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Abstract—This paper proposes and develops a new analytic
bearingless machine model that incorporates multiple airgap
harmonic field interactions and has several advantages. The
model can be used to address levitation performance require-
ments by developing force/torque regulation methods to precisely
calculate commands to current regulators. This allows relaxing
constraints during the design stage and has the potential to en-
able consideration of higher performance bearingless machines.
Furthermore, analogous to torque enhancement in conventional
electric machines, the proposed model can be used to identify
options for suspension force enhancement in bearingless motors
by controlling multiple magnetic field harmonics. This paper
provides a detailed derivation of the model and shows how it
can be used to improve force regulation accuracy and enhance
force capacity. The paper finds that by controlling four airgap
harmonic fields, instead of the typical two harmonics, force
capacity can be increased by approximately 40%. Hardware
measurements using a 10-phase bearingless induction machine
validate the proposed model and force capacity increase.

Index Terms—Bearingless drive, bearingless motor, generalized
Clarke transformation, multiphase winding, self-bearing motor

I. INTRODUCTION

Bearingless motors have the potential to replace conven-
tional motors with contact bearings and provide contact-free
and lubricant-free support of the motor shaft [1]. However,
their usage has been significantly limited by issues of low
power density, efficiency, and high cost. Most bearingless
motor prototypes reported in literature have been designed
for low power ratings and relatively few machines have
experimentally tested efficiencies of above 90% [2]-[4]. Fur-
thermore, they are not achieving the speed-power capabilities
of high performance conventional motors [2] nor the force
capacity of active magnetic bearings [1]. All these limitations
are because the design space of bearingless machines is
significantly more constrained than conventional machines due
to stringent levitation performance requirements. State-of-the-
art models and force regulation algorithms are based on the
assumption of a linear force/torque-current relationship that
ignores the effects of multiple airgap magnetic field harmonics
and the possibility of using these unmodeled harmonics for
reducing force ripple or increasing force capacity. As a result,
potentially high performance designs that do not fall under
these simplified model assumptions can be excluded from
consideration during design studies.

This paper addresses the problem by proposing and devel-
oping a multiharmonic electric machine model that provides
a new way of understanding force and torque creation. The
new force vector terms included in the model account for
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force generation in both separate and combined windings
and are applicable to systems with any number of phases.
The proposed model is based on current space vectors to
allow identification of current sequence components that excite
specific magnetic field harmonics to increase force capacity.
The paper shows how the proposed model enables the creation
of force/torque regulation techniques that can precisely actuate
the shaft even when multiple airgap field harmonics are
present. This allows relaxing the force vector error requirement
during the design stage and addressing it during the control
stage. As a result, this makes the design space less constrained
and enables consideration of potentially higher performance
designs. To the best of the authors’ knowledge, only two stud-
ies, [5] and [6], have investigated techniques for precise force
vector regulation. They demonstrated significant performance
improvement for an active magnetic bearing (AMB) and a
bearingless motor. Two other studies [3] and [7] made use
of multiple space vector frames to develop the models for
multisector and magnetically levitated rotary-linear machines.
However, the techniques they developed only work for specific
machine examples and no generalized analytic model was
presented.

The main contribution of this paper is to propose, develop,
and validate a new multiharmonic electric machine model
that encompasses both force and torque creation, incorporating
multiple airgap harmonic field interactions. Section II reviews
airgap field theory that will be used in the model derivation.
Sections III and IV review the textbook bearingless machine
model typically used in literature, propose the multiharmonic
model, and provide a detailed derivation from first principles
using winding function theory, current sequences, and the
Maxwell Stress Tensor. Section V demonstrate benefits of
using the proposed model for force capacity enhancement.
Section VI provides validation of the developed theory using
hardware measurements from a 10-phase bearingless induction
motor prototype. A conference version of this paper was
published in [8], which showed that the prior models in [5] and
[6] are special cases of the proposed model and demonstrated
benefits of using the proposed model for force ripple mini-
mization. This paper extends [8] with finite element analysis
(FEA) and experiment results, which validate the proposed
model and its potential benefits for force enhancement.

II. REVIEW OF AIRGAP FIELD THEORY

This section reviews the airgap field creation in bearingless
electric machines as a special case of a more generalized multi-
harmonic winding design study presented in [9]. The results
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summarized in (12)-(15) and (18) are used in Section IV
to develop the multiharmonic model proposed by this paper.
Sections II-A and II-B review magnetic field space harmonics
using winding function theory and the relation to the cur-
rent sequence components. Section II-C shows how to use
the airgap fields to calculate the forces and torque using a
reformulated form of the Maxwell Stress Tensor.

A. Harmonic Airgap Fields

This subsection reviews airgap magnetic field harmonics
created by rotor magnets and stator winding currents. Winding
function theory and circumferential current density are used
to determine expressions for the winding fields. Assumptions
for the derivation include an infinite iron permeability, the
omission of slotting effects, and a constant normal magnetic
field along the radial direction. Fields are evaluated at the inner
bore of the stator at radius 7.

The normal and tangential components of the airgap mag-
netic field (see Fig. 1a) are given by

Bn = B6 + BI‘I,W7 Btan = Btan,w (1)

where B; is the rotor magnetic field, and B, and By are
the winding’s magnetic field components. The rotor magnetic
field at harmonic h can be expressed in terms of the airgap
angle o and the rotor angular position 6 (defined in Fig. 1a):

Bs.i = Bscos (ho — 6]) 2)

where Bih:p = B(s is the magnetic loading, which is the
amplitude of the magnetizing/d-axis field evaluated at p pole
pairs [10, Ch. 6-7]. An example plot of Bs j along the airgap
is illustrated in Fig. 1b.

The winding magnetic field depends on the winding layout
and the phase currents. At space harmonic h:

— HO § Nk h

m

= ltn § ALk}L

n W, h Zk Blan W, h

3)

where d.g is the effective airgap length, rg is the stator inner
radius, iy is the phase current in phase k, and Ny () is
the winding function [11] harmonic h of phase k. A. j ()
is the circumferential current density normalized by ¢, where
Ac k.n(a)ix represents the distribution of surface current along
the inner bore of the stator, typically in A/rad [10, Ch. 1, 7].
The winding function describes the distribution of the per
ampere magnetomotive force:

Nin(a)

where N n = %zchl;:w,h and vy, are the winding function
amplitude and phase shift at harmonic h. Ny, is determined
by the number of turns per coil zq, coils per phase z., and
the winding factor ifw,h,- The angle aphw = nf;r@ is the
mechanical phase separation between adjacent phases, where
Se is introduced in [9] to develop a generalized winding design
theory to independently create multiple airgap harmonics. The
value of sg can be any common divisor (CD) of the space
harmonic orders {h1, he, ...} that the winding needs to create
[9]. In separated windings, the value of sg is typically p and

= Ny, cos (ho — awo,n — [k — 1haphw) (4

ps for torque and suspension windings, respectively. However,
in combined windings, s¢ = CD(p, ps) =1 [12].

Using the winding function, the normalized circumferential
current density A.x p(a) (in 3) at harmonic h can be cal-
culated based on the linear current density and the winding
distribution [10, Ch. 7]:

A(:,k,h(a) = _% _ A/

¢,ph,p S (hot — awon — [k — 1]R2Z)

&)
where A/, phh = hNh = szzckw - Substituting (4) and (5)
into (3), the winding magnetic field components become:

2
/’LO h sz Ccos (h()é — Qw0,h — [k’ - l]hf)

(seff

Bn,w,h( )
hN 2 ©
L . . m

Bianw,n(a) = fuorT} ;zk sin (hoz — ao,p — [k — l}hﬁ)

The phase currents i in (6) determine the behavior of the

winding magnetic field at harmonic h when summed over all

phases, resulting in counterclockwise (CCW) rotating, clock-

wise (CW) rotating, oscillating, or zero field. The following
subsection provides more details about this relationship.

B. Field Relation to Sequence Currents

This subsection reviews the relation between the airgap
fields and the phase currents. Current sequence and space
vector components are defined and used to determine the field
harmonics that they create in the airgap.

Any set of multiphase currents ¢ = [z’l 9 o I
be decomposed into current sequence components as

S, O
s=0

where each term on the right-hand side is a column matrix
that represents a sequence of order s and has the form ¢5 =
[is1 s isml]T. The current at positive sequence s
and phase order k is defined as

]T can

i =0+ 81+ et is o s, =

igp = Iy cos (¢s — [k - 1]3277) (8)
m

where each sequence s has an amplitude I, a phase angle ¢,
and a phase separation s . The values of s can be

m—1
m=2 f dd
s=0,1,...,5m, where s, = {m2 oroddm )

5 for even m

This set of positive sequences sequences fully defines the
m-phase system as there are m independent variables. This
includes the magnitudes of sequences s = 0 and s = m/2 (for
even m), and the magnitudes and angles of sequences 0 < s <
m/2. Each sequence could alternatively be represented using
a negative sequence instead This corresponds to a change in
the phase order, having —s=ZX in (8) instead of s~ 27 In electric
machines, using either s— or —sﬁ creates the same harmonic
field content, but the d1rect10n of rotation (CCW or CW) of
these harmonics is reversed.

The current sequences can be decoupled from each other
by applying the Generalized Clarke Transform (GCT) [13],
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[14]. As aresult, each sequence component has an independent
complex space vector representation in the stationary frame.
The space vector i, for sequence s is found as

m
is=0C,, § e]s(k—l)27‘r/mik
k=1

(10)

where C,, is the transformation coefficient. Using this equa-
tion with C,,, = 2/m, it can be shown that space vectors for
the sequences s = 0 and s = m/2 have 1-DOF (only real
part) and a form of fs = 21:S cos ¢s. Space vectors for all
other sequences have 2-DOF (real and imaginary parts) and a
form of 7, = I,e%=. This space vector representation of each
sequence can be conveniently used to describe the magnetic
field and force/torque creation.

Substituting (8) into (6) allows determining the magnetic
field harmonics that are created due to a current sequence S
(assuming that a winding factor l%w,h # 0 at each harmonic).
The terms inside the summation in (6) have the form of
cos (¢s — [k — 1]s2Z) cos (ha — [k — 1]h2Z). For any values
of s, h, and m, the summation in (6) is non-zero only if the
phase separation angles h%’r and s% are equal:

2

= +2nb (11)
m

2
T — s
m
where 27b (b is an integer) indicates periodicity. Simplifying
this equation shows that the sequence s can create the follow-
ing airgap field harmonics:

b { s+ mb, for CCW rotating fields (12)

—s+mb, for CW rotating fields

and the total magnetic field expression at these harmonics is

Bhwn(a) = By, cos (ha — ¢p,)

Btan,w,h(a) = _Btan,w,h sin (hOé - (bh) (13)

where ¢, = £¢s + aywon is an angular location of a field
harmonic h in electrical degrees. The 4+ and — signs indicate
CCW or CW rotation. For example, a sequence s = 2 in
m = 5 can create harmonics at h = 2,7,12, ... rotating CCW
and h = 3,8,13, ... rotating CW.

The magnetic field amplitudes in (13) are

mpoNals - B

B m MOhNh js
2 5eff ) tan,w,h

14
F s (14)

Bn,w,h -

When s = 0 or s = m/2, the magnetic field harmonics
have an oscillating behavior (no rotation):

Biw,n = Baw,n [cos (hae — awon — ) + cos (ha — awon + ¢5)]
Btan,w,h = Btan,w,h [Sin (hCV — Qw0h — ¢s) + sin (h(l — Qlw0,h + ¢s)]
15)

Equations (12)-(14) show that the current sequence s (f s and
¢s) can be used to control the amplitude and angular location
of the airgap magnetic field at harmonic h. Analogously, in-
jecting multiple current sequences as in (7) allows controlling
multiple airgap field harmonics. These results are used in the
following section to develop the bearingless machine model.

C. Complex Representation of Force Vector

Force and torque creation in electric machines directly
depend on the airgap magnetic fields and can be described
by the Maxwell Stress Tensor. This paper reformulates the
standard Maxwell Stress Tensor formula in vector form as
(16), which facilitates the derivation of the proposed model:

— . 2
F =L [37 i [By + jBun) da, 7= 5L

2m
240 0 Bn anda

(16)
where F = Fel® = F, + JjF, is the force vector with
magnitude F' and angular direction ¢ and 7 is the torque,
as shown in Fig. lc. L is the axial length, B, and B, are
the normal and tangential components of the airgap magnetic
field, and « is the airgap angle (see Fig. 1a).

It is well-known that torque is created from the interaction
between field harmonics of the same order h, while forces
are created from the interaction between adjacent harmonics
h and h £+ 1 [1]. This can be shown using (16). Suppose that
the airgap field consists of two harmonics hy and hy > h:

B, = Bn,hl cos(hia — ép, ) + Ben_,hz cos(haax — Pp,)

A ) . ) (17)
B = _Btan,h1 Sln(thY - ¢h1) - Btan,hg Sln(hQOf - d)hg)

By substituting these field expressions into the force equation
in (16) and using the relation cosz = 0.5(e’® + e¢~77), the
integrand in (16) can be expressed as a sum of complex
exponential terms. Among these terms, only the ones that do
not depend on « can result in non-zero integration. It can be
shown that this condition is satisfied only when he = hy + 1.

As a result, solving (16) results in the following force
expression:

ﬁhlz = % (Bn,hl - Btan,hl) (Bn,hz + Btan,hg) ej(¢h2_¢h1)

(18)
where V,. = 7rr32iL. Note that (18) is a general expression for
force created by field harmonics h; and ho. These fields can
be from windings, magnets, or saliency. When the fields are
created from windings, it is possible and convenient to express
(18) in terms of normal field quantities alone. This is done by
using the relation Blan’h = %Bmh’ from (14), in (18) to
obtain

l 7‘/". ® b j ho — T
Fh12 = Chij Bn>han,h26J(¢}2 o)

2p07si

19)
where C,, = (1 — h;—fe“ (1 + hfﬂifs“) with ho = hy + 1.
When hy /90 < 75, Ch,; ~ 1. The results (18)-(19) are
used in the following sections to first derive the traditional
bearingless machine model (the “textbook” model) and then
to derive the new electric machine model from the perspective
of multiple airgap harmonic field interactions.

III. TEXTBOOK MODEL

This section provides an overview of the bearingless ma-
chine textbook model, i.e. [1], used in literature. The derivation
of the force/torque equations is accomplished using the field
calculations presented in Section II and its impact on machine
design will be discussed.
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Fig. 1. (a) Magnetic field components and angles (o and ), (b) an example
plot of the rotor magnetic field along the airgap at h = 1, (c) force vector F’
and torque 7, and (d) force/torque regulation block diagram.

A. Force/torque calculations

The textbook model assumes that the airgap field consists
of only p and p, pole pairs. Considering the fields from the
magnets (2) and the windings (3), the total airgap magnetic
field components have the form (the phase shift angle avyo /5,
is omitted for simplicity):

B, =Bj cos (p[a — 0]))+
Ben,w)p cos(pa — 1) + BH,W% cos(psa — ¢s)  (20)
Ban = — Btan,w,p Sin(pa - ¢t) - Btan,w,ps Sin(psa - ¢s)

where the subscripts ¢ and s denote the torque and suspension
current sequences used to excite p and p, pole pairs.

The force vector expression can be derived using (18). When
hy = p or hy = p is created by the magnets, Bnyhl/h2 = Bs,
Ben,hy /i = 0, Ony /Ohy, = 0 = p0, and (18) simplifies to:

s ViBs (- 2 +j(ps—0
F= (Buwp. + Buns, ) €490+=0)
20Ty W, Ds tan,w,ps | €
Voo
T = ;B(;Btan,w,p Sln(¢t - 06) (21)
0

where the + signs correspond to p; = p £ 1. Substituting
(14) into (21), the force/torque expressions can be expressed
in terms of the suspension and torque current space vectors as

F=ksis, T = ki (22)

where the flux weakening component Ty is included in T =
Ty + jr. Parameters ky and k; are the per ampere force and
torque

7 _ BsVimps Ny, (1 1 0. 7. _ BsVempN, _jo,
kf == Argi - (Pséen’ iTT) et ke = : 27 el
(23)
While ;S and Zt are calculated with the conventional CT
for separated windings, [15] shows how this concept can be

extended to multiphase (MP) and dual-purpose no voltage
(DPNV) combined windings with the GCT.

IM Combined
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o
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Fig. 2. Design study results for 100 kW and 30 kRPM replotted from [2,
Section III-E].

B. Discussion

The textbook model (22) is based on dgq control theory.
The motor and suspension operation can be controlled in two
independent space vector frames [14], [16] using the GCT and
Park transformations. Desired phase currents are calculated
by inverting the model (see Fig. 1d). The control algorithm
introduced in [1, Ch. 7, 9] further accounts for the influence
of armature reaction on suspension forces to mitigate angular
shifts in force vector orientation caused by non-zero torque.

This model assumes perfectly sinusoidal airgap fields and its
solution results in sinusoidal phase currents. The unmodeled
magnetic field harmonics, armature reaction, and nonlinearities
can cause large force vector error [1], [17]. The conference
version of this paper [8, Fig. 2a] demonstrated fluctuations
in the force vector over a rotor revolution due to unmodeled
harmonics. This problem is typically solved in bearingless
motor design studies by imposing the maximum error limits
as constraints when sinusoidal phase currents are applied [18],
[19]. However, this approach narrows the design space. Higher
performance designs can be obtained if a more accurate ma-
chine model is used to determine the phase currents. Data from
[2, Section III-E] has been replotted in Fig. 2 for permanent
magnet (PM) and induction machines (IM) to demonstrate that
30% or more increase in torque density along with efficiency
improvements up to 98% are possible when the force ripple
constraint is removed.

I'V. PROPOSED MULTIHARMONIC MODEL

This section proposes a new electric machine model that
incorporates multiple airgap harmonic field interaction. This
proposed model is the primary contribution of this paper. The
model is applicable to all motor types, including PM, IM, and
reluctance type motors. Section IV-A provides additional force
calculations that are not considered in the textbook model (22).
Based on this, Section IV-B proposes the generalized model
for bearingless machines, discusses its properties, and provides
examples for different number of phases.

A. Additional terms in force calculation

As was previously mentioned, the suspension forces are
created from the interaction between adjacent magnetic field
space harmonics h and h+ 1. Based on this fact and (12)-(13),
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this paper identifies two additional force creation mechanisms
that are not considered in the textbook model:

1) Forces from two adjacent current sequences. While this
can include the interaction between torque and sus-
pension current sequences (armature reaction'), it also
includes interactions between other additional sequences
that can be injected.

2) Forces from a single current sequence s (only occurs
in machines with an odd number of phases m).

These two force creation mechanisms are now discussed.
Analogous to the derivation in Section III-A, the force vector
expression derived in (18) is used.

1) Force from two adjacent current sequences: Force can
be created by applying two adjacent current sequences s; and
so = 81 + 1, as (12) shows that this creates pairs of adjacent
harmonics h; and ho = h; + 1 which rotate in the same
direction (CCW or CW). The resulting airgap field and force
are given by (17) and (18). Using (14), (18) can be expressed
in terms of the current sequence components:

o S 3
F, = kh121511326](¢hz bny) — kthSlZSz (24)
p e
7. poVem”Npy Nny [ 1 hiho 1 J (w0, hg — w0,k )
_ G w0, hg — w0,y
kh12 8T52i 662ff Tsi + eff €

2) Force from a single current sequence: Force can be
m—1

created by injecting the highest current sequence s, = 5= in
odd phase windings. Equation (12) shows that this creates pairs
of adjacent harmonics that rotate in opposite directions: for
every integer value of ¢ > 0, harmonics exist at h; = s, +mc

and hy = —sp, + m(c+ 1):

hy = —sm+m(c+1)=—sp+mec+m-—-1+1

= —Spmt+tmc+2s,+1=hy+1 (25)

The created pairs of harmonics are (sy, $m—+1), (Sm+m, Sm+
m+1), (sm +2m, sm +2m + 1),

Similar to Section IV-Al, the total airgap magnetic field
and the force vector due to these adjacent harmonics can be
described by (17) and (18). However, since these harmonics
rotate in opposite directions and are created by the same se-
quence sp, their angular locations are ¢n, = @5, Oh, = —Ps,
and their amplitudes depend on fsm, described by (14). This
results in the following force expression:

72 12ds.. 1. %2
Fh12 = kh12‘[ 20 = khmls
m

(26)

This equation shows that the single sequence sy, can be used to
control the force vector magnitude F},, = Eh12f3m and angle
o= _2¢sm~

The quadratic force vector component in (26) is not consid-
ered in other bearingless motor literature publications which
is surprising given that this force also appears in bearingless
machines with three-phase windings. This includes all three-
phase combined windings where s = 0 creates torque (if there
is a zero-sequence current path) and s = 1 creates force. For
example, a three-phase motor with a concentrated winding,
@ = 6 slots, and p = 3 and p; = 4 pole pairs has these
characteristics. This quadratic term also appears in all three-
phase separated windings with sg = 1 (always true when

! Armature reaction is considered in the control algorithm of [1, Ch. 6].

p =1 or ps; = 1). If these quadratic terms are not accounted
for, conventional design processes attempt to minimize these
terms (presumably through the use of large effective airgap
lengths) as they create force vector error. Instead, if these new
terms are handled in the force regulator, designers can enhance
these terms to increase the suspension force capability.

Alternatively, if the designer desires to eliminate the effects
of the quadratic term kh12 *2 (for example, in a five-phase
bearingless motor), it can be shown using the equation for
kp,, in (24) that this can be accomplished for a machine with
ps = p + 1 when the machine design parameters are selected
to have the relation pyde;r = 7. This can be advantageous for
machines with a small rotor radius, high rated speed, and/or
a high number of pole pairs.

B. Generalized force model

The total force acting on the rotor due to all harmonics
is now summarized in a single model. This is calculated as
the vector sum of the force due to each pair of adjacent field
harmonics h; and h; = h; + 1: F = ZFh”, where each
force vector component Fhij is described by (18). Based on
the force/torque derivations in Sections III-A and IV-A, three
types of force components F’h” are identified that differ by
their dependence on current space vectors:

¢ Textbook model: force from stator-rotor harmonic inter-
actions. This term has a linear dependence on the current
space vector and is summarized in (22).

o New term 1: force from stator-stator harmonic interac-
tions where each harmonic is created by a unique current
sequence. This term depends on the product of two
current space vectors, see (24).

o New term 2: force from stator-stator harmonic interac-
tions where both harmonics are created by the same
current sequence. This term depends on the square of
a single current space vector (26).

This paper proposes a force model that compiles the force
terms created by all current sequence components that can be
injected into the m-phase winding.

1) Matrix representation: The proposed model is written
in matrix form as

F=iTTgi+Tpi+ Fco 27)
where 7 is an m x 1 array of the current space vectors and their
conjugates calculated from the GCT matrix C,,, as ¢ = Cy,¢:

— — - -
-k

Z: [20 il i2 FETI 2 ;{]T (28)

and TQ and Ty, are m x m and 1 x m complex matrices that
model the quadratic and linear dependencies of the force on
the current space vectors, and Fe is the cogging force.
Every entry of TQ is determined by (24) and represents the
force per ampere squared created due to two current space
vectors. This includes the forces due to two adjacent current
space vectors as in (24) (171;2, 5253, ...) and due to the space
vector s, as in (26) (2*2) Every entry of Ty, is a force per
ampere given in (23), which shows an interaction between
adjacent rotor-stator field harmonics created by one current
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space vector (fl, fg, ...). Note that the Zt and z: space vectors
of the textbook model (22) are present in (28), but indicated
as a sequence number; i.e. ft = 51 and %;, = Zg

The proposed model in (27) can incorporate multiple har-
monics by adjusting T and T, matrix entries, allowing users
to specify the number of harmonics based on their desired
accuracy Every entry of TQ is a sum of the terms in (24) as

=3 kh for all adjacent airgap harmonics h; and h;

created by the sequences s; and s; = s; + 1 or the sequence
5m in odd phase machines. Similarly, every entry of T}, is the
sum of the terms in (23) as K, = > ky,, for all adjacent
harmonics h; and h,. created by the sequence s; and the rotor
magnets. Depending on the relative rotation direction of these
harmonics, some harmonic interactions result in a force ripple
(having the e/*2% term) or a constant force.

2) Space vector representation: Since only specific entries
of TQ are non-zero, the proposed model (27) can be rewritten
using (22), (24), and (26) for even phase machines as:

Sm—2
F=Y K, i, + Z (Kslzz + Kot ) (29)
1=1 =1

and for odd phase machines as,

Fe Ry 2+ Z RoyToi + 30 (Rufi + Ry
=1 (30)

where ﬁc is omitted to save space. Note that odd phase
machines have an additional term that depends on the space
vector sy, due to (26). The term K st Z;‘ is a force ripple term
from interaction between adjacent magnet and winding field
harmonics that rotate in opposite directions. Depending on the
desired model accuracy, the coefficients in (29) and (30) can
be modified to include the desired number of space harmonics.

3) Examples: To demonstrate the use of the proposed
model, a force vector equation for an example nine-phase
machine is now provided by expanding (30) (assuming that
the rotor magnetic field is purely sinusoidal):

= _ 7 > 2 T by rd T by rd T by 7T 7
Foph = khysty” + Knyyi30a + Knoy @513 + knyyiiia + kpis  (31)

This machine has four independent rotating current space vec-
tors. Here, kfis is the force from stator-rotor interaction and
i, can be any space vector between i1 and iy depending on p.
Coefficients kp,,, khys» Knsys kn,, are the entries of T and are
calculated using (24). Differing from the textbook model (22),
(31) shows that the proposed model has multiple quadratic
terms. Accounting for these terms in a bearingless machine
design study can potentially yield bearingless machine designs
with enhanced force capability.

The proposed model (27) can be used to find the force vector
expression for any m. As further examples, consider five- and
Six- phase machmes Wh1ch have two rotating space vectors i
and 75. When 11 = zt and 12 = zg, force vector expressions
can be obtained analogous to (31):

Fsoh = kg™ + kpiifis + kpis, Fopn = kpiigis + kpis (32)
where Eq and Eft are the entries of TQ matrix in (27). As
in (31), these equations have new quadratic terms due to two

(@ (b)

Fig. 3. Electric machine cross-sections used in the development of the
models for precise force vector regulation in: (a) three-pole AMB in [5] and
(b) bearingless flux-switching motor in [6].

adjacent space vectors fﬁs and the highest space vector ;:2
for m = 5. The 52‘2 term also appears in bearingless machines
with three phases, as was discussed in Section IV-A2. To
avoid force vector error created by these quadratic terms, (32)
can be used to implement precise force vector regulation by
analytically solving for phase current commands that eliminate
force vector error, as demonstrated in the conference version
of this paper [8, Fig. 2a].

V. FORCE ENHANCEMENT

This section investigates how the proposed model can be
used to enhance the force capacity of bearingless motors
through control of multiple airgap harmonic fields. Bearingless
machines with m = 5 through 10 phases are compared in
terms of their rated force capabilities, current requirements,
ohmic losses, and simultaneous torque capability. The ma-
chines are compared over a range of magnetizing field B;
values as this is a critical design parameter in motor sizing.
All examples have p = 1, the same motor dimensions, and the
same total number of turns mzgz. (same Ryy,m, where Ry
is the phase winding resistance), where zg and z. are defined
in (4). The analysis considers only the desired harmonic per
sequence, which is the same as the sequence number for
these examples (refer to (12) with b = 0). The calculations
assume unity winding factors for these harmonics to allow
a comparison in per-unit [p.u.] quantities and identify the
maximum potential of multiphase windings in creating and
enhancing force capacity. Appendix A provides the p.u. force
vector model (35) and the base values (36) used in this section.

A. Force Rating

First, the machines are compared in terms of their rated
force capabilities. Using the definition of Fiyeq (also known
as the load capacity) in [20, Ch. 6], the dimensionless model
(35) allows finding Fiyeq as follows:

1) Solve for the field quantities to find the maximum force

profile F.. (¢) in all directions ¢, while satisfying
max(|Bj(a)|) <1 (solved as an optimization problem
in Matlab).

2) Find the rated force as F), ., = min [F}, . (¢)]; this is the

force that can be guaranteed at all angles.

—=— PM flux lines
coil flux lines
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Using the result from these steps, force capacity/specific load
capacity, defined as the load capacity per projected rotor area
(diameter x length) [20, Ch. 6], can be found as

Fl

rated

fczﬁ_% max

The results after following these steps are provided in
Fig. 4a, which shows the maximum force profile and the rated
force (shown as an inscribed red dashed circle for B('s = 0.5
p-u.). Based on this, the rated force vs. B(g is obtained and
plotted in Fig. 4b (top subplot). Figure 4a illustrates that,
unlike other phases, the m = 5 machine has non-convex
maximum force profiles for a range of Bs values. This results
in Flyeq being a non-convex function of B(;, as shown in
Fig. 4b (two maxima at B:s = 0 and 0.7 p.u.). This is due to
the quadratic term in (32), which also appears in certain three-
phase separated windings and three-pole AMBs [5]. Figure 4b
also compares the current rating and the average ohmic losses
per unit of the rated force (subplots 2 and 3). The currents are
calculated using the p.u. field quantities and the base value I,
as given in (36).

These results show that machines with m > 8 phases can
maintain their force capability over the widest range of By
values. For Bg < 0.2 p.u., m = 6 has the poorest performance
(lowest force rating, highest current rating and ohmic losses).
At B} ~ 0, machines with 7 = 5 have the lowest current
rating and ohmic losses, while having the same force rating
as other phases. This is because m = 5 machines can use the
sequence corresponding to the quadratic term in (32), s = 2, to
create suspension forces. The m = 10 machine has the largest
force rating, with the maxima occurring at Bg = 0.5 p.u,,
because it can independently control four harmonics, which
adds more degrees of freedom to satisfy max(|B/(«)]) < 1.

Fb - 7T 2 ’
rated

(33)

B. Force Impact on Torque

The machines are also compared in terms of their torque
capabilities. In this comparison, the motor creates a constant
force (equal to the rotor weight W,. or its multiple) and the
torque that the motor can create at any force angle without
exceeding the maximum airgap field limit is determined. Fig-
ure 4c presents the results that compare the torque capability
of different phases for different magnetizing fields and forces.
This plot shows that the torque performance of the m = 5
machine is poorer compared to other phases for higher force
requirements. For other phases, the torque performance look
same with a peak torque identified at Bg = 0.7 p.u.

C. Discussion

The findings using the proposed model show that the control
of multiple airgap harmonic fields can help enhance the per-
formance of bearingless machines. By controlling four airgap
harmonic fields as opposed to two (m = 10 vs. m = 6 phases),
the results reveal that an increase in force rating by over 40%
can be achieved at the magnetizing field Bg = 0.5 p.u. This
corresponds to an increase in force capacity (33) from 10.4 to
14.3 N/cm? when By = 0.8 T. Similarly, at B} = 0.7 p.u.,
controlling four harmonic fields instead of two improves force
rating by 36%, increasing the force capacity from 8.7 to 12.2

—[;’g =0 —l?é =0.5 pu. Eé = 0.7 p.u. — Variable BAé

m =26

m=25

120°

m=8
60°
P
/‘-§\
4 R\
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| A (R | BN O
y
N

\ 4

Neor/
240° 300°
—04p
02
g 0
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— 15

] |

g, 10g ~
) —— p

45— “’/
;|EE 0
— 50 ¢
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0.2 0.4 0.6 0.8 1
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0.8
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Fig. 4. Comparison between bearingless machines with different phases:
(a) maximum force profiles shown for different magnetizing fields, (b) force
rating, current rating, and average ohmic losses vs. B(’;, and (c) torque rating
Vs. B(’; for different force magnitudes.

N/cm? for By = 0.8 T. This improvement is advantageous
when a bearingless machine operates near iron saturation or
requires a large amount of force. Furthermore, designs that
support a wide range of magnetizing fields (m > 8) offer
more flexibility during the design stage to meet motor design
specifications and during operation to support optimal motor
control via field weakening. It is also seen the machines that
obtain the maximum torque and force capabilities have m > 8
and Bg = 0.7 p.u. These results suggest that the designs with
at least three controllable airgap harmonic fields and Bg ~ 0.5-
0.7 p.u. can be a potential solution to improve bearingless
motor performance.

VI. THEORY VALIDATION

This section provides experimental and FEA validation of
the developed theory using a 10-phase bearingless induction
motor prototype, shown in Fig. 5a. Section VI-A provides
the prototype and test stand description used for the mea-
surements. Sections VI-B and VI-C present hardware mea-
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Fig. 5. Ten-phase bearingless induction machine: (a) test setup, (b) drive
connections, and (c) winding layout (shown for phase 1).

TABLE I
INDUCTION MACHINE PROTOTYPE PARAMETERS
Stator slots Q) 10 Rotor slots Q) 16

Rated torque 1.57 Nm Rated current 10 Arms

Rated speed 29.5 kRPM Rated slip 8 Hz
I rated 8.6 Arms Iy rated 1.4 Arms
14 rated 6.35 Arms Isy FRWA1 0.6 Arms
Experimentally measured: ky (at Ig rated) 18.6 N/A
kny, 2.07 N/A? Knygs kng, 043 N/A?

surement results that validate the proposed force vector model
(Section IV) and demonstrate force enhancement capability
(Section V). Section VI-C also provides FEA results that
validate force capacity increase under iron saturation.

A. Prototype and Test Stand Description

The test stand shown in Fig. 5a is used for Sections VI-B
and VI-C measurements. The setup consists of the 10-phase
induction motor and the drive, a load cell [21], and fixtures to
support the stator and the rotor, all mounted within a mill.

The stator winding was designed as a 10-phase combined
winding using the methodology of [9], resulting in the winding
layout shown in Fig. 5c. Key motor parameters are summa-
rized in Table I. This winding is designed to independently
create four airgap space harmonic fields of orders A = 1 to
4 with current sequences s = 1 to 4, as described in (12).
Sequence 1 (p = 1) is used to create torque, while three other
sequences are used to create suspension forces. The motor
phases are connected to the drive terminals in a double five-
phase configuration, shown in Fig. 5b. The rotor is a pole-
specific squirrel cage rotor designed to have no induced bar
currents from h = py, = 2 and its integer multiples [22].

In the following tests, the motor is excited by the phase
currents described in (7)-(8). These currents are expected to
create the fields described by (13), creating the force:

ﬁlO—ph = F€]¢ = khmf{ZQ + ]ﬂhzaglﬁg + kh34{§Z4 (34)
Reaction torque and forces acting on the stator are measured
using the load cell [21], which is fixed to the mill’s X-Y
table. The rotor is supported by the mill’s spindle and locked
at magnetic center. For the measurements in Section VI-C,
the radial airgap field is measured in front of each stator tooth
using a hall probe [23].

B. Validation of the Proposed Model

This section presents experimental results that validate the
multiharmonic bearingless machine model proposed in Sec-
tion IV. This is done by exciting the stator winding with
different combinations of current sequences and measuring the
resulting forces on the rotor. Results are provided in Fig. 6 and
Ta-7b.

1) Force vector relationship to current sequences: This test
is conducted to confirm the first result of Section IV-A, that all
combinations of adjacent current sequences create controllable
forces. In each test, two sequences s; and s; = s; + 1 are
applied at a low frequency (no torque) and the average forces
are measured. The results are used to validate the relationship
between forces and current sequences given in (24).

First, measurements are conducted to find the l_fhij values
in (34). The phase angles ¢,/ , are set to create force at
¢ = 0 degrees, fsi is held constant, and forces are measured
for various values of fS]. Figure 6a subplot 1 presents the
measured force vs. sequence 2 current for different sequence
1 currents. Figure 6a subplot 2 shows similar force measure-
ments for sequences 2-3 and 3-4. The slopes of these lines
(shown in Fig. 6a) are used to calculate ky and ky,,; values,
provided in Table I.

Second, measurements are conducted to confirm that each
pair of adjacent current sequences can create force at any
angle. Magnitudes fsi /s, are held constant and the force is
measured against Agbsij = (bsj — ¢s,, which is expected to
control the force angle based on (24). Figure 6b (column 1)
presents the measured force vs. A¢s,, when I;, = 0.6 Arms.
Similarly, Fig. 6b (column 2) shows the results for sequences
2-3 and 3-4. These results confirm that a constant magnitude
force vector can be created at any angle using sequence pairs
1-2, 2-3, and 3-4.

2) Forces from non-adjacent sequences: The goal of this
test is to confirm Section IV-A’s finding that non-adjacent
current sequences s; # s; = 1 do not contribute to radial
force creation. All non-adjacent sequence combinations are
tested (1-3, 1-4, and 2-4). In each combination, each current
sequence magnitude is set to 5 Arms and the force is measured
with respect to the difference in phase angles A¢s, ;. Figure 7a
presents the test results, which confirm that negligible force
is created by non-adjacent sequences: the maximum non-zero
force observed is 2.83 N, comprising 2.7% of the force created
when I, = I,, = 5 Arms.

3) Forces from multiple sequences: This test is conducted
to validate that the superposition of multiple force vectors
created by multiple current sequences matches (29). For each
set of currents, the “calculated” force vector is determined by
using the kj,; values found in Section VI-B1 in (34). Figure 7b
shows the test results for four different current sequence
combinations. The three components of the calculated force
vector in (34) are also shown. These results demonstrate the
accuracy of the proposed force vector model. The largest
differences between the experimental and calculated force
vectors are 16% in force magnitude and 5.9° in force angle,
indicating a strong correlation between the experimental data
and the model.
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Fig. 6. Experiment results for the validation of the proposed model: forces vs.
(a) current magnitudes and (b) current phase angles due to adjacent current
sequences.

C. Force Enhancement

This section presents test results that validate force enhance-
ment results of Section V. Results of force enhancement within
a maximum airgap field limit and transient force response
under variable magnetization are presented. Furthermore, force
enhancement under iron saturation is demonstrated using FEA.
The results are summarized in Fig. 7c-7e and 8.

1) Force enhancement within a maximum airgap field limit:
This test demonstrates the force enhancement discussion of
Section V. Current sequences 1-2-4 are used to achieve
increase in force capacity, as explained in Appendix B. Mea-
surement results presented in Fig. 7c show that sequence 4 can
be used to increase force capacity. At By.x = 0.83 T, force en-
hancement by approximately 38% is achieved when I ss = SA,
validating the improvement theorized in Section V-C. The
fields in front of the stator teeth are also measured to ensure
that the airgap field is below Bp.x = 0.83 T; measurements
are shown in Fig. 7d with dotted markers, while dashed lines
represent magnetic fields estimated analytically using (13).
This plot confirms that the peak airgap field is below By
before (red curve) and after (green and cyan curves) force
enhancement.

2) Transient force response: This test is conducted to
validate force creation that is independent of the magnetization
state of the motor. Test results are plotted in Fig. 8, which
compares two cases when the force is created by sequences
1-2 (column 1) and 3-4 (column 2). In both cases, a series
of step commands is applied to the magnetizing current ¢4 to
observe its impact on the forces. As shown in Fig. 8 (column
1), the change in the magnetizing current directly impacts the
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Fig. 7. Experiment results for the validation of the proposed model and
force enhancement: (a) forces from non-adjacent sequences, (b) comparison
between measured and calculated force vectors at four different points, (c) ex-
periment results of force enhancement using sequence 4 for field weakening,
(d) measured airgap magnetic fields corresponding to the Bmax = 0.83 T case
of Fig. 7c, and (e) FEA results of force enhancement under iron saturation.
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Fig. 8. Measured transient force response using sequences 1-2 and 3-4 under
different ¢4 magnetizing currents.

force creation. This is because 7,4 in this motor is created by
sequence 1. The results for case 2 (column 2) show that the
force created from sequences 3-4 is approximately constant
regardless of the change in 4. This is expected based on
(34) because sequence 2 is zero and ¢4 does not affect the
force. These findings demonstrate the potential for enhancing
bearingless motor performance under variable magnetization.
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3) Force enhancement at iron saturation: An FEA study
is conducted to demonstrate force enhancement under iron
saturation. This is done in FEA, not hardware, because the
high current levels needed to substantially saturate the machine
exceeded the capability of the available drive. The results
are shown in Fig. 7e. First, the force capability from only
sequences 1-2 is found. Sequence 1 is held at I ycq and the
force is extracted for various I s, values. The result (blue curve)
shows that increasing I s, = 28 A decreases force creation ca-
pability as the iron starts saturating at Bp,x =~ 1.03 T. Second,
sequences 3 and 4 are additionally injected to enhance the
force for I s, = 28 A. These currents are calculated following
the steps from Section V-A with B, =~ 1.03 T and loaded
into the FEA model. The result (red curve) demonstrates the
potential for force enhancement using sequences 3 and 4.
At f32 ~ 28 A, the maximum force enhancement (27%) is
observed.

VII. CONCLUSION

This paper proposes a multiharmonic model for bearingless
electric machines using current space vector/sequence com-
ponents and their relationship to airgap magnetic field space
harmonics. It is found that previous attempts at developing pre-
cise models for magnetic bearings and bearingless motors can
be viewed as special cases of the generalized model developed
in this paper. Furthermore, the paper finds that all three-phase
combined windings and some three-phase separated windings
have force vector components with quadratic relationship to
current space vectors, which have been neglected in previous
literature. The paper shows that when these terms are ignored
in the force model, substantial force vector error can result;
however, when properly handled, these additional forces can
increase the machine’s force rating.

The proposed model is applicable to all motor types, is
analytic-based, and captures the underlying physics of the
machine accurately. These features equip machine and controls
designers with tools to increase the torque and levitation sys-
tem performance. The paper shows that the developed model
can be used to eliminate the force vector error by selecting
certain combinations of machine parameters during the design
stage or by having the control system analytically solve the
proposed model during runtime to determine phase currents
as the sum of multiple current sequences. The paper further
shows that by using the proposed model to actuate more
than two harmonics, either force creation can be decoupled
from the motor’s magnetization state or force capacity can be
substantially increased. A 40% force capacity increase over
the standard approach to bearingless motors is demonstrated
for machines that control four airgap harmonics. Experimental
results from a prototype 10-phase induction machine validate
the proposed model and increased force capacity.

In conclusion, the findings of this paper motivate rethinking
the design approach of bearingless machines to include addi-
tional force creation mechanisms and to develop regulation
techniques that use the proposed model. These developments
can make the design space of bearingless machines less con-
strained and close the performance gap between bearingless
machines and the best motors and magnetic bearings.

APPENDIX A
DIMENSIONLESS FORCE VECTOR MODEL

This paper (Section V) makes use of the p.u. force vector
model to find the force capacity in bearingless machines. The
model is expressed in terms of the p.u. radial field quantities,
which are normalized by a maximum allowable airgap field
Binax. By setting the base value Fj, = -\ - B2, in (19), it can
be shown that (29)-(30) can be expressed in a p.u. form as

nf
,ej((b'ﬁi _¢s,,)

>/ /!
- E : Chi; Bun, Ban,

i=1

(35)

where h; = h; + 1, ny is the total number of force vectors,
and Bl’hhb_“ is a p.u. radial field amplitude.

The base values for currents, ohmic losses, and torque that
are used in Section V are given by

P5err 2
- P, =1I?R W, T = ——— B
1oM2QZcBmax oop por M

(36)

I, = T0ett

Note that these base values are same for all designs compared
in Section V, which allows comparing them in p.u. [, is set
using (14), resulting in the p.u. relationship between current
and field quantities as I/ = th o/ Fw.n. Py is set based on its
relationship to currents; 7y, is set using (21), resulting in the
p.u. equation for torque 7' = B 5B12 w,p- Note that, if machines
with various pole pairs are being compared, the torque base
value 7, in (36) needs to be adjusted not to have p, resulting

in the p.u. torque equation of 7" = pBéB’

nw,p*

APPENDIX B
FIELDS AND CURRENTS FOR INCREASED FORCE CAPACITY

This appendix summarizes the approach created for this pa-
per to calculate magnetic fields and currents that maximize the
force rating of a 10-phase bearingless machine. The approach
is based on numerical calculations from Section V-A and uses
sequence 4 for flux weakening, enabling sequences 1 and 2 to
generate larger force for a given maximum airgap field. This
approach can be directly implemented in a controller without
requiring complex lookup tables.

Table II provides estimations for optimal field magnitudes
and angles derived from numerical calculations for magne-
tizing fields Bé 0.5- O 7 p.u. Based on the desired force
requirement F'* = Ba o if B’ <1- B[; (column 2),
there is no need to excite sequence 4 as the total airgap field
remains below the maximum limit of 1 p.u. For a larger force
requ1rement with B hy > 1 B 5 Bn’ h, can be increased up to
1.2— B! s (column 3) and harmonic 4 can be actuated according
to Table II, ensuring that the airgap field remains within 1 p.u.
Using these optimal fields, the required current sequences for
phase k are computed using (8). This requires knowledge of
the tesla per ampere parameter for each harmonic-sequence
pair, which can be calculated using (14), FEA simulations, or
measurements.
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TABLE I

OPTIMAL FIELDS FOR MAX. FORCE RATING WITH SEQ. 1-2 vS. 1-2-4.

Sequences 1-2 Sequences 1-2-4

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

f?,ﬁ,h2,¢52 <1-B§0+¢ R §A1.2—B,’5,9+¢
B, 54 NA By+Bl,, —1L7m+30+¢
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