) denote the parent pointer that verifies the sorted running intersection
property in J1, J2, . . . , J�. We will verify that p(·) also proves the same property in
J (2)
1 , J (2)

2 , . . . , J (2)
� .

First, to prove J (2)
u ∩⋃�

v=u+1 J
(2)
v ⊆ J (2)

p(u), let k ∈ J (2)
u ∩ J (2)

v for v > u. The

fact that k ∈ J (2)
u = idx(clique(Ju)) implies k = idx(i, j) for some i, j such that

i, j ∈ Ju . Similarly, k ∈ J (2)
v = idx(clique(Jv)) and the bijectivity of idx on F imply

that the same i, j also satisfy i, j ∈ Jv , where we recall that v > u. We conclude
i, j ∈ Ju ∩ Jv ⊆ Jp(u) and therefore k = idx(i, j) ∈ J (2)

p(u).

Next, we prove min{J (2)
p(u)} > max{J (2)

u \J (2)
p(u)} by establishing two claims:

123

R. Y. Zhang

– min{J (2)
p(u)} = idx(α, α) where α = min Jp(u). For any idx(i, j) ∈ J (2)

p(u) where
i ≥ j , we must have i, j ∈ Jp(u). It follows from the raster property that idx(i, j)
is minimized with i = j = min Jp(u).

– max{J (2)
u \J (2)

p(u)} = idx(β, γ) where β = max{Ju} and γ = max{Ju\Jp(u)}. We
partition Ju into Nu = Ju\Jp(u) and Au = Ju ∩ Jp(u).

– For any idx(i, j) ∈ J (2)
u \J (2)

p(u) where i ≥ j , we can have one of the following
three cases: 1) i ∈ Nu and j ∈ Au ; 2) i ∈ Au and j ∈ Nu ; or 3) i ∈ Nu and
j ∈ Nu .

– We observe that the first case i ∈ Nu and j ∈ Au is impossible. Indeed,
applying j ≥ min{Jp(u)} > max{Ju\Jp(u)} ≥ i would yield a contradiction
with i ≥ j .

– Taking the union of the two remaining cases yields i ∈ Ju = Au ∪ Nu and
j ∈ Nu . It follows from the raster property that idx(i, j) is maximized with
i = max Ju and j = max Nu .

With the two claims established, the hypothesis that min{Jp(u)} > max{Ju\Jp(u)}
implies that α > γ , and therefore idx(α, α) > idx(β, γ) as desired.
�

In reverse, a sequence of subsets J (2)
1 , J (2)

2 , . . . , J (2)
� that satisfy the sorted run-

ning intersection property immediately give rise to a zero-fill sparsity pattern F (2) =
⋃�

k=1 clique(J
(2)
k) with ω(F (2)) = max j |J (2)

j |.
Proposition 4.9 (RIP �⇒ ZF) Let J1, J2, . . . , J� with

⋃�
j=1 J j = {1, 2, . . . , n} sat-

isfy the sorted running intersection property. Then, F =⋃�
j=1 clique(J j) is zero-fill,

and we have ω(F) = max j |J j |.
Our proof of Proposition 4.9 relies on the following result, which says that every
column of F is contain in a subset Jw.

Lemma 4.10 Let J1, J2, . . . , J� with
⋃�

j=1 J j = {1, 2, . . . , n} satisfy the sorted run-

ning intersection property. For every j-th column in F = ⋃�
j=1 clique(J j), there

exists some Jw such that colF (j) ⊆ Jw.

Proof Let V = {1, 2, . . . , n}. For arbitrary j ∈ V , denote Jw as the last subset
in the sequence J1, J2, . . . , J� for which j ∈ Jw. This choice must exist, because
V =⋃�

k=1 Jk . For every arbitrary i ∈ colF (j), we will prove that i ∈ Jw also holds:

– There exists u ≤ w for which i, j ∈ Ju . Indeed, (i, j) ∈ F and F =⋃�
k=1 clique(Jk) imply (i, j) ∈ clique(Ju) for some Ju , or equivalently i, j ∈ Ju .

Given that j ∈ Ju and w = max{k : j ∈ Jk} by definition, it follows that u ≤ w.
– If u = w, then i ∈ Jw holds because i, j ∈ Ju . Otherwise, if u < w, we use the
sorted running intersection property to assert the following

u < w, i, j ∈ Ju �⇒ i, j ∈ Jp(u). (7)

The fact that j ∈ Jp(u) follows directly the running intersection property j ∈
Ju ∩ Jw ⊆ Jp(u) for w > u. By contradiction, suppose that i /∈ Jp(u). Then,

123

Complexity of chordal conversion for sparse semidefinite…

given that i ∈ Ju , it follows from the sorted property that j ≥ min{Jp(u)} >

max{Ju\Jp(u)} ≥ i, which contradicts our initial hypothesis that i > j .
– Inductively reapplying (7), as in i, j ∈ Jp(p(u)) and i, j ∈ Jp(p(p(u))), we arrive at
some v such that i, j ∈ Jp(v) and p(v) = w. The induction must terminate with
p(v) ≥ w because each p(u) > u by construction. It is impossible for p(v) > w

to occur, because j ∈ Jp(v) and w = max{k : j ∈ Jk} by definition. We conclude
that i ∈ Jw, as desired.
�
The equivalence between the sorted running intersection property and zero-fill

sparsity pattern then follow as a short corollary of the above.

Proof of Proposition 4.9 Toprove that F is zero-fill,weobserve, for arbitrary (i, k) ∈ F
and (j, k) ∈ F with i > j > k that i, j ∈ colF (k). Therefore, it follows from
Lemma 4.10 that there exists Jw such that i, j, k ∈ Jw. We conclude that (i, j) ∈ F,

because F =⋃�
j=1 clique(J j) and i, j ∈ Jw for some 1 ≤ w ≤ �.

To prove that ω(F) = max j |J j |, we choose k = argmax j | colF (j)|. It follows
from Lemma 4.10 that there exists Jw such that colF (k) ⊆ Jw, and therefore ω(F) =
| colF (k)| ≤ |Jw|. Finally, given that clique(Jw) ⊆ F it follows that (i, j) ∈ F holds
for all i ∈ Jw where j = min Jw. Therefore, we conclude that Jw ⊆ colF (j), and
therefore |Jw| ≤ | colF (j)| ≤ | colF (k)| = ω(F).
�

Finally, we conclude the proof of Lemma 4.2 by verifying that a matrix like H =
∑n

k=1 PkDkPT
k does indeed have F (2) =⋃n

k=1 clique(J
(2)
k) as its sparsity pattern.

Proof of Lemma 4.2 For an arbitrary sparsity pattern E of order n, let F = chol(E)

and Jk ≡ colF (k). First, it follows from Proposition 4.6 that J1, J2, . . . , Jn satisfy
the ordered running intersection property. Therefore, it follows from Lemma 4.8,
J (2)
1 , J (2)

2 , . . . , J (2)
n defined in (6) satisfy the same property. Finally, we verify that

supp(Pk) ≡{α : Pk[α, β]
= 0} =
{
α : PT

k eα
= 0
}

(a)=
{
idxF (i, j) : PT

k svecF (ei e
T
j)
= 0, (i, j) ∈ F

}

(b)=
{
idxF (i, j) : (ei eTj)[Jk, Jk]
= 0, i ≥ j

}
= J (2)

k .

Equality (a) is obtained by substituting eα = svecF (ei eTj) for (i, j) ∈ F . Equality (b)

follows the identity PT
k svecF (Y) = svec(Y [Jk, Jk]), which was used to define Pk .

Therefore, F (2) = ⋃n
k=1 J

(2)
k and we conclude via Proposition 4.9 that ω(F (2)) =

maxk |J (2)
k | = maxk 1

2 |Jk |(|Jk | + 1), and we recall that maxk |Jk | = ω(F) = ω(E)

by definition.
�

4.2 Sparsity overestimate (Proof of Lemma 4.3)

We will need some additional notation. For V = {1, 2, . . . , n} and J ⊆ V , we denote
the subset of J induced by the elements in U = {u1, u2, . . . , u p} ⊆ V as follows

123

R. Y. Zhang

J [U] ≡ {i : ui ∈ J } where u1 < u2 < · · · < u p.

Our definition is made so that if E = clique(J), then E[U] = clique(J [U]). Our
desired claim, namely that

E (2) =
(

m⋃

i=1
clique(supp(ai))

)

∪
⎛

⎝
n⋃

j=1
clique(supp(P j))

⎞

⎠

⊆
(

n⋃

k=1
clique(supp(Pk)[V (2)])

)

= F
(2)[V (2)]

where V (2) = {idxF (i, j) : i, j ∈ F}, now follows immediately from the following
two lemmas.

Lemma 4.11 For every i ∈ {1, 2, . . . ,m}, there exists k ∈ {1, 2, . . . , n} such that
supp(ai) ⊆ supp(Pk)[V (2)] where V (2) = {idxF (i, j) : i, j ∈ F}.
Proof It follows by repeating the proof of Lemma 4.2 that

supp(Pk) = {idxF (i, j) : i, j ∈ colF (k), i ≥ j},
supp(Pk)[V (2)] = {idxF (i, j) : i, j ∈ colF (k), i ≥ j}.

Our desired claim follows via the following sequence of inclusions

supp(ai) = {v : ai [v]
= 0} = {idxF (u, v) : Ai [u, v]
= 0, (u, v) ∈ F}
(a)⊆ {idxF (u, v) : u, v ∈ supp(Ai), (u, v) ∈ F}
(b)⊆ {idxF (u, v) : u, v ∈ colF (k), (u, v) ∈ F} = supp(Pk)[V (2)].

Inclusion (a) is because spar(Ai) ⊆ clique(supp(Ai)). Inclusion (b) is true via the
following: If J = supp(Ai) satisfies clique(J) ⊆ F , then J ⊆ colF (k) where k =
min J . Indeed, we have k ∈ colF (k) by definition. For any arbitrary j ∈ J with j > k,
we must have an edge (j, k) ∈ clique(J) ⊆ F , and therefore j ∈ colF (k).
�
Lemma 4.12 For every k ∈ {1, 2, . . . , n}, we have supp(Pk) ⊆ supp(Pk)[V (2)] where
V (2) = {idxF (i, j) : i, j ∈ F}.
Proof It again follows by repeating the proof of Lemma 4.2 that

supp(Pk) = {idxF (i, j) : i, j ∈ colF (k), i ≥ j}
(a)⊆ {idxF (i, j) : i, j ∈ colF (k), i ≥ j} = supp(Pk)[V (2)].

Inclusion (a) is true because E ⊆ E implies F = chol(E) ⊆ chol(E) = F via
Proposition 4.1, and therefore colF (k) ⊆ colF (k).
�

123

Complexity of chordal conversion for sparse semidefinite…

5 Large-scale numerical experiments

Our goal in this section is to provide experimental evidence to justify the following
four empirical claims made in the paper:

1. Whenever a graph has small treewidth τ� = O(1), a fill-reducing heuristic is also
able to find a “good enough” tree decomposition with width τ = O(1).

2. A primal-dual interior-point method consistently converges to high accuracies of
ε ≈ 10−6 in just tens of iterations, at an essentially dimension-free rate.

3. In theory, clique-tree conversion (CTC) enjoys similar guarantees to chordal con-
version (CC). But in practice, (CC) is much faster than (CTC), both in solution
time and in preprocessing time.

4. Real-world power systems G yield instances of the AC optimal power flow relax-
ation (Example 1.6) with small values of tw(G) = 2 · tw(G2).

To this end, we benchmark the following three conversion methods:

– CC: Chordal conversion as outlined in this paper in Algorithm 1, implemented in
MATLAB, with MOSEK [32] as the general-purpose solver. If G = G has small
treewidth, then CC is guaranteed to use at most O(m + n) time per-iteration via
Theorem 3.3.

– Dual CTC (heuristic): The dualized variant of clique-tree conversion of Zhang
and Lavaei [46] based on the aggregate sparsity graph G. We take MATLAB /
MOSEK implementation directly from the project website4. If G = G has small
treewidth, then this variant is guaranteed to use at most O(m+n) time per-iteration
via [46, Theorem 1]. When G
= G, this variant reduces to an empirical heuristic.

– Dual CTC (provable): The dualized variant of clique-tree conversion of Zhang
and Lavaei [46], but forced to use the extended sparsity graph G instead of G, as
suggested by Gu and Song [21]. It is implemented by padding the elements of the
sparse cost matrixC with numerically-zero elements that are structurally nonzero,
so that it is recognized as an element of Sn

E
, and then calling Dual CTC (heuristic).

If G has small treewidth, then this variant is guaranteed to use at most O(m + n)

time per-iteration via [46, Theorem 1].

All of our experiments were conducted on a modest workstation, with a Xeon
3.3 GHz quad-core CPU and 32 GB of RAM. Our code was written in MAT-
LAB 9.8.0.1323502 (R2020a), and the general-purpose solver we use is MOSEK
v9.1.10 [32]. MOSEK specifies default parameters ε = 10−8 and seeks to termi-
nate with ‖Ax − b‖∞ ≤ ε(1 + ‖b‖∞) and ‖AT y + s − c‖∞ ≤ ε(1 + ‖c‖∞) and
max{xT s, cT x − bT y} ≤ ε max{1, |bT x |, |cT x |} [32, Section 13.3.2]. If MOSEK is
unable to achieve this accuracy due to numerical issues, it gives up and accepts the
solution as optimal if ε = 10−5 [32, Section 13.3.3]. Our calculation for the number
of accurate digits is identical to [46, Section 8], which was in turn adapted from the
DIMACS challenge [36].

4 https://github.com/ryz-codes/dual_ctc.

123

https://github.com/ryz-codes/dual_ctc

R. Y. Zhang

Ta
bl
e
1

T
re
e
de
co
m
po
si
tio

n
qu
al
ity
,a
cc
ur
ac
y
(i
n
de
ci
m
al
di
gi
ts
)a
nd

tim
in
g
(i
n
se
co
nd
s)
fo
rL

ov
ás
z
th
et
a
pr
ob
le
m
s
on

pa
rt
ia
lk
-t
re
es
:|V
|—

nu
m
be
ro

fv
er
tic

es
;|E
|—

nu
m
be
r

of
ed
ge
s;

τ
—
w
id
th
of

tr
ee

de
co
m
po
si
tio

n
us
ed
;“
pr
ep
”—

pr
ep
ro
ce
ss
in
g
tim

e,
w
hi
ch

in
cl
ud
es

th
e
co
nv
er
si
on

pr
oc
es
s
an
d
M
O
SE

K
’s
in
te
rn
al
pr
ep
ar
at
io
n
tim

e;
“d
ig
it
”—

ac
cu
ra
te

de
ci
m
al
di
gi
ts
;“
ite

r”
—

nu
m
be
r
of

in
te
ri
or
-p
oi
nt

ite
ra
tio

ns
;“
pe
r-
it”

—
av
er
ag
e
tim

e
pe
r
in
te
ri
or
-p
oi
nt

ite
ra
tio

n

|V
|

|E
|

D
ua
lC

T
C
(k
-t
re
e
or
de
ri
ng

)
C
C
(a
m
d
or
de
ri
ng

)
C
C
(k
-t
re
e
or
de
ri
ng

)
τ

pr
ep

di
gi
t

ite
r

pe
r-
it

τ
pr
ep

di
gi
t

ite
r

pe
r-
it

τ
pr
ep

di
gi
t

ite
r

pe
r-
it

10
0

12
6

16
0.
05

7.
0

8
0.
04

9
0.
02

6.
8

12
0.
01

16
0.
15

7.
9

10
0.
01

20
0

26
2

23
0.
10

8.
3

9
0.
06

16
0.
01

7.
0

10
0.
01

23
0.
03

7.
9

10
0.
03

50
0

68
4

33
0.
28

8.
8

9
0.
12

30
0.
03

6.
7

9
0.
06

33
0.
07

7.
1

7
0.
10

10
00

14
92

35
0.
53

9.
1

9
0.
17

33
0.
05

6.
6

8
0.
12

35
0.
05

8.
7

8
0.
14

20
00

30
04

35
0.
85

7.
3

11
0.
14

35
0.
09

6.
5

8
0.
15

35
0.
09

6.
8

8
0.
15

50
00

74
41

35
2.
64

8.
6

11
0.
63

40
0.
23

7.
5

9
0.
37

35
0.
24

6.
2

8
0.
35

10
,0
00

14
,9
77

35
6.
73

7.
3

15
1.
60

36
0.
48

6.
7

8
0.
81

35
0.
47

8.
0

9
0.
67

20
,0
00

30
,0
32

35
22

.2
1

7.
6

13
3.
41

42
1.
01

7.
3

8
1.
48

35
1.
04

7.
9

9
1.
31

50
,0
00

75
,0
42

35
11

4.
21

3.
8

20
9.
13

44
2.
91

5.
1

8
3.
81

35
2.
79

6.
7

10
3.
27

10
0,
00

0
15

0,
29

8
35

41
5.
89

4.
5

27
18

.5
7

40
5.
98

7.
8

9
8.
20

35
5.
93

5.
5

10
6.
65

20
0,
00

0
29

9,
40

7
35

19
66

.7
0

3.
8

16
36

.8
9

42
11

.9
0

6.
1

15
27

.6
5

35
12

.0
6

6.
3

11
12

.9
2

50
0,
00

0
74

9,
28

5
35

12
26

5.
85

3.
3

16
10

2.
56

46
31

. 8
0

2.
8

18
10

3.
85

35
41

.4
1

5.
6

16
39

.2
0

1,
00

0,
00

0
1,
50

0,
87

3
35

–
–

–
–

46
65

.3
9

4.
4

18
41

4.
80

35
67

.0
5

3.
3

17
97

.5
7

123

Complexity of chordal conversion for sparse semidefinite…

Fig. 1 Lovász theta problems solved via chordal conversion: a Preprocessing time,with regression p×(n) =
8.385n×10−5 and R2 = 0.87; b Time per iteration, with regression f×(n) = 8.9n×10−5 and R2 = 0.98;
c Iterations per decimal digit of accuracy, with (solid) regression g(n) = 0.548n0.115 and R2 = 0.45 and
(dashed) bound g(n) = 0.1

√
n

5.1 Lovász theta problem on synthetic dataset

Our first set of experiments is on the Lovász theta problem (Example 1.3), for which
G = G always holds with equality. For each trial, we set G = (V, E) by randomly
generating a k-tree with k = 35 (see [44, p. 9] for details) and then deleting edges
uniformly at random until |E |/|V| ≈ 3/2. The resulting G should have treewidth
exactly τ� = 35 in the limit |V| → ∞; the optimal ordering Π to yield ω(EΠ) = 36
is simply any perfect elimination ordering on the k-tree (“k-tree ordering” in Table 1).
We observe that theamd heuristic inMATLAB [1] finds high-quality orderings to yield
ω(EΠ) ≤ 47, corresponding to tree decompositions of width τ ≤ 46, which is only
about 30% worse than the best possible (“amd ordering” in Table 1). Nevertheless,
minor differences in τ can still manifest as larger differences in per-iteration time.

We solve the problem on G using CC and CTC, and observe that in both cases,
it takes around 10 iterations to achieve ε ≈ 10−6 across a wide range of n, until
numerical issues at very large scales n ≈ 105 forced more iterations to be taken (see
Fig. 1c and Table 1). We find that both CC and CTC achieve comparable O(m + n)

runtime per-iteration (see Fig. 1b), but CC is significantly faster in its preprocessing
time (see Fig. 1a). As shown in the last few rows of Table 1, CC solved an instance of
the Lovász theta problem on a graph with 106 vertices and 1.5×106 edges in less than
30min, taking a little over 1min in the preprocessing. In contrast, CTC for a graph of
half this size took 3.5h just to perform the preprocessing.

To test the zero fill-in prediction in Theorem 3.1, our implementation of CC
in this section forces MOSEK to factor its Schur complement matrix H =
A∇2 f (w)AT without the use of a fill-reducing ordering, by setting the flag
MSK_IPAR_INTPNT_ORDER_METHOD to ’MSK_ORDER_METHOD_NONE’. If
Theorem 3.1 is incorrect, then factoringL = chol(H)would catastrophic dense fill-in,
and the per-iteration runtime would not be O(m + n) as shown in Fig. 1b.

5.2 AC optimal power flow relaxation on real-world dataset

Our second set of experiments is on the AC optimal power flow relaxation (Exam-
ple 1.6), for which G ⊂ G generally holds with strict inequality. Here, recall that

123

R. Y. Zhang

Ta
bl
e
2

T
re
ew

id
th

bo
un
ds

fo
r
th
e
72

po
w
er

sy
st
em

te
st

ca
se
s
in

th
e
M
A
T
PO

W
E
R

da
ta
se
t:
|V
|—

nu
m
be
r
of

ve
rt
ic
es
;
|E
|—

nu
m
be
r
of

ed
ge
s;

lb
,
ub

—
lo
w
er
-b
ou

nd
an
d

up
pe
r-
bo

un
ds

on
tw

(G
);
lb
2
,
ub

2
—

lo
w
er
-b
ou

nd
an
d
up

pe
r-
bo

un
ds

on
tw

(G
2
)

#
N
am

e
|V
|

|E
|

lb
ub

lb
2

ub
2

#
N
am

e
|V
|

|E
|

lb
ub

lb
2

ub
2

1
ca
se
4_
di
st

4
3

1
1

2
2

37
ca
se
85

85
84

1
1

4
4

2
ca
se
4g
s

4
4

2
2

3
3

38
ca
se
89
pe
ga
se

89
20
6

8
11

17
27

3
ca
se
5

5
6

2
2

4
4

39
ca
se
94

pi
94

93
1

1
4

4

4
ca
se
6w

w
6

11
3

3
5

5
40

ca
se
11
8z
h

11
8

11
7

1
1

4
4

5
ca
se
9t
ar
ge
t

9
9

2
2

4
4

41
ca
se
11

8
11

8
17

9
4

4
9

12

6
ca
se
9Q

9
9

2
2

4
4

42
ca
se
13

6m
a

13
6

13
5

1
1

8
8

7
ca
se
9

9
9

2
2

4
4

43
ca
se
14

1
14

1
14

0
1

1
4

4

8
ca
se
10

ba
10

9
1

1
2

2
44

ca
se
14

5
14

5
42

2
7

10
21

33

9
ca
se
12

da
12

11
1

1
2

2
45

ca
se
_A

C
T
IV

Sg
20

0
20

0
24

5
4

8
11

18

10
ca
se
14

14
20

2
2

6
6

46
ca
se
30

0
30

0
40

9
3

6
11

17

11
ca
se
15

nb
r

15
14

1
1

4
4

47
ca
se
_A

C
T
IV

Sg
50

0
50

0
58

4
4

8
14

22

12
ca
se
15
da

15
14

1
1

4
4

48
ca
se
13
54
pe
ga
se

13
54

17
10

5
12

13
30

13
ca
se
16

am
15

14
1

1
4

4
49

ca
se
18

88
rt
e

18
88

23
08

4
12

14
38

14
ca
se
16

ci
16

13
1

1
3

3
50

ca
se
19

51
rt
e

19
51

23
75

5
12

15
43

15
ca
se
17

m
e

17
16

1
1

3
3

51
ca
se
_A

C
T
IV

Sg
20

00
20

00
26

67
6

40
16

85

16
ca
se
18

nb
r

18
17

1
1

4
4

52
ca
se
23

83
w
p

23
83

28
86

5
23

9
51

17
ca
se
18

18
17

1
1

3
3

53
ca
se
27

36
sp

27
36

32
63

5
23

9
55

123

Complexity of chordal conversion for sparse semidefinite…

Ta
bl
e
2

co
nt
in
ue
d

#
N
am

e
|V
|

|E
|

lb
ub

lb
2

ub
2

#
N
am

e
|V
|

|E
|

lb
ub

lb
2

ub
2

18
ca
se
22

22
21

1
1

3
3

54
ca
se
27

37
so
p

27
37

32
63

5
23

9
57

19
ca
se
24

_i
ee
e_
rt
s

24
34

3
4

7
8

55
ca
se
27

46
w
op

27
46

32
99

5
23

9
53

20
ca
se
28

da
28

27
1

1
3

3
56

ca
se
27

46
w
p

27
46

32
73

5
24

9
58

21
ca
se
30

pw
l

30
41

3
3

7
9

57
ca
se
28

48
rt
e

28
48

34
42

5
18

14
41

22
ca
se
30

Q
30

41
3

3
7

9
58

ca
se
28

68
rt
e

28
68

34
71

5
17

16
43

23
ca
se
30

30
41

3
3

7
9

59
ca
se
28
69
pe
ga
se

28
69

39
68

9
12

17
42

24
ca
se
_i
ee
e3
0

30
41

3
3

7
9

60
ca
se
30

12
w
p

30
12

35
66

5
25

10
55

25
ca
se
33

bw
33

32
1

1
3

3
61

ca
se
31

20
sp

31
20

36
84

5
28

9
60

26
ca
se
33

m
g

33
32

1
1

3
3

62
ca
se
33

75
w
p

33
74

40
68

6
27

12
64

27
ca
se
34

sa
34

33
1

1
3

3
63

ca
se
64

68
rt
e

64
68

80
65

5
26

15
65

28
ca
se
38

si
38

37
1

1
3

3
64

ca
se
64

70
rt
e

64
70

80
66

5
26

15
64

29
ca
se
39

39
46

3
3

5
7

65
ca
se
64

95
rt
e

64
95

80
84

5
26

15
62

30
ca
se
51
ga

51
50

1
1

3
3

66
ca
se
65
15
rt
e

65
15

81
04

5
26

16
62

31
ca
se
51

he
51

50
1

1
3

3
67

ca
se
92

41
pe
ga
se

92
41

14
,2
07

21
33

42
78

32
ca
se
57

57
78

3
5

6
12

68
ca
se
_A

C
T
IV

Sg
10

k
10

,0
00

12
,2
17

5
33

17
80

33
ca
se
69

69
68

1
1

4
4

69
ca
se
13
65
9p
eg
as
e

13
,6
59

18
,6
25

21
31

42
80

34
ca
se
70

da
70

68
1

1
3

3
70

ca
se
_A

C
T
IV

Sg
25

k
25

,0
00

30
,1
10

6
51

17
12

7

35
ca
se
_R

T
S_

G
M
L
C

73
10

8
4

5
7

11
71

ca
se
_A

C
T
IV

Sg
70

k
70

,0
00

83
,3
18

6
88

16
23

2

36
ca
se
74

ds
74

73
1

1
3

3
72

ca
se
_S

yn
th
et
ic
U
SA

82
,0
00

98
,2
03

6
90

17
24

2

123

R. Y. Zhang

Ta
bl
e
3

A
cc
ur
ac
y
(i
n
de
ci
m
al

di
gi
ts
)
an
d
tim

in
g
(i
n
se
co
nd
s)

fo
r
25

la
rg
es
t
O
PF

pr
ob
le
m
s:

n—
or
de
r
of

m
at
ri
x
va
ri
ab
le
;
“d
ig
it”

—
ac
cu
ra
te

de
ci
m
al

di
gi
ts
;
“p
re
p”
—

al
l

pr
ep
ro
ce
ss
in
g
tim

e
be
fo
re

in
te
ri
or
-p
oi
nt
,i
nc
lu
di
ng

th
e
co
nv
er
si
on

pr
oc
es
s
an
d
M
O
SE

K
’s
in
te
rn
al

pr
ep
ar
at
io
n
tim

e;
“i
te
r”
—

nu
m
be
r
of

in
te
ri
or
-p
oi
nt

ite
ra
tio

ns
;
“p
er
-i
t”
—

in
te
ri
or
-p
oi
nt

tim
e
pe
r
ite
ra
tio

n;
“p
os
t”
-
po
st
-p
ro
ce
ss
in
g
tim

e
af
te
r
in
te
ri
or
-p
oi
nt
,a
nd

to
re
co
ve
r
U

sa
tis
fy
in
g
pr
oj
F
(U

U
T
)
=

Y
vi
a
[3
9,
A
lg
or
ith

m
2]

#
n

m
D
ua
lC

T
C
(p
ro
va
bl
e)

D
ua
lC

T
C
(h
eu
ri
st
ic
)

C
C
(p
ro
va
bl
e)

po
st

pr
ep

di
gi
t

ite
r

pe
r-
it

pr
ep

di
gi
t

ite
r

pe
r-
it

pr
ep

di
gi
t

ite
r

pe
r-
it

48
13

54
40

60
2.
14

8.
4

44
0.
84

1.
49

8.
4

42
0.
12

0.
32

8.
3

47
0.
05

0.
24

49
18

88
56

62
3.
40

7.
8

49
1.
98

2.
15

7.
8

53
0.
15

0.
41

8.
0

58
0.
07

0.
33

50
19

51
58

51
3.
78

7.
9

46
3.
17

2.
21

7.
7

52
0.
15

0.
43

8.
0

59
0.
07

0.
33

51
20

00
59

98
34

.6
8

8.
1

32
12

2.
93

4.
20

8.
3

32
2.
54

1.
89

7.
9

28
1.
23

0.
98

52
23

83
71

47
7.
97

7.
6

47
14

.4
6

2.
41

7.
7

41
0.
32

0.
81

7.
7

44
0.
24

0.
62

53
27

36
82

06
9.
33

7.
1

57
20

.5
9

2.
83

7.
8

58
0.
36

0.
86

7.
9

57
0.
28

0.
77

54
27

37
82

09
12

.3
1

6.
7

61
17

.1
6

2.
87

7.
4

61
0.
41

0.
85

8.
4

56
0.
31

0.
76

55
27

46
82

36
9.
14

7.
2

50
18

.3
4

4.
21

7.
5

51
0.
58

0.
92

8.
4

52
0.
32

0.
71

56
27

46
82

36
10

.9
8

7.
2

60
19

.8
3

4.
07

7.
2

54
0.
66

0.
93

7.
8

59
0.
38

1.
17

57
28

48
85

42
7.
52

7.
5

54
5.
25

3.
62

7.
9

60
0.
26

0.
69

6.
9

58
0.
18

0.
57

58
28

68
86

02
5.
81

7.
6

54
6.
63

3.
64

7.
8

60
0.
23

0.
70

7.
8

55
0.
15

0.
56

59
28

69
86

05
9.
62

8.
0

47
7.
36

2.
98

8.
0

47
0.
23

0.
81

8.
0

46
0.
20

0.
54

60
30

12
90

34
9.
85

7.
7

50
20

.6
5

3.
22

7.
7

49
0.
49

1.
07

8.
0

52
0.
37

0.
95

61
31

20
93

58
11

.5
7

7.
1

62
21

.1
3

3.
43

7.
6

61
0.
54

1.
12

8.
2

66
0.
42

1.
16

62
33

74
10

,1
20

12
.1
1

7.
3

57
24

.0
2

3.
85

7.
7

55
0.
80

1.
25

8.
0

54
0 .
52

1.
12

63
64

68
19

,4
02

21
.3
8

7.
7

65
43

.9
5

10
.7
5

8.
2

61
1.
17

1.
83

7.
9

63
0.
73

2.
37

64
64

70
19

,4
08

21
.2
8

7.
9

61
40

.9
0

8.
25

8.
1

59
0.
79

1.
92

7.
8

60
0.
74

2.
18

65
64

95
19

,4
83

20
.4
8

7.
7

68
42

.0
3

7.
95

8.
1

67
0.
88

1.
92

8.
1

60
0.
64

2.
27

66
65

15
19

,5
43

20
.4
8

7.
6

65
44

.3
3

11
.0
7

8.
0

61
1.
16

1.
82

7.
9

60
0.
62

2.
16

67
92

41
27

,7
21

48
.5
8

7.
8

67
12

0.
46

14
.4
3

7.
9

54
3.
02

3.
69

7.
8

63
1.
68

3.
90

123

Complexity of chordal conversion for sparse semidefinite…

Ta
bl
e
3

co
nt
in
ue
d

#
n

m
D
ua
lC

T
C
(p
ro
va
bl
e)

D
ua
lC

T
C
(h
eu
ri
st
ic
)

C
C
(p
ro
va
bl
e)

po
st

pr
ep

di
gi
t

ite
r

pe
r-
it

pr
ep

di
gi
t

ite
r

pe
r-
it

pr
ep

di
gi
t

ite
r

pe
r-
it

68
10

,0
00

29
,9
98

55
.6
9

8.
0

49
18

8.
19

19
.8
3

8.
2

41
3.
63

4.
58

8.
1

42
2.
56

4.
68

69
13

,6
59

40
,9
75

56
.2
8

7.
2

57
12

6.
93

28
.7
8

7.
7

49
3.
07

4.
34

7.
8

50
1.
84

6.
37

70
25

,0
00

74
,9
98

–
–

–
–

69
.1
6

7.
4

11
4

25
.0
5

19
.3
6

7.
7

11
8

14
.7
3

25
.0
6

71
70

,0
00

20
9,
99

8
–

–
–

–
–

–
–

–
96

.8
5

7.
9

65
18

0.
82

11
3.
19

72
82

,0
00

24
5,
99

4
–

–
–

–
–

–
–

–
99

.3
8

8.
0

68
19

7.
34

14
0.
42

123

R. Y. Zhang

Fig. 2 AC optimal power flow relaxation solved via chordal conversion (×), heuristic Dual CTC (◦), and
provable Dual CTC ("): a Time per iteration, with regression lines of f×(n) = 6.908n × 10−5 with
R2 = 0.90, f◦(n) = 2.623n × 10−4 with R2 = 0.83, and f"(n) = 1.375n × 10−3 with R2 = 0.80; b
Iterations per decimal digit of accuracy, with (solid) regression g(n) = 1.088n0.224 with R2 = 0.84 and
(dashed) bound g(n) = √n

tw(G) = 2 · tw(G) and tw(G) = 2 · tw(G2), where G is the graph of the underlying
electric grid, and G2 is its square graph. For the 72 power system graphs taken from the
MATPOWER suite [48], we compute upper- and lower-bounds on tw(G) and tw(G2)

using the “FillIn” and the “MMD+” heuristics outlined in [30], and find that tw(G2)

is small in all 72 power system graphs (see Table 2).
We solve the problem using CC and the two variants of CTC, and verify that the

per-iteration costs are linear (see Fig. 2a). In all three cases, it takes a consistent 50–
70 iterations to achieve ε ≈ 10−6, again until numerical issues at very large scales
n ≈ 104 forced more iterations to be taken (see Table 3 and Fig. 2b). For these
smaller large-scale problems with G
= G, we find that CC and CTC had comparable
processing times, but CC is between 2 and 100 times faster than either variant of CTC
in its solution time. The largest case is case_SyntheticUSA with 82000 buses
(due to [5]), which we solve with CC in 4h. Previously, this was solved using CTC
in 8h on a high-performance computing (HPC) node with two Intel XeonE5-2650v4
processors (a total of 24 cores) and 240 GB memory [13].

6 Conclusions and future directions

Chordal conversion can sometimes allowan interior-pointmethod to solve a large-scale
sparse SDP in just O(m + n) time per-iteration. Previously, a well-known necessary
condition is that the aggregate sparsity graph G = (V , E) should have an O(1)
treewidth (independent of m and n):

V = {1, 2, . . . , n}, E = spar(C) ∪ spar(A1) ∪ · · · ∪ spar(Am),

where spar(C) ≡ {(i, j) : C[i, j]
= 0 for i > j}.

123

Complexity of chordal conversion for sparse semidefinite…

In this paper, provide a companion sufficient condition, namely that the extended
aggregate sparsity graph G = (V , E) should also have an O(1) treewidth:

V = {1, 2, . . . , n}, E = spar(C) ∪ clique(A1) ∪ · · · ∪ clique(Am)

where clique(A) = {(i, j) : A[i, k]
= 0 or A[k, j]
= 0 for some k}.

The key to our analysis is to characterize the Schur complement sparsity E (2), the
sparsity pattern of the linear equations solved at each iteration, directly in terms of E .

Our primary focus has been on reducing the per-iteration costs to O(m+n). Naively
applying this figure to the O(

√
m + n log(1/ε)) iterations of a general-purpose

interior-point method results in an end-to-end complexity of O((m + n)1.5 log(1/ε))
time. By adopting the treewidth-based interior-point method of Dong et al. [12, Theo-
rem 1.3], as was done in the recent preprint of Gu and Song [21], it should be possible
to formally reduce the end-to-end complexity down to O((m + n) log(1/ε)) time.
However, we mention that interior-point methods in practice often converge to ε accu-
racy in dimension-free O(log(1/ε)) iterations (without the square-root factor), and as
such the empirical complexity is already O((m + n) log(1/ε)) time.

In many applications, G and G either coincide or are very close, so our analysis
becomes either exact or nearly exact; an O(1) treewidth in G is both necessary and
sufficient for chordal conversion to be fast. In cases where G and G are very different,
particularly when the treewidth of G is Ω(n) while the treewidth of G is O(1), our
preliminary simulations suggest that the per-iteration cost could slow down Ω(n3)
time, but more work is needed to establish this rigorously. Finally, even where interior-
point methods are no longer efficient, it may still be possible to use chordal conversion
to improve the efficiency of first-order methods and/or nonconvex approaches.

Acknowledgements I am grateful to Martin S. Andersen for numerous insightful discussions, and for his
early numerical experiments that motivated much of the subsequent theoretical analysis in this paper. The
paper has also benefited significantly from discussions with Subhonmesh Bose, Salar Fattahi, Alejandro
Dominguez–Garcia, Cedric Josz, and Sabrina Zielinski. I thank the associate editor and two reviewers for
helpful comments that significantly sharpened the presentation of the paper.

Declarations

Conflict of interest The author has no relevant financial or non-financial interests to disclose.

A Proof of the standard-form assumptions

Given data C, A1, . . . , Am ∈ S
n and b ∈ R

m , define (A,b, c,K) as in (3). In
this section, we verify that (A,b, c,K) specifies an SDP that satisfies the regular-
ity assumptions in Definition 2.7.

Lemma A.1 (Linear independence) We have AT y = 0 if and only y = 0.

123

R. Y. Zhang

Proof We will prove
∑n

k=1 PkPT
k � I , which implies AAT � I and hence ‖AT y‖ ≥

‖y‖. For arbitrary Y ∈ S
n
F with y = svecF (Y), we observe that

‖PT
k y‖2 = ‖ svec(Y [Jk, Jk])‖2 =

∑

i, j∈Jk
(Y [i, j])2 =

∑

(i, j)∈clique(Jk)
γi j (Y [i, j])2

where γi j = 1 if i = j and γi j = 2 if i
= j . Therefore, we have

n∑

k=1
‖PT

k y‖2 =
n∑

k=1

∑

(i, j)∈clique(Jk)
γi j (Y [i, j])2 ≥

∑

(i, j)∈F
γi j (Y [i, j])2 = ‖y‖2.

The inequality is because F =⋃n
k=1 clique(Jk).
�

Lemma A.2 (Strong duality is attained) Under Assumption 1, there exists x�, s� ∈ K
satisfying Ax� = b, AT y� + s� = c, (x�)T s� = 0.

Proof Define Pj implicitly to satisfy PT
j x = x[colF (j)] for all x ∈ R

m . Assumption 1

says that there exists X̂ � 0 and ŷ ≤ 0 and that satisfyA(X̂) ≤ b andAT (ŷ)+ Ŝ = C

and
〈
C, X̂
〉
= 〈b, ŷ〉. It follows from [44, Theorem 9.2] that Ŝ = C−AT (ŷ) ∈ S

n
F∩Sn+

if and only if there exists Ŝ j � 0 such that Ŝ =∑n
j=1 Pj Ŝ j PT

j . Now, we turn to the
primal-dual pair defined by the data (A,b, c,K) in (3), which is written

min
v∈Rm ,Vj∈Sω j

{

〈b, v〉 : projF
[
AT (−v)+∑n

j=1 Pj Vj PT
j − C

]
= 0,

v ≥ 0, V1, . . . , Vn � 0

}

= max
Y∈SnF

{
〈−C,Y 〉 : A(Y) ≤ b, −PT

j Y Pj � 0 for all j ∈ {1, 2, . . . , n}
}

We can mechanically verify that v� = −ŷ and V �
j = Ŝ j is feasible for the pri-

mal problem, and Y � = ΠF (X̂) is feasible for the dual problem, and that the
two objectives coincide 〈b, v�〉 = 〈−C,Y �〉. Therefore, we conclude that x� =
(v�, svec(V �

1), . . . , svec(V �
n)) and y� = svecF (Y �) is a complementary solution sat-

isfying AT x� = b, AT y� + s� = c, and 〈x�, s�〉 = 0.
�

B Complexity of general-purpose interior-point methods

In this section, we state a concrete interior-point method that implements the specifi-
cations outlined in Definition 2.8, roughly following the steps in [11].

Proposition B.1 Let (A,b, c,K) describe an SDP in (n, ω)-standard form, and let opt
denote its optimal value. Let T andM denote the time and memory needed, given data
A ∈ R

M×N , g ∈ R
M, and a choice ofw ∈ Int(K), to formand solveADATΔy = g for

Δy ∈ R
M, where D−1 = ∇2 f (w) and f = − log det(w). Then, a general-purpose

123

Complexity of chordal conversion for sparse semidefinite…

interior-point method computes (x, y) that satisfy the following in O(
√
n log(1/ε))

iterations

cT x ≤ opt + n · ε, ‖Ax − b‖ ≤ ε, x ∈ K,

bT y ≥ opt − n · ε, c − AT y + ε1K ∈ K,

with per-iteration costs of O(ω2n + nnz(A) + T) time and O(ωn + nnz(A) + M)

memory.

We prove Proposition B.1 by using the short-step method of Nesterov and Todd [34,
Algorithm 6.1] to solve the extended homogeneous self-dual embedding

min
x,y,s,κ,τ,θ

(n + 1)θ (8a)

s.t.

⎡

⎢
⎢
⎣

0 +AT −c −rd
−A 0 +b −rp
+cT −bT 0 −rc
rTd rTp rc 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
y
τ

θ

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

s
0
κ

0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
0

n + 1

⎤

⎥
⎥
⎦ (8b)

x, s ∈ K, κ, τ ≥ 0, (8c)

where rd = 1K− c and rp = −A1K+b and rc = 1+ cT 1K. Beginning at the strictly
feasible, perfectly centered point in (9) for μ = 1:

θ(0) = τ (0) = κ(0) = 1, y(0) = 0, x (0) = s(0) = 1K. (9)

we take the following steps

μ+ =
(

1− 1

15
√
n + 1

)

· x
T s + τκ

n + 1
, (10a)

(x+, y+, s+, τ+, θ+, κ+) = (x, y, s, τ, θ, κ)+ (Δx,Δy,Δs,Δτ,Δθ,Δκ).

along the search direction defined by the linear system [41, Eqn. 9]

⎡

⎢
⎢
⎣

0 +AT −c −rp
−A 0 +b −rd
+cT −bT 0 −rc
+rTp +rTd +rc 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Δx
Δy
Δτ

Δθ

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

Δs
0

Δκ

0

⎤

⎥
⎥
⎦ = 0, (11a)

s +Δs + ∇2 f (w)Δx + μ+∇ f (x) = 0, (11b)

κ +Δκ + (κ/τ)Δτ − μ+τ−1 = 0. (11c)

where f (w) = − log detw is the usual self-concordant barrier function, and w ∈
Int(K) is the unique point that satisfies ∇2 f (w)x = s. The following is an immediate
consequence of [34, Theorem 6.4].

123

R. Y. Zhang

Lemma B.2 (Short-Step Method) The sequence in (10) arrives at an iterate
(x, y, s, τ, θ, κ) satisfying

xT s + τκ

n + 1
≤ ε, τκ ≥ γ ε (12)

with γ = 9
10 in at most O(

√
n log(1/ε)) iterations.

Finally, the following result (adapted from [11, Lemma5.7.2]) assures us that a feasible
point satisfying the optimality condition (12) will recover a solution to the original
problem.

Lemma B.3 (ε-accurate and ε-feasible) Let there exist (x�, y�) such that Ax� = b
with x� ∈ K and c−AT y� ≡ s� ∈ K that satisfies strong duality bT y� = cT x�. Then,
a point (x, y, s, τ, θ, κ) that is feasible for (8) and satisfies the optimality condition
(12) also satisfies the following, where ρ = 1+ 1TK(x� + s�):

‖A(x/τ)− b‖ ≤ ρ‖rp‖
γ
· ε, ‖AT (y/τ)+ (s/τ)− c‖ ≤ ρ‖rd‖

γ
· ε, (x/τ)T (s/τ)

n + 1
≤ ρ2

γ 2 · ε.

Proof First, observe that (x̂, ŷ, ŝ, τ̂ , θ̂ , κ̂) = (τ̂ x�, τ̂ y�, τ̂ s�, τ̂ , 0, 0) with τ̂ = (n +
1)/ρ is a solution to (8), because rTd x

� + rTp y
� + rc = 1TK(x� + s�) + 1 = ρ. Next,

we prove that if (x, y, s, τ, θ, κ) is feasible for (8) and satisfies (12), then τ ≥ γ
ρ
.

Indeed, the skew-symmetry of (8b) yields θ = xT s+τκ
n+1 and (x − x̂)T (s − ŝ) + (τ −

τ̂)(κ − κ̂) = 0. Rearranging yields (n + 1)θ = xT s + τκ = x̂ T s + xT ŝ + τ κ̂ +
τ̂ κ and hence κ ≤ (n + 1)θ/τ̂ . Under (12), we have θ = xT s+τκ

n+1 ≤ ε and τ ≥
γ ε
κ
≥ γ θ

κ
≥ γ θ

(n+1)θ/τ̂
= γ

n+1 τ̂ = γ
ρ
. Finally, divide (8b) through by τ and substitute

1/τ ≤ ρ/γ .
�

Proof of Proposition B.1 Recall that (A,b, c,K) describe an SDP in (n, ω)-standard
form, and hence there exist (x�, y�) such thatAx� = bwith x� ∈ K and c−AT y� ∈ K
that satisfies strong duality bT y� = cT x�. Combining Lemma B.3 and Lemma B.2
shows that iterations in (10) converges to the desired ε-accurate, ε-feasible iterate after
O(
√
n log(1/ε)) iterations. The cost of each iteration is essentially equal to the cost

of computing the search direction in (11). We account for this cost via the following
two steps:

1. (Scaling point) We partition x = [svec(X j)]�j=1 and s = [svec(S j)]�j=1.
Then, the scaling point w = [svec(Wj)]�j=1 is given in closed-form as Wj =
S1/2j (S1/2j X j S

1/2
j)−1/2S1/2j [38, Section 5]. Noting that each Wj is at most ω× ω,

the cost of forming w is at most of order

�∑

j=1
ω3

j ≤ ω2
�∑

j=1
ω j = ω2n time,

�∑

j=1
ω2

j ≤ ω

�∑

j=1
ω j = ωn memory.

123

Complexity of chordal conversion for sparse semidefinite…

By this same calculation, it follows that the Hessian matrix–vector products
∇2 f (w)x = [svec(W−1j X jW

−1
j)]�j=1 and ∇2 f (w)−1x = [svec(Wj X jW j)]�j=1

also cost O(ω2n) time and O(ωn) memory.
2. (Search direction) Using elementary but tedious linear algebra, we can show that

if
(ADAT)

[
v1 v2 v3

] = [0 −b rp
]− AD

[
d c rd

]
(13a)

where D = [∇2 f (w)]−1 and d = −s − μ+∇ f (x), and

[
u1 u2 u3

] = D(
[
d c rd

]+ AT [v1 v2 v3
]
), (13b)

then

([−D−10 −rc
rc 0

]

−
[
c rd
−b rp

]T [u2 u3
v2 v3

])[
Δτ

Δθ

]

=
[−d0

0

]

−
[
c rd
−b rp

]T [u1
v1

]

,

(13c)
[
Δx
Δy

]

=
[
u1
v1

]

−
[
u1 u2
v1 v2

] [
Δτ

Δθ

]

,

(13d)

Δs = d − D−1Δx, (13e)

Δκ = d0 − D−10 Δτ, (13f)

where D0 = τ/κ and d0 = −κ + μ+τ−1. Therefore, we conclude that the cost
of computing the search direction in (11) is equal to the cost of solving O(1)
instances of the Schur complement equation ADATΔy = g, plus O(1) matrix–
vector products withA,AT ,D,D−1, for a total cost of O(T+ nnz(A)+ω2n) time
and O(M + nnz(A) + ωn) memory respectively. Note that ADAT 	 0 because
AAT 	 0 by the linear independence assumption, and D−1 = ∇2 f (w) 	 0 for all
w ∈ Int(K).

�

References

1. Amestoy, P.R.,Davis, T.A.,Duff, I.S.:Algorithm837:AMD, an approximateminimumdegree ordering
algorithm. ACM Trans. Math. Softw. 30(3), 381–388 (2004)

2. Andersen, E.D., Andersen, K.D.: The MOSEK interior point optimizer for linear programming: an
implementation of the homogeneous algorithm. In: High performance optimization, pp. 197–232.
Springer (2000)

3. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic
quadratic optimization. Math. Program. 95, 249–277 (2003)

4. Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems.
Int. J. Electr. Power Energy Syst. 30(6–7), 383–392 (2008)

5. Birchfield, A.B., Xu, T., Gegner, K.M., Shetye, K.S., Overbye, T.J.: Grid structural characteristics as
validation criteria for synthetic networks. IEEE Trans. Power Syst. 32(4), 3258–3265 (2016)

123

R. Y. Zhang

6. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In:
Proceedings of the 3rd international symposium on Information processing in sensor networks, pp.
46–54 (2004)

7. Borchers, B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Methods
Softw. 11(1–4), 683–690 (1999)

8. Boumal, N., Voroninski, V., Bandeira, A.S.: Deterministic guarantees for Burer–Monteiro factoriza-
tions of smooth semidefinite programs. Commun. Pure Appl. Math. 73(3), 581–608 (2020)

9. Burer, S., Monteiro, R.D.: A nonlinear programming algorithm for solving semidefinite programs via
low-rank factorization. Math. Program. 95(2), 329–357 (2003)

10. Dancis, J.: Positive semidefinite completions of partial Hermitian matrices. Linear Algebra Appl. 175,
97–114 (1992)

11. de Klerk, E., Terlaky, T., Roos, K.: Self-dual embeddings. In: Handbook of Semidefinite Programming,
pp. 111–138. Springer (2000)

12. Dong, S., Lee, Y.T., Ye, G.: A nearly-linear time algorithm for linear programs with small treewidth:
a multiscale representation of robust central path. In: Proceedings of the 53rd annual ACM SIGACT
symposium on theory of computing, pp. 1784–1797 (2021)

13. Eltved, A., Dahl, J., Andersen, M.S.: On the robustness and scalability of semidefinite relaxation for
optimal power flow problems. Optim. Eng. (2019). https://doi.org/10.1007/s11081-019-09427-4

14. Fomin, F.V., Lokshtanov, D., Saurabh, S., Pilipczuk, M., Wrochna, M.: Fully polynomial-time param-
eterized computations for graphs and matrices of low treewidth. ACM Trans. Algorithms 14(3), 1–45
(2018)

15. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT andMAXBISECTION.
Algorithmica 18(1), 67–81 (1997)

16. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via
matrix completion I: General framework. SIAM J. Optim. 11(3), 647–674 (2001)

17. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965)
18. George, A., Liu, J.W.: Computer solution of large sparse positive definite. Prentice Hall Professional

Technical Reference, Hoboken (1981)
19. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-

ability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)
20. Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian

matrices. Linear Algebra Its Appl. 58, 109–124 (1984)
21. Gu, Y., Song, Z.: A faster small treewidth SDP solver. (2022). arXiv:2211.06033
22. Jabr, R.A.: Exploiting sparsity in SDP relaxations of the OPF problem. IEEE Trans. Power Syst. 27(2),

1138–1139 (2012)
23. Kim, S., Kojima, M., Waki, H.: Exploiting sparsity in SDP relaxation for sensor network localization.

SIAM J. Optim. 20(1), 192–215 (2009)
24. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear and nonlinear matrix

inequalities via positive semidefinite matrix completion. Math. Program. 129(1), 33–68 (2011)
25. Kobayashi, K., Kim, S., Kojima, M.: Correlative sparsity in primal-dual interior-point methods for LP,

SDP, and SOCP. Appl. Math. Optim. 58(1), 69–88 (2008)
26. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim.

11(3), 796–817 (2001)
27. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1),

92 (2012)
28. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)
29. Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained

optimal power flow problem. IEEE Trans. Power Syst. 31(2), 1297–1307 (2016)
30. Maniu, S., Senellart, P., Jog, S.: An experimental study of the treewidth of real-world graph data. In:

22nd international conference on database theory (ICDT 2019), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, (2019)

31. Molzahn, D.K., Hiskens, I.A.: A survey of relaxations and approximations of the power flow equations.
Found. Trends Electric Energy Syst. 4(1–2), 1–221 (2019)

32. MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0., (2019)
33. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite

programming via matrix completion II: implementation and numerical results. Math. Program. 95(2),
303–327 (2003)

123

https://doi.org/10.1007/s11081-019-09427-4
http://arxiv.org/abs/2211.06033

Complexity of chordal conversion for sparse semidefinite…

34. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim.
8(2), 324–364 (1998)

35. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and
optimization. PhD thesis, California Institute of Technology, (2000)

36. Pataki, G., Schmieta, S.: The DIMACS library of semidefinite-quadratic-linear programs, (2002)
37. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim.

Method. Softw. 11(1–4), 625–653 (1999)
38. Sturm, J.F.: Implementation of interior point methods for mixed semidefinite and second order cone

optimization problems. Optim. Methods Softw. 17(6), 1105–1154 (2002)
39. Sun, Y.: Decomposition methods for semidefinite optimization. PhD thesis, UCLA, (2015)
40. Sun, Y., Andersen, M.S., Vandenberghe, L.: Decomposition in conic optimization with partially sepa-

rable structure. SIAM J. Optim. 24(2), 873–897 (2014)
41. Todd, M.J., Toh, K.-C., Tütüncü, R.H.: On the Nesterov-Todd direction in semidefinite programming.

SIAM J. Optim. 8(3), 769–796 (1998)
42. Toh,K.-C., Todd,M.J., Tütüncü,R.H.: Sdpt3-amatlab software package for semidefinite programming,

version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)
43. Tütüncü, R.H., Toh, K.-C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using sdpt3.

Math. Program. 95, 189–217 (2003)
44. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Found. Trends

Optim. 1(4), 241–433 (2015)
45. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations

for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)
46. Zhang, R.Y., Lavaei, J.: Sparse semidefinite programs with guaranteed near-linear time complexity via

dualized clique tree conversion. Math. Program. 188, 1–43 (2020)
47. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., Wynn, A.: Chordal decomposition in

operator-splitting methods for sparse semidefinite programs. Math. Program. 180(1), 489–532 (2020)
48. Zimmerman, R.D.,Murillo-Sánchez, C.E., Thomas, R.J.:Matpower: steady-state operations, planning,

and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19
(2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Complexity of chordal conversion for sparse semidefinite programs with small treewidth
	Abstract
	1 Introduction
	1.1 Our results: complexity of chordal conversion
	1.2 Prior results: complexity of clique-tree conversion
	1.3 Other approaches

	2 Preliminaries
	2.1 Notations and basic definitions
	2.2 Sparse Cholesky factorization
	2.3 Minimum frontsize and treewidth
	2.4 General-purpose interior-point methods

	3 Main results
	4 Frontsize of the Schur complement sparsity (Proof of Theorem 3.1)
	4.1 Exact frontsize of a lifted sparsity pattern (Proof of Lemma 4.2)
	4.2 Sparsity overestimate (Proof of Lemma 4.3)

	5 Large-scale numerical experiments
	5.1 Lovász theta problem on synthetic dataset
	5.2 AC optimal power flow relaxation on real-world dataset

	6 Conclusions and future directions
	Acknowledgements
	A Proof of the standard-form assumptions
	B Complexity of general-purpose interior-point methods
	References

