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Abstract

The g-th moment (¢ > 0) of electrostatic equilibrium measure is shown to be minimal for a
centered ball among 3-dimensional sets of given capacity, while among 2-dimensional sets a
centered disk is the minimizer for 0 < ¢ < 2. Analogous results are developed for Newtonian
capacity in higher dimensions and logarithmic capacity in 2 dimensions. Open problems are
raised for Riesz equilibrium moments.
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1 Introduction

The moments of electrostatic equilibrium measure on a conductor quantify how much that
conductor “spreads out”. It seems plausible that among sets with given capacity, the ball
should minimize moments of equilibrium measure. This paper proves minimality of certain
moments for the ball among n-dimensional sets with given Newtonian capacity inn and n+ 1
dimensions. These results suggest a conjecture for a whole family of Riesz capacities.

1.1 Definitions of Energy, Capacity, and Equilibrium Measure

The Riesz capacity Cap,(-) and logarithmic capacity Capg(-), along with the corresponding
energies V), and Vjog and their equilibrium measures, are defined below. The Newtonian case
occurs when p = n —2 and n > 3. References for the following definitions and facts can be
found in Appendix A.

Consider a compact subset K in R”, n > 1. The logarithmic energy of K is

1
Vlog(K):inf// log dup(x)du(y)
wJgJk T lx =yl
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where the infimum is taken over all probability measures on K, that is, positive unit Borel
measures. (Such measures always exist unless K is empty, and for the empty set we define
Viog(¥) = +00.) The energy is greater than —oo since |x — y| is bounded. The infimum is
attained, and if the energy is less than 400 then it is attained by a unique minimizing measure
called the logarithmic equilibrium measure.

The Riesz p-energy of K is

. 1
V,,(K)zlnf// ——du(x)du(y), p>0,
w JgJg 1x —yl|?

where the infimum is taken over all probability measures on K . Again the infimum is attained,
and if the energy is finite then the minimizing measure is unique and we call it the p-
equilibrium measure. The Riesz p-capacity is

Vp(K)™P p >0,
exp(—Viog(K)). p=0.

This capacity is positive if and only if the energy is finite. The O-capacity is also known
as logarithmic capacity, and the logarithmic equilibrium measure will be called the 0-
equilibrium measure.

When the capacity is positive, the equilibrium potential is

Capp(K) = {

1
u(X)=/ ——du(y), xeR",
K lx—yl?

for p > 0, where u is the equilibrium measure, and similarly for p = 0 with the logarithmic
kernel.
We say a set Z has inner p-capacity zero if Cap,(Z’) = 0 for every compact Z' C Z.
Newtonian energy is V,_2(K) and Newtonian capacity is Cap,-2(K). That is, the New-
tonian case arises when
n>3 and p=n-—2.

Capacity formulas for the ball are collected in Appendix A.
Note that capacity is monotonic with respect to set inclusion, with

Ky C Ky = Capy(K)) < Capy(K>),

because the larger set supports a larger collection of probability measures and hence has
smaller energy.

Some authors, such as Landkof [9] or Borodachov, Hardin and Saff [6], define Cap,(K)
to be 1/V,(K) without taking the p-th root. The current definition is more convenient for
our purposes since it ensures that capacity scales linearly:

Cap,(sK) = s Cap,(K), s > 0.
1.2 Minimal Moments of Equilibrium Measures
The first theorem says that among compact sets with given Newtonian capacity in R”, n > 3,
or with given logarithmic capacity in R?, the g-th moment of equilibrium measure with g > 0

is minimal for the ball.

Theorem 1.1 (Moments of Newtonian equilibrium measure are minimal for the ball) Let
n > 2. Suppose the compact set K C R" has the same (n — 2)-capacity as a closed ball
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B C R" centered at the origin, Cap,2(K) = Cap,2(B) > 0, and write u and v for the
(n — 2)-equilibrium measures of K and B respectively.
(i) If g > O, or else if ¢ < —(n — 2) and the origin is a regular point of K, then

/Wsz/ [ dv.
K B

/ log|x|dp > / log |x| dv.
K B
(iii) If —(n — 2) < q < O then the inequality is reversed:

/le"duff x| dv.
K B

(iv) (Equality statements) In part (i), equality holds if and only if K contains the sphere
0B and K \ B has inner (n — 2)-capacity zero; the same is true for part (ii) when n > 3,
and for part (iii) when —(n — 2) < g < 0. For part (ii) with n = 2, and part (iii) withn > 3
and g = —(n — 2), equality holds if and only if the origin is a regular point of K.

(ii) Letting ¢ — 0,

A regular point of K is one at which the equilibrium potential equals the energy of the
set, which indeed is the case at every point of K except for a subset of inner capacity zero.

In part (i) for negative exponents g < —(n — 2), the moment f x |19 du on the left side
of the inequality might equal +o0 for some K. Also, that moment can be arbitrarily close to
0 if the hypothesis that the origin belongs to K is dropped, since then K could lie far from
the origin. On the other hand, the inequality in part (iii) goes in the reverse direction and so
holds trivially when K lies far from the origin and the left side is close to 0.

We prove the theorem in Section 2 by a straightforward application of Jensen’s inequal-
ity. The proof yields stronger inequalities than are stated in the theorem, giving moment
inequalities for F(1/|x|"~2) when F is convex decreasing. The crucial fact is that Newto-
nian equilibrium measure v on a ball in R” is simply normalized surface area measure on
the boundary sphere, which means also that the lower bound in Theorem 1.1 evaluates to
fB |x]9 dv = R4, where R is the radius of the ball B.

More difficult is the question of whether the ball minimizes equilibrium moments beyond
the Newtonian case, that is, when the Riesz parameter p is greater than n — 2. The equilibrium
measure of the ball is no longer fully concentrated on the boundary sphere. Charges are instead
distributed throughout the interior with density greatest near the boundary: see the formulas
in Appendix A.

The main result of the paper proves moment inequalities in the case p =n — 1.

Theorem 1.2 (Moments of (n — 1)-equilibrium measure are minimal for the ball) Let n > 1
and suppose the compact set K C R" has the same (n — 1)-capacity as a closed ball B C R"
centered at the origin, meaning Cap,.1(K) = Cap,.1(B) > 0. Then

[wttanz [ geoo
K B
where i and v are the (n — 1)-equilibrium measures of K and B, respectively. Equality holds

if and only if K = B U Z where Z has inner (n — 1)-capacity zero.
Further, the logarithmic moments satisfy

/loglxld,uzfloglxldv.
K B
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When n > 2, equality holds for the logarithmic moments if and only if K = B U Z for
some Z with inner (n — 1)-capacity zero. When n = 1, equality holds if and only if the origin
is a regular point of K (meaning fK log1/|x|dp = Vigg(K)).

The theorem is proved in Sections 5—7 by suitably adapting Baernstein’s x-function method
from complex analysis. The set-up for the proof is shown in Fig. 1. Note that the lower bounds
in the theorem can be computed explicitly, by means of the known formula (Appendix A)
for the equilibrium measure v of the ball.

The Riesz capacity in this theorem with p = n— 1 is simply Newtonian capacity for R"*1,
since the Newtonian case arises when p equals the dimension minus 2. Hence Theorem 1.2
can be interpreted as saying that among compact sets in R” having given Newtonian capacity
when regarded as subsets of R"t1, the g-th moment of equilibrium measure is minimal for
the n-ball, when 0 < g < 2.

This interpretation is particularly informative whenn = 1 and n = 2.

Corollary 1.3 (Moments of planar sets) Let 0 < g < 2.

If a compact set K C R? has the same Newtonian capacity as a closed disk B centered
at the origin, Capi(K) = Cap|(B), then [y |x|9dp > [, |x|9dv where |1 and v are the
Newtonian equilibrium measures of K and B regarded as sets in R3.

If a compact set K C R has the same logarithmic capacity as a closed interval I centered
at the origin, Capo(K) = Capo(I), then fK x|9dun > f, |x|9 dv where . and v are the
logarithmic equilibrium measures of K and I regarded as sets in R?.

Does the last theorem remain true for a whole range of Riesz capacities and moments?

Conjecture 1.4 (Moments of Riesz p-equilibrium measure are minimal for the ball) Suppose
n>2andn—2 < p <mn,orelsen =1and 0 < p < 1. If a compact set K C R” and

R

=

)/\

—

Fig.1 The compact set K in Theorem 1.2 lies in R”. For the proof, we regard K as lying in the higher dimen-
sional space R+ and proceed by integrating the (harmonic) equilibrium potential over the n-dimensional
ball in R?*1 at height z with radius r
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closed ball B C R" centered at the origin have the same p-capacity, Cap,(K) = Cap,(B),
then

/|x|qduz/ Xl dv, g e (0,00),
K B

where p and v are the p-equilibrium measures of K and B, respectively.

This conjecture is true in the limit ¢ — o0, since if one takes the ¢-th root of the moment
inequality and lets ¢ — oo then it says [[x|[zoc(,) > ||lx[|zo0 (), Which must hold because
otherwise u would be supported in a ball strictly contained in B, contradicting the assumption
that K and B have the same capacity.

The case p = n — 2 of the conjecture was handled in Theorem 1.1, while Theorem 1.2
covers p=n — 1 with0 < g < 2.

When p < n — 2, the conjecture might still be plausible. Our proof in Section 2 for
p = n —2 does not extend to p < n — 2 because the equilibrium potential of K at the origin
can now have value greater than the energy V,(K) (see [9, p. 163]) and so inequality (3) in
the proof can fail.

However, the fact that the equilibrium measure of the ball is supported on the boundary
when p < n — 2 can be used to show that if the moment inequality is true for some moment,
then it holds also for all higher moments.

Proposition 1.5 (Range of moments for p-equilibrium measures with 0 < p < n — 2) Let
n>3and 0 < p < n — 2. Suppose the compact set K C R" and closed ball B C R"
centered at the origin have the same p-capacity, Cap,(K) = Capy,(B) > 0. Ifthe equilibrium

moment inequality
[ itz [ xpras M
K B

holds for some q = g, € (0, 00) then it holds for all q € [gx, 00).

Section 3 has the proof. Some such threshold ¢, = ¢« (K, n, p) exists, since the moment
inequality is true in the limit ¢ — o0, as observed above. What one would like to show is
the existence of a threshold g that does not depend on the set K.

1.3 Prior Work on Moments of Equilibrium Measure

Only a few extremal results on moments of equilibrium measure are known to us in the
literature, as summarized below. None overlap directly with the results in this paper.

For logarithmic equilibrium measure in the plane, Baernstein, Laugesen and Pritsker [3,
Theorem 1] prove an inequality somewhat related our to Theorem 1.2 when n = 1, for
compact K C R. They show that if K is translated to put its electrostatic centroid at the
origin ([} x dp = 0) and I is a centered interval with the same logarithmic capacity as K,

then the lower bound
[owan= [oa
K I

holds whenever ¢ is convex. Note that here the set K is centered and the convex function ¢
is not, whereas in our Theorem 1.2 the moment function |x|? is centered but K is not.

Those authors also establish upper bounds, which naturally are of a different nature to the
lower bounds in our paper. In particular they show in [3, Theorem 2] that if K ¢ R? ~ C is
connected and has electrostatic centroid at the origin then

/ ¢(Rez)du(z) < /¢(Rez)dv(z).
K 1
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This result says intuitively that among connected planar sets of given capacity, the hori-
zontal line segment is the “most spread out” as quantified by convex means of the horizontal
variable.

A further upper bound due to Laugesen [11, Corollary 6] implies that if K C C is
connected and contains the origin and has the same logarithmic capacity as an interval Iy
having one endpoint at the origin, then

/¢(10g|2|)du§/ ¢ (log [2) dv
K )

whenever ¢ is convex. Baernstein, Laugesen and Pritsker [3, Corollary 6.3] deduce from this
inequality that if K C C is connected and symmetric with respect to the origin and contains
the origin, then

/K¢aog Izl)dMS/[¢(10g|z|)dv, @)

where this last integral is taken not over I but over the centered interval /.

They raise an open problem for logarithmic equilibrium moments [3, Conjecture 2]: if
K c C is connected, contains the origin, and has its electrostatic centroid at the origin,
then Eq. 2 holds whenever ¢ and ¢’ are convex. A special case would be a long-standing
conjecture of Pommerenke for conformal maps on the exterior of the disk.

Lastly, upper bounds for log™ moments on Julia sets are presented by Pritsker [16], with
the maximizers being intervals in the plane.

1.4 Literature on Isoperimetric Theorems for Riesz Capacity

Our work on minimizing moments of equilibrium measures is indirectly motivated by a
classic extremal problem in mathematical physics: to minimize capacity among conductors
of given volume. In the Newtonian and logarithmic situations (p = n — 2), the Poincaré—
Carleman—Szeg6 theorem [15] asserts that the set of given volume that minimizes capacity
is the ball. In the plane, Solynin and Zalgaller [18] proved a beautiful and difficult polygonal
analogue, that among N-sided polygons with given area, the one that minimizes logarithmic
capacity is the regular N-gon. In a related vein, although much easier to prove, Laugesen
[12] minimized capacity among linear images of sets (not necessarily polygons) that have
rotational symmetry.

Minimality of Riesz p-capacity for the ball among compact sets of given volume is
known when n — 2 < p < n by Watanabe [20, p.489]; see also Betsakos [4, 5] and
Méndez—Hernandez [14]. Rearrangement and polarization methods underlie these results,
along with probabilistic characterizations of the capacity (related to a-stable processes). The
case 0 < p < n — 2 remains open, as far as we know. For background, see the papers
mentioned above and the comment by Mattila [13, p.193]. A probabilistic approach could
perhaps be tried to tackle Conjecture 1.4 for moments of Riesz equilibrium measures.

2 Proof of Theorem 1.1

The equilibrium measure v for the ball B is normalized surface area measure on the sphere
0B, since p = n — 2 in this theorem; see Appendix A.
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Part (i)

Assume to begin with that n > 3. Recall that the equilibrium potential is bounded above
everywhere by the energy (Lemma A.1), which at the origin means

/ x|~ dp < Vo (K); 3)
K

equality holds for the centered ball B since the origin is an interior point.
Suppose ¢ > 0. Let F(s) = s~9/=2) 5o that F is strictly convex and decreasing and
has |x|? = F(1/|x|"~2). Then

/ Y d = / F(lx"" ) d
K K

> F(/ |x|~=2 du) by Jensen’s inequality since F' is convex
K

> F(V,—2(K)) by Eq. 3 since F is decreasing
= F(V,—2(B)) because K and B have the same energy

= F( x| =2 dv) by equality in Eq. 3 for the ball
B

using in the final step that |x| is constant on the sphere where v is supported.

Now suppose g < —(n—2) and that the origin is aregular point of K, which means simply
that Eq. 3 holds with equality. Again F is strictly convex, and even though it is increasing,
the argument above remains valid since Eq. 3 now holds with equality.

Assume next that n = 2. The potential satisfies the logarithmic analogue of Eq. 3, which
is [, g logl/|x[dpn < Vieg(K), with equality when K is the disk B centered at the origin.
We may argue as above using the strictly convex function F(s) = e~ %%, which is decreasing
when ¢ > 0. The key relation is that |x|? = F(log 1/|x]).

Part (i)

For logarithmic moments, argue as for ¢ > 0 in part (i), except using the strictly convex,
decreasing function F(s) = log 1/s when n > 3 and the linear decreasing function F(s) =
—s when n = 2. The proof goes through as before, using that F(1/|x|”_2) = (n—2)log|x|
when n > 3 and F(log1/|x|) = log|x| whenn = 2.

Alternatively, one could obtain part (ii) from part (i) by letting ¢ \( 0 and obtaining the
logarithm as an endpoint derivative, since (|x|? — 1)/g — log|x|as g — O.

Part (iii)
Suppose —(n —2) < g < 0. Argue as for g > 0 in part (i), but now using the strictly convex,
decreasing function F(s) = —s~4/"*=2) for which —|x|? = F(1/|x|"~%). One obtains that

— [x Ix|9dp > — [ |x|? dv. The same inequality holds when ¢ = —(n — 2) < 0, by
applying the potential inequality (3) to K and recalling that Eq. 3 holds with equality for B.
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Part (iv)

When ¢ = —(n — 2) with n > 3 we conclude directly from Eq. 3 that equality holds in case
(iii) if and only if the origin is a regular point of K, and similarly when n = 2 we conclude
from the logarithmic analogue of Eq. 3 that equality holds in case (ii) if and only if the origin
is a regular point of K.

Next we prove the other equality statements.

“=" Suppose equality holds in part (i). To begin with, suppose n > 3. Examining the
argument above, we notice equality must hold in Jensen’s inequality. Strict convexity of F
then requires that |x| is constant p-a.e. on K. Writing R for that constant value, it follows
that i is supported in the sphere of radius R centered at the origin. Equality of the moments
in part (i) implies that R is the radius of B, so that u is supported in 0 B.

Further, since F is strictly decreasing when ¢ > 0, equality in the proof of part (i)
implies that fK |x|_(”_2) dn = V,_2(K), and when g < —(n — 2) the same equation holds
by hypothesis. Thus, either way, at the origin the equilibrium potential of K achieves its
maximum value, namely the energy of K. We claim K contains the whole sphere d B. For
if it omitted any point of the sphere then it would omit a whole neighborhood of that point
and hence the support of © would be confined to a proper compact subset S of dB. The
equilibrium potential of K would then be harmonic and nonconstant on the connected open
set R"\ S, and so by the strong maximum principle it would be impossible for the equilibrium
potential to attain its maximum at the origin, because the origin is an interior point of that
open set. This contradiction shows that K must contain the whole sphere 0 B.

Since p is supported in d B, we see that x4 must be the equilibrium measure for that sphere,
which is the normalized surface area measure. Thus p = v. Outside the ball B, the potential
of v is strictly smaller than the energy of B by Lemma A.1. Equivalently, outside B the
potential of u is strictly less than the energy of K. By the equality case of Lemma A.1, we
conclude that K \ B contains no interior points of K and that it has inner (n — 2)-capacity
zero. Hence we have proved the desired equality statement.

When n = 2, the argument above for equality in case (i) is identical except using loga-
rithmic energies, capacities and potentials.

If equality holds in part (ii) with n > 3, or in part (iii) with —(n — 2) < g < 0, then the
arguments above again imply by the strict convexity of F that K contains the sphere d B and
K \ B has inner (n — 2)-capacity zero.

“«<="For the other direction of these equality statements, suppose K \ B has inner (n —2)-
capacity zero. If K’ is any compact subset of K \ B then Cap,2(K’) = 0, and so K’ has
infinite energy, which implies (K’) = 0 (because otherwise the normalized restriction of
u to K’ would give finite energy). Hence u(K’) = 0 for every compact subset of R" \ B,
and so (R" \ B) = 0. Thus u is supported in B, and since K and B are assumed to have
the same energy, the uniqueness of equilibrium measure forces ;& = v. The moments of p
and v therefore agree.

3 Proof of Proposition 1.5

The function F(s) = s2/9* is convex since ¢ > g and so Jensen’s inequality yields
q/x
[tz ([ rean]
K K
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Since the moment inequality (1) holds for ¢, we see that

q/9x q/qx
(/ IXI’**du> Z(/ le”*dV> :/ |x|?dv,
K B B

where we used in the final equality that for 0 < p < n — 2, the Riesz equilibrium measure v
on the ball B is normalized surface measure on the boundary sphere [6, Theorem 4.6.7], so
that |x| is constant on the support of v.

4 Moment Formula in R+

The moments of equilibrium measure when p = n — 1 will be expressed in terms of the
equilibrium potential in R”*!, in Lemma 4.2 below. First we need the mean value of the
Newtonian potential near infinity, in n + 1 dimensions.

Lemma 4.1 (Spherical mean value of the potential near infinity) If the compact set K C R+
has positive (n — 1)-capacity then its equilibrium potential u satisfies

1/t n=2,

logl/r, n=1,

i, ure e = {

whenever r is large enough that K C B"T1(r).

Here dé is the surface area element on the sphere S”. In what follows, we write x € R”"
and X = (x, z) for a typical point in R"*!, as depicted in Fig. 1 earlier in the paper.

Proof Suppose n > 2 and K C R**!. The potential
1
= | —— du@ 4
u(re) /K e g @ @)

decays like 1/r"~' 4+ O (1/r") asr — oo. After integrating with respect to d£/|S"|, the same
decay rate holds for the spherical mean value of u. On the other hand, the spherical mean
value of u is a radial harmonic function of r, when r is large enough that B"tl(+) o K, and
so it must have the form ¢{/r"~! + ¢o. Comparing with the known decay rate, we deduce
c] = 1 and cy) = 0.

Now suppose 7 = 1 and K C R?. The logarithmic potential

u(ré) =fK10g dp(x) (&)

1
Iré — %
behaves like log(1/r) 4+ o(1) as r — o0, and so after integrating with respect to d£/|S!|, the
same behavior holds for the mean value of u over the circle of radius r. But when r is large
enough that Bz(r) O K, the circular mean value is a radial harmonic function in R? and so
has the form cj log(1/7) + co. The behavior at infinity implies thatc; = 1 andcp =0. 0O

Define
_JY/m=DIS", n=>2,

a, =
8 :1/271, n=1.
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Lemma 4.2 (Difference of moments) Let n > 1. Assume ®(r) is C3-smooth forr > 0 with
O"(r) = 0(1/r"' =%y as r — 0, for some 8§ > 0. Suppose K and B are compact sets in
R each having positive (n — 1)-capacity.

If R > 0 is large enough that both sets lie in the ball B"+1 (R) then the difference of their
d-moments can be expressed as

/d><|£|>du(£)—f d><|»%|>dv<»%)=anf VIR W) — u(®) df ©)
K B Brt+1(R)

= ap (‘I/(R) (W) —u(x))dx (N

Brt! (R)

R
— / w'(r) (v(X) — u(®)) dx dr)
0 ]BnJrl(r)

where v and v are the (n — 1)-equilibrium measures for K and B in R" T, with corresponding
equilibrium potentials u and v, and VY (r) = ®"(r) + (n/r)®'(r) is the Laplacian of ®(r)
in R*+1,

For the second moment (¢ = 2), the lemma simplifies to say
[ R duth - [ g av) =200+ Day [ w6 - ui)ds,
K B Brt! (R)

by taking ®(r) = r2 in Eq. 6 and noting ¥ (r) = 2(n + 1).

Proof of Formula (6) in the Lemma The Laplacian of the potential u in Egs. 4 and 5 is propor-
tional to the equilibrium measure, with

—a,Au=du

in the distributional sense since the fundamental solution for the Laplacian in R"*! is
an /%"~ when n > 2 and a; log 1/|%| when n = 1.

Suppose initially that ®(|%]) is C2-smooth on R"*!, including at the origin. By the dis-
tributional Laplacian formula,

1
— (/ QXD dp(x) — cI>(R)) )
a K

du(x)

:/ (®(R) — @(I%)
[BnJrl(R)

dn

3
= / A(P(R) — ®(IX))u(x) dx — / (P(R) — ®(IX))u(x)dS (%)
IBS"‘H(R)

S"(R) av
= —/ W (|Z)u(x) dx + @' (R) udS
B"'H(R) S(R)
N AN ga 1/R" 1, > 2,
= —/ W(X)u(x)dx + @'(R)IS"(R)] / "= C))
B+ (R) logl/R, n=1,

after using Lemma 4.1 in the final equality.

We claim that formula (9) continues to hold if the C2-function ® is not smooth at the origin
and instead satisfies there the hypothesis in the lemma, namely that ®”(r) = O(1/r"T179%)
as r — 0. By choosing 6 smaller if necessary, we may suppose § < 1.
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To begin with, integrating the hypothesis on ®” implies that ®'(r) = O(1/r"~%). Inte-
grating again shows ®(r) = 01/r" 1% whenn > 2 and ®(r) = O(1) when n = 1.
Thus when n > 2, the ®-moment in the lemma is well-defined, because near the origin
®(|%]) grows slower than 1/|%|"~!, and the integral of 1/|%|"~! with respect to s is simply
the Newtonian potential at the origin, which is finite. When n = 1, ® is bounded near the
origin and so the ®-moment is obviously finite. Hence for each n, the integral in Eq. 8 is
well defined.

The integral in Eq. 9 is well defined too, under our hypothesis on ®”, since the potential
u is locally bounded while the estimates on ®” and @' near the origin ensure that W (r) =
" (r) +nd'(r)/r = O ") near r = 0, so that W(|%]) is locally integrable on R"*+1.

To confirm that Egs. 8 and 9 are still equal, under the hypothesis on ®”, we let ¢ > 0 and
consider the regularized function

Pe(r) = OV +12),

noting that &, (|x]) is C 2_smooth on R"+1. Applying (8) and (9) to ®, yields formulas we call
(8)¢ and (9).. By dominated convergence, Eq. 8, approaches (8) as ¢ — 0, with a dominator
(which is needed when n > 2) being provided by our estimate on &:

N = c C
[P (IFD] = @(Ve2 + ]2 < PSENT: = =

+ |x|2)(”*1*5)/2 — |x|n—l—5’

which is integrable with respect to u by finiteness of the equilibrium potential at the origin.
In Eq. 9;, the factor @/ (R) clearly converges to ®'(R). Thus the task is to establish the
following limit for the integral in Eq. 9;:

lim W, (IXDu(x) dx :/ W(|x)u(x)dx.
e—>0 ]B”'H(R) B"'H(R)

Since the potential u is locally bounded, in order to invoke dominated convergence we
need only show W, — W pointwise as ¢ — 0 and find an appropriate dominator for W,. By
direct computation,

We(r) = @)+ - L)
r? ' (V2 +r2) g2
— @S2
= o’( 8+r)2+2 N <82+r2+n>
— o) + ;CD'(r) = w(r)

as ¢ — 0, thus giving the desired pointwise limit. Observe

/o2
W (r)| < [®"(Ve2 +r2)| + @(J% Bl +m

C - C
+ |)2|2)(n+178)/2 — |)2|n+1—5

and hence

(D] =

by our estimates on ®” and ®'. This last quantity C/|<|"*!~% is Lebesgue integrable on the
ball B*+1(R), as needed for a dominator.

Now that Egs. 8 and 9 are known to agree, we may subtract the analogous expressions for
the set B with measure v and potential v, hence arriving at the formula (6) in the lemma. O
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Proof of Formula (7) For the second formula in the lemma, assume in addition that ® is C3-
smooth, so that we may differentiate W in the following argument. Start by rewriting the right
side of Eq. 6 using spherical coordinates as

/ V(XD E) — u (X)) dx
B+ (R)

R d
=/ W(r) <—/ (u()e)—u()e))d;e>dr.
0 dr Br+L(r)

Integrating by parts yields formula (7), since the boundary term at » = 0 vanishes as
follows:

\I/(r)/ W& —u@))di =00y 0™y 50
B+l (r)

as r — 0, where we used that v — u is bounded on B"T!(R). ]

5 Integral Operator J

An important tool for the next few sections is the integral operator

(Ju)(r,z):f u(x,z)dx, r>0, zekR,
B (r)

acting on a locally integrable function # on R"*!. Note that Ju integrates over an n-
dimensional ball centered in the slice at height z, as illustrated earlier in Fig. 1.

Operators of this nature and more sophisticated variants in which one first replaces u by its
symmetric decreasing rearrangement on the slice have long been employed for elliptic and
parabolic comparison theorems in a variety of coordinate systems, including rectangular,
polar and spherical coordinates and the cylindrical coordinates needed in this paper. See
for example the work of Alvino, Lions and Trombetti [1, §III], the book by Baernstein [2,
Chapter 10], and the survey by Talenti [19, §§6—8]. Talenti’s results in the 1970s and *80s
were particularly influential.

We borrow the J notation from Baernstein, whose x-function technique yields many sharp
inequalities in complex analysis; see [2, Chapter 11] and references therein. His approach
emphasizes the role of commutation relations such as in the following lemma.

Define a differential operator A* acting on functions w(r, z) by

. n—1
ANw = 0ppw — ——0,w + dzw
r
=", (r' "8 w) + w. (10

Lemma 5.1 (Commutation relation) The J operator “commutes” with the Laplacian A on
R in the sense that
AT =JA.

Proof Suppose u € C>(R"*!). Rewriting Ju using spherical coordinates as

Ju(r,z):/ / u(st,z)de s"'ds,
0 Jen-
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we find that formula (10) for the A* operator implies
.
sy = [ sutcartac s [ sae e as
sn—1 0 sn—1

9
:/ —”(x,z)dS(x)+/ 3..u(x, 7) dx.
aBn(r) OV B (r)

Applying the n-dimensional divergence theorem to the first term yields that

A (Ju(r,2)) =/

Axu(x,z)dx—{—/. 0zzu(x,z)dx
B"(r)

B (r)

:/ Au(x,z)dx = J(Au)(r, 2),
B (r)

so that A*J = JA. O

Later in the paper we will deal with functions u that are C2-smooth only when z # 0.
Lemma 5.1 and its proof are local in z and so continue to hold in that case.

6 Nonnegativity of Jv — Ju

The difference of moments for K and B is expressed by formula (7) in terms of the difference
v — u of potentials. To prove this difference of moments is nonnegative, for Theorem 1.2,
we start by showing Jv > Ju.

Consider a compact set K C R”. When K is regarded as lying in R"*!, the (n — 1)-
equilibrium potential # is harmonic on R"*! \ K. In particular, u(x, z) is harmonic on the
upper halfspace, where z > 0.

Proposition 6.1 Let n > 1. If a compact set K C R" has the same (n — 1)-capacity as a
closed ball B C R" centered at the origin, Capy.1(K) = Cap,-1(B) > 0, then

Jw—u)r,z) =0,

forr >0,z € R, where u and v are the equilibrium potentials of K and B in R"*1,

We prove Proposition 6.1 in several steps.

Step 1: Jv — Ju Extends Continuously to [0, co] x [0, co]

Let
w=Jv—Ju for(r,z) €[0,00) x [0, 00).

Clearly w is continuous when z > 0, because v(x, z) and u(x, z) are smooth away from
the sets B and K, respectively, and those sets lie in the slice at height z = 0. For continuity at
z = 0, note the potentials u and v are locally bounded and are continuous at (x, 0) for almost
every x € R” by the potential theoretic properties in Appendix A (take m = n + 1 there), so
that dominated convergence yields continuity of Ju and Jv at (r, 0) for every r > 0. Thus
w is continuous everywhere in the closed first quadrant of the rz-plane. We wish to extend
it continuously to r = oo and z = oo.

Lemma 6.2 w(r, z) extends continuously to [0, 00) x [0, 0o], equalling 0 when z = oo.
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The decay of v — u near infinity is not enough by itself to extend Jv — Ju successfully.
Cancellations due to the integration of v and u over the ball B" () are needed too, as we shall
see in the proof.

Proof Extend w to the “top” side of its domain, where z = oo, by defining w(r, co) = 0 for
r € [0, co). To prove that this extended w is continuous, we show

w(R,z) =Jv(R,z) — Ju(R,z) = O(1/z2) as z — 09, (11)

uniformly with respect to R € [0, 00).
First we prove (11) when n = 1, for K C R. Its logarithmic equilibrium potential is

1
,2) = log————d
utx.2) fK %1 = 0.0 M

1 1
= — 1 d 12
Z/K 08 12 Coxy u(y) (12)
D og 1 1/1 e du(y)
=-log————=/[ lo —
Floe 35— 5/ e peanpenl K00
1 1 1 y2 —2xy 1+ |x] 2
- log—— — - | 2"y o1
2 % 2 2//( x4+ 22 )+ <x2+22

since log(1 +1¢) =t + O(t%) when |r| is small; note in the remainder term that we used the
boundedness of |y| when y € K. Hence

1 1 x 1
L) ==1 d o—-—— 13
u(x, z) 3 ng2+z2+x2+z2/1(y u(y) + <x2+z2> (13)

for all x € R, provided z > 1 is large enough that the remainder term O (1/(x% + z?)) is
suitably small. The function x — x/ (x2 + z2) is odd and so the second term in Eq. 13
integrates to O over x € (—R, R). Additionally, the first term in Eq. 13 is the same for both
K and B, and so it cancels when we take the difference v — u. Hence

R
|[Juv(R,z) — Ju(R,2)| = ‘/ (w(x,z) —u(x,z))dx
R

© 1 1
SO / ﬁdx =0\ - .
—o X7+ 2z z

as z — 0o, by evaluating the integral. This completes the proof of Eq. 11 forn = 1.

Next we carry out the analogous computations for n > 2. The equilibrium potential of K
at the point (r¢, z) € R+ (where the spherical coordinates on R" are x = r¢,r > 0,¢ €
S" 1y is

u(rg, z)

1
= d
/K 2.2 = o1 A

1
- d 14
/K P21 P —2rg o O ()

—(=1)/2
_ L Py P 2re N E
T2y Hn-ne [ 212 Ky
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1 n—11y2=2rc-y 1+r V
- 1— d o ——
(r? 4 z2)(n=D/2 [/K( 2 r2 422 R P

by the binomial approximation, again using that |y| is bounded. Integrating ¢ € S"~! with
respect to the surface measure element d¢ on the sphere eliminates the term ¢ - y from the
integrand, because it has integral zero. Thus

|Sn—l| 1
/Snilu(rC,z)dCZW{“rO(m)} 1

where we also simplified the remainder term by estimating (1+r)> with O (r>+z?), assuming
z > 1. The same estimate holds when K is replaced by the set B, and so subtracting the two
formulas gives that

/S (¢, 2) = u(rg, 2)) dg = 0(

(r2 +ZZ)(n+l)/2> (16)
for all r € [0, c0), provided z > 1 is large enough that the remainder term on the right side
of Eq. 16 is small enough to justify the earlier application of the binomial approximation.
Multiplying by #"~! and integrating from 0 to R yields that

0 rn—l 1

asz — 00, by changing variable with 7 + rzinthe integral. This uniform estimate completes
the proof of Eq. 11 when n > 2, and hence finishes the lemma. ]

Lemma 6.3 w(r, 7) extends continuously to [0, oo] x [0, oo], that is, to r = oo.

Proof We will prove below that positive constants C, R exist such that
r
w(r,z) = Ju(R,z) — Ju(R, z) +/ 0O(s,z)ds (I7)
R

forr > Randz > 0, where the quantity Q (s, z) is continuous and satisfies | Q (s, z)| < C/s2.
Dominated convergence then confirms that w(r, z,) possesses a limiting value as r — o0
and z, — z € [0, 00), and that this extension of w to r = oo is continuous at each point
(00, z) with z € [0, co). The value of w at that point can be found by taking the limit as
r — oo with z fixed, so that

w(00,z) = lim w(r,z) = / / 1 (v(s¢,2) —u(se, 2))de s g
r—00 0 S

When n = 1 in this formula, we mean ¢ € S° = {—1, +1} and the Z-integral sums over
these two values.

We must still extend w to the “top right corner”, where r = 0o and z = co. We showed in
Eq. Il thatw(r, z) = O(1/z) asz — oo, with the O (1/z) term being bounded independently
of r € [0, 00). By letting r — oo we get also that w(oco,z) = O(1/z). Thus defining
w(0o0, 00) = 0 completes the continuous extension of w to [0, co] x [0, co].

Let us turn now to proving (17). First consider the case n = 1. If |x| > 1 then (1 +
|)c|)/(x2 +78) < 2/|x|, and so by repeating the derivation of estimate (13) we find for |x|
sufficiently large that

1 1 x 1
u(x,z)=§10gx2+zz t o /Kydu(y)+0<x7> (18)
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where the remainder bound is uniform in z > 0. That is, positive constants C and R exist
such that Eq. 18 holds with |O(1/x2)| < C/x2 whenever |x| > R, z > 0. Hence

w(r,z) =Jv(r,z) — Ju(r,2)
R
:/ (v(x,z) —ux,z))dx +/ (v(x,z) —ux,z))dx
—R R<|x|<r

= Ju(R,z) — Ju(R, 2) +/ 0(1/x?)dx,

R<|x|<r

which proves (17).
Next we handle the case n > 2. If r > 1 then (1 + r)/(r> 4+ z%) < 2/r and so repeating
the argument for Eq. 15 shows that for  sufficiently large,

|Sn_l| 1
/;nilu(r{,z)df=m{l+0<r7>} )

where the remainder term is uniform in z > 0. That is, constants C, R > 0 exist such that
Eq. 19 holds with |O(1/r?)| < C/r? whenever r > R, z > 0. By subtracting the analogous
expression for the set B, we find

1 1 1
[ ooen —ureo ac = s o) = o)

for r > R and z > 0. The integral for w can therefore be written in spherical coordinates as

wr,z) =Jv(r,z) — Ju(r, z)

= / (v(x,z) —ulx,z))dx + / f (v(s¢, z) —u(s¢, 2)) de 11 g
B"(R) R JSn—1

= Ju(R,z) — Ju(R,2) + / 0(1/s%) ds
R

for r > R and z > 0, which proves (17). m}

Step 2: The Extended Function w = Jv — Ju Equals 0 on the Left and Right Sides
(r =0, oo) and at the Top (z = )

By definition, Jv and Ju vanish on the left side of their domain, where » = 0and 0 < z < oo,
and in Step 1 we defined w = 0 on the top side, where r € [0, oc] and z = oo. The next
lemma shows w = 0 on the right side, where r = oco.

Lemma 6.4 w(oco,z) =0when( < z < o0.

Remark The difference of potentials v — u is not integrable on R"*!: the individual potentials
decay slowly at infinity (~ 1/|%|"~"), and one can calculate that while taking the difference
improves the decay rate, it does not improve enough to gain integrability. Thus the integral
f]R"‘H (v — u) dx does not exist, and so although Lemma 6.4 can be integrated to conclude
that the iterated integral f_oooo lim, _s 0 fw (’_)(v(x, z) — u(x, 7)) dxdz equals 0, we cannot
apply Fubini’s theorem to say the same about fRnH (v —u)dx.

Proof of Lemma 6.4 We will prove (dz/dzz)w(oo, z) = 0when0 < z < o0, so that w(oo, z)
is linear. Since it tends to zero as z — 00, by Step 1, the linear function w(co, z) must equal
0 for all z, as desired.
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To develop a formula for the z-derivative of w, first differentiate the potential « given in
Eq. 14 for n > 2 and in Eq. 12 for n = 1, finding for x € R" and z > O that

b = ~bns [ e dn() <0 0
where
n—1, n>2,
bn = {1, 1
Hence constants C and R exist such that
[0u(x,z)| < |x|CTZ+17 x| >R, z>0. (21)

Similarly, the second derivative satisfies

CIxI> +2°)

NG x| > R, z>0.

|02z (x, 2)| <

These estimates hold also for the potential v, providing integrable dominators (with respect
to x € R") for the first and second z-derivatives of # and v. Hence we may differentiate
successively through the iterated integral that defines w (oo, z) to obtain that

d2 d2 o0 .
d—zzw(oo, ) = dizzfo /g B (e, z) —u(re,2)der" dr

e’} 82

=/0 a?/g (w(rg,2) —u(rg, 2))dg "~ dr
o0

:/ / ((CA(, D) + Agu(x, 2) dE " Lar
0o Jsn-

since Ayu + d.,u = 0 and A v + d_,v = 0 by harmonicity of the potentials in R"*! \ K.
Applying the divergence theorem yields that

2

d
— w(00,z) = lim (—Ayv+ Ayu)dx
de R—o0 B"(R)
. dv Ju 1
= lim —— (R, 1)+ —(R¢,2) |R"d¢ =0,
R—o00 Jen-1 ar or

since expressions (12) and (14) for the potential imply that du /dr and dv/dr decay like 1/r"
as r — oo with z fixed. O

Step3:w=Jv—Ju>0in[0, oo] x [0, 0c0]

Since w is continuous on the compact set [0, co] x [0, co] by Step 1, one of three cases must
occur:

(a) w attains its minimum on the left or right sides (r = 0, 00 and 0 < z < 00) or the top
0 <r <oocandz = 00),

(b) w attains its minimum at an interior point (0 < r < oo and 0 < z < 00),

(c) w attains its minimum on the bottom (0 < r < oo and z = 0).
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In case (a), the minimum value is 0 by Step 2, so that Jv — Ju > 0 as desired.
In case (b), the strong minimum principle for the elliptic operator A* requires w to be
constant, because w attains an interior minimum and

Nw=ANJw—-—u)=JAv—u)=0

by Lemma 5.1 and harmonicity of the potentials on {z > 0}. Since w = 0 on the sides, the
constant value of w must be zero and so w = 0. That is, Jv — Ju = 0.

From now on we consider case (c). Write (7, 0) for a point at which the minimum of w is
attained. We need to show w(r, 0) > 0.

Suppose 0 < r < p, where p is the radius of B in R"”. When n > 2, the equilibrium
potential for the ball satisfies v(x,0) = V,_1(B) for |x| < p and the potential for K has
u(x,0) < V,_1(K) for all x by Lemma A.1 (taking m = n + 1 there). When n = 1, the
corresponding results are that v(x, 0) = Viog(B) for |x| < p and u(x, 0) < Viog(K) for all
x. Since the energies of B and K are assumed in Proposition 6.1 to be equal, we have for all
n that v(x, 0) > u(x, 0) whenever |x| < p. Hence the minimum value of w is

w(r,0) = / (v(x,0) —u(x,0))dx >0,
B (r)

as needed.

Lastly, suppose p < r < oo. If the minimum value w(r, 0) equals O then there is nothing
to prove. Suppose instead that w(r, 0) < 0. Since w is not identically constant (remember
w(0, z) = 0), the strong minimum principle implies that w > w(r, 0) on the first quadrant
(where A*w = 0). The Hopf lemma says that the normal derivative of w at the boundary
minimum point (r, 0) is positive; more precisely, since we have not shown w is differentiable
at the boundary, we apply a version of Hopf’s lemma [7, inequality (3.11)] that gives the
weaker conclusion

. ow(r,z) —w(r, 0)
liminf ——— >
7—>0+ Z

0.

We will prove this strict inequality to be impossible by showing

lim sup o, w(r, z) < 0. (22)
=0+

Hence the situation w(r, 0) < 0 cannot occur.
Recall from Step 2 that w(oo, z) = 0 for all z and that differentiation through the integral
gives

0 d ( )
= —w(oo
dzw , 2

=[] @aten — satsc. e s ds
0 Je

:/ 8zv(x,z)dx—/ du(x, z)dx, (23)
R~ Rz

where the two integrands are integrable for large | x| by the estimate (21). Hence for the value
r, when z > 0 we find

dw(r, z)
:/ azv(x,z)dx—/ du(x, z)dx
B (r) B (r)

@ Springer



Balls Minimize Moments of Logarithmic...

= —/ Bzv(x,z)dx—l—/ d;u(x,z)dx  byEq.23
RM\B" (r) R\B" (r)
< —/ o;v(x, z)dx since d,u < 0 by Eq. 20
RA\B" (r)
1
=b z/ / dv(y)dx by Eq. 20 applied to B
" e Jp 1 2) = (3, 0
1
<b z/ ——dx because |[y| < p <r < |x|
" Jrnpa) (%] = p)n !

-0

as z — 0+4. This completes the proof of Eq. 22 and hence of Step 3.

Step4:w=Jv—Ju>0whenz <0

Step 3 shows Jv — Ju > 0 when z > 0. The same inequality holds when z < 0, because B
and K lie in R” and so v and u are even with respect to z, which means Jv and Ju are also
even. Hence Jv — Ju > O for all » > 0, z € R, proving Proposition 6.1.

Remark Readers familiar with Baernstein’s «-function technique in complex analysis [2,
Chapter 11] will recognize that Step 3 above adapts his framework. The advantage here is
that the potentials are harmonic in the upper halfspace {z > 0} and not merely subharmonic.
That stronger information allows us to apply J directly to u rather than to its symmetric
decreasing rearrangement on each slice, which would be the analogue of the standard x-
function approach.

7 Proof of Theorem 1.2: The Moment Inequalities
Proof of Moment Comparison
Let ®(r) = r? with 0 < g < 2, so that
U(r) = @) + =) = qlq +n — Dri
Then & satisfies the hypotheses of Lemma 4.2 with the choice § = ¢ +n —1 > 0.

Additionally, W(R) > 0 since ¢ > 0 and ¥/'(r) < 0 since ¢ < 2. By integrating over
horizontal slices for —r < z < r, we find

f " (&) —u(X))dx = / J—u)(Vr?—z% 2)dz, (24)
B+ (r)

—r

and so formula (7) of the lemma and the inequality Jv — Ju > 0 from Proposition 6.1 imply

that
/CD(IXI)duz/ ®(|x) dv.
K B

Also, when n > 2 the function ®(r) = logr satisfies the hypotheses of Lemma 4.2 with
§=n—1>0,and ¥(r) = (n — 1)r2 once more satisfies ¥(R) > 0 and ¥'(r) < 0.
Hence formula (7) of the lemma implies fK log|x|du > fB log |x|dv.
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This logarithmic moment inequality remains true for n = 1: it says simply that the
logarithmic potential of K at the origin is less than or equal to the potential of B at the origin,
which holds by the logarithmic case of Lemma A.1 since K and B have the same logarithmic
capacity; that is,

[ 1o 1/131d = Vieg(K) = Vieg(®) = [ 1og1/1x1av.
K B

By definition, equality holds if and only if the origin is a regular point of K.

Proof of Other Equality Cases

<= direction: suppose K = B U Z for some set Z of inner capacity zero. Since K contains
B and the two sets have the same capacity, the equilibrium measures of K and B must be the
same, i = v. Hence the moments on K and B are equal.

= direction: suppose the ®-moments of K and B agree, for some & that satisfies the
hypotheses of Lemma 4.2 with W(R) > 0 and W' (r) < 0. Expression (7) for the difference
of moments equals zero, and so in particular the first term in Eq. 7 must equal zero. From
Eq. 24 with r = R we deduce J(v — u) = 0 on the semicircle of radius R in the right half
of the rz-plane. Applying the strong minimum principle for A* in the first quadrant (where
z > 0) implies that J (v —u) = 0 in that quadrant, and similarly in the fourth quadrant (where
z < 0) and hence also by continuity on the positive r-axis (where z = 0).

At the radius p of B, we get Jv(p, 0) = Ju(p, 0). But on B the inequality

v="V,—1(B) = Vp_1(K) Z u

holds (or instead with logarithmic energies when n = 1), and since the integrals of v and u
over B agree, necessarily v = u at almost every point of B with respect to n-dimensional
Lebesgue measure. Hence at each such point we know u = V,_;(K), which implies by
Lemma A.1 (with m = n + 1) that the point lies in K, using here that the complement
RrHl \ K is connected and unbounded because K C R” (and so 9K = K). Thus K contains
almost every point of B, and because K is closed, it must contain all of B. Then since K and
B have the same energy, the equilibrium measures of K and B must be the same, = v, so
thatu = v.Let Z = K \ B,sothat K = BU Z. On Z, we have

u=v<Vy_1(B) =V,—1(K),
and so Z has inner capacity zero by the equality statement in Lemma A.1.
Alternative Deduction of the Logarithmic Moment Inequality
Rather than using @ () = log r in the proof above, one may obtain the logarithmic moment

inequality as a limiting case of #4 as ¢ — 0, as follows. By rescaling the two sets, we may
suppose |x| < 1 forall x € K U B. We proved above that

/ |x|qd,uz/ lx|9dv, ¢ €(0,2].
K B

1—Ix|? 1—Ix|9
/ |x] dus/ |x] dv.
K q B q

Thus
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The integrand is nonnegative since ¢ > 0 and |[x| < 1, and as ¢ Y\ O it increases to
—log|x|, by convexity of g > ?'°¢1*|_ Hence monotone convergence yields that

—/ log|x|dp < —/ log |x| dv,
K B

which gives the desired inequality for the logarithmic moments.

Appendix A. Potential Theoretic Background
Physical Interpretation

The Newtonian energy V) (K) in 3-dimensions represents the least electrostatic energy (work)
required to bring a unit of positive charges in from infinity and place them on a conductor of
shape K. The charges then stay in place due to their mutual repulsion. A fuller discussion of
this interpretation can be found in Baernstein [2, Section 5.5].

Logarithmic energy in 2 dimensions can be interpreted similarly by extending the charge
distribution uniformly in the vertical direction and measuring the energy per unit length; see
[10, Section 1.5].

Existence of An Equilibrium Measure

A weak-* compactness argument (the Helly selection principle) applied to probability mea-
sures on K shows the existence of a measure achieving the minimum in the definition of the
energy, for both the logarithmic and Riesz situations with 0 < p < n (see [9, pp. 131-132,
168]), and for more general kernels too; see [6, Lemma 4.1.3].

Uniqueness of the Equilibrium Measure

A modern treatment of uniqueness for logarithmic equilibrium measure in all dimensions is
given by Borodachov, Hardin and Saff [6, Theorem 4.4.8], and for Riesz equilibrium measure
in [6, Theorem 4.4.5], assuming of course that K has finite energy (positive capacity). These
approaches handle also more general kernels.

Uniqueness of the Riesz equilibrium measure can be found also in Landkof [9, pp. 132—
133]. Uniqueness of the logarithmic equilibrium measure in 2 dimensions is well known
too: for example, [9, p. 168], or the appealing variant in Saff and Totik [17, Theorem 1.1.3,
Lemma I.1.8].

Capacity Formulas for the Ball
The logarithmic capacity of an interval in 1 dimension is a quarter of its length:
—1 1
Capo(B ) = 5

with equilibrium measure

dx

1
;m, —1l<x<l1.

du(x) =
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This formula and related ones for p-capacity of an interval can be found in [6, Proposition
4.6.1].
Assume next that n > 2. The unit ball has (n — 2)-capacity

Capy2(B") = 1
and the equilibrium measure is normalized (n — 1)-dimensional surface area measure on
S"—! The equilibrium measure for Cap,,- (En) is

1 dx
ST B(5. 1) A= kP2

du(x) = x| <1,

where the beta function is B(5, %) F(%)F(z)/ F(%), with capacity formula

T(n/2) 1/(n=D)
I*(1/2)1*((n+1)/2)> '
For example, when the 2-dimensional disk is regarded as a set in 3 dimensions, it has New-
tonian capacity Capl(Ez) = 2/m and equilibrium measure du(x) = dx/(2m+/1 — |x|?).
For all these claims, see [6, Theorem 4.6.7, Proposition 4.6.4], or else [9, p. 163, 172],
being mindful that when those authors define capacity they do not take the p-th root of the
energy, whereas in this paper we do take the root.

Cap,.1(B") = (

Properties of Newtonian and Logarithmic Equilibrium Potentials

Consider a compact set K C R™, m > 2, with positive (m — 2)-capacity Cap,,2(K) > 0,
and equilibrium measure p. The Newtonian equilibrium potential is

u(x) = /I AR du(y), xeR™,

when m > 3, and when m = 2 the logarithmic potential is

1
u(x) =/ log du(y), x € R%.
Kk 1x—=yl

The potential is a superharmonic function on R™ that is smooth and harmonic away from
the support of . The potential lies below the energy at every point:

LemmaA.1 Letm > 3. For all x € R™,
u(x) < Vip—2(K).

Equality holds at all interior points of K and at all boundary points except perhaps on an
exceptional subset Z C 0K of inner capacity zero. The inequality is strict, u(x) < V,,—2(K),
on the unbounded component of the complement R™ \ K.

If K is a ball in R™ or R™"™! then u(x) = Vyu_2(K) on K and u(x) < Vp,_2(K) on
R™\ K, so that equality holds if and only if x lies in the ball.

When m = 2, analogous inequalities hold for the logarithmic potential and energy.

Proof See Hayman and Kennedy [8, Theorem 5.17] for the inequality, with equality holding
on K except for a set of inner capacity zero; note that the exceptional set necessarily has
Lebesgue measure zero by [9, p. 134]. Equality then holds at interior points by the super-
meanvalue property of the potential. Strict inequality on the unbounded complement follows
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from the strong maximum principle. The ball properties can be found in Landkof [9, pp. 163—
164]. O

The exceptional set Z C dK on which the potential is strictly less than the energy has
Lebesgue measure zero in R™, and if K happens to lie in R”~! then Z has zero (m — 1)-
dimensional Lebesgue measure too, by the same reasoning.

The potential u is continuous on R™ \ Z: this continuity is clear for x in the complement
of the support of p, and so in particular u is continuous on the complement of K, while
continuity holds at each x € K \ Z because

Va2 (K) = u(x) < liminf u(y) < limsupu(y) < Vy—a(K)
y*)X

y—x

where the first inequality is by lower semicontinuity of the superharmonic function u and
the third inequality is immediate from Lemma A.1. When m = 2, simply replace V,,,_» with
Viog- In particular, if K is a ball in R™ or R™=! then Z is empty by Lemma A.1 and so the
equilibrium potential is continuous on R™.
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