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Abstract

RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized
biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict
transcripts (MRNA and other RNAs) in Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-
Proteobacteria), Listeria monocytogenes strains Scott A and RO15 (Bacteria:Firmicute), Pseudomonas
aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and Haloferax volcanii
(Archaea:Halobacteria). From >5 million E. coli K12 and >3 million E. coli E2348/69 newly generated
Oxford Nanopore Technologies (ONT) direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844
E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted E. coli
K12 proteins. While the number of predicted transcripts varied by strain based on the amount of
sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7
kbp while the median size of the 5’- and 3’- UTRs were 30-90 bp. Given the lack of bacterial and archaeal
transcript annotation, most predictions were of novel transcripts, but we also predicted many previously
characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs
associated with pathogenesis in the E. coli E2348/69 LEE pathogenicity islands. We predicted small
transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest
transcript for two of the seven strains being the nuo operon transcript, and for another two strains it
was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the
presentation of transcripts, and UTR predictions alongside CDS and protein predictions in bacterial

genome annotation as important resources for the research community.

Importance

Our understanding of bacterial and archaeal genes and genomes is largely focused on proteins since

there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with
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studies on the human genome, where transcripts were sequenced prior to the release of the human
genome over two decades ago. We developed software for the quick, easy, and reproducible prediction
of bacterial and archaeal transcripts from ONT direct RNA sequencing data. These predictions are
urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including
regulation of virulence factors, and for the development of novel RNA-based therapeutics and

diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.
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Introduction

Genomics, genome-enabled technologies, computational biology, and large-scale data mining are
essential for rigorous, modern experiments on all organisms. Whole genome sequencing and protein-
based annotation are now routine, low-cost approaches for analyzing bacteria and archaea. But often
the annotation, and thus analysis and experimental validation, is limited to predicted protein-coding
regions and a few highly conserved non-coding RNAs (ncRNAs) like the rRNAs and tRNAs. Yet, pathogen
RNA transcripts, particularly ncRNAs and RNA-mediated regulation, offer an unexplored set of druggable
targets, diagnostics, and potential therapeutics (1). In this context, a transcript is a physical RNA
molecule made from a DNA template that has discrete start and end sites generated by a diversity of

molecular mechanisms (e.g., promoter/terminator, post-transcriptional processing) (Figure 1).

In bacteria, transcripts are frequently considered within the paradigm of operons as put forth by Jacob
and Monod (2), which was summarized recently as “sets of contiguous and functionally related genes
cotranscribed from a single promoter up to a single terminator” (3), including the operator regulatory
region (Figure 1). Using this definition, polycistronic transcripts are encoded within operons, which also
include regulatory regions. It is unclear if a monocistronic transcript and its regulatory regions would
also be considered an operon. Operons are widespread in bacterial/archaeal genomes, with ~630-700
defined operons in Escherichia coli (4). Experimentalists have predicted operons using read counts
and/or sequencing depth without algorithms (e.g. (5, 6)), and efforts have been made to develop
algorithms for their prediction (7-13). For example, the Rockhopper algorithm predicts operons using a
naive Bayes classifier to combine strand, intergenic distance, and coordinated differential expression in

a unified probabilistic model (14).

Oftentimes, bacterial transcripts and operons are conflated, but fundamentally, the classical definition

of operon is a DNA-based definition, defining a region in DNA that extends beyond the RNA-based
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transcripts to include the promoter/operator and terminator. Operons can have multiple transcripts due
to post-transcriptional processing (15), alternate terminators (e.g. attenuation) (10, 16, 17), and
alternate transcriptional initiation sites (3). There is a need for both DNA-based annotation of operons
and RNA-based annotation of transcripts. Fundamentally, RNA-seq is transcript quantification, therefore
it should be measured at the RNA/transcript level not the DNA/operon level. Rockhopper has been used
for differential expression of its predicted operons (11), but it yields different results than a

corresponding transcript-focused analysis (3).

Fundamental biological differences such as a high coding density and polycistronic transcripts in
bacterial genetics means that we cannot merely apply the same laboratory and computational methods
that were designed and optimized for humans and eukaryotic model organisms, with the false
assumption that they will work because bacteria are “simpler” than humans. Currently most
bacterial/archaeal RNA-seq studies are conducted by applying tools designed for eukaryotic transcripts
using bacterial coding sequence (CDS) predictions. Even when issues with counting algorithms are
mitigated for a CDS-focused analysis of polycistronic transcripts (18), measurements of CDSs in
polycistronic transcripts are dependent on one another yet are treated as independent measurements
with the statistics used to detect differential expression. This results in errors in variance estimations in
differential expression tools (19). Comparisons of the StringTie algorithm for transcript prediction and
Rockhopper have previously noted some of these issues, as well as the need for long RNA sequence

reads to resolve these problems (10).

E. coli K12 is a well-studied genome that has some transcript predictions (17, 20), anti-sense RNA
characterization (21), and transcriptional start site and terminator predictions (17, 22-25), all of which
are aggregated and manually curated in RegulonDB (26) and EcoCyc (27). But even for this well studied
organism, reference annotation files (like GFF or GTF files) lack transcript annotations, and it can be

difficult, if not impossible, to ascertain and use transcript structures for a differential expression
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analysis. The current work done to characterize transcripts and transcriptional regulation in E. coli (e.g.,
(26)) is not possible for more than a few microorganisms, yet there is immense bacterial biodiversity.
Therefore, we sought to develop a fast, simple, rigorous, and reproducible method for identifying
bacterial transcripts that can be widely applied and takes advantage of recent advances in RNA
sequencing, including PacBio IsoSeq and Oxford Nanopore Technologies (ONT) direct RNA Sequencing
both of which have been applied previously to bacteria including E. coli (3, 28-30). Transcript predictions
will enable differential expression analyses to be expanded to include non-coding RNAs (ncRNAs) and
also use the latest transcript-based differential expression analysis tools like Salmon (31) and Kallisto
(32). Transcript predictions are also needed to inform consequences of genetic knock-in and knock-out
experiments (e.g., (33)), identify regulatory sequences (e.g., (10, 16, 34)) and detect post-transcriptional
processing (e.g., (15, 35)). Recent studies (10, 28, 36) reveal a much more complex picture of bacterial
transcripts with post-transcriptional processing and potentially multiple promoters and terminators,
including transcripts beginning or ending in the middle of adjacent coding sequences due to the coding

density (17).

In this study, we describe a quick, easy, and reproducible method and algorithm for whole
transcriptome sequencing and structural annotation using ONT direct RNA sequencing. We tested the
methods on the E. coli K12 and E2348/69 strains and then also apply this algorithm to existing public
data for Pseudomonas aeruginosa strains SG17M and NN2 (37), Listeria monocytogenes strains Scott A

and RO15 (38), and Haloferax volcanii (39).

Results

ONT direct RNA sequencing of E. coli transcripts

We generated ONT direct RNA sequencing data (Figure 2) from RNA isolated from E. coli K12 and

pathogenic E. coli E2348/69 (40) grown at 37 °C with aeration in LB and DMEM media (Table 1, Table
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A1), which are virulence gene inducing growth conditions (15, 41-44). E. coli K12 annotation is available
for comparison in RegulonDB (26) and EcoCyc (27) and includes transcript predictions (17, 20), anti-
sense RNA characterization (21), and transcriptional start site and terminator predictions (17, 22-25).
The inclusion of E. coli E2348/69 allows us to interrogate transcript predictions in a related but clinically-
relevant enteropathogenic E. coli (EPEC) strain with plasmids (40) that has pathogenesis-associated
operons, which have had fine scale analysis of transcription (15, 44). We focused on using ONT direct
RNA sequencing, where RNA was sequenced directly in the pore (Figure 2K), to predict bacterial
transcripts (Figure 2E) because it does not have template switching (36). Additionally, ONT direct RNA
sequencing data lacks genomic DNA contamination since sequenced RNA and DNA have markedly
different signals, which is used by Guppy to eliminate DNA reads with high fidelity. RNA advances
through the pore more slowly and with a higher electrical current range than DNA, which is apparent in

all RNA reads since RNA is loaded into the pore using a ligated DNA adaptor (Figure 2I, Figure Al) .

Predicted E. coli K12 transcripts

Using the 5,266,309 ONT reads generated for E. coli K12 (Table 1), we predicted transcripts using the
algorithm that we developed to predict transcripts in prokaryotic genomes using ONT sequencing reads
first predicting transcript start/stop sites where there is an over-abundance of reads starting/ending and
then identifying start/stop site combinations supported by the ONT sequencing data using models based
on the observed characteristics of ONT sequencing, which is described in more detail below. We
identified 3,902 strand-specific contiguously transcribed (CT) regions in the K12 genome with 1,055 that
had >20 reads that we used for predictions (Table 1). The 1,055 CT regions used for predictions were on
average 4 kbp and included 521 regions on the (+)-strand spanning 2.07 Mbp and 534 regions on the (-)-
strand spanning 2.14 Mbp (Table 1). There were 3,618 predicted transcripts with 1,465 predicted
transcripts on the (+)-strand and 2,153 predicted transcripts on the (-)-strand (Table 1). There were 289

(27%) regions with only a single transcript predicted (Table 1), meaning 73% of CT regions contained
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more than one transcript either because operons overlap or because there were multiple overlapping

transcripts.

Of the 3,618 predicted transcripts, 2,484 were predicted to be mRNAs (Figure 1) and 1,134 were
predicted to be ncRNAs (Figure 1, Table 1). mRNAs were defined as transcripts that have at least one
annotated CDS found completely within the transcript boundaries, whereas a ncRNA was defined as a
transcript that lacks a CDS found completely within the transcript boundaries (Figure 1). It is important
to note that frequently the 5’-end of CDSs (and the N-terminal portion of the protein encoded by them)
are incorrectly annotated, such that the assignment of transcripts as mRNA/ncRNA needs further
manual refinement including possible curation of the N-termini of proteins; additionally, protein
annotation may be informed and improved through transcript structural annotation. However, given
these definitions, the average mRNA was 1,618 bp with the smallest and largest being 131 bp and
13,305 bp, respectively (Table 1). The average ncRNA was 517 bp with the smallest and largest being 52
bp and 2,947 bp, respectively (Table 1). Of these 1,134 predicted ncRNAs, 23 (2%) were already
described in the reference annotation file and are ~23% of the 98 previously annotated ncRNAs in the

reference annotation file (Table 1).

Of the 4,494 annotated coding sequences (CDSs), 2,357 were in an annotated transcript while 2,775
were not, suggesting that with these growth conditions we annotated transcripts associated with half of
the predicted CDSs, which is consistent with previous results(45). Of those, 1,341 (57%) CDSs were
associated with a single transcript and 90% of CDSs were associated with <4 transcripts (Table 1, Figure
3A). While 1,564 of the predicted transcripts contained only a single CDS (Table 1, Figure 3B), the
predicted transcript with the largest number of CDSs encoded within it contained 17 CDSs, including glf,

gnd, insH7, rfbABCDX, and wbbHIJKL (Table 1).
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Using the predicted mRNAs (excluding ncRNAs) and CDSs, we predicted the 5’- and 3’-untranslated
regions (UTRs). The median 5’-UTR was 53 bp and the most common length (mode) was 14 bp, while the
median 3’-UTR was 72 bp, and most common length (mode) was 36 bp (Table 1, Figure 3CD). This is
consistent with previous reports that the 5’-UTR is 20-40 nt (24), despite previous reports that ONT

sequencing cannot capture the terminal 5’-end of transcripts (39).

Complexity of bacterial transcription

Our predictions detect tremendous bacterial transcript structural variation while confirming previous
experimentally verified predictions. For example, in the thr operon, three transcripts were predicted,
including the previously described thrL transcript for the leader peptide, the thrLABC transcript, and a

thrBC transcript (46) (Figure 2E).

Other regions were more complex, like the region from 4,080-4,087 kbp encompassing fdoGHI and fdhE
(Figure 4). RegulonDB (26) and EcoCyc (27) describe this entire region as an operon with two
promoters—one that makes a transcript for the entire region and a second smaller internal transcript
encoding fdhE that is started from a promoter within fdoH (Figure 4). The ONT data suggested
differential expression of the transcript isoforms where fdoGHI was largely untranscribed in DMEM
relative to LB while fdhE was transcribed in both (Figure 4). A small ncRNA was observed in DMEM when
fdoG was not transcribed. (Figure 4). We predicted 11 different transcripts in this entire region,
including the fdhE transcript that started in fdoH (Figure 4). This algorithm likely underpredicted long
transcripts, due to the limitations of the ONT technology as described below. So despite evidence for a
complete fdoGHI-fdhE transcript, we did not predict it, likely because there was insufficient sequencing
depth (Figure 4). But there was robust evidence for many of the other transcripts predicted that were
not currently in RegulonDB, EcoCyc or the annotation file, including a transcript of just fdoG, just fdoGHI,

two putative overlapping small RNAs that overlap the end of fdo/ and the beginning of the fdhE
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transcript, and four putative overlapping small RNAs that overlap the beginning of fdoG (Figure 4). In a
typical differential expression analysis that uses CDS regions, these four putative small RNAs overlapping
fdoG would likely be misinterpreted as expression of fdoG in DMEM. Importantly, while we detected
these transcripts, we cannot ascertain that they have a function, and they could merely be stable
degradation products of transcription. Regardless, they are likely to confound and obfuscate differential

expression analyses.

Across the 11 transcripts predicted in the fdoGHI/fdhE region, there was variation in transcript start and
end sites, as previously described (15, 24). This variability included slightly longer transcripts that extend
beyond fdhE that are observed under both growth conditions and was reproducible across all
sequencing runs (Figure 4). This variability was seen in many regions, suggesting that transcription

initiation and termination are flexible.

Predicted E. coli E2348/69 transcripts

The 60% fewer reads sequenced for E. coli E2348/69 relative to K12 led to fewer transcript predictions
(Table 1), particularly fewer ncRNA predictions, but otherwise the results are quite similar. The longest
predicted mRNA for E2348/69 was nuoABCEFGHIJKLMN, a known operon (47, 48). Unlike the K12 strain,
the E2348/69 strain contains two plasmids (NZ_CP059841.1 and NZ_CP059842.2, respectively) and
mRNA and ncRNAs were predicted on both plasmids. Of the four ncRNAs in the reference annotation,
we predicted two (rnpB and ssrS). Additional known ncRNAs missing in the reference annotation file
were identified, including gimY and gimZz, both of which are important for regulation of the LEE operon

and virulence (44).

The transcription of LEE operons, which are found in the E2348/69 genome, has been extensively
studied. It was previously shown that for LEE4, a promoter upstream of sepL produces a sepL-espADB

transcript that is post-transcriptionally cleaved with RNAse E to generate an espADB transcript and a

10



218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

sepl transcript that is then further endonucleolytically degraded (15) (Figure 5). A putative
transcriptional terminator was previously identified downstream of espB within cesD2, but it was
hypothesized that there is readthrough transcription of the terminator (15). The ONT sequencing data
here provided evidence for readthrough of the transcriptional terminator. Very few reads included both
the cesD2-vapB-escF region and sepL, which may be an indication that processing to remove sepl is
more efficient on the longer transcript that terminates after espF, although we can’t rule out that the 6
kbp transcript of the whole region was not predicted due to the size limitations of ONT direct RNA
sequencing. Consistent with the latter, the 4 kbp sepL-espADB transcript has been detected by Northern
blots in multiple studies (15, 44), yet it was very infrequently detected here. Prior 5’- and 3’-rapid
amplification of cDNA ends (RACE) of LEE4 transcripts revealed variation in transcript ends, which we
also detected, with multiple reads supporting a longer transcript at the 5’-end of sepL, which seems to
be a frequent phenomenon across all transcripts. Additionally, we predicted single CDS transcripts that

encode for espA, espB, and espF.

Using existing E2348/69 short read data from the SRA (PRJEB36845/E-MTAB-88804) and the long read
ONT data generated here, we compared differential expression results from EdgeR (50) for (a) existing
CDSs predictions using FADU (18) and short reads, (b) the transcripts predicted here using Salmon (31)
and short reads, and (c) the transcripts predicted here using Salmon (31) and long reads generated here
(Figure 6). There is discordance between the TPM (transcript per million) values calculated for all three
(Figure 6GHI) as well as assignment of genes as differential expressed in a transcript- and CDS-focused

analyses of only the Illlumina reads (Figure 6J).

Data re-use and transcripts in Listeria monocytogenes, Pseudomonas aeruginosa, and

Haloferax volcanii

11
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Through data re-use, we also predicted transcripts using published ONT data for P. aeruginosa strains
SG17M and NN2 strains (Bacteria:gamma-Proteobacteria (37), L. monocytogenes strains Scott A and
RO15 (Bacteria:Firmicute) (38), and H. volcanii (Archaea:Halobacteria) (39). All five of these strains had
fewer sequencing reads than we had for E. coli, leading to fewer predictions of transcripts, including
both mRNA and ncRNA (Table 1). Yet we were still able to predict 274-1103 transcripts across the five
strains and those transcripts were similar to the E. coli data with respect to mean/median/mode 3’-UTR
lengths, proportion of single CDS transcripts, proportion of single transcript CDSs, size distribution of
MRNA, and size distribution of ncRNA (Table 1). The 5’-UTR predictions were of similar length across the
bacterial strains. However, the archaeal reads frequently did not extend beyond the 5’-end of the CDS
such that monocistronic mRNAs were erroneously called ncRNAs and very long 5’-UTRS were predicted
for polycistronic transcripts resulting in an increased median (Table 1). It may be that the 5’-end
predictions of the CDS are flawed due to calling the longest ORF, or it may be that the H. volcanii UTRs
are shorter than the bacterial 5’-UTRS and/or were not well captured with the ONT technology. Across
all seven strains examined, two of the longest transcripts were phage transcripts and two were nuo
transcripts (Table 1). The inclusion of L. monocytogenes was an important test case since it is a firmicute
with leading strand transcription bias (49), which led to fewer and longer CT regions, but did not prevent
high quality transcript predictions. While there was ONT direct RNA data for further species of gamma-
Proteobacteria, we limited this analysis to just two species with two strains each from this taxon.
Overall, these results suggest that this simple sequencing method combined with this algorithm can be

applied widely to archaeal/bacterial genomes to enable rigorous and robust transcript predictions.

Characteristics of ONT direct RNA sequencing of E. coli transcripts

To develop rigorous methods and algorithms to predict these transcripts, we needed to understand the
characteristics of ONT direct RNA sequencing of bacterial transcripts, which we expected to differ from

sequencing of eukaryotic transcripts given the differing physical features and stability of prokaryotic and

12
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eukaryotic RNA. Overall, transcripts >5 kbp were difficult to obtain in a single read (Figure 7A), but reads
were sequenced that span most predicted operons as well as exceed the boundaries of existing operon
prediction (Figure 7AB). While E. coli has known transcripts >10 kbp, we did not generate reads >9 kbp
(Table 1). This is could be due to laboratory handling and is, at least in part, likely due to the ONT
technology since we observe that (a) this was reproducible across multiple systems and RNA molecules
we know must be full length, like rRNAs (Figure 7C), (b) there was 5’-truncation of transcripts in 11.7 kbp
full-length in vitro transcribed (IVT) polyadenylated RNA (Figure 7D), and (c) there were many
incomplete reads for the 1.4 kbp yeast enolase 2 (ENO2) RNA calibration strand provided by ONT (Figure
7E). Sequenced transcripts were also 3’-truncated (Figures 2ABCD, 4AC, 5ABCD), as previously described
for ONT (28, 36, 37) and PacBio IsoSeq (30) sequencing of bacterial transcripts, possibly from (a) random
fragmentation of RNA, (b) RNA degradation, and/or (c) incomplete transcription in a bacterial cell.
Additionally, we found that shorter transcripts were preferentially sequenced relative to longer
transcripts (Figure 7F). This is despite counts/RPKMs being reported as well correlated between Illumina
cDNA-based sequencing, ONT cDNA-based sequencing, and ONT direct RNA sequencing (51), as well as
when nanopore direct RNA sequencing CPMs are compared to the absolute concentration of a spike-in

(52).

To address incomplete reads and preferential sequencing of shorter transcripts, we first predicted
transcript start/stop sites in locations where there is an over-abundance of reads starting and ending.
Subsequently, the actual transcripts were defined by measuring the strength of the connection between
those start and stop sites using a model that supports the characteristics of truncated transcripts where
smaller transcripts were preferentially sequenced. In this way, we predicted 12-15 kbp mRNAs, despite

having a shorter max ONT read length (Table 1, Figure A2).

ONT direct RNA sequencing uses changes in electrical current to detect RNA modifications including N6-

methyladenosine (mPfA), 5-methylcytosine (m°C), inosine, pseudouridine, and many more (53). At a
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minimum, posttranscriptional modifications were expected in bacterial tRNA and rRNA (54), but might
also be present in mRNA and would lead to nonrandom changes in sequencing depth and base calling
errors (55, 56). To alleviate this issue, we used a depth calculation computed assuming every base is
equally present in a read using start/end positions of bed files for mapped reads. This also enables
predictions in the presence of errors in the reference or sequence divergence from the reference (e.g.,

(57)).

Chimeric RNA sequencing reads were detected in all samples, including chimeras between the ONT
ENO2 calibration strand and sample RNA (Figure 2H, Table Al). A subset of these were in silico chimeric
reads, with a spike observed in the electrical current when analyzing the raw signal data, indicating an
open pore state that was missed by the MinKNOW software (Figure A3AD). Others lacked this spike and
could be either ligase-mediated chimeras or in silico-mediated chimeras where the open pore state was
too short to be detected (Figure A3BC) (58). In our analysis, this was addressed by removing the clipped
portions of mapped reads. When mapping reads to a reference genome, portions of a mapped read that
do not align with the reference will be either “soft-clipped” or “hard-clipped.” A soft clipped read has a
portion that does not align to any other area of the reference (e.g., the ENO2 portion of an ENO2/mRNA
chimeric read), whereas a hard clipped read has two portions that align to different parts of the
genome. For soft- and hard-clipped reads we used the primary alignment, ignoring the clipped portion

of the read.

The Transcript Prediction Algorithm

Therefore, based on these characteristics of ONT sequencing described in the previous section, we
developed tp.py, for transcript prediction written in Python. The algorithm examines each CT region
separately along with the reads completely contained within that region. CT regions were initially

defined through the bed input file and subsequently refined to subdivide regions based on a minimum

14
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depth cut-off (default=2). Ultimately a region needs to have a minimum number of reads fully contained
within it to be considered (default=2). The change in depth of the sequencing reads for each genomic

position of the CT region (Dreg) ignoring mismatches/indels was calculated as

ADreg = Dreg (n+1) — DI’EE (n)

Potential start and stop sites were predicted at positions where |AD,eg| surpasses a threshold
(default=4) and always included the first and last position of the region. ONT sequencing has issues
identifying precise ends of transcripts due to polyA-trimming as well as sequencing 5’-ends, such that
predicted start/stop sites in close proximity (default=100) were grouped. Default parameters were
initially established empirically upon examination of results for representative areas of the genome and

confirmed to maximize sensitivity and specificity for this data set (Figure A4).

Candidate transcripts were predicted using the Cartesian product of all predicted start and stop sites.
The total read count (Niwt) was calculated from the number of total reads that are mapped to all
transcripts that fully contained them, allowing for mapping to multiple transcripts. The count of
exclusively assigned reads (Nea) was calculated after mapping each read to the shortest transcript that
fully contains it. The candidate transcripts were processed from shortest to longest computed as Ratio =
Nea / Niot. If this ratio was less than the threshold (default=0.2), the candidate transcript was discarded. If
possible, reads from discarded transcripts were re-assigned to longer transcripts, and the Ne, was
recalculated such that reads initially assigned to now discarded transcripts can be used to support a
longer transcript. All transcripts that meet the ratio at the end of the analysis were reported in a gff

annotation file and a bed file.

The algorithm runs in about an hour on a single core computer depending on the parameters and the
size of the data set. We attempted to compare the results to assemblies of the ONT direct RNA reads

with existing tools, including TAMA (tc_version_date_2020_12_14) (59), Cupcake (v.29.0.0) (60), and
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StringTie (v1.3.4d) (61), but they failed to recapitulate the complexity of the bacterial transcripts

accurately (Figure A5).

Discussion

In most bacteria, transcripts are not characterized and CDSs serve as a proxy, albeit a poor one. Here,
we show that bacterial long read transcriptome data can be used to predict bacterial transcripts using
an algorithm we designed for the complexities and nuances of prokaryotic transcripts. Application of this
algorithm to ONT data from four species revealed extensive transcript structural variation, transcription
of RNA on both strands in some regions, overlapping transcripts, and a diversity of non-coding RNAs.
The extent of transcript structural diversity highlights the need for algorithmic and analysis
improvements that are important for rigorous differential expression analyses, molecular evolution
analyses, and other analyses as well as laboratory experiments like making knock-outs/ins or promoter
analysis. This method should enable predictions for one strain using another strain’s data, but given that
we haven’t ascertained how much transcript structural diversity there is between strains, it may be ill-
advised. For that reason, we did not, for example, use the SG17M and NN2 data to make available

predictions for the research community for the frequently used P. aeruginosa PAO1.

There were differences observed between a differential expression analysis using short/long reads as
well as using transcripts/CDSs. Discordance between short and long reads may be due to: (a) shorter
transcripts being preferentially sequenced relative to longer transcripts in ONT sequencing (Figure 7F, as
described below), (b) the benefits in statistical analyses of larger numbers of lllumina reads, (c) improper
attribution of short reads to overlapping transcripts/isoforms, or (d) differences in the incubation
conditions of the cultures used in collecting the long and short read data sets. However, using only the
[llumina reads, there are more differences than similarities between analyses using CDSs and those

using transcripts despite using the same raw data for each analysis (Figure 6J). This is consistent with our
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previous comparisons of CDS- and transcript-focused analyses using simulated data (19). While some of
these may relate to transcripts falling just over or under an analysis threshold, others relate to
transcription of an overlapping ncRNA being mis-attributed to an overlapping CDS, as seen with fdnG

(Figure 6ABCDEF).

There is still room for improvement for bacterial transcript predictions, both through lab
experimentation and bioinformatics. The greatest improvement in the lab would be in obtaining more
full-length reads, particularly for long transcripts, which is a challenge for all long-read sequencing
platforms. For ONT, the new chemistry may improve the yield and length, and further improvements to
length may be possible by altering the reverse transcription method needed to remove RNA secondary
structure by changing the enzyme (62). The issue of missing the last few bases of the read, which
represents the 5’-end of the transcript, is a more significant issue for those looking for single base pair
resolution of transcript ends. Ligating an adaptor to the read prior to sequencing shows promise in
addressing that issue (52, 63). We also saw a significant amount of fragmentation at the 3’-ends that
may be either incomplete transcription, 3'-degradation of transcripts, random breakage, or sequencing
biases that need to be better understood. Incomplete transcription is intriguing and may reflect the
fundamental biology since (a) bacterial transcription and translation are coupled and (b) bacterial
transcripts are short-lived and frequently in the process of being synthesized, since bacterial mRNAs are
made at a rate of 40-80 nt/sec (64) while the average mRNA half-life is only 2-10 minutes (65). In
contrast, eukaryotic RNAs have to be spliced to create mature mRNA before being exported from the

nucleus and have increased stability and a longer half-life.

When discussing taxonomy, Stephen J. Gould emphasized that “classifications both reflect and direct
our thinking” (66). Going on to say that “the way we order represents the way we think” (66).
Annotation has many similarities to taxonomy, and similarly genome annotation both reflects and

directs our thinking. For bacteria, annotation is currently protein-centric, influencing our results and
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ways of thinking. Historically, this is likely due to the connection between the definition of a gene and
protein, but practically it also relates to the ease with which we can computationally predict proteins.
However, with new experimental methods and abilities, it is time for a sea change in bacterial genome
annotation. The experimental and computational methods here are easy and quick, and thus they
should be implemented widely. Additionally, there is a need for associated new ontology standards for
describing transcripts and operons in annotation files that will better describe these features, similar to
changes made in eukaryotic annotation files to accommodate alternative splicing and alternative
transcripts (67). A harmonization of the standards for bacteria and eukaryotes would be ideal, such that
there is a standard that spans the incredible biological diversity and commonalities across the domains

of life.

Conclusions

Here we use bacterial long read transcriptome data and a new algorithm we developed to predict
transcripts from this data for two strains of three diverse bacterial species including both Gram-negative
and Gram-positive bacteria. Our analysis reveals a tremendous amount of transcript structural variation,
transcription of RNA on both strands in some regions, overlapping transcripts, and a diversity of non-
coding RNAs, which we provide as new annotation for these genomes. Bacterial transcriptional
structural variation has a richness that rivals or surpasses what is seen in eukaryotes and provides a rich

new set of therapeutic and diagnostic targets.

Methods

Bacterial cultures

Cryogenically preserved E. coli K12 MG1655 or E2348/69 were streaked onto an LB agar plate and

placed in an incubator overnight at 37 °C. A single colony was selected to inoculate LB broth for an
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overnight culture. The overnight culture was diluted 1:100 in LB broth and harvested at the optical
density specified in Table 1A. For DMEM, overnight cultures were grown in LB broth and diluted 1:100 in

DMEM.

RNA Isolation

To isolate RNA, the Qiagen RNeasy Mini Kit was used according to Qiagen RNA Protect Reagent
Handbook Protocols 4 and 7 with Appendix B on-column DNase digestion (Qiagen, Hilden, Germany).
The RNA was assessed with UV-Vis spectrophotometry (Denovix DS-11, Wilmington, DE), Qubit RNA HS
Assay Kit (Fisher Scientific, Waltham, MA), and TapeStation RNA Screentape (Agilent, Santa Clara, CA).
RNA preparations were stored at -80 °C until ready for polyadenylation and sequencing, except for the E.
coli K12 MG1655 harvested at an optical density ODggoo of 0.2. The RNA isolated from this one culture
was treated four different ways. For SRR27982843, 4 pg of the freshly isolated RNA was immediately
polyadenylated and then taken into library preparation and sequenced, as detailed below. The leftover
polyadenylated RNA was stored at -80 °C alongside the original RNA isolation which had been frozen
without polyadenylation. Two months later, the original, unpolyadenylated RNA was thawed and
polyadenylated just before library preparation and sequencing (SRR27982841). On that same day, the
RNA that had been polyadenylated before being frozen was thawed and taken directly into library
preparation and sequencing (SRR27982841). Four months after the original RNA isolation, the RNA that
had been polyadenylated before storing at -80 °C was thawed again and polyadenylated again before

library preparation and sequencing (SRR27982840).

Oxford Nanopore Sequencing

RNA was polyadenylated with E. coli poly(A) polymerase (M0276S, New England Biosciences, Ipswich,
Massachusetts) at 37 °C for 90 s — 30 min (Table S1) according to the manufacturer’s protocol and

sequenced with the Direct RNA Sequencing kit (SQK-RNA002, Oxford Nanopore Sequencing, Oxford, UK)
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according to protocol version DRS_9080_v2_revR_14Aug2019. The prepared RNA library was loaded
onto R9.4.1 flow cells (FLO-MIN106D) in a MinlION device Mk1B (MIN-101B). Sequencing runs were
terminated at 24 h. Fast5 files were basecalled using Guppy version 6.4.2 (68) generating FASTQ files

with the high accuracy model using the rna_r9.4.1_70bps_hac config file on a GPU cluster.

Read Mapping, Transcript Prediction, and Analysis

FASTQ files were mapped to the reference genome (Table A2) using minimap2 (v2.24-r1122; options:
-ax map-ont -t 2) (69). Alignments were sorted and filtered with samtools view (v1.11; option: -F 2308)
(70) generating bam files that were merged and indexed. BED files were generated with bamToBed
(v2.27.1; options: -s -c 6,4 -o distinct,count) (71) and filtered with awk to remove regions with fewer
than 20 reads. The tp.py algorithm was run in python (v.3.11.4). Statistics on regions, predicted
transcripts, and other features were calculated with perl (v5.30.2). Perl (v5.30.2) was also used to merge
the transcript and reference gff annotation files and identify mRNAs, ncRNAs, and UTRs. ONT
sequencing, transcript predictions, and reference CDS predictions were visualized in R (v3.6.3). E2348/69
reads from the SRA for PRJEB36845/E-MTAB-88804 and counted against the E2348/69 with the
transcript predictions presented here using Salmon (v. 1.10.2) (31). Before differential expression was
assessed, genes not meeting the required CPM cutoff of 5 in at least 3 samples were removed. The
samples were grouped based on the treatment status, and differentially expressed genes were
identified with EdgeR v3.30.3 using the quasi-likelihood negative binomial generalized log-linear model.
Statistical significance was set at an FDR cutoff < 0.05 after correction with the Benjamini Hochberg
method. A heatmap was drawn in R v4.2.1 using heatmap.3 of the z-score transformed log,(TPM) values
for differentially expressed genes with the columns ordered based on a dendrogram generated using

pvclust v2.2-0.
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The full set of commands are described at: https://github.com/jdhotopp/tp.py-Direct-RNA-Sequencing-
Manuscript-/tree/main (a DOI will be acquired after commands are finalized following review of the

manuscript).
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675
676
677
678

679

Escherichia coli Listeria monocytogenes Pseudomonas Pseudomonas
Escherichia coli K12 E2348/69 Listeria monocytogenes RO15 aeruginosa SG17M aeruginosa NN2 Haloferax volcanii
Feature (GCF_000005845.2) (GCF_014117345.2)  Scott A (CM001159.1) (CADEHJ000000000.1) (NZ_CP080369.1) (NZ_LT883143.1) (GCF_000025685.1)
Number of contigs in reference 1 3 1 2 1 1 5
Number of reads used 5,266,309 3,025,047 1,679,073 1,664,744 220,553 1,196,279 1,438,670
Number of CT Regions for Predictions (>20 reads) 1,055 1,071 525 464 391 1,209 640
Number of Regions on (+)-strand 521 528 238 206 181 612 318
Number of Regions on the (-)-strand 534 543 287 258 210 597 322
Span (bp) on (+)-strand 2,068,709 1,951,551 703,660 589,005 530,329 1,944,294 893,429
Span (bp)on (-)-strand 2,135,707 1,827,581 821,637 759,698 589,348 1,886,100 974,115
Average span (bp) + strand 3,968 3,777 2,946 2,848 2,915 3,174 2,807
Average span (bp) — strand 3,997 3,446 2,851 2,932 2,786 3,155 3,022
Number of Transcripts 3,618 2248 881 793 274 1103 613
Number of Transcripts on the (+)-strand 1,465 1101 402 361 79 495 241
Number of Transcripts on the (-) strand 2,153 1147 479 432 195 608 372
Number of Regions with 1 transcript 289 429 218 199 85 258 226
Maximum Number of Transcripts per Region 254 141 32 31 68 63 27
Mean 3'-UTR (bp) 150 126 122 112 163 236 180
Median 3'-UTR (bp) 72 62 48 47 59 78 84
Maximum 3'-UTR (bp) 2,716 1,261 1,306 1,245 2,235 2,809 2040
Mean 5'-UTR (bp) 134 119 137 114 185 205 373
Median 5'-UTR (bp) 53 49 36 33 93 85 207*
Maximum 5'-UTR (bp) 2,122 2,817 2,303 2,303 1,835 1,943 2,955
Number of genes 4,494 4,809 3,038 3,149 6,349 6,380 3,956
Number of genes in annotated transcript 2,360 2,037 765 680 209 765 385
Number of genes associated with just 1 transcript 1,341 1,300 636 554 168 572 301
Maximum number of transcripts a single gene is
associated with 15 12 6 7 4 6 10
90% of genes are associated with fewer than this
number transcripts 4 4 3 3 3 3 3
Number of transcripts with 1 gene 1,563 1,096 349 316 79 398 167
Maximum number of genes in a single mMRNA 17 14 38 22 15 15 15
90% of transcripts have fewer than this many genes 4 4 4 3 3 3 3
Number of predicted mRNAs 2,487 1,844 536 491 133 601 263
Average predicted mRNA size (bp) 1,617 1,732 1,660 1,607 1,590 1,735 1,948
Largest predicted mRNA (bp) 13,305 15,256 29,034 10,791 14,168 12,709 10,463
Smallest predicted mRNA (bp) 131 129 224 209 183 146 136
Number of predicted ncRNAs (including ones in
reference annotation file) 1,131 404 345 302 141 502 350*
Average predicted ncRNA size (bp) 550 649 497 524 578 538 724*
Largest predicted ncRNA (bp) 2,947 2,916 2,585 2,588 6,361 2,851 3,045*
Smallest predicted ncRNA (bp) 89 80 95 136 97 77 81*
phage
glf, gnd, insH7, phage (LMOSA_9400- rpIBCDEFNOPRVWX, fusA,rpliL,rpoBC,rpsGL, (PANN_06920 -
Genes in longest mRNA rfbABCDX, wbbHIUKL ~ nuoABCEFGHIJKLMN LMOSA_9770) rpmCD, rpsCEHJQS, secY tuf PANN_07050) nuoABCD1HIJ1J2KLMN

*The reads for this species frequently do not extend beyond the 5’-end of the CDS, essentially meaning transcripts start where translation is predicted to start. When this happens for a polycistronic
transcript, the result is a very long 5’-UTR as seen with the increased median, and when this happens for a monocistronic transcript, the mRNA is erroneously called a ncRNA. While this likely occurs
for all of the organisms, it is acute for the H. volcanii data. It may be that the 5’-end predictions of the CDS are flawed due to calling the longest ORF, or it may be that the H. volcanni UTRs are

shorter than the bacterial 5’-UTRS.
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Figures

Figure 1 — Overview of Transcript, Operon, and UTR Definitions Used

The interrelationship of genomic features described in this manuscript are illustrated, including
the relationship of operon, CT region, CDS, mRNA, ncRNA, and proteins for
monocistronic/polycistronic transcripts with/without transcript isoforms. The genes and

genome are fictitious and used merely to illustrate the definitions of key terms.
Figure 2 — Overview of the Experimental/Analysis Workflow

Plus-strand ONT direct RNA sequencing reads (shown as lines) are mapped from 1 bp to 6 kbp in the E.
coli K12 genome (NC_000913.3), which corresponds to the thr operon, and sorted by their transcription
stop site for E. coli K12 grown in rich LB media (left sorted, A; right sorted, C) and DMEM media (left
sorted, B; right sorted, D). Our algorithm predicts 3 transcripts (E), and 4 CDSs in the annotation file are
illustrated (F). The transcript for the leader peptide thrL is recovered in both growth conditions. (G) RNA
was isolated from E. coli K12 grown at 37 °C with aeration in LB and DMEM media. (H) Squiggle plot for
two sequencing reads in tandem. In this case, the open pore state was missed by the software resulting
in a chimeric read. In both reads the DNA adapter can be observed with lower current followed by a
relative flat plateau that corresponds to the polyA tail. This is followed by the electrical current changes
associated with the RNA moving through the pore. (l) Plots show the electrical current for the same
length DNA and RNA highlighting that the signal to base ratio is different for RNA and DNA. (J) The
standard ONT direct RNA sequencing library was used on bacterial RNA that was in vitro polyadenylated
following RNA isolation. Library construction and (K) loaded on an ONT MinION device for nanopore

sequencing.

Figure 3 — Characteristics of Transcript Predictions
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The distribution of the number of instances of CDS by transcripts/CDS (A) and the distribution of the
number of instances of transcripts by CDSs/transcript (B) are shown for E. coli K12, E. coli E2368/69, L.
monocytogenes ScottA, L. monocytogenes RO15, P. aeruginosa SG17M, P. aeruginosa NN2, and H.
volcanii. The data points in these discrete distributions are connected by lines for visualization purposes.
The inset in each illustrates how transcripts/CDS and CDSs/transcript are defined. The size distributions
of predicted 5’-UTRs (C) and 3’-UTRs (D) are plotted for each of the six strains examined with an inset

that zooms in on 0-350 bp to better illustrate the distribution of the majority of the data.

Figure 4 — fdoGHI-fdhE Transcripts

Reads mapping to the minus strand of the E. coli K12 genome (NC_000913.3) grown in LB (A, C) and
DMEM (B, D) are shown for a region from 4,080-4,088 kbp. To facilitate the visualization of the starts
and stops of transcripts, reads were sorted by either their left most (A, B) or right most (C, D) position
and plotted from top to bottom accordingly. Transcript predictions from our algorithm (E) and the
predicted CDSs in the reference annotation file (F) are shown with arrows indicating the direction of
transcription and with transcripts/CDSs on the different strands having different shading (light for the

(+)-strand and dark for the (-)-strand).

Figure 5 — LEE4 Operon

Reads are illustrated that map to the plus strand (A, C) and minus strand (B, D) of the E. coli E2348/69
genome (GCF_014117345.2) grown in LB or DMEM for a region from 72-78 kbp. There are no reads from
the LB conditions on the (+)-strands. To facilitate the visualization of the starts and stops of transcripts,
reads were sorted by either their left most (A, B) or right most (C, D) position and plotted from top to
bottom accordingly. Transcript predictions from our algorithm (E) and the predicted CDSs in the

reference annotation file (F) are shown with arrows indicating the direction of transcription and with
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transcripts/CDSs on the different strands having different shading (light for the (+)-strand and dark for

the (-)-strand).

Figure 6 — Differential expression of predicted transcripts

Reads are illustrated mapping to the plus strand of the E. coli E2348/69 genome (GCF_014117345.2)
grown in LB (A, C) or DMEM (B, D) from 4.730-4.735 Mbp sorted by either their left most (A, B) or right
most (C, D) position. Transcript predictions from our algorithm (E) and the predicted CDSs in the
reference annotation file (F) are shown with arrows indicating the direction of transcription. Table of
transcripts per million (TPM) values calculated with Salmon (31) for transcripts and FADU (18) for CDSs
(G) for the same region shown in panels ABCDEF. For ONT reads, only Salmon was used. Plot of the
log2(TPM) for all CDSs and all corresponding transcripts for ERR393285 showing the discordance
between TPMs calculated based on transcripts and CDSs for the same Illumina data (H). Heatmap
clustered by genes for the log,(TPM) for all CDSs calculated with FADU (18) and all corresponding
transcripts calculated with Salmon (31) for lllumina and ONT reads generated from LB and DMEM (l).
Differences observed between a transcript-based differential expression analysis and a CDS-based
differential expression analysis with FADU (18) are summarized showing the differences in up- and

down-regulated genes (J).

Figure 7 — ONT sequencing characteristics that informed algorithm development

Size distribution of all of the E. coli K12 ONT sequencing reads aligning outside the rRNA reads compared
to the distribution of predicted operons (A). For the 285,619 reads that are longer than the operon they
map to, the length of reads is plotted relative to the size of the operon they map to (B). Normalized
sequencing depth from the 3’-end to the 5’-end for E. coli K12 16S rRNA, E. coli K12 23S rRNA, and IVT
RNA (SRR23886069), all thought to be complete, showing the 3’-bias in sequencing (C). Distribution of

read lengths for the 1.3 kbp yeast enolase ONT spike-in (D) and an 11.7 kbp IVT RNA (E) from

32



747

748

749

750

751

752

SRR23886069 where only reads ending at the far right position are shown. The log transformed ratios of
Ilumina (SRR3111494) and ONT (SRR23886071) TPM values for RNA isolated from adult female Brugia
malayi, a filarial nematode and invertebrate animal, is compared to the transcript length, illustrating
how shorter transcripts have more lllumina reads relative to ONT reads than longer transcripts (F). Our
interpretation is that ONT sequencing is biased toward shorter transcripts. The inset uses the heat

function to show the intensity of the points in the region which contains most of the data.
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G SRA | [ ERR3932847 | ERR3932848 | ERR3932849 | ERR3932853 | ERR3932854 | SRR18061003 | SRR18061004

Sequencing
Technology [llumina [llumina [llumina Illumina [llumina ONT ONT
Transcript Gene
R_496_T12 5’-end-fdnG 0 0 0 17.3 5.61 0 0
R_496 _T10 5’-end-fdnG 13.8 9.06 26.4 32.7 48.2 1191 582
R_496_T7 5-end-fdnG 0 0 0 0 0 0 0
R_496_T5 5’-end-fdnG 0 0 0 0 0 0 0
R_496_T9 fdnG/fdoHI 4.47 4.70 6.56 21.5 35.6 420 4643
R_496_T4 3’-end-fdol 3.63 1.49 1.69 0 0 16.7 75.5
R_496_T19 3’-end-fdol 0 0 0 0 0 0 0
R_496_T18 fdhE 9.62 & 9.51 &&
e  Gene _ __
WP_012579028.1 fdnG 198 1115 927
WP_000331385.1 fdoH 119 112 97.7 594 492
WP_000829013.1 fdol 147 129 115 472 334
WP_000027712.1 fdhE 182 193 145 318 167
H I
R_496_T7 R_496_T9
R_496_T> RA%6T4 SALMON FADU
R 496 T12 R_496_T18 lllumina ONT lllumina
~ R_496_T10 LB DMEM LB
fFdoH J up-regulated down-regulated
fdnG fdol
fdhE

4.730 Mbp 4.732 Mbp 4.734 Mbp
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