Mathematical Programming
https://doi.org/10.1007/s10107-024-02137-5

FULL LENGTH PAPER

Series A ")

Check for
updates

Complexity of chordal conversion for sparse semidefinite
programs with small treewidth

Richard Y. Zhang'

Received: 12 June 2023 / Accepted: 10 August 2024
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2024

Abstract

If a sparse semidefinite program (SDP), specified over n x n matrices and subject
to m linear constraints, has an aggregate sparsity graph G with small treewidth, then
chordal conversion will sometimes allow an interior-point method to solve the SDP
in just O (m + n) time per-iteration, which is a significant speedup over the £ (n?)
time per-iteration for a direct application of the interior-point method. Unfortunately,
the speedup is not guaranteed by an O (1) treewidth in G that is independent of m and
n, as a diagonal SDP would have treewidth zero but can still necessitate up to £2(n>)
time per-iteration. Instead, we construct an extended aggregate sparsity graph G 2 G
by forcing each constraint matrix A; to be its own clique in G. We prove that a small
treewidth in G does indeed guarantee that chordal conversion will solve the SDP in
O (m 4+ n) time per-iteration, to e-accuracy in at most O (/m + n log(1/¢)) iterations.
This sufficient condition covers many successful applications of chordal conversion,
including the MAX-k-CUT relaxation, the Lovéasz theta problem, sensor network
localization, polynomial optimization, and the AC optimal power flow relaxation,
thus allowing theory to match practical experience.

1 Introduction

Consider directly applying a general-purpose interior-point method solver, like
SeDuMi [37], SDPT3 [42], and MOSEK [32], to solve the standard-form semidefinite
program to high accuracy:

min (C.X) st X >0 (4. X)<biforallie(l.2.....m}.  (SDP)
en

Financial support for this work was provided in part by the NSF CAREER Award ECCS-2,047,462 and in
part by C3.ai Inc. and the Microsoft Corporation via the C3.ai Digital Transformation Institute.

B4 Richard Y. Zhang
ryz@illinois.edu

1 Dept. of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign,

306 N Wright St, Urbana, IL 61801, USA

Published online: 17 September 2024 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-024-02137-5&domain=pdf
http://orcid.org/0000-0003-3980-2791

R.Y.Zhang

Here, S" denotes the set of n x n real symmetric matrices with inner product
(Aj, X) = tr(A; X), and X > 0 means that X is positive semidefinite. At each iter-
ation, the n x n matrix variable X is generally fully dense, even when the problem
data C, Ay, ..., A, € S" and by, ..., b, € R are sparse. The per-iteration cost of
the solver is usually at least £2 () time, which in practice limits the value of 7 to no
more than a few thousand.

Instead, to handle n as large as ahundred thousand, researchers have found empirical
success by first performing a simple preprocessing step called chordal conversion
(CC), which was first introduced in by Fukuda et al. [16]. Suppose that every § =
C—>",yiA; > Ofactors as § = LLT into a lower-triangular Cholesky factor L that
is sparse. It turns out, by defining J; = {i : L[i, j] # 0} as the possible locations of
nonzeros in the j-th column of L, that (SDP) is exactly equivalent,' to the following

. (Aj, X) <b; foralli e{l,2,...,m},
min (CX) Sty J]=0 forallje(l2,....n). €O
While not immediately obvious, (CC) is actually an optimization over a sparse matrix
variable X, because the matrix elements that are not indexed by a constraint (A;, X)
or X[J;, J;] can be set to zero without affecting the optimization. Hence, the point of
the reformulation is to reduce the number of optimization variables, from %n(n +1)
in (SDP) to at most w - n in (CC), where w = max |J;| is defined as the maximum
number of nonzeros per column of the Cholesky factor L.

Clearly, chordal conversion needs w < n in order to be efficient. Where this
condition holds, the interior-point method solver is consistently able to solve (CC) in
just O (m+n) time per-iteration, thereby solving some of the largest instances of (SDP)
ever considered. Unfortunately, a small @ does not actually guarantee the empirically
observed O (m + n) time figure. Consider the following counterexample, which has
® = 1, but would nevertheless incur a cost of at least £2(n3) time per-iteration.

Example 1.1 (Diagonal SDP) Given vectors ¢, ay, . .., a, € R", consider the follow-
ing instance of (SDP):

)I(Iliél (diag(c), X) s.t. X >0, (diag(a;), X) <b; foralli € {1,2,...,m}.
= n

One can verify that J; = {i : L[i, j] # 0} = {j}, so the corresponding (CC) is a
linear program over n variables and m constraints:

m]iél (c,x) st.x>0, (a;,x)<b;foralli €{1,2,...,m}.
xeR"

Despite w = max; |J;| = 1, if the number of linear constraints is at least m = £2(n),
then it would take any method at least .Q(n3 ) time to take a single iteration. O

While a small @ < n is clearly necessary for chordal conversion to be fast, Exam-
ple 1.1 shows that it is not sufficient. In this paper, we fill this gap, by providing

I The equivalence is due to Grone, Johnson, Sd and Wolkowicz [20, Theorem 7]; see also [16, Theorem 2.3]
and [44, Theorem 10.1].

@ Springer



Complexity of chordal conversion for sparse semidefinite...

a sufficient condition for a general-purpose interior-point method to solve (CC) in
O (m + n) time per-iteration. The sufficient condition covers many successful appli-
cations of chordal conversion, including the MAX-k-CUT relaxation [16, 24, 33], the
Lovész theta problem [16, 24, 33], sensor network localization [23, 24], polynomial
optimization [26, 35, 45], and the AC optimal power flow relaxation in electric grid
optimization [13, 22, 29, 31], thus allowing theory to match practical experience.

1.1 Our results: complexity of chordal conversion

In order for chordal conversion to be fast, a well-known necessary condition is for the
underlying aggregate sparsity graph, which is defined G = (V, E) with

V={1,2,...,n}, E =spar(C)Uspar(A;)U---Uspar(A;), (1)
where spar(C) = {(i, j) : Cli, jl # 0 fori > j},

to be “tree-like” with a small treewidth tw(G) < n. We defer a formal definition of
the treewidth to Definition 2.4, and only note that the value of w is lower-bounded as
® > 1+tw(G). In other words, while w can be decreased by symmetrically reordering
the columns and rows of the data matrices, asin C < ITCITT and A; < ITA; ITT for
some permutation matrix I7, actually achieving w < n is possible only if tw(G) < n.
However, as illustrated by Example 1.1, even on a graph with tw(G) = 0, and even
when using the optimal w = 1, chordal conversion may still not be fast.

In this paper, we show that a sufficient condition for chordal conversion to be fast is
fora supergraph G 2 G, that additionally captures the correlation between constraints,
to also® be “tree-like” with a small treewidth tw(G) < n. Concretely, we construct
the extended aggregate sparsity graph G = (V, E) by forcing each constraint matrix
A; to be its own clique in G:

V ={1,2,....,n}, E =spar(C)Uclique(A;) U --- U clique(A,,) )
where clique(A) = {(i, j) : Ali, k] # 0 or A[k, j] # O for some k}.

This is the union between G and the constraint intersection graph [17] (or the dual
graph [12] or the correlative sparsity [25, 45]) for the rank-1 instance of (SDP). In other
words, we add anew edge (i, j) to E whenever x; and x ; appear together in a common
constraint x” Agx < by for some k. The fact that this contributes clique(Ay) € E
reflects the reality that each x” Azx < by densely couples all affected elements of x
together, forcing them to be optimized simultaneously. In contrast, the cost x” Cx can
be optimized sequentially over the elements of x, which is why clique(C) is absent.
Our main result Theorem 3.3 says that if the extended graph G has small treewidth
tw(G) = O(1) with respect to m and n, then one can find a fill-reducing permutation
IT such that, after reordering the data as C <« I1CII T and A; <« MA;ITT, the
resulting instance of (CC) is solved by a general-purpose interior-point method in
guaranteed O (m +n) time per-iteration, over at most O (v/m + nlog(1/¢€)) iterations.

2 Note that tw(G) > tw(G) holds by virtue of G D G.

@ Springer



R.Y.Zhang

In practice, a “good enough” permutation 7 is readily found by applying an efficient
fill-reducing heuristic to G, and a primal-dual interior-point method often converges to
€ accuracy in dimension-free O (log(1/€)) iterations (without the square-root factor).
If we take these two empirical observations® as formal assumptions, then a small
treewidth tw(G) = O(1) in the extended graph G is indeed sufficient for chordal
conversion to solve the instance of (SDP) in O ((m + n)log(1/¢€)) empirical time.

In the case that G and G coincide, our analysis becomes exact; a small treewidth in G
is both necessary and sufficient for chordal conversion to achieve O ((m +n) log(1/¢))
empirical time. This is the case for the MAX-k-CUT relaxation [15, 19] and the Lovész
theta problem [28], two classic SDPs that constitute a majority of test problems in the
SDPLIB [7] and the DIMACS [36] datasets. Here, G = G because each constraint
matrix A; indexes just a single matrix element, as in (A;, X) = «; - X[Jji, k;]. Below,
we write e; as the j-th column of the identity matrix, and 1 =[1,1, ..., 1.

Example 1.2 (MAX-k-CUT) Let C be the (weighted) Laplacian matrix for a graph
G=W,& withV = {1,2,...,d}. Frieze and Jerrum [15] proposed a randomized
algorithm to solve MAX k-CUT with an approximation ratio of 1 — 1/k based on
solving

max k_l(C X) s X[i,i]=1 foralli €V

X0 2k TOXULjl1= £ forall () €€
The classic Goemans—Williamson 0.878 algorithm [19] for MAXCUT is recovered
by setting k = 2 and removing the redundant constraint X[7, j] > —1. O

Example 1.3 (Lovasz theta) The Lovasz number 9 (G) of a graph G = (V, £) with
YV ={1,2,...,d} is the optimal value to the following [28]

min_ A st 117 — E yi,j(eiejT +ejel) <Al
A, yi j€R =
(i.))e€

Given that ¥ (G) > 1 holds for all graphs G, dividing through by A and applying the
Schur complement lemma yields a sparse reformulation

i (121 &) X[d+1,d+1]=1,
Yoo \[1Tol" ) %Y X[, j1=0 forall (i, ) € E.

O

We also have G = G in the sensor network localization problem, one of the first
successful applications of chordal conversion to a real-world problem [23], because
spar(A;) = clique(A;) holds for all i. (Assume without loss of generality that each
ay below contains only nonzero elements.)

Example 1.4 (Sensor network localization) We seek to find unknown sensor points
X1,...,Xn € R4 such that

lxi —xjll =ri; forall (i, j) € Nx,  llxi —akll = pix forall (i,k) e Ng

3 In Sect. 5, we provide detailed numerical experiments to validate these empirical observations on real-
world datasets.

@ Springer



Complexity of chordal conversion for sparse semidefinite...

given a subset N, of distances r; j between the i-th and j-th sensors, and a subset N,
of distances p; x between the i-th sensor and the k-th known anchor point a; € R4,
Biswas and Ye [6] proposed the following SDP relaxation

L =1 [ X[ X[ J1 |\ _ o

<[—1 IHXU,J‘] X[J-,J-]D—ri,,» forall (i, j) € N,

min 0, X) s.t. 1 —al X[i.i] X[i. K] ) ‘

X>0 <[—dk akaI,zT:| ; |:X[K,i] X[K,K]D = pj; forall (i, k) € Ny,
X[K,K] =1,

where K = (n+1,...,n+d). O

Our result can also be applied to the chordal conversion of SDPs that arise in
polynomial optimization. The following class of polynomial optimization covers many
of the unconstrained test problems in the original paper [45] that first introduced
chordal conversion to this setting. Below, a matrix U € RP*? is said to be Hankel if
its skew-diagonals are constant, i.e. U[i, j] = U[i +1,j — 1] forall 1 <i,j < p.
We see that G = G holds because the Hankel constraint is dense over its support.

Example 1.5 (Unconstrained polynomial optimization) Given C; ; € RP*7 fori, j €
{1,2, ..., n}, consider the following

n
; Tr. .. o L2 p—I4T
min E u; C; juj where u; —[l,xj,xj,...,xj 1.
X1seees X £ 1

j=

The basic Lasserre—Parrilo SDP relaxation [26, 35] for this problem (without cross
terms) reads

n

min C; i,U; ;) st U;;isHankel, U;;[1,1]1=1 foralli,
Wi} j=120 ;< " I’J) bt iil1, 1]

where [Ui’j]lr'l,jzl denotes an np X np matrix, comprising of n x n blocks of p x p,
with U; ; € RP*? asiits (i, j)-th block. O

But the real strength of our result is its ability to handle cases for which G C G holds
strictly. An important real-world example is the SDP relaxation of the AC optimal
power flow problem [4, 27], which plays a crucial role in the planning and operations
of electricity grids.

Example 1.6 (AC optimal power flow relaxation) Given a graph G = (V, &) on d
vertices V = {1, ..., d}, we say that A; € S implements a power flow constraint at
vertex k € V if it can be written in terms of «; ; € S? and aij € R2%2 g:

1
A = €k€kT & ok + E Z [ejekT R« j —I—ekejr ®azj] .
(j,k)eE

@ Springer



R.Y.Zhang

An instance of the AC optimal power flow relaxation is written

: b b
glé% . <Cj, X) st. b’ < (A, X) < b}
J

in which every A; and C; implements a power flow constraint at some vertex
vel. O

It can be verified that tw(G) = 2 - tw(G) and tw(G) = 2 - tw(G?), where the square
graph G? is defined so that (i, ) e G? if and only if i and j are at most a distance of
2 away in G. In fact, knowing that an electric grid G is “tree-like” does not in itself
guarantee chordal conversion to be fast, because it does not imply that G> would also be
“tree-like”. While chordal conversion is already widely used to solve the AC optimal
power flow relaxation [13, 22, 29, 31], our finding in Sect.5 that tw(gz) <« n holds
for real-world power systems (see Table 2) provides the first definitive explanation for
its observed O ((m + n) log(1/€)) empirical time complexity.

It remains future work to understand the cases where tw(G) and tw(G) are very
different. In the case of the AC optimal power flow relaxation, it is not difficult to
construct a counterexample where tw(G) = 2 and tw(G) = n — 2 (set G to be the star
graph, so that G2 is the complete graph) and observe £2(n®) per-iteration cost after
chordal conversion. This counterexample, along with the trivial Example 1.1, both
hint at the possibility that a small treewidth in G is both necessary and sufficient for
O (m + n) time per-iteration, but more work is needed establish this rigorously.

1.2 Prior results: complexity of clique-tree conversion

Our result is related to a prior work of Zhang and Lavaei [46] that studied a differ-
ent conversion method called clique-tree conversion, also due to Fukuda et al. [16].
This can best be understood as a second step of conversion added on top of chordal
conversion. Recall that chordal conversion converts (SDP) into (CC), and then solves
the latter using an interior-point method. Clique-tree conversion further converts (CC)
into the following problem by splitting each submatrix X; = X[J;, J;] into its own
variable:

n Z?=1<A,~,]~,Xj)§b,- forallie{l,Z,...,m},
min > (Cj, X;) s.t. X;>0 forall je({l,2,...,n}, (CTC)
Koo 5 Nuw(Xo) = Ny u(X,) forall (u, v) € T.

The constraint NV, ,(X,) = N, ,(X,) is added to enforce agreement between over-
lapping submatrices, over the edges of the eponymous clique tree 7.

The point of converting (CC) to (CTC) is to force a favorable sparsity pattern in
the Schur complement equations solved at each iteration of the interior-point method,
which is known as the Schur complement sparsity [44, Section 13.1] or the correlative
sparsity [24,25]. In fact, Zhang and Lavaei [46] pointed out that the Schur complement
sparsity of (CTC) is particularly simple to analyze. Under small treewidth assumptions,
they proved that an interior-point method solves (CTC) in guaranteed O (m + n) time

@ Springer



Complexity of chordal conversion for sparse semidefinite...

per-iteration, over at most O (v/m + n log(1/€)) iterations; see also Gu and Song [21].
But a major weakness of this result is that it critically hinges on the second step of
conversion, from (CC) to (CTC). On a basic level, it does not explain the plethora
of numerical experiments showing that interior-point methods are able to solve (CC)
directly in O (m + n) time per-iteration without a second conversion step [22-24, 45].

Indeed, the numerical experiments of Kim et al. [24] strongly suggest, for instances
of (CTC) with favorable Schur complement sparsity, that the Schur complement spar-
sity of (CC) had already been favorable in the first place, so the second conversion
step was unnecessary, other than for the sake of a proof. Unfortunately, the Schur
complement sparsity of (CC) is much more complicated than that of (CTC). Prior
to this work, Kobayashi et al. [25] provided a characterization for when the Schur
complement sparsity of (CC) is favorable. However, their characterization can only
be checked numerically, in a similar amount of work as performing a single itera-
tion of the interior-point method, and so gives no deeper insight on what classes of
SDPs can be efficiently solved. Our main technical contribution in this paper is The-
orem 3.1, which characterizes the complicated Schur complement sparsity in terms
of the much-simpler extended sparsity E. It is this simplicity that allowed us to ana-
lyze many successful applications of chordal conversion, as detailed in the previous
section.

In practice, the second conversion step from (CC) to (CTC) results in a massive
performance penalty, both in preprocessing time and in the solution time. In our large-
scale experiments in Sect. 5, the second step of converting from (CC) into (CTC) can
sometimes take more than 100 times longer than the first step of converting (SDP)
into (CC). Also, we find that the state-of-the-art solver MOSEK [32] takes a factor of
2 to 100 times more time to solve (CTC) than the original instance of (CC). Previ-
ously, clique-tree conversion was used to solve an instance of AC optimal power flow
relaxation with n = 8.2 x 10* and m ~ 2.5 x 10° on a high-performance computing
(HPC) node with 24 cores and 240 GB memory in 8 h [13]. In this paper, we solve this
same problem using chordal conversion on a modest workstation with 4 cores and 32
GB of RAM in just 4h.

1.3 Other approaches

In this paper, we focus on chordal conversion in the context of high-accuracy interior-
point methods. We mention that chordal conversion has also been used to reduce the
per-iteration cost of first-order methods to O(m + n) time [40, 47], but these can
require many iterations to converge to high accuracy. Also, nonconvex approaches [8,
9] have recently become popular, but it remains unclear how these could be made to
benefit from chordal conversion.

The recent preprint of Gu and Song [21] combined the fast interior-point method
of Dong et al. [12, Theorem 1.3] and the clique-tree conversion formulation of Zhang
and Lavaei [46] to prove that, if the extended graph G has small treewidth, then
there exists an algorithm to solve (SDP) to € accuracy in O((m +n) log(1/€)) worst-
case time. This improves over our O (m + n) time per-iteration figure, which must
be spread across O (/m + nlog(1/€)) worst-case iterations, for a total of O((m +

@ Springer



R.Y.Zhang

n)ts log(1/€)) worst-case time. However, it is important to point out that these ‘“fast”
interior-point methods [12, 21] are purely theoretical; their analysis hides numerous
leading constants, and it is unclear whether a real-world implementation could be made
competitive against state-of-the-art solvers. On the other hand, primal-dual solvers
like MOSEK [32] typically converge to € accuracy in dimension-free O (log(1/¢))
iterations (see our experiments in Sect. 5), so in practice, our algorithm is already able
to solve (SDP) to € accuracy in O ((m + n) log(1/€)) empirical time.

2 Preliminaries
2.1 Notations and basic definitions

Write R™*" as the set of m x n matrices with real coefficients, with associated matrix
inner product (A, B) = tr AT B and norm || A||r = +/(A, A). Write S € R"*" as the
set of n x n real symmetric matrices, meaning that X = X T holds forall X € S”, and
write S’} C S" as the set of symmetric positive semidefinite matrices. Write R, € R”
as the usual positive orthant.

The set of n x n symmetric matrices with sparsity pattern E can be defined as

Sp={XeS":X[i, jl=X[j.i]=0 foralli #j, G,j) ¢E}.
Conversely, the minimum sparsity pattern of a symmetric matrix X € §" is denoted

spar(X) = {(i, j) : X[i, j1#0, i=j}

We also write spar(M) = spar(M + M Ty for a nonsymmetric matrix M where there
is no confusion. We write proj, (M) = arg minXeS’}s M — X| F as the projection of
M € S" onto the sparsity pattern E.

We define the dense sparsity pattern induced by J C {1, 2, ..., n} as follows

clique(J) = {(G, j):i,j e J, i>j}

We also define the vertex support of a possibly nonsymmetric matrix M as the follow-
ing

supp(M) = {i : M[i, j] #0 for some j}.
We write clique(A) = clique(supp(A)) where there is no confusion. This notation
is motivated by the fact that spar(A) C clique(A) for A € S, and spar(PDPT) C
clique(P) for P € R"*¢ and dense D € S°.

Let F be a sparsity pattern of order n that contains all of its diagonal elements,
asin F 2 {(i,i) : i € {1,2,...,n}}. In this case, dim(S%;) = |F| holds exactly, so
we define a symmetric vectorization operator svecg : S, — RIF! to implement an
isometry with the usual Euclidean space, as in

(svecr(X), svecr(Y)) = (X,Y) forall X,Y € Sk.

@ Springer



Complexity of chordal conversion for sparse semidefinite...

We will explicitly require svecr(-) to be defined according to a column-stacking
construction

svecr(X) = (x;)!_; where x; = (X[i,i], V2-(XL i > g G ) e F)).

We also define a companion indexing operator idx g (-, -) to index elements of the
vectorization x = svecp(X):

x[idxp (i, i)] = X[i,i] foralli e {1,2,...,n},
x[idxp (i, j)] = V2X[i, j] foralli > j, (i,]) € F.

As we will see later, the correctness of our proof crucially relies on the fact that
idx r (-, -) implements a raster ordering over the elements of F.

2.2 Sparse Cholesky factorization

To solve Sx = b with § > 0 via Cholesky factorization, we first compute the lower-
triangular Cholesky factor L = chol(S) according to the following recursive rule

T 0
chol <[Z ZZDD = Lifb chol (D — &bbr)] . chol(e) = va,

and then solve two triangular systems Ly = b and LT x = y via back-substitution.
If S is sparse, then L = chol(S) may also be sparse. The sparsity pattern of L can
be directly computed from the sparsity pattern of S, without needing to examine the
numerical values of its nonzeros.

Definition 2.1 (Symbolic Cholesky) The symbolic Cholesky factor chol(E) of a spar-
sity pattern E of order n is defined as chol(E) = E,+| where E1 = E and

Epr1 = Ex Uk, k) U{G, j): (i,k) € Ex, (j.k) € Efori > j >k}

One can verify that chol(spar(S)) = spar(chol(S)). Note that chol(E) can be com-
puted from E in O (] chol(E)|) time and memory [18, Theorem 5.4.4]. The efficiency
of a sparsity-exploiting algorithm for factorizing L = chol(S) and solving Ly = b
and LT x = y is determined by the frontsize of the sparse matrix S.

Definition 2.2 (Frontsize) The frontsize w(E) of a sparsity pattern E is defined
max; | colg(j)| where F' = chol(E) and colp(j) = {j}U{i > j : (i,j) € F}.
The frontsize w(S) = w(spar(S)) of a symmetric matrix S is the frontsize of its
minimum sparsity pattern.

Intuitively, the frontsize w (S) is the maximum number of nonzero elements in a single
column of the Cholesky factor L = chol(S). The following is well-known [18].

@ Springer



R.Y.Zhang

Proposition 2.3 (Sparse Cholesky factorization) Given S € S", S > 0, let v = w(S).
Sparse Cholesky factorization factors L = chol(S) in T arithmetic operations and M
units of memory, where

1 3 2 1 2
g(a)—l) +n<T<w" -n, E(w—l) +n<M<w-n.

Proof Let w; = |colr(j)|. By inspection, T = }i_| jwj(w; + 1) and M =
"_, ;. The bounds follow by substituting w > w;11 > w; — 1. Indeed,
j=1®j y g j J

n
1
M=ijzw+(w—1)+-.-+1+1+...+1=5w(w+1)+(n—w)

j=1 o terms n—o terms

and similarly T = }}_| j0,(@; + 1) = go(@+ D(@+2) + (1 — ). O

Note that Proposition 2.3 is sharp up to small additive constants: the upper-bound
is essentially attained by banded matrices of bandwidth w, while the lower-bound is
essentially attained by a matrix that contains a single dense block of size w.

2.3 Minimum frontsize and treewidth

The cost of solving Sx = b with sparse S > 0 can usually be reduced by first permuting
the rows and columns of the matrix symmetrically, and then solving (ITSITT)ITx =
ITy for some permutation matrix 7. For E = spar(S), we write Ejy = spar(ITSITT)
to denote its permuted sparsity pattern. It is a fundamental result in graph theory and
linear algebra that the problem of minimizing the frontsize w (E7) over the setof n x n
permutation matrices /7 € Perm(n) is the same problem as computing the treewidth
of the graph G = (V, E).

Definition 2.4 (Treewidth) A tree decomposition of a graph G = (V, E) is a pair
({Jj}, T) in which each bag J; C V is a subset of vertices and T is a tree such that:
— (Vertex cover) |J 1=V
— (Edge cover) Uj(']j x Jj) 2 E;
— (Running intersection) J; N J; C Ji for every k on the path of i to j on T.
The width of the tree decomposition is max; |J;| — 1. The treewidth of G, denoted
tw(G), is the minimum width over all valid tree decompositions on G.

The connection is an immediate corollary of the following result, which establishes an
equivalence between tree decompositions and the sparsity pattern of Cholesky factors.

Proposition 2.5 (Perfect elimination ordering) Given a sparsity pattern E of order n,
letG = (V, EywhereV = {1, 2, ..., n}. Foreverytree decomposition of G with width
T, there exists a perfect elimination ordering Il € Perm(n) such that o(E) = 1+1.

We defer a proof to the texts [18, 44], and only note that, given a tree decomposition of
width 7, the corresponding perfect elimination ordering I7 can be foundin O ((1+7)-n)
time.

@ Springer



Complexity of chordal conversion for sparse semidefinite...

Corollary 2.6 We have 1 + tw(G) = mingepermm) @ (E).

As a purely theoretical result, if we assume that tw(G) = O (1) with respect to the
number of vertices n, then a choice of IT € Perm(n) that sets w(E) = O(1) can
be found in O (n) time [14] (and so the problem is no longer NP-hard). In practice,
it is much faster to use simple greedy heuristics [1], which often find “good enough”
choices of IT that yield very small values of w (E7), without a rigorous guarantee of
quality.

2.4 General-purpose interior-point methods

The basic approach for solving an SDP using a general-purpose solver is to reformulate
the problem into the primal or the dual of the standard-form linear conic program

min{c’x :Ax =b,x € £} > max{b’y:c — ATy e K,}
xeRq yeRP

where the data are the matrix A € RP*9, vectors b € R? and ¢ € R?, and the problem
closed convex cone K C RY, and the notation /C, means the dual cone of IC. We
specify the following basic assumptions on this problem to ensure that it can be solved
in polynomial time using a self-dual embedding [11]. Below, we denote 1x as the
identity element on the cone K, and recall that every semidefinite cone is self-dual
K =K.

Definition 2.7 (Standard-form SDP) We say that the problem data A € R”*% b € R”,
¢ € R?, and K C RY describe an SDP in (n, w)-standard form if:

1. (Dimensions) The cone K = svec(Sﬁ') X oo X svec(S‘i@) is the Cartesian product
of semidefinite cones whose orders w1, wa, ..., @y satisfy

¢ 1
1
©=maxo, n= Za)z 9= Zwi(wi +1).
i=1 i=1
2. (Linear independence) ATy = 0 holds if and only if y = 0.
3. (Strong duality is attained) There exist a choice of x*, y* that satisfy
Ax*=b, x* €K, c—ATy ek, cIx*=pTy".

Definition 2.8 (General-purpose solver) We say that ipm implements a general-
purpose solver if it satisfies the following conditions

1. (Iteration count) Given data (A, b, ¢, K) in (n, w)-standard-form, calling (x, y) =
ipm(e, A, b, ¢, K) yields iterates (x, y) € K x R? that satisfy the following, in at
most O(y/nlog(1/¢)) iterations

|[Ax — b <, c—ATy+e~1;CeIC, ch—bTy§e~n.

@ Springer



R.Y.Zhang

Algorithm 1 Chordal conversion

Input. Accuracy parameter € > 0, problem data C, Ay, Ay, ..., Ay € ", b € R™, fill-reducing permu-
tation I7.
Output. Approximate solutions U € R"*® and v € R to the following primal-dual pair:

min {(C UUT> : <Al~, UUT> < by forall i} = max {(b,v) : Y0 4; = €.
v=<

Algorithm.

1. (Symbolic factorization) Pre-order all data matrices A,- = HAiIZT and C = rncn’. Compute
the permuted aggregate sparsity pattern E = spar(C) U [ J; spar(4;), its lower-triangular symbolic
Cholesky factor F = chol(E), and define the following

Ji=colp(H)={jluli>j: G j)eF}, oj=J;l, o=maxo;.
J

2. (Numerical solution) Call (x, y) = ipm(e, A, b, ¢, K) where ipm is a general-purpose solver (Defini-
tion 2.8), and the problem data A, b, ¢, IC implement the following

Y* = arg max

< - > bi—<Ai,Y>zO foralli € {1,2,...,m)
YeS

—C,Y) s.t.
Y[Jj, Ji1 =0 forall j € {1,2,...,n}
as an instance of y* = arg max)v{hTy ce— ATy e K} with y* = svecy (Y*).
3. (Back substitution) Recover Y € S’I’, from y = svecp(Y), and compute § =
—min; {0, Amin (Y[J;, J;D}. Solve the positive semidefinite matrix completion

find U € R"* such that (UUT)[J;, J;1 = Y[J;, J;1+ 81 forall j

using [39, Algorithm 2]. Output v = —(x;))"_; and U = 117 U.

2. (Per-iteration costs) Each iteration costs an overhead of O (w?n) time and O (wn)
memory, plus the cost of solving O (1) instances of the Schur complement equation

AVZFAT Ay =7,  f(w) = —logdet(w)

by forming H = AV? f(w)AT, factoring L = chol(J/TH/T”) and then solving
Lz = ITr and LT (ITAy) = z. Here, the fill-reducing permutation I7 is required
to be no worse than the natural ordering, as in w (ITHIT Ty < w(H).

Note that Definition 2.8 is rigorously satisfied by SeDuMi [37, 38], SDPT3 [42, 43],
and MOSEK [2, 3, 32]. Given that the correctness of our overall claims crucially
depends on the characterization in Definition 2.8, we state a concrete interior-point
method in Appendix B that implements these specifications.

3 Main results
Algorithm 1 summarizes the standard implementation of chordal conversion, which

is known as the “d-space conversion method using basis representation” in Kim et
al. [24]. Our only modification is to recover X = UUT from Y = proj.(X) in Step

@ Springer



Complexity of chordal conversion for sparse semidefinite...

3 using the low-rank chordal completion [10, Theorem 1.5], instead of the maximum
determinant chordal completion [20, Theorem 2] as originally proposed by Fukuda et
al. [16]. We note that both recovery procedures have the same complexity of O (w’n)
time and O (w?n) memory, but the former puts X in a more convenient form [39].

The cost of Algorithm 1 is dominated by the cost of solving the Schur complement
equation at each iteration of the interior-point method in Step 2. At the heart of this
paper is a simple but precise upper-bound on the frontsize of its sparsity pattern E2),
given in terms of the extended sparsity pattern E. Concretely, our result says that if
w(E) = 0(1),then w(E®) = 0(1), so the Schur complement matrix can be formed,
factored, and backsubstituted in O (m + n) time. Hence, the per-iteration cost of the
interior-point method is also O (m + n) time.

To state the Schur complement sparsity E? explicitly, note that the problem data
(A, b, ¢, K) in Step 2 of Algorithm 1 are

A = [svecp(Ay),...,svecp(Ay), =Py, ..., —P,l,
b = —svecg(C), c=(b,0), (3a)
K =R x svec(ST') x svec(S5?) x - -+ x svec(S{")

where w; = | colr(j)| and each P; is implicitly defined to satisfy
PJT svecr(Y) = svec(Y[colr(j), colp(j)]) forallY € S}. (3b)

The resulting Schur complement matrix reads

m n
AV Fw)AT = Zd,- svecr (A;) svecr (AT + ZPijPJT 4)
i=1 j=I

where d; = wi_z, D; svec(X;) = svec(Wj_lXjo_l)

and w = (wy, ..., Wy, svec(Wy), ..., svec(W,)) € Int(K) is a scaling point. The
associated sparsity pattern, aggregated over all possible choices of scaling w, is as
follows

EP = (@, j): AV2f(w)AT)[i, j]1 # 0 for some w € Int(K)}

= (U spar(a,-af)) U U spar(PijPJT)

i=1 j=1

n

= (U clique(supp(a,))) U U clique(supp(P;)) )

i=1 j=1

where we have written a; = svecr(A;). The result below says that if w(E) = 0(1),
then 0(E?) = 0(1).

@ Springer



R.Y.Zhang

Theorem 3.1 (Frontsize of Schur complement sparsity) Given C, Ay, Aa, ..., Ay €
S", define A, K as in (3), and define E® as in (5). We have

1 @y < 1o
Ew(w-i-l)iw(E )Szw(w-i-l)

where_a) = w(E) and @ = w(E) and E, E are defined in (1) and (2). Moreover, if
E = E, then we also have chol(E®) = E@.

In cases where E = E, as in the MAX-k-CUT relaxation (Example 1.2) and the Lovisz
theta problem (Example 1.3), Theorem 3.1 predicts that the Schur complement matrix
H = AV?f(w)AT can be factored L = chol(H) with zero fill-in, meaning that
spar(L 4+ LT) = spar(H). More generally, if ® < @ holds with a small gap, then we
would also expect H to factor with very little fill-in.

As previously pointed out by Kobayashi et al. [25], if the Schur complement sparsity
E®@ is known to have frontsize w(E®) = O(1), then the Schur complement matrix
H = AV? f(w)A can be formed, factored, and backsubstituted in O (m + n) time.
Hence, the per-iteration cost of the interior-point method is also O (m + n) time.

Corollary 3.2 (Cost of Schur complement equation) Given the data matrix A, scaling
point w € Int(K), and right-hand side g, define H = AV? f (w)AT as in (5). Suppose
that all columns of A are nonzero, and all scaling matrices D ; are fully dense. Then,
it takes T arithmetic operations and M units of storage to form H and solve HAy = g,
where

1
&(a)—l)6+m+n§T§454~(m+a)n),

1
g(a)—1)4+m+n5N|5252.(m+am),

inwhichw = w(E) and @ = w(E) satisfy 1 < w < o.

Proof Let a; = svecp(A;) and w; = |colp(j)|. We break the solution of HAy = g
into five steps:

1. (Input) It takes Mgy, memory to state the problem data, where m + n < Mgan <
20%m + 3w3n. Indeed, m +n < nnz(A) < @%m + w*n because 1 <nnz(a;) < @?
(see Step 2 below) and nnz(P;) = %a)j (wj+1). Also,m+n < nnz(w) < m+w?n,
and n < nnz(g) < wn.

2. (Build LP part) It takes Ty p time to build )/ ; diaiaiT , where m < Tp < 20*m
time and memory. This follows from 1 < nnz(a;) < 52, where the upper-bound is
because spar(al-aiT ) € E@ C chol(E@), and that w(E®@) is, by definition, the
maximum number of nonzero elements in a single column of chol(E @)y,

3. (Build SDP part) It takes Tspp time to build Z'/’: 1 P;D ijT,Wheren < Tspp < w*n
time and memory. This follows from nnz(P;) = %Cl)j (wj + 1), which implies
nnz(P;D;PT) = }‘wi(w,- + 1)2 for a fully-dense D; > 0.

@ Springer



Complexity of chordal conversion for sparse semidefinite...

4. (Factorization) It takes Tg,¢ time and Mg, memory to factor L = chol(H), where
ﬁ(w — D4 n < Thet < @°n and %(a) —D*4n < Mgt < @°n. The matrix
H has |F| columns and rows, and frontsize w (E?). The desired figures follow by
substituting %a)2 < w(E(2)) <w?andn < | F| < wn into Proposition 2.3.

5. (Back-substitution) It takes Mg, time and memory to solve each of Lz = g and
L” Ay = z via triangular back-substitution.

The overall runtime is cumulative, so T = Trp + Tspp + Tract + 2Myact- The overall
memory use is M = Mgaa + Mract, because the matrix H can be constructed and then
factored in-place. O

Let us now give an end-to-end complexity guarantee for Algorithm 1. We will need
the following assumption to ensure that the data (A, b, ¢, ) previously defined in (3)
specifies an SDP in (N, w)-standard form, where N = m + wn and w = w(E).

Assumption 1 (Strong duality is attained) There exists a primal-dual pair X* > 0 and
v* < 0 that are feasible (A;, X*) < b; for all i and ) ; v} A; < C and coincide in
their objectives (C, X*) = (b, v*).

Theorem 3.3 (Upper complexity) Let the data C, Ay, ..., An € S" and b € R™
satisfy Assumption 1. Given a tree decomposition of width T for the extended aggregate
sparsity graph G = (V, E), where

V =1{1,2,...,n}), E =spar(C) Uclique(A;) U--- U clique(A,),

set IT as the associated perfect elimination ordering. Then, Algorithm 1 outputs U €
R"™® gnd v € R™ with v < 0 such that

m
<A,~, UUT>—b,- <eforalli, Y vAj—C=<e-I, <C,UUT>— (b,v) <e-N,
i=1

in0O («/N log(1/¢€)) iterations, with per-iteration costs of O (54 -N) time and O (EZ‘N)
memory, where N =m + o -nandw =1+T.

Proof One can verify that (A, b, ¢, K) defined in (3) specifies an SDP in (N, w)-
standard form (see Appendix A for the regularity conditions). Moreover, it follows
from the monotonicity of the frontsize (Proposition4.1) thatw = w(Epp) < w (Ep) =
w. We will track the cost of Algorithm 1 step-by-step:

1. (Front-reducing permutation) Preordering A; < ITA; I1T and C <« ITCIT" the
matrices cost O(nnz(C) + Y /L, nnz(4;)) = O(@*N) time and memory. This
follows from nnz(C) < |F| < N and nnz(4;) < @°.

2. (Conversion) Computing F = chol(E) costs O(|F|) = O(N) time and space,

where we note that |F| < wn.

@ Springer



R.Y.Zhang

3. (Solution) Let K = 2-max{l, [tr(C)|, | tr(A])], ..., |tr(A;,)]|}. After O(Wlog(K/e))
iterations, we arrive at a primal v < O and V; > 0 and dual point Y € S’ satisfying

(Ai,Y)—bi <€/K, YlJj,Jj1= —(e/K)I,
HZ, Vi A; +Zj PjVijT —CH <e/K,
(C,Y)—(b,v) <N -(¢/K).

Each iteration costs O(E“N ) time and O(EZN ) memory. This cost is fully deter-
mined by the cost of solving O(1) instances of the Schur complement equation,
which dominates the overhead of O (w’n+nnz(A)) = O(@>N) time and memory.

4. (Recovery) Using the previously recovered ¥, we recover U such that [Tz (UUT) =
Y + 61 where § = —min;{0, Amin(Y[J;, J;])} < €/K. This takes O(w’n) =
O (@>N) time and O (w’n) = O(@N) memory.

5. (Output) We output U and v, and check for accuracy. It follows from K > 2| tr(C)]|
that

tr(C) “e. [ tr(C)]
K 21w

1
(C,UUT>— (C.Y)=6-tr(C) < e- < g€

and from K > 2 and N > 1 that

N 1 1 1
(C,UUT>—<b,U)SE€+§E=N6<§+W)SN6

Similarly, it follows from K > 2|tr(A;)| and K > 2 that (A;, UUT) — b; < e.
Finally, it follows from v > 0 and V; > O that

ZU[A[-}-ZPJ'VJ’PJ-T—C56~I - ZU,‘A,‘—CﬁE-].
i Jj 1

1

O

Let 7, = tw(G). In theory, it takes 0(?§ -nlogn) time to compute a tree decom-
position of width T = O (?%) by exhaustively enumerating the algorithm of Fomin et
al. [14]. Using this tree decomposition, Theorem 3.3 says that Algorithm 1 arrives at
an e-accurate solution in O((m + n)V/? - T, - log(1/€)) iterations, with per-iteration
costs of O((m+n) -fio) time and O ((m +n) -?f) memory. Combined, the end-to-end
complexity of solving (SDP) using Algorithm 1 is 0(?},1 S(m+n)'3 -log(1/€)) time.

In practice, chordal conversion works even better. In Sect. 5, we provide detailed
numerical experiments to validate that: (i) the minimum degree heuristic usually finds
IT that yield @ = O(1); (ii) a primal-dual interior-point method usually converges to
€ accuracy in dimension-free O (log(1/¢)) iterations. Taking these as formal assump-
tions improves Theorem 3.3 to O ((m + n) log(1/€)) empirical time.

The following establishes the sharpness of Theorem 3.3.

@ Springer



Complexity of chordal conversion for sparse semidefinite...

Corollary 3.4 (Lower complexity) Given the data C, Ay, ..., A, € S" and b € R™,
let T, denote the treewidth of the aggregate sparsity graph G = (V, E):

V={1,2,...,n}, E = spar(C) Uspar(A;) U---Uspar(A;).

There exists no choice of I1 that will allow Algorithm 1 to solve (SDP) to arbitrary
accuracy € > 0 in less than .Q(‘L’f + m + n) time and .Q(tf + m + n) memory.

Proof The cost of Algorithm 1 is at least a single iteration of the interior-point method
in Step 2. This is no less than 2 ((w — D0 +m + n) time and 2((w — D* +m + n)
memory according to Corollary 3.2, where w — 1 > 7, due to Corollary 2.6. O

4 Frontsize of the Schur complement sparsity (Proof of Theorem 3.1)

We now turn to prove the frontsize bound on the Schur complement sparsity E?
in Theorem 3.1, which we identified as our key technical contribution. Recall that a
symmetric sparsity pattern E of order n can be viewed as the edge set of an undirected
graph G = (V, E) on vertices V = {1, 2, ..., n}. The underlying principle behind
our proof is the fact that the frontsize is monotone under the subgraph relation: if
G' = (V’/, E’) is a subgraph of G = (V, E), then w(E) > w(E').

To state this formally, we denote the sparsity pattern induced by a subset of vertices
U={ui,u,...,up} €V asfollows

E[UI={(,j): (uj,u;) € E}whereu; <up < --- <up.

Note that we always sort the elements of U. Our definition is made so that if
E = spar(X), then E[U] = spar(X[U, U]), without any reordering of the rows
and columns.

Proposition 4.1 (Subgraph monotonicity) Let E be a sparsity pattern of order n, and
let U C {1,2,...,n}. Then, for any sparsity pattern D of order |U| that satisfies
E[U] 2 D, we have chol(E)[U] 2 chol(D), and therefore w(E) > w (D).

Proof 1t is known that (i, j) € chol(E) for i > j holds if and only if there exists
a path (i, p1, p2, ..., pe, j) whose edges are in E, and whose internal nodes are
ordered pi, p2,..., pe < j < i;seee.g. [44, Theorem 6.1]. It immediately follows
this characterization that chol(-) is monotone with respect to the deletion of edges and
isolated vertices: (1) if D C E, then chol(D) C chol(E); (2) we have chol(E[U]) =
chol(E)[U] for U = {1, 2, ..., n}\v with isolated vertex v. Therefore, chol(-) must
also be monotone under general vertex and edge deletions, because we can always
delete edges to isolate a vertex before deleting it. O

Our lower-bound is a direct corollary of the following result, which gives an exact
value for the frontsize of a certain “lifted” sparsity pattern.

Lemma 4.2 (Quadratic lift) Let E be an arbitrary sparsity pattern of order n. Define
F = chol(E) and the lifted sparsity pattern F® = Ui— clique(Py) in which each

@ Springer



R.Y.Zhang

Py is implicitly defined to satisfy PkT svecr(Y) = svec(Y[colr(k), colg(k)]) for all
Y € S™. Then, we have chol(F®) = F® and w(F®) = Lo(E)[o(E) + 1.

Observe that E@ D F@ = Ui— clique(Py) via (5), so it follows immediately from
Proposition 4.1

w(E?) > o(F?) = %w(E)[w(E) + 1],

which is precisely the lower-bound in Theorem 3.1. For the upper-bound, we will use
F = chol(E), the symbolic Cholesky factor of the extended aggregate sparsity pattern

E, to construct a similarly lifted 2. our key insight is that £ can be obtained

from F via vertex and edge deletions.

Lemma 4.3 (Sparsity overestimate) Let E and E® be the sparsity patterns defined
in (2) and (5). Define F = chol(E) and the lifted sparsity pattern 7(2) =
Ui: clique(Py) in which each Py is implicitly defined to satisfy F,{ svecy(Y) =

svec(Y[col(k), colz(0)]) for all Y € Sk Then, E® < F2[V®)] holds for
V® = {idxz(i, j) :i,j € F}.

Substituting E @ c 7(2)[‘/(2)] with the exact frontsize of a)(f(z)) from Lemma 4.2
yields

w(E(2)) < a)(F(Z)) = %a)(ﬁ)[w(ﬁ) + 1]’

which is precisely the upper-bound in Theorem 3.1. Finally, if E = E, then F® =

F? = E® 50 chol(E®) = E® via Lemma 4.2.

In the remainder of this section, we will prove Lemmas 4.2 and 4.3.

4.1 Exact frontsize of a lifted sparsity pattern (Proof of Lemma 4.2)

Our proof of Lemma 4.2 is based on a connection between zero-fill sparsity patterns, for
which sequential Gaussian elimination results in no additionally fill-in, and a “sorted”
extension of the running intersection property.

Definition 4.4 (ZF) The sparsity pattern F is said to be zero-fill if F = chol(F).

Equivalently, if F is zero-fill, then (i, k) € F and (j, k) € F implies (i, j) € F for
i > j > k via the definition of the symbolic Cholesky factor (Definition 2.1).

Definition 4.5 (RIP) The sequence of subsets Ji, J2, ..., Jp with J; C N satisfies the
sorted running intersection property if there exists a parent pointer p : {1,2,...,£ —
1} — {2, 3, ..., £} such that the following holds forall 1 < j < ¢:

p() > J. ooy 2N (jp1 U JjeaU--- U Je), min{Jp(j} > max{J;j\Jp(j}-

The symbolic Cholesky factor F = chol(E) for a sparsity pattern E is the canonical
example of a zero-fill sparsity pattern. In turn, the corresponding column sets J; =

@ Springer



Complexity of chordal conversion for sparse semidefinite...

col ¢ () are the canonical example of sequence of subsets that satisfy the sorted version
of the running intersection property.

Proposition 4.6 (ZF = RIP) Let F be a zero-fill sparsity pattern of order n. Then,
the sequence of subsets Jy, Jp, ..., Jywith J; = colp(j) = {j}U{i > j: (i, j) € F}
satisfies the sorted running intersection property.
Proof Define p(j) = min{i > j : i € J;}if |J;| > 1 and p(j) = nif |J;| = L.
Clearly, p(j) > j holds forall 1 < j < n. To prove Jy(jy 2 J; N Ufu:j—i—l Jw, let
i € JjNJy for some w > j. We prove that i € Jp(;) via the following steps:
— We have i > j, becausei € J,, implies thati > w > j.
— Ifi =p(j), theni € J,;) by definition.
—Ifi > p(j), then (i, j) € F and (p(j),j) € F fori > p(j) > j implies
(i,p(j)) € F,and hencei € Jy(j).
Finally, we prove min{Jp(;y} > max{J;\Jp;)} by noting that max{J;\Jpj)} = j
with our construction, and that i = min Jp(;) must satisfy i € J,(;) and therefore
i zp(j)>J. o
Our proof is based on the fact that the “lifted” sparsity pattern F®) can be con-
structed as F? = U= clique(JkQ) ) with respect to the following “lifted” index
sets

J& = idxp(clique(Jp)) = {idxp (i, j) 1 i, j € Ji, i > j). (©6)
We need to show that, if the original index sets Jq, Ja, ..., Ji satisfy the running inter-
section property, then the lifted index sets J 1(2), ]2(2), e, Jk(z) will inherit the running

intersection property. Our key insight is that the index operator idxr implements a
raster ordering.

Lemma 4.7 (Raster ordering) The ordering idxp : F — N satisfies the following, for
all (i, j) € Fwithi > jand (i’, j') € F withi’ > j':

— Ifj > j/, thenidx(i, j) > idx(i’, j) holds.

—Ifj=j andi > i, thenidx(i, j) > idx(i’, j') holds.

Lemma 4.8 Let the sequence of subsets Jy, Ja, ..., Jg with J; C N satisfy the sorted

2) J2(2)

running intersection property. Then, Jl( e JZ(Z) also satisfy the sorted run-

ning intersection property.

Proof Let p(-) denote the parent pointer that verifies the sorted running intersection
property in Ji, J2, ..., Jo. We will verify that p(-) also proves the same property in
720202

First, to prove bez) N Ui:u-{-l Jlfz) - Jp((zu)), let k € Jlfz) N Jv(z) for v > u. The

fact that k € Jf) = idx(clique(J,)) implies k = idx(i, j) for some i, j such that
i,j € Jy. Similarly, k € J® = idx(clique(J,)) and the bijectivity of idx on F imply
that the same i, j also satisfy i, j € J,, where we recall that v > u. We conclude
i,j € JuNJy S Jpu and therefore k = idx(i, j) € J 2

pu)”
J(2)

Next, we prove min{ p(u)} > max{],fz)\flf(zl:)} by establishing two claims:

@ Springer



R.Y.Zhang

- min{Jﬁi)} = idx (@, @) where o = min Jp(,). For any idx(i, j) € Jlf(zj) where
i > j,wemusthavei, j € Jpuy. It follows from the raster property that idx (7, j)
is minimized with i = j = min Jp,).

- max{Ju(z)\Jp((zlz)} = idx(B, y) where 8 = max{J,} and y = max{J,\Jpu)}. We
partition J,, into Ny = Jy,\Jpw) and A, = J,, N Jpw)-

— For any idx (i, j) € bez)\J (2;) where i > j, we can have one of the following
three cases: 1)i € N, and j € Ay;2)i € Ayand j € Ny;or3)i € N, and
Jj €N,

— We observe that the first case i € N, and j € A, is impossible. Indeed,
applying j > min{J,)} > max{J,\Jpuy} = i would yield a contradiction
withi > j.

— Taking the union of the two remaining cases yields i € J, = A, U N, and
Jj € Ny. It follows from the raster property that idx(i, j) is maximized with
i = max J, and j = max N,.

With the two claims established, the hypothesis that min{Jpq»} > max{J,\Jpau}
implies that @ > y, and therefore idx (¢, ) > idx(f, y) as desired. O

2), Jz(z), o 6(2) that satisfy the sorted run-

In reverse, a sequence of subsets Jl(
ning intersection property immediately give rise to a zero-fill sparsity pattern F® =

UL, clique(J?) with & (F®) = max; |JJ¥2) .

Proposition 4.9 (RIP — ZF) Let Ji, J2, ..., J; with U‘;Zl Ji ={1,2,...,n} sat-

isfy the sorted running intersection property. Then, F = U‘;:l clique(J;) is zero-fill,
and we have w(F) = max; |J;|.

Our proof of Proposition 4.9 relies on the following result, which says that every
column of F is contain in a subset J,,.

Lemma4.10 Let Ji, Jo, ..., J¢ with Uf’:l Jj ={1,2,..., n} satisfy the sorted run-

ning intersection property. For every j-th column in F = Uf‘:l clique(J;), there
exists some Jy, such that colp(j) C Jy.

Proof Let V. = {1,2,...,n}. For arbitrary j € V, denote J, as the last subset
in the sequence Ji, Jo, ..., Jy for which j € J,,. This choice must exist, because
V= Ui:l Jy.. For every arbitrary i € colr(j), we will prove that i € J,, also holds:

— There exists u < w for which i,j € J,. Indeed, (i,j) € F and F =
Ui:l clique(Jy) imply (i, j) € clique(J,) for some J,, or equivalently i, j € J,,.
Given that j € J, and w = max{k : j € Ji} by definition, it follows that u < w.

— If u = w, theni € J,, holds because i, j € J,. Otherwise, if u < w, we use the
sorted running intersection property to assert the following

u<w, ijel, = i,j€Jw (7

The fact that j € Jp) follows directly the running intersection property j €
Ju N Jy € Jpw for w > u. By contradiction, suppose that i ¢ Jp(,). Then,

@ Springer



Complexity of chordal conversion for sparse semidefinite...

given that i € Jy, it follows from the sorted property that j > min{Jpu)} >
max{J, \Jpu)} > i, which contradicts our initial hypothesis thati > j.

— Inductively reapplying (7), as in i, j € Jppu)) and i, j € Jpp(p))), We arrive at
some v such that i, j € Jpw) and p(v) = w. The induction must terminate with
p(v) > w because each p(u) > u by construction. It is impossible for p(v) > w
to occur, because j € Jpw) and w = max{k : j € Ji} by definition. We conclude

that i € J,,, as desired. O

The equivalence between the sorted running intersection property and zero-fill
sparsity pattern then follow as a short corollary of the above.

Proof of Proposition 4.9 To prove that F is zero-fill, we observe, for arbitrary (i, k) € F
and (j,k) € F withi > j > k thati, j € colp(k). Therefore, it follows from
Lemma 4.10 that there exists Jy, such that i, j, k € J,,. We conclude that (i, j) € F,
because F = Uﬁ»:l clique(J;) and i, j € Jy, forsome 1 < w < £.

To prove that w(F) = max; |J;|, we choose k = argmax; | colr(j)|. It follows
from Lemma 4.10 that there exists J,, such that colz (k) C J, and therefore w (F) =
| colp (k)| < |Jwl. Finally, given that clique(J,,) € F it follows that (i, j) € F holds
for alli € J,, where j = min J,,. Therefore, we conclude that J,, C colg(j), and
therefore |Jy,| < |colp(j)| < |colp(k)| = w(F). O

Finally, we conclude the proof of Lemma 4.2 by verifying that a matrix like H =
> i_i PkDiP! does indeed have F@ = | J]_, clique(Jk(z)) as its sparsity pattern.

Proof of Lemma 4.2 For an arbitrary sparsity pattern E of order n, let F = chol(E)
and J; = colp (k). First, it follows from Proposition 4.6 that Ji, Ja, ..., J, satisfy
the ordered running intersection property. Therefore, it follows from Lemma 4.8,

J 1(2), J2(2)’ ceey J,§2) defined in (6) satisfy the same property. Finally, we verify that

supp(Py) = {a : Piler, B # 0} = {o : P e, # 0}
(é){idxF(i,j) . P] svecr(ejel) #0, (i, j) € F}

b) |. .. ..

Diaxr i, )+ @eD I 20, i = j} = 12,
Equality (a) is obtained by substituting e, = svec p(e,-ejr) for (i, j) € F.Equality (b)
follows the identity PkT svecr(Y) = svec(Y[Jk, Jr]), which was used to define Py.

Therefore, F@ = (J;_, Jk(z) and we conclude via Proposition 4.9 that w(F?) =

maxj |Jk(2)| = maxy %|Jk|(llk| + 1), and we recall that maxy |Jx| = o(F) = w(E)
by definition. O

4.2 Sparsity overestimate (Proof of Lemma 4.3)

We will need some additional notation. For V. = {1,2,...,n}and J C V, we denote
the subset of J induced by the elements in U = {uy, uz, ..., up,} € V as follows

@ Springer



R.Y.Zhang

JIUI={i:u; € Jywhereu; <uz <--- <up.

Our definition is made so that if E = clique(J), then E[U] = clique(J[U]). Our
desired claim, namely that

E® — (U clique(supp(a,~))> U U clique(supp(P;))

i=1 j=1

c (Uclique(supp@k)[vml)) =F2wv®)

k=1

where V) = {idxz(i, j) : i, j € F}, now follows immediately from the following
two lemmas.

Lemma4.11 Forﬁvery i € {1,2,...,m}, there exists k € {1,2,...,n} such that
supp(a;) € supp(P)[V @] where VP = {idx5z(i, j) : i, j € F}.

Proof It follows by repeating the proof of Lemma 4.2 that
supp(Py) = {idxz(i, j) : i, j € colz(k),i > j},
supp(P)[V '] = {idxr (i, j) 1 i, j € colz (k). i = j).

Our desired claim follows via the following sequence of inclusions

supp(a;) = {v : a;[v] # 0} = {idxp(u, v) : Aj[u,v] #0, (u,v) € F}
(g {idxg(u, v) : u, v € supp(4;), (u,v) € F}
(&) {idxp(u, v) : u, v € colx(k), (u,v) € F} = supp(Pp)[V?].

Inclusion (a) is because spar(A;) C clique(supp(A;)). Inclusion (b) is true via the
following: If J = supp(A;) satisfies clique(J) € F, then J C colz(k) where k =
min J. Indeed, we have k € colz(k) by definition. For any arbitrary j € J with j > k,
we must have an edge (j, k) € clique(J) C F, and therefore J € colg(k). O

Lemma4.12 Foreveryk € {1,2,...,n}, we have supp(Py) < supp(l_’k)[V(z)] where
V® = {idx#(i, j) i, j € F}.

Proof It again follows by repeating the proof of Lemma 4.2 that
supp(Pr) = {idxp (i, j) - i, j € colp(k),i = j}
(@ .. .. . . = 2)
C {idxp(i, j) : i, j € colz(k),i > j} = supp(Pr)[V'].

Inclusion (a) is true because E C E implies F = chol(E) C chol(E) = F via
Proposition 4.1, and therefore col (k) C colz(k). O

@ Springer



Complexity of chordal conversion for sparse semidefinite...

5 Large-scale numerical experiments

Our goal in this section is to provide experimental evidence to justify the following
four empirical claims made in the paper:

1. Whenever a graph has small treewidth 7, = O(1), a fill-reducing heuristic is also
able to find a “good enough” tree decomposition with width T = O(1).

2. A primal-dual interior-point method consistently converges to high accuracies of
€ ~ 107% in just tens of iterations, at an essentially dimension-free rate.

3. In theory, clique-tree conversion (CTC) enjoys similar guarantees to chordal con-
version (CC). But in practice, (CC) is much faster than (CTC), both in solution
time and in preprocessing time.

4. Real-world power systems G yield instances of the AC optimal power flow relax-
ation (Example 1.6) with small values of tw(G) = 2 - tw(G2).

To this end, we benchmark the following three conversion methods:

— CC: Chordal conversion as outlined in this paper in Algorithm 1, implemented in
MATLAB, with MOSEK [32] as the general-purpose solver. If G = G has small
treewidth, then CC is guaranteed to use at most O (m + n) time per-iteration via
Theorem 3.3.

— Dual CTC (heuristic): The dualized variant of clique-tree conversion of Zhang
and Lavaei [46] based on the aggregate sparsity graph G. We take MATLAB /
MOSEK implementation directly from the project website*. If G = G has small
treewidth, then this variant is guaranteed to use at most O (m +n) time per-iteration
via [46, Theorem 1]. When G # G, this variant reduces to an empirical heuristic.

— Dual CTC (provable): The dualized variant of clique-tree conversion of Zhang
and Lavaei [46], but forced to use the extended sparsity graph G instead of G, as
suggested by Gu and Song [21]. It is implemented by padding the elements of the
sparse cost matrix C with numerically-zero elements that are structurally nonzero,
so that it is recognized as an element of S%’ and then calling Dual CTC (heuristic).

If G has small treewidth, then this variant is guaranteed to use at most O (m + n)
time per-iteration via [46, Theorem 1].

All of our experiments were conducted on a modest workstation, with a Xeon
3.3 GHz quad-core CPU and 32 GB of RAM. Our code was written in MAT-
LAB 9.8.0.1323502 (R2020a), and the general-purpose solver we use is MOSEK
v9.1.10 [32]. MOSEK specifies default parameters ¢ = 10~% and seeks to termi-
nate with |[Ax — blloc < €(1 + [[bllog) and [[ATy +5 — ¢lloo < €(1 + [|¢]lo) and
max{x”s, e’ x —bTy} < emax{l, |b x|, |’ x|} [32, Section 13.3.2]. If MOSEK is
unable to achieve this accuracy due to numerical issues, it gives up and accepts the
solution as optimal if € = 1073 [32, Section 13.3.3]. Our calculation for the number
of accurate digits is identical to [46, Section 8], which was in turn adapted from the
DIMACS challenge [36].

4 https://github.com/ryz-codes/dual_ctc.

@ Springer


https://github.com/ryz-codes/dual_ctc

R.Y.Zhang

LS'L6 Ll £€¢ SO'LY Se 08 vy 81 a4 6£°59 oY - - - - 53 €L8°00S°1 000°000°1
0C°6¢ 91 9¢ vy 33 G801 81 87 08°I¢ Blg 967201 91 €e §8'69TCl Se S8T6YL 000008
6l Il €9 90°Cl 133 S9°LC Sl 19 06'T1 w 689¢ 91 8¢ 0L9961 33 LOY'66CT 000°00T
$9°9 01 Y €6°S 133 0’8 6 8L 86°C or LS8 LT Sy 68°ClY Se 86C°0S1 000°001
Lece ol L9 6L'C ge 18°¢ 8 s 16¢C 144 €16 0¢ 8¢ 1Tyl 3 To'sL 000°0S
el 6 6L Y0'1 3 8¥'1 8 €L 10°1 w Iv'e €l oL 1cee 33 T€0°0€ 000°0T
L9°0 6 08 LY'0 53 18°0 8 L9 8¥°0 9¢ 09°1 Sl €L €L9 53 LL6YL 000°01
Se0 8 9 vT0 53 LEO 6 S'L €20 0¥ £9°0 8! 98 ¥9°C 53 8275 0008
S0 8 89 60°0 S¢ SI'o 8 9 600 Se 71°0 I €L G80 53 ¥00€ 000T
Y10 8 L8 SO0 33 o 8 99 SO0 €€ LT°0 6 I'e €50 53 ol 0001
oro L 'L L0°0 €€ 90°0 6 L9 €00 0¢ cro 6 88 8C0 €€ ¥89 00s
€00 o1 6L €00 €C 100 01 0L 10°0 91 900 6 €8 0ro €C 9¢ 00¢
10°0 01 6'L S1°0 91 10°0 4! 89 w00 6 00 8 0L c0'0 91 9Cl 001
j-1od 1) n3ip daxd 2 j-1od 1)1 nsip daxd 2 j-1ad 1)1 nsip daxd 2

(Sur1apio 931-y) DD (Surropio pwie) DD (Surropio 9a1-y) DID renq Al

uonexd) jutod-1oreyur 1od owm oferoae— J1-1od,, (suonero) Jurod-101IAUI Jo JoquInu—, J2I1,, ‘SHSIP [BWIOP

QreIndoe— JI31p,, ‘owr) uoneredald [eurdiur s, YHSOIA PUe $52901d UOISIOAU0D dY) sapnjoul yorym ‘ourn Surssadordard—, daid,, pasn uonisoduwiooap oa1) Jo yiprm—1 $a3pa jo
Rqunu—| 3| ¢s9011A Jo requinu—| A | :seon-y rented uo swajqoid ejay) ZseAoT 10J (SPuods ur) Surwn pue (sPSIp [ewrodp ur) Aoeandde ‘Ayenb uonisodwosop 21, | 9jqel

pringer

As



Complexity of chordal conversion for sparse semidefinite...

i
/. Dual CTC (k-tree order)

, N - O CC (AMD order) o

107 o B ¥ A 2
. NP *_CC (ktree order) A A %
= =2 ° - Ny
@ 10 -k Té /
£ A £ x
=) N~ g o -
- o -1 .
g ~Z < A -
2 L% ] 2
& apE 2 — Q
a o R % - 5 SQw o

Dual CTC (k-tree order) x £\ Dual CTC (k-tree order)| |~ & ;0
O CC (AMD order) w02k O O CC (AMD order) -
X_CC (ktree order) 0 X_CC (k-tree order)
107 10° 10 10° 10° 107 10° 10 10° 10° 102 10° 10t 10° 108
matrix order n matrix order n matrix order n
(2) (b) (c)

Fig.1 Lovész theta problems solved via chordal conversion: a Preprocessing time, with regression px (n) =
8.3851 x 107> and R? = 0.87; b Time per iteration, with regression fx (n) = 8.9n x 1075 and R? = 0.98;
¢ Iterations per decimal digit of accuracy, with (solid) regression g(n) = 0.548n0-115 and R? = 0.45 and
(dashed) bound g(n) = 0.1/n

5.1 Lovasz theta problem on synthetic dataset

Our first set of experiments is on the Lovasz theta problem (Example 1.3), for which
G = G always holds with equality. For each trial, we set G = (V, £) by randomly
generating a k-tree with k = 35 (see [44, p. 9] for details) and then deleting edges
uniformly at random until |£|/|V| ~ 3/2. The resulting G should have treewidth
exactly t, = 35 in the limit || — o0; the optimal ordering /7 to yield w(Ef) = 36
is simply any perfect elimination ordering on the k-tree (“k-tree ordering” in Table 1).
We observe that the amd heuristic in MATLAB [1] finds high-quality orderings to yield
w(E) < 47, corresponding to tree decompositions of width T < 46, which is only
about 30% worse than the best possible (‘“amd ordering” in Table 1). Nevertheless,
minor differences in 7 can still manifest as larger differences in per-iteration time.

We solve the problem on G using CC and CTC, and observe that in both cases,
it takes around 10 iterations to achieve € ~ 107° across a wide range of n, until
numerical issues at very large scales n & 10° forced more iterations to be taken (see
Fig. 1c and Table 1). We find that both CC and CTC achieve comparable O (m + n)
runtime per-iteration (see Fig. 1b), but CC is significantly faster in its preprocessing
time (see Fig. 1a). As shown in the last few rows of Table 1, CC solved an instance of
the Lovisz theta problem on a graph with 10° vertices and 1.5 x 10° edges in less than
30 min, taking a little over 1 min in the preprocessing. In contrast, CTC for a graph of
half this size took 3.5h just to perform the preprocessing.

To test the zero fill-in prediction in Theorem 3.1, our implementation of CC
in this section forces MOSEK to factor its Schur complement matrix H =
AV? f(w)AT without the use of a fill-reducing ordering, by setting the flag
MSK_IPAR_INTPNT ORDER_METHOD to ’'MSK_ORDER_METHOD_NONE’. If
Theorem 3.1 is incorrect, then factoring . = chol(H) would catastrophic dense fill-in,
and the per-iteration runtime would not be O (m + n) as shown in Fig. 1b.

5.2 AC optimal power flow relaxation on real-world dataset

Our second set of experiments is on the AC optimal power flow relaxation (Exam-
ple 1.6), for which G C G generally holds with strict inequality. Here, recall that

@ Springer



R.Y.Zhang

s 6 € S £9C¢ 9¢LT dsgg/goses €S € € 1 I L1 81 g1osed L1
1S 6 € S 988¢ €8¢T dmggegosed (49 14 v I I Ll 81 Iqugased 91
8 91 o 9 L99T 000 000Z3SALLOY sed IS ¢ ¢ I I 91 L1 Sw/ [ased Sl
94 Sl I S SLET 1561 OMIYIENS 0 ¢ ¢ I I ¢l 91 SRS !
8¢ ! 1 14 80€T 8881 91I88]OSED 6 ¥ v [ I 4! SI Weg[ased ¢l
0g €l 1 S 0ILI vsel osegadyce [osed 8% v 4 I I 4! SI BpGased !
(44 4! 8 v 8¢ 00S 00SSSALLDV osed Ly 14 4 I I 4! SI Iqugrased 11
LT 11 9 € 60t 00€ 00gased 9% 9 9 4 4 0T 14! p1osed o1
81 11 8 4 S 00T 00TBSALLDV osed S z 4 1 I I Tl epzIosed 6
€€ 1T 01 L ey Syl Splosed 4 z 4 1 I 6 01 rqQ[osed 8
v v I I ovl vl [19s80 197 ¥ v 4 4 6 6 69582 L
8 3 I I el 9¢1 BWQE[ISED w ¥ v 4 4 6 6 O6osEd 9
I 6 4 14 6L1 811 81 19s€d I 14 v 4 4 6 6 19318698580 S
14 v I I L1 811 yz81 [9s€d o S S ¢ ¢ I 9 MMQISED 14
v v I I €6 6 1dpgosed 6¢ 14 v 4 4 9 S Gosed ¢
LT LT 11 8 90¢C 68 asegadggesed 8¢ € € 4 4 ¥ 14 sSposed 4
4 4 I I 8 8 Ggosed LE 4 4 I I € v ISIp” o580 I
il <q qn qal 171 oweN # an qr qn qal el [Al oweN #

AN@\E uo spunoq-12ddn pue punog-1omo[—=<qn ‘¢q {(5H)m1 uo spunog-roddn
puE punoqg-IoMo[—qn ‘q[ {sa3pa Jo Joqunu—|7| {S90NIA JO IoquInu—| A | :39seIep YIMOJLVIA U Ul Sosed 159) wdlsAs romod 7/ oyl I0J SpUnoq YIpImaal], g d|qel

pringer

as



e LT 06 9  €0T86  000T8  VSNAmOyuAgTesed 7L € ¢ I I €L YL SPpLOsEd  9¢
434 91 88 9  8IE€8  000°0L JOLSSALLOV 9580 1L 11 L S ¥ 801 €L OTAD SL¥ 9sed  G¢
LTl Ll IS 9  0I1°0¢  000°ST NSTESALLOV 9580 QL ¢ ¢ [ I 89 0L BPOLISED  f¢
08 (4% 1€ Ic  ST9'8l 659°¢1 osedadegogiosed 69 14 14 I I 89 69 699580 €€
08 Ll €€ S FA | 000°01 JOISSALLOV 9sed 89 I 9 S € 8L LS LSosed 7€
8L wogg 1T LOTYI 1426 osegadpzeesed L9 € € I I 0S s Ay gased £
79 91 9T S Y018 G159 AUGTGYasEd 99 € € I I 0 s eSrgesed (g
9 SI 9T S 7808 S6+9 AUGEFYASEd 69 L S € € 9t 6¢ 6g9sed 6T
9 S1 9T S 9908 0LY9 AUOLFYIsED  $9 € € I I LE 8¢ Isggased g7
9 ST 9C S $908 89+9 AIgYpYesEd €9 € ¢ I I €€ € BSpEAsed /¢
79 I LT 9 890% YLEE dmgrggased 79 ¢ ¢ I I 43 €€ Swggased 97
09 6 8¢ S ¥89¢ 0zIg dspz1gosed 19 ¢ ¢ [ I 43 €€ Mqggased  Gg
s 01 ST S 996¢ T10¢ dmzrogeses (09 6 L ¢ € Iy 0¢ 0ga9RI ased T
(47 Ll ! 6 896€ 698¢ asegadgogrased 66 6 L € € 8% 0g 0gased €T
34 91 L1 S 1LY 898C 9lgYRTAsEd ¢ 6 L € € 8% 0¢g Oogased T
8% ! 81 S (9443 88T QURHRTASEd LG 6 L € € 8% 0¢g [mdogases 1T
8¢ 6 T S €LTE LT dmop/gesed 96 € € I I LT 8C epgTased (g
€< 6 €T S 66T€ LT domoyp/ gased S 8 L ¥ € € ¥ SITO00I prosed 6]
LS 6 €T S €9C¢ LELT dos/g/zased 4G € ¢ I I 1T (4 Teesed gl
<qn aqq qn qal [71 [Al sueN # aqr qn qal lefl [Al duweN #

Complexity of chordal conversion for sparse semidefinite...

panunuod g 3jqel

pringer

As



R.Y.Zhang

06°¢ 89'1 €9 8L 69'¢ we ¥S 6'L vyl il L9 8L 86'8% 1TL°LT 1¥c6 L9
91t 90 09 6'L (43! or'1 19 08 LO'TL €Evy S9 9L 8¥°0C £rs6l SIS9 99
LTT 90 09 18 [N 88°0 L9 18 S6'L €0y 89 L'L 8%'0¢ £87°61 S6v9 S9
81°C L0 09 8L w1 6L°0 65 '8 ST 06°0% 19 6L 8C'IC 80761 0L¥9 ¥9
LET €L’0 €9 6'L €81 LT'1 19 8 SLO1 S6'ty S9 L'L 8¢'IT or'6l 899 €9
4! 430 S 08 STl 080 99 L'L G8'¢ w0ve LS €L 112l ocror YLEE 9
oIl wo 99 8 [MN! ¥$°0 19 9L er'e (AN K 9 'L LSTI 86¢6 (i[483 19
S6°0 LEO (%S 08 LO'T 6¥'0 (14 L'L we §9°0¢ 0s L'L G8'6 €06 clog 09
¥$°0 00 9 08 18°0 €C0 Ly 08 86'C 9¢’L Ly 08 w96 S098 698¢ 6S
9¢°0 S1'o cs 8L 0L0 €C0 09 8L ¥9'¢ €99 ¥S 9L 18°¢ 098 898¢ 8¢
LSO 81°0 8¢ 69 69°0 90 09 6'L e YA ¥s S'L L (443 8¥8¢ LS
LT1 8¢0 6S 8L €6°0 99°0 129 L LOY £8'601 09 L 86°01 9¢€T8 9YLT 9¢
1L°0 430 49 '8 60 86°0 IS S'L (Y4 PE81 0S L y1I'6 9¢T8 LT 99
9L°0 1€°0 9S 7’8 G680 170 19 YL L8T 9I'Ll 19 L9 1€l 608 LELT ¥S
LLO 8C°0 LS 6'L 98°0 9¢'0 8¢ 8L £8'C 65°0C LS I'L £€°6 90¢8 9¢LT €S
90 0 ¥ L'L 18°0 430 8% L'L 1¥'c Siad! Ly 9L L6'L LYIL £8¢C [4S
86°0 €Tl 8¢ 6'L 68’1 ¥$'C [43 €8 0Ty £6'CCl [43 "8 89'7¢ 8665 000C IS
€€°0 L0°0 6S 08 (3 40] Sro %S L'L 1ce LT'E o 6L 8L'E 1686 1561 0s
€€°0 L0°0 8¢ 08 170 S1o (39 8L SI'e 861 6% 8L or'e 799¢ 8881 6%
yT0 S0'0 Ly €8 (43 o o '8 6¥'1 80 124 7’8 y1I'e 0901 ysel 8
ji-1ad 1)1 nsip daxd ji-1ad 1)1 nsip daxd J-1ad 191 nsip doaxd
1sod (erqeaoxd) DO (onsunay) 91D reng (erqeaoxd) DID Tend w u #

[z w3y ‘6¢l A £ = ( n )4 loxd Surkysnes ) 10A0901 0) pue Jurod-Torrayur 10jje oun Sursseoord-jsod - 3sod,, ‘uoneion 1od own jurod-rorxoyur

— J1-12d,; ¢suonerar jurod-1ouul Jo roquinu—, 11, wr uoneredard eurdiur s, JHSOIN pue ss9201d uorsioauod ay) Surpnyoul quiod-IouRiur 210J2q dwin Surssadordard
re—. daxd,, ¢s3181p [ewIoop 9jeIndoe— JISIp,, 9[qeLIeA XIIRW JO Ioplo—u :swa[qoid JJO 15981 G7 10J (SPUodas ur) urun pue (SHSIp [eWIodp ur) AovImody ¢ 3d|qe]

pringer

as



Complexity of chordal conversion for sparse semidefinite...

ool e Lol 89 08 8¢€°66 - - - - - - - - 766°SYT 000°C8 L

61°¢Cll 8°081 <9 6'L $8'96 - - - - - - - - 866°60C 000°0L IL

90°S¢ LVl 811 L'L 9¢'6l S0'st 141! YL 91’69 - - - - 866VL 000°$T 0L

LE9 8°l 0S 8L 1424 LOE 67 L'L 8L'8C £6'9¢C1 LS L 8096 SL60Y 659°¢l 69

89'v 9¢¢ (47 '8 8S'Y £9'¢ Iy 8 €861 61881 6% 08 69°GS 866°6C 00001 89
j1-10d 19)1 §31p doxd J1-1od 1)1 131 doxd 1-1od ) 131p doxd

3sod (d1qeaoid) DD (onsunay) DID renq (s1qeao1d) DID renq w u #

panunuod ¢ 3jqe]

pringer

As



R.Y.Zhang

XX
102 ©

% =
< = 10!
S o'k 20
8 <
2 3
o— 100 b '%
g o}
-3 <

-1 i
i 10 3]
[ s}
T g
g 402 =
=Y e S /\ Dual CTC (provable) /\ Dual CTC (provable)

o O Dual CTC (heuristic) O Dual CTC (heuristic)
10 % K x&g& * X Chordal conversion p X Chordal conversion
{ . h N 100 . . .
10' 10 10° 10* 10° 10° 10' 10% 10° 10* 10°
number of buses n number of buses n
(a) (b)

Fig. 2 AC optimal power flow relaxation solved via chordal conversion (x), heuristic Dual CTC (o), and
provable Dual CTC (A): a Time per iteration, with regression lines of fx (n) = 6.908n x 107> with
R% = 0.90, fo(n) = 2.623n x 10~* with R? = 0.83, and fa(n) = 1.375n x 1073 with R? = 0.80; b
Iterations per decimal digit of accuracy, with (solid) regression g(n) = 1.08810-224 with R2 = 0.84 and
(dashed) bound g(n) = /n

tw(G) = 2 - tw(G) and tw(G) = 2 - tw(G?), where G is the graph of the underlying
electric grid, and G? is its square graph. For the 72 power system graphs taken from the
MATPOWER suite [48], we compute upper- and lower-bounds on tw(G) and tw(G2)
using the “Fillln” and the “MMD+" heuristics outlined in [30], and find that tw(gz)
is small in all 72 power system graphs (see Table 2).

We solve the problem using CC and the two variants of CTC, and verify that the
per-iteration costs are linear (see Fig. 2a). In all three cases, it takes a consistent 50—
70 iterations to achieve € ~ 107, again until numerical issues at very large scales
n ~ 10* forced more iterations to be taken (see Table 3 and Fig. 2b). For these
smaller large-scale problems with G # G, we find that CC and CTC had comparable
processing times, but CC is between 2 and 100 times faster than either variant of CTC
in its solution time. The largest case is case_SyntheticUSA with 82000 buses
(due to [5]), which we solve with CC in 4 h. Previously, this was solved using CTC
in 8h on a high-performance computing (HPC) node with two Intel XeonES5-2650v4
processors (a total of 24 cores) and 240 GB memory [13].

6 Conclusions and future directions

Chordal conversion can sometimes allow an interior-point method to solve alarge-scale
sparse SDP in just O (m + n) time per-iteration. Previously, a well-known necessary
condition is that the aggregate sparsity graph G = (V, E) should have an O(1)
treewidth (independent of m and n):

V={1,2,...,n}, E =spar(C)Uspar(A;)U---Uspar(A;),
where spar(C) = {(i, j) : C[i, j] #0fori > j}.

@ Springer



Complexity of chordal conversion for sparse semidefinite...

In this paper, provide a companion sufficient condition, namely that the extended
aggregate sparsity graph G = (V, E) should also have an O (1) treewidth:

V =1{1,2,...,n}), E =spar(C)Uclique(A;)U---Uclique(A,)
where clique(A) = {(i, j) : A[i, k] # 0 or A[k, j] # O for some k}.

The key to our analysis is to characterize the Schur complement sparsity £, the
sparsity pattern of the linear equations solved at each iteration, directly in terms of E.

Our primary focus has been on reducing the per-iteration costs to O (m+n). Naively
applying this figure to the O(y/m + nlog(1/¢)) iterations of a general-purpose
interior-point method results in an end-to-end complexity of O ((m + n) 15 log(1/¢€))
time. By adopting the treewidth-based interior-point method of Dong et al. [12, Theo-
rem 1.3], as was done in the recent preprint of Gu and Song [21], it should be possible
to formally reduce the end-to-end complexity down to O((m + n)log(l/€)) time.
However, we mention that interior-point methods in practice often converge to € accu-
racy in dimension-free O (log(1/¢)) iterations (without the square-root factor), and as
such the empirical complexity is already O ((m + n) log(1/¢€)) time.

In many applications, G and G either coincide or are very close, so our analysis
becomes either exact or nearly exact; an O (1) treewidth in G is both necessary and
sufficient for chordal conversion to be fast. In cases where G and G are very different,
particularly when the treewidth of G is £2(n) while the treewidth of G is O(1), our
preliminary simulations suggest that the per-iteration cost could slow down £2(n?)
time, but more work is needed to establish this rigorously. Finally, even where interior-
point methods are no longer efficient, it may still be possible to use chordal conversion
to improve the efficiency of first-order methods and/or nonconvex approaches.

Acknowledgements I am grateful to Martin S. Andersen for numerous insightful discussions, and for his
early numerical experiments that motivated much of the subsequent theoretical analysis in this paper. The
paper has also benefited significantly from discussions with Subhonmesh Bose, Salar Fattahi, Alejandro
Dominguez—Garcia, Cedric Josz, and Sabrina Zielinski. I thank the associate editor and two reviewers for
helpful comments that significantly sharpened the presentation of the paper.

Declarations

Conflict of interest The author has no relevant financial or non-financial interests to disclose.

A Proof of the standard-form assumptions

Given data C,A|,..., A, € S" and b € R™, define (A, b, ¢, ) as in (3). In
this section, we verify that (A, b, ¢, K) specifies an SDP that satisfies the regular-
ity assumptions in Definition 2.7.

LemmaA.1 (Linear independence) We have ATy = 0 if and only y = 0.

@ Springer



R.Y.Zhang

Proof We will prove Y ;_, PxP] > I, which implies AAT > I and hence ||A” y|| >
lyll. For arbitrary ¥ € S’ with y = svecr(Y), we observe that

P yIIP = llsvec(Y [k, ADIP = Y (YIi, jD* = > vii(Yli, j])°

i,je (i, j)eclique(Ji)
where y;; = 1if i = j and y;; = 2if i # j. Therefore, we have

SRIyIP=>" > D = Y v (Y D =yl
k=1

k=1 (i, j)eclique(J) (i,j)eF
The inequality is because F = | J;_, clique(Ji). ]

Lemma A.2 (Strong duality is attained) Under Assumption 1, there exists x*, s* € K
satisfying Ax* =b, ATy* +s* =¢, (x*)Ts* = 0.

Proof Define P; implicitly to satisfy P].Tx = x[colp(j)] forallx € R™. Assumption 1
says that there exists X > 0and § < 0 and that satisfy A(X) <band AT )+ S=cC
and <C, )A(> = <b, j}) It follows from [44, Theorem 9.2] that § = C —.AT () € NS

if and only if there exists S 7 > 0 such that S = Z;l: 1 P S yi PJ.T. Now, we turn to the
primal-dual pair defined by the data (A, b, ¢, K) in (3), which is written

i T_ n v.pT — =
min (b, v) : PTIF [A (=) + 2 5= P Vi C] 0
veR™,V;eS i v>0, Vi,...,V, >0

= max {(~C.¥) : AY) <b, =P]YP; <Oforall j e (1,2,....n)]

YeS
We can mechanically verify that v* = —3y and V;‘ =S j 1is feasible for the pri-
mal problem, and Y* = IT F()A( ) is feasible for the dual problem, and that the
two objectives coincide (b, v*) = (—C, Y*). Therefore, we conclude that x* =
(v*, svec(V]"), ..., svec(V;)) and y* = svecr(Y™) is a complementary solution sat-
isfying ATx* = b, ATy* +s* =¢, and (x*, s*) = 0. O

B Complexity of general-purpose interior-point methods

In this section, we state a concrete interior-point method that implements the specifi-
cations outlined in Definition 2.8, roughly following the steps in [11].

Proposition B.1 Let (A, b, ¢, K) describe an SDP in (n, w)-standard form, and let opt
denote its optimal value. Let T and M denote the time and memory needed, given data
A € RMXN o ¢ RM and achoice of w € Int(K), to form and solve ADAT Ay = g for
Ay € R™ where D! = V2 f(w) and f = —logdet(w). Then, a general-purpose

@ Springer



Complexity of chordal conversion for sparse semidefinite...

interior-point method computes (x, y) that satisfy the following in O(/nlog(1/¢€))
iterations

chgopt+n~e, |Ax —b|| <€, xelk,
bTyzopt—n-e, c—ATy—i-el;ceIC,

with per-iteration costs of O(w*n + nnz(A) + T) time and O(wn + nnz(A) + M)
memory.

We prove Proposition B.1 by using the short-step method of Nesterov and Todd [34,
Algorithm 6.1] to solve the extended homogeneous self-dual embedding

x,yl,?,ixr,lrﬁ (n+1)0 (8a)
0 +AT —¢ —ry [x s 0
.. ;“} _?)T ”:)b _ A 2 = 8 (8b)
rdT r; re 0 0 0 n+1
x,s ek, k,t>0, (8¢)

wherery = 1 —candr, = —Alc+bandr. =1+ ¢’ 1. Beginning at the strictly
feasible, perfectly centered point in (9) for u = 1:

9O = 7O — O _ y(O) =0, x© =50 1k. 9)

we take the following steps

X 1 xTs + 1k
pt=|1- : :
154/n +1 n—+1

(x+, y+, st T, 0T, K+) =(x,y,5,1,0,k)+ (Ax, Ay, As, At, A0, Ak).

(10a)

along the search direction defined by the linear system [41, Eqn. 9]

0 +AT —¢ —r, [Ax As
—A 0 +4+b —rg || Ay 0]
vl b7 0 —r | |az| T ac| =0 (1)
+r; —H’; +r. 0 A6 0
s+ As+ V2 f(w)Ax + u TV f(x) =0, (11b)
K+ Ak + (k/0)AT — T = 0. (11c)
where f(w) = —logdetw is the usual self-concordant barrier function, and w €

Int(K) is the unique point that satisfies V2 f (w)x = s. The following is an immediate
consequence of [34, Theorem 6.4].

@ Springer



R.Y.Zhang

LemmaB.2 (Short-Step Method) The sequence in (10) arrives at an iterate
(x,y,s,7,0,K) satisfying

xTs + 1k - - (12)
_ R TK > Y€
n+1 — Y

withy = % in at most O (y/nlog(1/€)) iterations.

Finally, the following result (adapted from [11, Lemma 5.7.2]) assures us that a feasible
point satisfying the optimality condition (12) will recover a solution to the original
problem.

Lemma B.3 (e-accurate and e-feasible) Let there exist (x*, y*) such that Ax* = b
with x* € K andc — AT y* = s* € K that satisfies strong duality bT y* = ¢! x*. Then,
a point (x,y,s, T, 0, k) that is feasible for (8) and satisfies the optimality condition
(12) also satisfies the following, where p = 1 + 1L oG+ 5%):

lA(x/7) =b] < IAT (v/7) + (s/7) —¢ll <

.
plrpl .
14

plral . /0 /0 _ P2
y n+l T y2

Proof First, observe that (x, y, § ‘L’ 9 K) = (Tx*, Ty*, 7s*,7,0,0) with T = (n +
1)/p is a solution to (8), because rd x*+ rp Ve = llc(x + s*) + 1 = p. Next,
we prove that if (x, y, s, 7, 0, k) is feasible for (8) and satisfies (12), then T > Z

Indeed, the skew-symmetry of (8b) yields § = & Y_:“f’( and (x — x) (s — s) +(t —

£)(k — &) = 0. Rearranging yields (n + 1)0 = xTs 4+t = £Ts + xT§ + tk +
7k and hence k < (n + 1)0/7. Under (12), we have 0 = "Tsi <eand T >
% > ’;—0 > G +y1(;9 = Ll Flnally, divide (8b) through by 7 and substitute
I/t <p/y. o

Proof of Proposition B.1 Recall that (A, b, ¢, ) describe an SDP in (n, w)-standard
form, and hence there exist (x*, y*) such that Ax* = bwithx* € ande—ATy* € K
that satisfies strong duality b” y* = ¢’ x*. Combining Lemma B.3 and Lemma B.2
shows that iterations in (10) converges to the desired e-accurate, e-feasible iterate after
O(4/nlog(1/e€)) iterations. The cost of each iteration is essentially equal to the cost
of computing the search direction in (11). We account for this cost via the following
two steps:

1. (Scaling point) We partition x = [sve:c(Xj)]’]Z.:l and s = [sve:c(Sj)]f.:1
Then, the scaling point w = [svec(Wj)]f.:1 is given in closed-form as W; =
1/2(51/2 1/2)_1/2S]1./2 [38, Section 5]. Noting that each W; is at most w X w,

the cost of formlng w is at most of order

¢ ¢ ¢ ¢
3 < o? . = w’n time 2 < ;= memo
w; < wj = w”n time, wi <o wj = wn ry.
j=1 j=l1 j=1

@ Springer



Complexity of chordal conversion for sparse semidefinite...

By this same calculation, it follows that the Hessian matrix—vector products

V2 f(w)x = [svec(W; ' X; W H15_; and V2 f(w)~'x = [svec(W; X; W),
also cost O (w?n) time and O (wn) memory.

2. (Search direction) Using elementary but tedious linear algebra, we can show that
if

(ADA”) [v; v, v3] = [0 =b r,] —AD[d ¢ r4] (13a)

where D = [V2 f(w)] ' andd = —s — utV f(x), and

[ul Uy u3] = D([d c rd] +AT [v1 v v3]), (13b)
then
_al_rc_ crdTu2u3 At| _|—=do| _ Cl’dTul
re 0 -br, V) U3 A7 O ~br, v |’
(13c¢)
Ax |  |up C|uru AT
Ay | v v v || A6 |
(13d)
As =d — D7 Ax, (13e)
Ak =dy — Dy Ar, (13f)
where Dy = t/k and dy = —k + ptt~!. Therefore, we conclude that the cost

of computing the search direction in (11) is equal to the cost of solving O(1)
instances of the Schur complement equation ADA” Ay = g, plus O(1) matrix—
vector products with A, AT D, D!, foratotal cost of O (T+nnz(A) + a)zn) time
and O(M + nnz(A) + wn) memory respectively. Note that ADA” > 0 because

AAT > 0 by the linear independence assumption, and D! = V2 f(w) > 0 for all
w € Int(K).
O
References

1. Amestoy, P.R., Davis, T.A., Duff, I.S.: Algorithm 837: AMD, an approximate minimum degree ordering
algorithm. ACM Trans. Math. Softw. 30(3), 381-388 (2004)

2. Andersen, E.D., Andersen, K.D.: The MOSEK interior point optimizer for linear programming: an
implementation of the homogeneous algorithm. In: High performance optimization, pp. 197-232.
Springer (2000)

3. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic
quadratic optimization. Math. Program. 95, 249-277 (2003)

4. Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems.
Int. J. Electr. Power Energy Syst. 30(6-7), 383-392 (2008)

5. Birchfield, A.B., Xu, T., Gegner, K.M., Shetye, K.S., Overbye, T.J.: Grid structural characteristics as
validation criteria for synthetic networks. IEEE Trans. Power Syst. 32(4), 3258-3265 (2016)

@ Springer



R.Y.Zhang

10.

12.

13.

15.

16.

17.
18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.
33.

. Biswas, P, Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In:

Proceedings of the 3rd international symposium on Information processing in sensor networks, pp.
46-54 (2004)

. Borchers, B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Methods

Softw. 11(1-4), 683-690 (1999)

. Boumal, N., Voroninski, V., Bandeira, A.S.: Deterministic guarantees for Burer—Monteiro factoriza-

tions of smooth semidefinite programs. Commun. Pure Appl. Math. 73(3), 581-608 (2020)

. Burer, S., Monteiro, R.D.: A nonlinear programming algorithm for solving semidefinite programs via

low-rank factorization. Math. Program. 95(2), 329-357 (2003)
Dancis, J.: Positive semidefinite completions of partial Hermitian matrices. Linear Algebra Appl. 175,
97-114 (1992)

. deKlerk, E., Terlaky, T., Roos, K.: Self-dual embeddings. In: Handbook of Semidefinite Programming,

pp. 111-138. Springer (2000)

Dong, S., Lee, Y.T., Ye, G.: A nearly-linear time algorithm for linear programs with small treewidth:
a multiscale representation of robust central path. In: Proceedings of the 53rd annual ACM SIGACT
symposium on theory of computing, pp. 1784-1797 (2021)

Eltved, A., Dahl, J., Andersen, M.S.: On the robustness and scalability of semidefinite relaxation for
optimal power flow problems. Optim. Eng. (2019). https://doi.org/10.1007/s11081-019-09427-4

. Fomin, F.V., Lokshtanov, D., Saurabh, S., Pilipczuk, M., Wrochna, M.: Fully polynomial-time param-

eterized computations for graphs and matrices of low treewidth. ACM Trans. Algorithms 14(3), 1-45
(2018)

Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION.
Algorithmica 18(1), 67-81 (1997)

Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via
matrix completion I: General framework. SIAM J. Optim. 11(3), 647-674 (2001)

Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835-855 (1965)
George, A., Liu, J.W.: Computer solution of large sparse positive definite. Prentice Hall Professional
Technical Reference, Hoboken (1981)

Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. J. ACM 42(6), 1115-1145 (1995)

Grone, R., Johnson, C.R., S4, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian
matrices. Linear Algebra Its Appl. 58, 109-124 (1984)

Gu, Y., Song, Z.: A faster small treewidth SDP solver. (2022). arXiv:2211.06033

Jabr, R.A.: Exploiting sparsity in SDP relaxations of the OPF problem. IEEE Trans. Power Syst. 27(2),
1138-1139 (2012)

Kim, S., Kojima, M., Waki, H.: Exploiting sparsity in SDP relaxation for sensor network localization.
SIAM J. Optim. 20(1), 192-215 (2009)

Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear and nonlinear matrix
inequalities via positive semidefinite matrix completion. Math. Program. 129(1), 33-68 (2011)
Kobayashi, K., Kim, S., Kojima, M.: Correlative sparsity in primal-dual interior-point methods for LP,
SDP, and SOCP. Appl. Math. Optim. 58(1), 69-88 (2008)

Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim.
11(3), 796-817 (2001)

Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1),
92 (2012)

Lovisz, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1-7 (1979)

Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained
optimal power flow problem. IEEE Trans. Power Syst. 31(2), 1297-1307 (2016)

Maniu, S., Senellart, P., Jog, S.: An experimental study of the treewidth of real-world graph data. In:
22nd international conference on database theory (ICDT 2019), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, (2019)

Molzahn, D.K., Hiskens, I.A.: A survey of relaxations and approximations of the power flow equations.
Found. Trends Electric Energy Syst. 4(1-2), 1-221 (2019)

MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0., (2019)
Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite
programming via matrix completion II: implementation and numerical results. Math. Program. 95(2),
303-327 (2003)

@ Springer


https://doi.org/10.1007/s11081-019-09427-4
http://arxiv.org/abs/2211.06033

Complexity of chordal conversion for sparse semidefinite...

34. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim.
8(2), 324-364 (1998)

35. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and
optimization. PhD thesis, California Institute of Technology, (2000)

36. Pataki, G., Schmieta, S.: The DIMACS library of semidefinite-quadratic-linear programs, (2002)

37. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim.
Method. Softw. 11(1-4), 625-653 (1999)

38. Sturm, J.E.: Implementation of interior point methods for mixed semidefinite and second order cone
optimization problems. Optim. Methods Softw. 17(6), 1105-1154 (2002)

39. Sun, Y.: Decomposition methods for semidefinite optimization. PhD thesis, UCLA, (2015)

40. Sun, Y., Andersen, M.S., Vandenberghe, L.: Decomposition in conic optimization with partially sepa-
rable structure. SIAM J. Optim. 24(2), 873-897 (2014)

41. Todd, M.J., Toh, K.-C., Tiitiincii, R.H.: On the Nesterov-Todd direction in semidefinite programming.
SIAM J. Optim. 8(3), 769-796 (1998)

42. Toh,K.-C., Todd, M.J., Tiitiincii, R.H.: Sdpt3-a matlab software package for semidefinite programming,
version 1.3. Optim. Methods Softw. 11(1-4), 545-581 (1999)

43. Tiitiincti, R.H., Toh, K.-C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using sdpt3.
Math. Program. 95, 189-217 (2003)

44. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Found. Trends
Optim. 1(4), 241433 (2015)

45. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations
for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218-242 (2006)

46. Zhang, R.Y., Lavaei, J.: Sparse semidefinite programs with guaranteed near-linear time complexity via
dualized clique tree conversion. Math. Program. 188, 1-43 (2020)

47. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., Wynn, A.: Chordal decomposition in
operator-splitting methods for sparse semidefinite programs. Math. Program. 180(1), 489-532 (2020)

48. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: Matpower: steady-state operations, planning,
and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12-19
(2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	Complexity of chordal conversion for sparse semidefinite programs with small treewidth
	Abstract
	1 Introduction
	1.1 Our results: complexity of chordal conversion
	1.2 Prior results: complexity of clique-tree conversion
	1.3 Other approaches

	2 Preliminaries
	2.1 Notations and basic definitions
	2.2 Sparse Cholesky factorization
	2.3 Minimum frontsize and treewidth
	2.4 General-purpose interior-point methods

	3 Main results
	4 Frontsize of the Schur complement sparsity (Proof of Theorem 3.1)
	4.1 Exact frontsize of a lifted sparsity pattern (Proof of Lemma 4.2)
	4.2 Sparsity overestimate (Proof of Lemma 4.3)

	5 Large-scale numerical experiments
	5.1 Lovász theta problem on synthetic dataset
	5.2 AC optimal power flow relaxation on real-world dataset

	6 Conclusions and future directions
	Acknowledgements
	A Proof of the standard-form assumptions
	B Complexity of general-purpose interior-point methods
	References




