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Abstract 27 

RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized 28 

biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict 29 

transcripts (mRNA and other RNAs) in Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-30 

Proteobacteria) , Listeria monocytogenes strains Scott A and RO15 (Bacteria:Firmicute), Pseudomonas 31 

aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and Haloferax volcanii 32 

(Archaea:Halobacteria). From >5 million E. coli K12 and >3 million E. coli E2348/69 newly generated 33 

Oxford Nanopore Technologies (ONT) direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844 34 

E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted E. coli 35 

K12 proteins. While the number of predicted transcripts varied by strain based on the amount of 36 

sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7 37 

kbp while the median size of the 5’- and 3’- UTRs were 30-90 bp. Given the lack of bacterial and archaeal 38 

transcript annotation, most predictions were of novel transcripts, but we also predicted many previously 39 

characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs 40 

associated with pathogenesis in the E. coli E2348/69 LEE pathogenicity islands. We predicted small 41 

transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest 42 

transcript for two of the seven strains being the nuo operon transcript, and for another two strains it 43 

was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the 44 

presentation of transcripts, and UTR predictions alongside CDS and protein predictions in bacterial 45 

genome annotation as important resources for the research community. 46 

Importance 47 

Our understanding of bacterial and archaeal genes and genomes is largely focused on proteins since 48 

there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with 49 
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studies on the human genome, where transcripts were sequenced prior to the release of the human 50 

genome over two decades ago. We developed software for the quick, easy, and reproducible prediction 51 

of bacterial and archaeal transcripts from ONT direct RNA sequencing data. These predictions are 52 

urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including 53 

regulation of virulence factors, and for the development of novel RNA-based therapeutics and 54 

diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.  55 
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Introduction 56 

Genomics, genome-enabled technologies, computational biology, and large-scale data mining are 57 

essential for rigorous, modern experiments on all organisms. Whole genome sequencing and protein-58 

based annotation are now routine, low-cost approaches for analyzing bacteria and archaea. But often 59 

the annotation, and thus analysis and experimental validation, is limited to predicted protein-coding 60 

regions and a few highly conserved non-coding RNAs (ncRNAs) like the rRNAs and tRNAs. Yet, pathogen 61 

RNA transcripts, particularly ncRNAs and RNA-mediated regulation, offer an unexplored set of druggable 62 

targets, diagnostics, and potential therapeutics (1). In this context, a transcript is a physical RNA 63 

molecule made from a DNA template that has discrete start and end sites generated by a diversity of 64 

molecular mechanisms (e.g., promoter/terminator, post-transcriptional processing) (Figure 1).  65 

In bacteria, transcripts are frequently considered within the paradigm of operons as put forth by Jacob 66 

and Monod (2), which was summarized recently as “sets of contiguous and functionally related genes 67 

cotranscribed from a single promoter up to a single terminator” (3), including the operator regulatory 68 

region (Figure 1). Using this definition, polycistronic transcripts are encoded within operons, which also 69 

include regulatory regions. It is unclear if a monocistronic transcript and its regulatory regions would 70 

also be considered an operon. Operons are widespread in bacterial/archaeal genomes, with ~630-700 71 

defined operons in Escherichia coli (4). Experimentalists have predicted operons using read counts 72 

and/or sequencing depth without algorithms (e.g. (5, 6)), and efforts have been made to develop 73 

algorithms for their prediction (7-13). For example, the Rockhopper algorithm predicts operons using a 74 

naïve Bayes classifier to combine strand, intergenic distance, and coordinated differential expression in 75 

a unified probabilistic model (14).  76 

Oftentimes, bacterial transcripts and operons are conflated, but fundamentally, the classical definition 77 

of operon is a DNA-based definition, defining a region in DNA that extends beyond the RNA-based 78 
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transcripts to include the promoter/operator and terminator. Operons can have multiple transcripts due 79 

to post-transcriptional processing (15), alternate terminators (e.g. attenuation) (10, 16, 17), and 80 

alternate transcriptional initiation sites (3). There is a need for both DNA-based annotation of operons 81 

and RNA-based annotation of transcripts. Fundamentally, RNA-seq is transcript quantification, therefore 82 

it should be measured at the RNA/transcript level not the DNA/operon level. Rockhopper has been used 83 

for differential expression of its predicted operons (11), but it yields different results than a 84 

corresponding transcript-focused analysis (3). 85 

Fundamental biological differences such as a high coding density and polycistronic transcripts in 86 

bacterial genetics means that we cannot merely apply the same laboratory and computational methods 87 

that were designed and optimized for humans and eukaryotic model organisms, with the false 88 

assumption that they will work because bacteria are “simpler” than humans. Currently most 89 

bacterial/archaeal RNA-seq studies are conducted by applying tools designed for eukaryotic transcripts 90 

using bacterial coding sequence (CDS) predictions. Even when issues with counting algorithms are 91 

mitigated for a CDS-focused analysis of polycistronic transcripts (18), measurements of CDSs in 92 

polycistronic transcripts are dependent on one another yet are treated as independent measurements 93 

with the statistics used to detect differential expression. This results in errors in variance estimations in 94 

differential expression tools (19). Comparisons of the StringTie algorithm for transcript prediction and 95 

Rockhopper have previously noted some of these issues, as well as the need for long RNA sequence 96 

reads to resolve these problems (10). 97 

E. coli K12 is a well-studied genome that has some transcript predictions (17, 20), anti-sense RNA 98 

characterization (21), and transcriptional start site and terminator predictions (17, 22-25), all of which 99 

are aggregated and manually curated in RegulonDB (26) and EcoCyc (27). But even for this well studied 100 

organism, reference annotation files (like GFF or GTF files) lack transcript annotations, and it can be 101 

difficult, if not impossible, to ascertain and use transcript structures for a differential expression 102 
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analysis. The current work done to characterize transcripts and transcriptional regulation in E. coli (e.g., 103 

(26)) is not possible for more than a few microorganisms, yet there is immense bacterial biodiversity. 104 

Therefore, we sought to develop a fast, simple, rigorous, and reproducible method for identifying 105 

bacterial transcripts that can be widely applied and takes advantage of recent advances in RNA 106 

sequencing, including PacBio IsoSeq and Oxford Nanopore Technologies (ONT) direct RNA Sequencing 107 

both of which have been applied previously to bacteria including E. coli (3, 28-30). Transcript predictions 108 

will enable differential expression analyses to be expanded to include non-coding RNAs (ncRNAs) and 109 

also use the latest transcript-based differential expression analysis tools like Salmon (31) and Kallisto 110 

(32). Transcript predictions are also needed to inform consequences of genetic knock-in and knock-out 111 

experiments (e.g., (33)), identify regulatory sequences (e.g., (10, 16, 34)) and detect post-transcriptional 112 

processing (e.g., (15, 35)). Recent studies (10, 28, 36) reveal a much more complex picture of bacterial 113 

transcripts with post-transcriptional processing and potentially multiple promoters and terminators, 114 

including transcripts beginning or ending in the middle of adjacent coding sequences due to the coding 115 

density (17). 116 

In this study, we describe a quick, easy, and reproducible method and algorithm for whole 117 

transcriptome sequencing and structural annotation using ONT direct RNA sequencing. We tested the 118 

methods on the E. coli K12 and E2348/69 strains and then also apply this algorithm to existing public 119 

data for Pseudomonas aeruginosa strains SG17M and NN2 (37), Listeria monocytogenes strains Scott A 120 

and RO15 (38), and Haloferax volcanii (39). 121 

Results 122 

ONT direct RNA sequencing of E. coli transcripts 123 

We generated ONT direct RNA sequencing data (Figure 2) from RNA isolated from E. coli K12 and 124 

pathogenic E. coli E2348/69 (40) grown at 37 °C with aeration in LB and DMEM media (Table 1, Table 125 
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A1), which are virulence gene inducing growth conditions (15, 41-44). E. coli K12 annotation is available 126 

for comparison in RegulonDB (26) and EcoCyc (27) and includes transcript predictions (17, 20), anti-127 

sense RNA characterization (21), and transcriptional start site and terminator predictions (17, 22-25). 128 

The inclusion of E. coli E2348/69 allows us to interrogate transcript predictions in a related but clinically-129 

relevant enteropathogenic E. coli (EPEC) strain with plasmids (40) that has pathogenesis-associated 130 

operons, which have had fine scale analysis of transcription (15, 44). We focused on using ONT direct 131 

RNA sequencing, where RNA was sequenced directly in the pore (Figure 2K), to predict bacterial 132 

transcripts (Figure 2E) because it does not have template switching (36). Additionally, ONT direct RNA 133 

sequencing data lacks genomic DNA contamination since sequenced RNA and DNA have markedly 134 

different signals, which is used by Guppy to eliminate DNA reads with high fidelity. RNA advances 135 

through the pore more slowly and with a higher electrical current range than DNA, which is apparent in 136 

all RNA reads since RNA is loaded into the pore using a ligated DNA adaptor (Figure 2I, Figure A1) . 137 

Predicted E. coli K12 transcripts 138 

Using the 5,266,309 ONT reads generated for E. coli K12 (Table 1), we predicted transcripts using the 139 

algorithm that we developed to predict transcripts in prokaryotic genomes using ONT sequencing reads 140 

first predicting transcript start/stop sites where there is an over-abundance of reads starting/ending and 141 

then identifying start/stop site combinations supported by the ONT sequencing data using models based 142 

on the observed characteristics of ONT sequencing, which is described in more detail below. We 143 

identified 3,902 strand-specific contiguously transcribed (CT) regions in the K12 genome with 1,055 that 144 

had >20 reads that we used for predictions (Table 1). The 1,055 CT regions used for predictions were on 145 

average 4 kbp and included 521 regions on the (+)-strand spanning 2.07 Mbp and 534 regions on the (-)-146 

strand spanning 2.14 Mbp (Table 1). There were 3,618 predicted transcripts with 1,465 predicted 147 

transcripts on the (+)-strand and 2,153 predicted transcripts on the (–)-strand (Table 1). There were 289 148 

(27%) regions with only a single transcript predicted (Table 1), meaning 73% of CT regions contained 149 
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more than one transcript either because operons overlap or because there were multiple overlapping 150 

transcripts. 151 

Of the 3,618 predicted transcripts, 2,484 were predicted to be mRNAs (Figure 1) and 1,134 were 152 

predicted to be ncRNAs (Figure 1, Table 1). mRNAs were defined as transcripts that have at least one 153 

annotated CDS found completely within the transcript boundaries, whereas a ncRNA was defined as a 154 

transcript that lacks a CDS found completely within the transcript boundaries (Figure 1). It is important 155 

to note that frequently the 5’-end of CDSs (and the N-terminal portion of the protein encoded by them) 156 

are incorrectly annotated, such that the assignment of transcripts as mRNA/ncRNA needs further 157 

manual refinement including possible curation of the N-termini of proteins; additionally, protein 158 

annotation may be informed and improved through transcript structural annotation. However, given 159 

these definitions, the average mRNA was 1,618 bp with the smallest and largest being 131 bp and 160 

13,305 bp, respectively (Table 1). The average ncRNA was 517 bp with the smallest and largest being 52 161 

bp and 2,947 bp, respectively (Table 1). Of these 1,134 predicted ncRNAs, 23 (2%) were already 162 

described in the reference annotation file and are ~23% of the 98 previously annotated ncRNAs in the 163 

reference annotation file (Table 1). 164 

Of the 4,494 annotated coding sequences (CDSs), 2,357 were in an annotated transcript while 2,775 165 

were not, suggesting that with these growth conditions we annotated transcripts associated with half of 166 

the predicted CDSs, which is consistent with previous results(45). Of those, 1,341 (57%) CDSs were 167 

associated with a single transcript and 90% of CDSs were associated with <4 transcripts (Table 1, Figure 168 

3A). While 1,564 of the predicted transcripts contained only a single CDS (Table 1, Figure 3B), the 169 

predicted transcript with the largest number of CDSs encoded within it contained 17 CDSs, including glf, 170 

gnd, insH7, rfbABCDX, and wbbHIJKL (Table 1). 171 
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Using the predicted mRNAs (excluding ncRNAs) and CDSs, we predicted the 5’- and 3’-untranslated 172 

regions (UTRs). The median 5’-UTR was 53 bp and the most common length (mode) was 14 bp, while the 173 

median 3’-UTR was 72 bp, and most common length (mode) was 36 bp (Table 1, Figure 3CD). This is 174 

consistent with previous reports that the 5’-UTR is 20-40 nt (24), despite previous reports that ONT 175 

sequencing cannot capture the terminal 5’-end of transcripts (39). 176 

Complexity of bacterial transcription 177 

Our predictions detect tremendous bacterial transcript structural variation while confirming previous 178 

experimentally verified predictions. For example, in the thr operon, three transcripts were predicted, 179 

including the previously described thrL transcript for the leader peptide, the thrLABC transcript, and a 180 

thrBC transcript (46) (Figure 2E). 181 

Other regions were more complex, like the region from 4,080-4,087 kbp encompassing fdoGHI and fdhE 182 

(Figure 4). RegulonDB (26) and EcoCyc (27) describe this entire region as an operon with two 183 

promoters—one that makes a transcript for the entire region and a second smaller internal transcript 184 

encoding fdhE that is started from a promoter within fdoH (Figure 4). The ONT data suggested 185 

differential expression of the transcript isoforms where fdoGHI was largely untranscribed in DMEM 186 

relative to LB while fdhE was transcribed in both (Figure 4). A small ncRNA was observed in DMEM when 187 

fdoG was not transcribed. (Figure 4). We predicted 11 different transcripts in this entire region, 188 

including the fdhE transcript that started in fdoH (Figure 4). This algorithm likely underpredicted long 189 

transcripts, due to the limitations of the ONT technology as described below. So despite evidence for a 190 

complete fdoGHI-fdhE transcript, we did not predict it, likely because there was insufficient sequencing 191 

depth (Figure 4). But there was robust evidence for many of the other transcripts predicted that were 192 

not currently in RegulonDB, EcoCyc or the annotation file, including a transcript of just fdoG, just fdoGHI, 193 

two putative overlapping small RNAs that overlap the end of fdoI and the beginning of the fdhE 194 
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transcript, and four putative overlapping small RNAs that overlap the beginning of fdoG (Figure 4). In a 195 

typical differential expression analysis that uses CDS regions, these four putative small RNAs overlapping 196 

fdoG would likely be misinterpreted as expression of fdoG in DMEM. Importantly, while we detected 197 

these transcripts, we cannot ascertain that they have a function, and they could merely be stable 198 

degradation products of transcription. Regardless, they are likely to confound and obfuscate differential 199 

expression analyses. 200 

Across the 11 transcripts predicted in the fdoGHI/fdhE region, there was variation in transcript start and 201 

end sites, as previously described (15, 24). This variability included slightly longer transcripts that extend 202 

beyond fdhE that are observed under both growth conditions and was reproducible across all 203 

sequencing runs (Figure 4). This variability was seen in many regions, suggesting that transcription 204 

initiation and termination are flexible. 205 

Predicted E. coli E2348/69 transcripts 206 

The 60% fewer reads sequenced for E. coli E2348/69 relative to K12 led to fewer transcript predictions 207 

(Table 1), particularly fewer ncRNA predictions, but otherwise the results are quite similar. The longest 208 

predicted mRNA for E2348/69 was nuoABCEFGHIJKLMN, a known operon (47, 48). Unlike the K12 strain, 209 

the E2348/69 strain contains two plasmids (NZ_CP059841.1 and NZ_CP059842.2, respectively) and 210 

mRNA and ncRNAs were predicted on both plasmids. Of the four ncRNAs in the reference annotation, 211 

we predicted two (rnpB and ssrS). Additional known ncRNAs missing in the reference annotation file 212 

were identified, including glmY and glmZ, both of which are important for regulation of the LEE operon 213 

and virulence (44). 214 

The transcription of LEE operons, which are found in the E2348/69 genome, has been extensively 215 

studied. It was previously shown that for LEE4, a promoter upstream of sepL produces a sepL-espADB 216 

transcript that is post-transcriptionally cleaved with RNAse E to generate an espADB transcript and a 217 
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sepL transcript that is then further endonucleolytically degraded (15) (Figure 5). A putative 218 

transcriptional terminator was previously identified downstream of espB within cesD2, but it was 219 

hypothesized that there is readthrough transcription of the terminator (15). The ONT sequencing data 220 

here provided evidence for readthrough of the transcriptional terminator. Very few reads included both 221 

the cesD2-vapB-escF region and sepL, which may be an indication that processing to remove sepL is 222 

more efficient on the longer transcript that terminates after espF, although we can’t rule out that the 6 223 

kbp transcript of the whole region was not predicted due to the size limitations of ONT direct RNA 224 

sequencing. Consistent with the latter, the 4 kbp sepL-espADB transcript has been detected by Northern 225 

blots in multiple studies (15, 44), yet it was very infrequently detected here. Prior 5’- and 3’-rapid 226 

amplification of cDNA ends (RACE) of LEE4 transcripts revealed variation in transcript ends, which we 227 

also detected, with multiple reads supporting a longer transcript at the 5’-end of sepL, which seems to 228 

be a frequent phenomenon across all transcripts. Additionally, we predicted single CDS transcripts that 229 

encode for espA, espB, and espF. 230 

Using existing E2348/69 short read data from the SRA (PRJEB36845/E-MTAB-88804) and the long read 231 

ONT data generated here, we compared differential expression results from EdgeR (50) for (a) existing 232 

CDSs predictions using FADU (18) and short reads, (b) the transcripts predicted here using Salmon (31) 233 

and short reads, and (c) the transcripts predicted here using Salmon (31) and long reads generated here 234 

(Figure 6). There is discordance between the TPM (transcript per million) values calculated for all three 235 

(Figure 6GHI) as well as assignment of genes as differential expressed in a transcript- and CDS-focused 236 

analyses of only the Illumina reads (Figure 6J). 237 

Data re-use and transcripts in Listeria monocytogenes, Pseudomonas aeruginosa, and 238 

Haloferax volcanii 239 
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Through data re-use, we also predicted transcripts using published ONT data for P. aeruginosa strains 240 

SG17M and NN2 strains (Bacteria:gamma-Proteobacteria (37), L. monocytogenes strains Scott A and 241 

RO15 (Bacteria:Firmicute) (38), and H. volcanii (Archaea:Halobacteria) (39). All five of these strains had 242 

fewer sequencing reads than we had for E. coli, leading to fewer predictions of transcripts, including 243 

both mRNA and ncRNA (Table 1). Yet we were still able to predict 274-1103 transcripts across the five 244 

strains and those transcripts were similar to the E. coli data with respect to mean/median/mode 3’-UTR 245 

lengths, proportion of single CDS transcripts, proportion of single transcript CDSs, size distribution of 246 

mRNA, and size distribution of ncRNA (Table 1). The 5’-UTR predictions were of similar length across the 247 

bacterial strains. However, the archaeal reads frequently did not extend beyond the 5’-end of the CDS 248 

such that monocistronic mRNAs were erroneously called ncRNAs and very long 5’-UTRS were predicted 249 

for polycistronic transcripts resulting in an increased median (Table 1). It may be that the 5’-end 250 

predictions of the CDS are flawed due to calling the longest ORF, or it may be that the H. volcanii UTRs 251 

are shorter than the bacterial 5’-UTRS and/or were not well captured with the ONT technology. Across 252 

all seven strains examined, two of the longest transcripts were phage transcripts and two were nuo 253 

transcripts (Table 1). The inclusion of L. monocytogenes was an important test case since it is a firmicute 254 

with leading strand transcription bias (49), which led to fewer and longer CT regions, but did not prevent 255 

high quality transcript predictions. While there was ONT direct RNA data for further species of gamma-256 

Proteobacteria, we limited this analysis to just two species with two strains each from this taxon. 257 

Overall, these results suggest that this simple sequencing method combined with this algorithm can be 258 

applied widely to archaeal/bacterial genomes to enable rigorous and robust transcript predictions. 259 

Characteristics of ONT direct RNA sequencing of E. coli transcripts 260 

To develop rigorous methods and algorithms to predict these transcripts, we needed to understand the 261 

characteristics of ONT direct RNA sequencing of bacterial transcripts, which we expected to differ from 262 

sequencing of eukaryotic transcripts given the differing physical features and stability of prokaryotic and 263 
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eukaryotic RNA. Overall, transcripts >5 kbp were difficult to obtain in a single read (Figure 7A), but reads 264 

were sequenced that span most predicted operons as well as exceed the boundaries of existing operon 265 

prediction (Figure 7AB). While E. coli has known transcripts >10 kbp, we did not generate reads >9 kbp 266 

(Table 1). This is could be due to laboratory handling and is , at least in part, likely due to the ONT 267 

technology since we observe that (a) this was reproducible across multiple systems and RNA molecules 268 

we know must be full length, like rRNAs (Figure 7C), (b) there was 5’-truncation of transcripts in 11.7 kbp 269 

full-length in vitro transcribed (IVT) polyadenylated RNA (Figure 7D), and (c) there were many 270 

incomplete reads for the 1.4 kbp yeast enolase 2 (ENO2) RNA calibration strand provided by ONT (Figure 271 

7E). Sequenced transcripts were also 3’-truncated (Figures 2ABCD, 4AC, 5ABCD), as previously described 272 

for ONT (28, 36, 37) and PacBio IsoSeq (30) sequencing of bacterial transcripts, possibly from (a) random 273 

fragmentation of RNA, (b) RNA degradation, and/or (c) incomplete transcription in a bacterial cell. 274 

Additionally, we found that shorter transcripts were preferentially sequenced relative to longer 275 

transcripts (Figure 7F). This is despite counts/RPKMs being reported as well correlated between Illumina 276 

cDNA-based sequencing, ONT cDNA-based sequencing, and ONT direct RNA sequencing (51), as well as 277 

when nanopore direct RNA sequencing CPMs are compared to the absolute concentration of a spike-in 278 

(52). 279 

To address incomplete reads and preferential sequencing of shorter transcripts, we first predicted 280 

transcript start/stop sites in locations where there is an over-abundance of reads starting and ending. 281 

Subsequently, the actual transcripts were defined by measuring the strength of the connection between 282 

those start and stop sites using a model that supports the characteristics of truncated transcripts where 283 

smaller transcripts were preferentially sequenced. In this way, we predicted 12-15 kbp mRNAs, despite 284 

having a shorter max ONT read length (Table 1, Figure A2). 285 

ONT direct RNA sequencing uses changes in electrical current to detect RNA modifications including N6-286 

methyladenosine (m6A), 5-methylcytosine (m5C), inosine, pseudouridine, and many more (53). At a 287 
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minimum, posttranscriptional modifications were expected in bacterial tRNA and rRNA (54), but might 288 

also be present in mRNA and would lead to nonrandom changes in sequencing depth and base calling 289 

errors (55, 56). To alleviate this issue, we used a depth calculation computed assuming every base is 290 

equally present in a read using start/end positions of bed files for mapped reads. This also enables 291 

predictions in the presence of errors in the reference or sequence divergence from the reference (e.g., 292 

(57)).  293 

Chimeric RNA sequencing reads were detected in all samples, including chimeras between the ONT 294 

ENO2 calibration strand and sample RNA (Figure 2H, Table A1). A subset of these were in silico chimeric 295 

reads, with a spike observed in the electrical current when analyzing the raw signal data, indicating an 296 

open pore state that was missed by the MinKNOW software (Figure A3AD). Others lacked this spike and 297 

could be either ligase-mediated chimeras or in silico-mediated chimeras where the open pore state was 298 

too short to be detected (Figure A3BC) (58). In our analysis, this was addressed by removing the clipped 299 

portions of mapped reads. When mapping reads to a reference genome, portions of a mapped read that 300 

do not align with the reference will be either “soft-clipped” or “hard-clipped.” A soft clipped read has a 301 

portion that does not align to any other area of the reference (e.g., the ENO2 portion of an ENO2/mRNA 302 

chimeric read), whereas a hard clipped read has two portions that align to different parts of the 303 

genome. For soft- and hard-clipped reads we used the primary alignment, ignoring the clipped portion 304 

of the read.  305 

The Transcript Prediction Algorithm 306 

Therefore, based on these characteristics of ONT sequencing described in the previous section, we 307 

developed tp.py, for transcript prediction written in Python. The algorithm examines each CT region 308 

separately along with the reads completely contained within that region. CT regions were initially 309 

defined through the bed input file and subsequently refined to subdivide regions based on a minimum 310 
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depth cut-off (default=2). Ultimately a region needs to have a minimum number of reads fully contained 311 

within it to be considered (default=2). The change in depth of the sequencing reads for each genomic 312 

position of the CT region (Dreg) ignoring mismatches/indels was calculated as  313 

ΔDreg = Dreg (n+1) – Dreg (n) 314 

Potential start and stop sites were predicted at positions where |ΔDreg| surpasses a threshold 315 

(default=4) and always included the first and last position of the region. ONT sequencing has issues 316 

identifying precise ends of transcripts due to polyA-trimming as well as sequencing 5’-ends, such that 317 

predicted start/stop sites in close proximity (default=100) were grouped. Default parameters were 318 

initially established empirically upon examination of results for representative areas of the genome and 319 

confirmed to maximize sensitivity and specificity for this data set (Figure A4). 320 

Candidate transcripts were predicted using the Cartesian product of all predicted start and stop sites. 321 

The total read count (Ntot) was calculated from the number of total reads that are mapped to all 322 

transcripts that fully contained them, allowing for mapping to multiple transcripts. The count of 323 

exclusively assigned reads (Nea) was calculated after mapping each read to the shortest transcript that 324 

fully contains it. The candidate transcripts were processed from shortest to longest computed as Ratio = 325 

Nea / Ntot. If this ratio was less than the threshold (default=0.2), the candidate transcript was discarded. If 326 

possible, reads from discarded transcripts were re-assigned to longer transcripts, and the Nea was 327 

recalculated such that reads initially assigned to now discarded transcripts can be used to support a 328 

longer transcript. All transcripts that meet the ratio at the end of the analysis were reported in a gff 329 

annotation file and a bed file. 330 

The algorithm runs in about an hour on a single core computer depending on the parameters and the 331 

size of the data set. We attempted to compare the results to assemblies of the ONT direct RNA reads 332 

with existing tools, including TAMA (tc_version_date_2020_12_14) (59), Cupcake (v.29.0.0) (60), and 333 
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StringTie (v1.3.4d) (61), but they failed to recapitulate the complexity of the bacterial transcripts 334 

accurately (Figure A5). 335 

Discussion 336 

In most bacteria, transcripts are not characterized and CDSs serve as a proxy, albeit a poor one. Here, 337 

we show that bacterial long read transcriptome data can be used to predict bacterial transcripts using 338 

an algorithm we designed for the complexities and nuances of prokaryotic transcripts. Application of this 339 

algorithm to ONT data from four species revealed extensive transcript structural variation, transcription 340 

of RNA on both strands in some regions, overlapping transcripts, and a diversity of non-coding RNAs. 341 

The extent of transcript structural diversity highlights the need for algorithmic and analysis 342 

improvements that are important for rigorous differential expression analyses, molecular evolution 343 

analyses, and other analyses as well as laboratory experiments like making knock-outs/ins or promoter 344 

analysis. This method should enable predictions for one strain using another strain’s data, but given that 345 

we haven’t ascertained how much transcript structural diversity there is between strains, it may be ill-346 

advised. For that reason, we did not, for example, use the SG17M and NN2 data to make available 347 

predictions for the research community for the frequently used P. aeruginosa PA01. 348 

There were differences observed between a differential expression analysis using short/long reads as 349 

well as using transcripts/CDSs. Discordance between short and long reads may be due to: (a) shorter 350 

transcripts being preferentially sequenced relative to longer transcripts in ONT sequencing (Figure 7F, as 351 

described below), (b) the benefits in statistical analyses of larger numbers of Illumina reads, (c) improper 352 

attribution of short reads to overlapping transcripts/isoforms, or (d) differences in the incubation 353 

conditions of the cultures used in collecting the long and short read data sets. However, using only the 354 

Illumina reads, there are more differences than similarities between analyses using CDSs and those 355 

using transcripts despite using the same raw data for each analysis (Figure 6J). This is consistent with our 356 
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previous comparisons of CDS- and transcript-focused analyses using simulated data (19). While some of 357 

these may relate to transcripts falling just over or under an analysis threshold, others relate to 358 

transcription of an overlapping ncRNA being mis-attributed to an overlapping CDS, as seen with fdnG 359 

(Figure 6ABCDEF). 360 

There is still room for improvement for bacterial transcript predictions, both through lab 361 

experimentation and bioinformatics. The greatest improvement in the lab would be in obtaining more 362 

full-length reads, particularly for long transcripts, which is a challenge for all long-read sequencing 363 

platforms. For ONT, the new chemistry may improve the yield and length, and further improvements to 364 

length may be possible by altering the reverse transcription method needed to remove RNA secondary 365 

structure by changing the enzyme (62). The issue of missing the last few bases of the read, which 366 

represents the 5’-end of the transcript, is a more significant issue for those looking for single base pair 367 

resolution of transcript ends. Ligating an adaptor to the read prior to sequencing shows promise in 368 

addressing that issue (52, 63). We also saw a significant amount of fragmentation at the 3’-ends that 369 

may be either incomplete transcription, 3′-degradation of transcripts, random breakage, or sequencing 370 

biases that need to be better understood. Incomplete transcription is intriguing and may reflect the 371 

fundamental biology since (a) bacterial transcription and translation are coupled and (b) bacterial 372 

transcripts are short-lived and frequently in the process of being synthesized, since bacterial mRNAs are 373 

made at a rate of 40-80 nt/sec (64) while the average mRNA half-life is only 2-10 minutes (65). In 374 

contrast, eukaryotic RNAs have to be spliced to create mature mRNA before being exported from the 375 

nucleus and have increased stability and a longer half-life. 376 

When discussing taxonomy, Stephen J. Gould emphasized that “classifications both reflect and direct 377 

our thinking” (66). Going on to say that “the way we order represents the way we think” (66). 378 

Annotation has many similarities to taxonomy, and similarly genome annotation both reflects and 379 

directs our thinking. For bacteria, annotation is currently protein-centric, influencing our results and 380 
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ways of thinking. Historically, this is likely due to the connection between the definition of a gene and 381 

protein, but practically it also relates to the ease with which we can computationally predict proteins. 382 

However, with new experimental methods and abilities, it is time for a sea change in bacterial genome 383 

annotation. The experimental and computational methods here are easy and quick, and thus they 384 

should be implemented widely. Additionally, there is a need for associated new ontology standards for 385 

describing transcripts and operons in annotation files that will better describe these features, similar to 386 

changes made in eukaryotic annotation files to accommodate alternative splicing and alternative 387 

transcripts (67). A harmonization of the standards for bacteria and eukaryotes would be ideal, such that 388 

there is a standard that spans the incredible biological diversity and commonalities across the domains 389 

of life.  390 

Conclusions 391 

Here we use bacterial long read transcriptome data and a new algorithm we developed to predict 392 

transcripts from this data for two strains of three diverse bacterial species including both Gram-negative 393 

and Gram-positive bacteria. Our analysis reveals a tremendous amount of transcript structural variation, 394 

transcription of RNA on both strands in some regions, overlapping transcripts, and a diversity of non-395 

coding RNAs, which we provide as new annotation for these genomes. Bacterial transcriptional 396 

structural variation has a richness that rivals or surpasses what is seen in eukaryotes and provides a rich 397 

new set of therapeutic and diagnostic targets. 398 

Methods 399 

Bacterial cultures 400 

Cryogenically preserved E. coli K12 MG1655 or E2348/69 were streaked onto an LB agar plate and 401 

placed in an incubator overnight at 37 oC. A single colony was selected to inoculate LB broth for an 402 
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overnight culture. The overnight culture was diluted 1:100 in LB broth and harvested at the optical 403 

density specified in Table 1A. For DMEM, overnight cultures were grown in LB broth and diluted 1:100 in 404 

DMEM. 405 

RNA Isolation 406 

To isolate RNA, the Qiagen RNeasy Mini Kit was used according to Qiagen RNA Protect Reagent 407 

Handbook Protocols 4 and 7 with Appendix B on-column DNase digestion (Qiagen, Hilden, Germany). 408 

The RNA was assessed with UV-Vis spectrophotometry (Denovix DS-11, Wilmington, DE), Qubit RNA HS 409 

Assay Kit (Fisher Scientific, Waltham, MA), and TapeStation RNA Screentape (Agilent, Santa Clara, CA). 410 

RNA preparations were stored at -80 oC until ready for polyadenylation and sequencing, except for the E. 411 

coli K12 MG1655 harvested at an optical density OD600 of 0.2. The RNA isolated from this one culture 412 

was treated four different ways. For SRR27982843, 4 µg of the freshly isolated RNA was immediately 413 

polyadenylated and then taken into library preparation and sequenced, as detailed below. The leftover 414 

polyadenylated RNA was stored at -80 oC alongside the original RNA isolation which had been frozen 415 

without polyadenylation. Two months later, the original, unpolyadenylated RNA was thawed and 416 

polyadenylated just before library preparation and sequencing (SRR27982841). On that same day, the 417 

RNA that had been polyadenylated before being frozen was thawed and taken directly into library 418 

preparation and sequencing (SRR27982841). Four months after the original RNA isolation, the RNA that 419 

had been polyadenylated before storing at -80 oC was thawed again and polyadenylated again before 420 

library preparation and sequencing (SRR27982840). 421 

Oxford Nanopore Sequencing 422 

RNA was polyadenylated with E. coli poly(A) polymerase (M0276S, New England Biosciences, Ipswich, 423 

Massachusetts) at 37 oC for 90 s – 30 min (Table S1) according to the manufacturer’s protocol and 424 

sequenced with the Direct RNA Sequencing kit (SQK-RNA002, Oxford Nanopore Sequencing, Oxford, UK) 425 
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according to protocol version DRS_9080_v2_revR_14Aug2019. The prepared RNA library was loaded 426 

onto R9.4.1 flow cells (FLO-MIN106D) in a MinION device Mk1B (MIN-101B). Sequencing runs were 427 

terminated at 24 h. Fast5 files were basecalled using Guppy version 6.4.2 (68) generating FASTQ files 428 

with the high accuracy model using the rna_r9.4.1_70bps_hac config file on a GPU cluster. 429 

Read Mapping, Transcript Prediction, and Analysis 430 

FASTQ files were mapped to the reference genome (Table A2) using minimap2 (v2.24-r1122; options: 431 

‑ax map-ont -t 2) (69). Alignments were sorted and filtered with samtools view (v1.11; option: -F 2308) 432 

(70) generating bam files that were merged and indexed. BED files were generated with bamToBed 433 

(v2.27.1; options: -s -c 6,4 -o distinct,count) (71) and filtered with awk to remove regions with fewer 434 

than 20 reads. The tp.py algorithm was run in python (v.3.11.4). Statistics on regions, predicted 435 

transcripts, and other features were calculated with perl (v5.30.2). Perl (v5.30.2) was also used to merge 436 

the transcript and reference gff annotation files and identify mRNAs, ncRNAs, and UTRs. ONT 437 

sequencing, transcript predictions, and reference CDS predictions were visualized in R (v3.6.3). E2348/69 438 

reads from the SRA for PRJEB36845/E-MTAB-88804 and counted against the E2348/69 with the 439 

transcript predictions presented here using Salmon (v. 1.10.2) (31). Before differential expression was 440 

assessed, genes not meeting the required CPM cutoff of 5 in at least 3 samples were removed. The 441 

samples were grouped based on the treatment status, and differentially expressed genes were 442 

identified with EdgeR v3.30.3 using the quasi-likelihood negative binomial generalized log-linear model. 443 

Statistical significance was set at an FDR cutoff < 0.05 after correction with the Benjamini Hochberg 444 

method. A heatmap was drawn in R v4.2.1 using heatmap.3 of the z-score transformed log2(TPM) values 445 

for differentially expressed genes with the columns ordered based on a dendrogram generated using 446 

pvclust v2.2-0. 447 
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The full set of commands are described at: https://github.com/jdhotopp/tp.py-Direct-RNA-Sequencing-448 

Manuscript-/tree/main (a DOI will be acquired after commands are finalized following review of the 449 

manuscript). 450 
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Tables 673 

Table 1. Characteristics of Predicted Transcripts for Escherichia coli, Listeria monocytogenes, and Pseudomonas aeruginosa 674 



29 

*The reads for this species frequently do not extend beyond the 5’-end of the CDS, essentially meaning transcripts start where translation is predicted to start. When this happens for a polycistronic 675 
transcript, the result is a very long 5’-UTR as seen with the increased median, and when this happens for a monocistronic transcript, the mRNA is erroneously called a ncRNA. While this likely occurs 676 
for all of the organisms, it is acute for the H. volcanii data. It may be that the 5’-end predictions of the CDS are flawed due to calling the longest ORF, or it may be that the H. volcanni UTRs are 677 
shorter than the bacterial 5’-UTRS. 678 

679 

Feature 
Escherichia coli K12 
(GCF_000005845.2) 

Escherichia coli 
E2348/69 

(GCF_014117345.2) 
Listeria monocytogenes 
Scott A (CM001159.1) 

Listeria monocytogenes 
RO15 

(CADEHJ000000000.1) 

Pseudomonas 
aeruginosa SG17M 
(NZ_CP080369.1) 

Pseudomonas 
aeruginosa NN2 
(NZ_LT883143.1) 

Haloferax volcanii 
(GCF_000025685.1) 

Number of contigs in reference 1 3 1 2 1 1 5 
Number of reads used 5,266,309 3,025,047 1,679,073 1,664,744 220,553 1,196,279 1,438,670 
Number of CT Regions for Predictions (>20 reads) 1,055 1,071 525 464 391 1,209 640 
Number of Regions on (+)-strand 521 528 238 206 181 612 318 
Number of Regions on the (-)-strand 534 543 287 258 210 597 322 
Span (bp) on (+)-strand 2,068,709 1,951,551 703,660 589,005 530,329 1,944,294 893,429 
Span (bp)on (-)-strand 2,135,707 1,827,581 821,637 759,698 589,348 1,886,100 974,115 
Average span (bp) + strand 3,968 3,777 2,946 2,848 2,915 3,174 2,807 
Average span (bp) – strand 3,997 3,446 2,851 2,932 2,786 3,155 3,022 
Number of Transcripts 3,618 2248 881 793 274 1103 613 
Number of Transcripts on the (+)-strand 1,465 1101 402 361 79 495 241 
Number of Transcripts on the (-) strand 2,153 1147 479 432 195 608 372 
Number of Regions with 1 transcript 289 429 218 199 85 258 226 
Maximum Number of Transcripts per Region 254 141 32 31 68 63 27 
Mean 3'-UTR (bp) 150 126 122 112 163 236 180 
Median 3'-UTR (bp) 72 62 48 47 59 78 84 
Maximum 3'-UTR (bp) 2,716 1,261 1,306 1,245 2,235 2,809 2040 
Mean 5'-UTR (bp) 134 119 137 114 185 205 373 
Median 5'-UTR (bp) 53 49 36 33 93 85 207* 
Maximum 5'-UTR (bp) 2,122 2,817 2,303 2,303 1,835 1,943 2,955 
Number of genes 4,494 4,809 3,038 3,149 6,349 6,380 3,956 
Number of genes in annotated transcript 2,360 2,037 765 680 209 765 385 
Number of genes associated with just 1 transcript 1,341 1,300 636 554 168 572 301 
Maximum number of transcripts a single gene is 
associated with 15 12 6 7 4 6 10 
90% of genes are associated with fewer than this 
number transcripts 4 4 3 3 3 3 3 
Number of transcripts with 1 gene 1,563 1,096 349 316 79 398 167 
Maximum number of genes in a single mRNA 17 14 38 22 15 15 15 
90% of transcripts have fewer than this many genes 4 4 4 3 3 3 3 
Number of predicted mRNAs 2,487 1,844 536 491 133 601 263 
Average predicted mRNA size (bp) 1,617 1,732 1,660 1,607 1,590 1,735 1,948 
Largest predicted mRNA (bp) 13,305 15,256 29,034 10,791 14,168 12,709 10,463 
Smallest predicted mRNA (bp) 131 129 224 209 183 146 136 
Number of predicted ncRNAs (including ones in 
reference annotation file) 1,131 404 345 302 141 502 350* 
Average predicted ncRNA size (bp) 550 649 497 524 578 538 724* 
Largest predicted ncRNA (bp) 2,947 2,916 2,585 2,588 6,361 2,851 3,045* 
Smallest predicted ncRNA (bp) 89 80 95 136 97 77 81* 

Genes in longest mRNA 
glf, gnd, insH7, 

rfbABCDX, wbbHIJKL nuoABCEFGHIJKLMN 
phage (LMOSA_9400-

LMOSA_9770) 
rplBCDEFNOPRVWX, 

rpmCD, rpsCEHJQS, secY 
fusA,rplJL,rpoBC,rpsGL, 

tuf 

phage 
(PANN_06920 - 
PANN_07050) nuoABCD1HIJ1J2KLMN 



30 

Figures 680 

Figure 1 – Overview of Transcript, Operon, and UTR Definitions Used 681 

The interrelationship of genomic features described in this manuscript are illustrated, including 682 

the relationship of operon, CT region, CDS, mRNA, ncRNA, and proteins for 683 

monocistronic/polycistronic transcripts with/without transcript isoforms. The genes and 684 

genome are fictitious and used merely to illustrate the definitions of key terms. 685 

Figure 2 – Overview of the Experimental/Analysis Workflow 686 

Plus-strand ONT direct RNA sequencing reads (shown as lines) are mapped from 1 bp to 6 kbp in the E. 687 

coli K12 genome (NC_000913.3), which corresponds to the thr operon, and sorted by their transcription 688 

stop site for E. coli K12 grown in rich LB media (left sorted, A; right sorted, C) and DMEM media (left 689 

sorted, B; right sorted, D). Our algorithm predicts 3 transcripts (E), and 4 CDSs in the annotation file are 690 

illustrated (F). The transcript for the leader peptide thrL is recovered in both growth conditions. (G) RNA 691 

was isolated from E. coli K12 grown at 37 °C with aeration in LB and DMEM media. (H) Squiggle plot for 692 

two sequencing reads in tandem. In this case, the open pore state was missed by the software resulting 693 

in a chimeric read. In both reads the DNA adapter can be observed with lower current followed by a 694 

relative flat plateau that corresponds to the polyA tail. This is followed by the electrical current changes 695 

associated with the RNA moving through the pore. (I) Plots show the electrical current for the same 696 

length DNA and RNA highlighting that the signal to base ratio is different for RNA and DNA. (J) The 697 

standard ONT direct RNA sequencing library was used on bacterial RNA that was in vitro polyadenylated 698 

following RNA isolation. Library construction and (K) loaded on an ONT MinION device for nanopore 699 

sequencing. 700 

Figure 3 – Characteristics of Transcript Predictions 701 
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The distribution of the number of instances of CDS by transcripts/CDS (A) and the distribution of the 702 

number of instances of transcripts by CDSs/transcript (B) are shown for E. coli K12, E. coli E2368/69, L. 703 

monocytogenes ScottA, L. monocytogenes RO15, P. aeruginosa SG17M, P. aeruginosa NN2, and H. 704 

volcanii. The data points in these discrete distributions are connected by lines for visualization purposes. 705 

The inset in each illustrates how transcripts/CDS and CDSs/transcript are defined. The size distributions 706 

of predicted 5’-UTRs (C) and 3’-UTRs (D) are plotted for each of the six strains examined with an inset 707 

that zooms in on 0-350 bp to better illustrate the distribution of the majority of the data. 708 

Figure 4 – fdoGHI-fdhE Transcripts 709 

Reads mapping to the minus strand of the E. coli K12 genome (NC_000913.3) grown in LB (A, C) and 710 

DMEM (B, D) are shown for a region from 4,080-4,088 kbp. To facilitate the visualization of the starts 711 

and stops of transcripts, reads were sorted by either their left most (A, B) or right most (C, D) position 712 

and plotted from top to bottom accordingly. Transcript predictions from our algorithm (E) and the 713 

predicted CDSs in the reference annotation file (F) are shown with arrows indicating the direction of 714 

transcription and with transcripts/CDSs on the different strands having different shading (light for the 715 

(+)-strand and dark for the (-)-strand).  716 

Figure 5 – LEE4 Operon 717 

Reads are illustrated that map to the plus strand (A, C) and minus strand (B, D) of the E. coli E2348/69 718 

genome (GCF_014117345.2) grown in LB or DMEM for a region from 72-78 kbp. There are no reads from 719 

the LB conditions on the (+)-strands. To facilitate the visualization of the starts and stops of transcripts, 720 

reads were sorted by either their left most (A, B) or right most (C, D) position and plotted from top to 721 

bottom accordingly. Transcript predictions from our algorithm (E) and the predicted CDSs in the 722 

reference annotation file (F) are shown with arrows indicating the direction of transcription and with 723 
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transcripts/CDSs on the different strands having different shading (light for the (+)-strand and dark for 724 

the (-)-strand). 725 

Figure 6 – Differential expression of predicted transcripts 726 

Reads are illustrated mapping to the plus strand of the E. coli E2348/69 genome (GCF_014117345.2) 727 

grown in LB (A, C) or DMEM (B, D) from 4.730-4.735 Mbp sorted by either their left most (A, B) or right 728 

most (C, D) position. Transcript predictions from our algorithm (E) and the predicted CDSs in the 729 

reference annotation file (F) are shown with arrows indicating the direction of transcription. Table of 730 

transcripts per million (TPM) values calculated with Salmon (31) for transcripts and FADU (18) for CDSs 731 

(G) for the same region shown in panels ABCDEF. For ONT reads, only Salmon was used. Plot of the 732 

log2(TPM) for all CDSs and all corresponding transcripts for ERR393285 showing the discordance 733 

between TPMs calculated based on transcripts and CDSs for the same Illumina data (H). Heatmap 734 

clustered by genes for the log2(TPM) for all CDSs calculated with FADU (18) and all corresponding 735 

transcripts calculated with Salmon (31) for Illumina and ONT reads generated from LB and DMEM (I). 736 

Differences observed between a transcript-based differential expression analysis and a CDS-based 737 

differential expression analysis with FADU (18) are summarized showing the differences in up- and 738 

down-regulated genes (J). 739 

Figure 7 – ONT sequencing characteristics that informed algorithm development 740 

Size distribution of all of the E. coli K12 ONT sequencing reads aligning outside the rRNA reads compared 741 

to the distribution of predicted operons (A). For the 285,619 reads that are longer than the operon they 742 

map to, the length of reads is plotted relative to the size of the operon they map to (B). Normalized 743 

sequencing depth from the 3’-end to the 5’-end for E. coli K12 16S rRNA, E. coli K12 23S rRNA, and IVT 744 

RNA (SRR23886069), all thought to be complete, showing the 3’-bias in sequencing (C). Distribution of 745 

read lengths for the 1.3 kbp yeast enolase ONT spike-in (D) and an 11.7 kbp IVT RNA (E) from 746 
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SRR23886069 where only reads ending at the far right position are shown. The log transformed ratios of 747 

Illumina (SRR3111494) and ONT (SRR23886071) TPM values for RNA isolated from adult female Brugia 748 

malayi, a filarial nematode and invertebrate animal, is compared to the transcript length, illustrating 749 

how shorter transcripts have more Illumina reads relative to ONT reads than longer transcripts (F). Our 750 

interpretation is that ONT sequencing is biased toward shorter transcripts. The inset uses the heat 751 

function to show the intensity of the points in the region which contains most of the data. 752 
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SRA ERR3932847 ERR3932848 ERR3932849 ERR3932853 ERR3932854 SRR18061003 SRR18061004
Media DMEM DMEM DMEM LB LB DMEM LB
Sequencing 
Technology Illumina Illumina Illumina Illumina Illumina ONT ONT
Transcript Gene
R_496_T12 5’-end-fdnG 0 0 0 17.3 5.61 0 0
R_496_T10 5’-end-fdnG 13.8 9.06 26.4 32.7 48.2 1191 582
R_496_T7 5’-end-fdnG 0 0 0 0 0 0 0
R_496_T5 5’-end-fdnG 0 0 0 0 0 0 0
R_496_T9 fdnG/fdoHI 4.47 4.70 6.56 21.5 35.6 420 4643
R_496_T4 3’-end-fdoI 3.63 1.49 1.69 0 0 16.7 75.5
R_496_T19 3’-end-fdoI 0 0 0 0 0 0 0
R_496_T18 fdhE 9.62 9.26 9.51 10.5 9.53 479 879
CDS Gene
WP_012579028.1 fdnG 198 194 315 1115 927
WP_000331385.1 fdoH 119 112 97.7 594 492
WP_000829013.1 fdoI 147 129 115 472 334
WP_000027712.1 fdhE 182 193 145 318 167
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