

1 **Deciphering Transcript Architectural Complexity in Bacteria and**
2 **Archaea**

3 John S. A. Mattick^{1,*}, Robin E. Bromley^{1,*}, Kaylee J. Watson^{1,*}, Ricky S. Adkins^{1,*}, Christopher I. Holt¹,
4 Jarrett F. Lebov¹, Benjamin C. Sparklin¹, Tyonna S. Tyson¹, David A. Rasko^{1,2,3,4}, and Julie C. Dunning
5 Hotopp^{1,2,5, **}

6 ¹ Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA

7 ² Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore,
8 MD 21201, USA

9 ³ Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA

10 ⁴ Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD
11 21201, USA

12 ⁵ Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA

13 **Current affiliation:**

14 John S. A. Mattick, University of Maryland, College Park, MD, USA

15 Benjamin C. Sparklin, AstraZeneca, Gaithersburg, MD, USA

16 Jarrett F. Lebov, Personal Genome Diagnostics, Baltimore, MD, USA

17 Tyonna Tyson, Hampton University, 100 E. Queen St., Hampton, VA 23668

18

19 * John S. A. Mattick, Robin E. Bromley, Kaylee J. Watson, and Ricky S. Adkins contributed equally to this
20 manuscript. They are listed in the chronological order that they contributed to the project/manuscript.

21 ** Corresponding author, jdhotopp@som.umaryland.edu

22

23 Running Title: Transcript Complexity in Bacteria and Archaea

24

25 Keywords: transcriptomics, bacterial transcripts, archaeal transcripts, small RNAs, non-coding RNA
26 (ncRNA), direct RNA sequencing

27 **Abstract**

28 RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized
29 biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict
30 transcripts (mRNA and other RNAs) in *Escherichia coli* K12 and E2348/69 strains (Bacteria:gamma-
31 Proteobacteria), *Listeria monocytogenes* strains Scott A and RO15 (Bacteria:Firmicute), *Pseudomonas*
32 *aeruginosa* strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and *Haloflexax volcanii*
33 (Archaea:Halobacteria). From >5 million *E. coli* K12 and >3 million *E. coli* E2348/69 newly generated
34 Oxford Nanopore Technologies (ONT) direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844
35 E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted *E. coli*
36 K12 proteins. While the number of predicted transcripts varied by strain based on the amount of
37 sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7
38 kbp while the median size of the 5'- and 3'- UTRs were 30-90 bp. Given the lack of bacterial and archaeal
39 transcript annotation, most predictions were of novel transcripts, but we also predicted many previously
40 characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs
41 associated with pathogenesis in the *E. coli* E2348/69 LEE pathogenicity islands. We predicted small
42 transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest
43 transcript for two of the seven strains being the *nuo* operon transcript, and for another two strains it
44 was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the
45 presentation of transcripts, and UTR predictions alongside CDS and protein predictions in bacterial
46 genome annotation as important resources for the research community.

47 **Importance**

48 Our understanding of bacterial and archaeal genes and genomes is largely focused on proteins since
49 there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with

50 studies on the human genome, where transcripts were sequenced prior to the release of the human
51 genome over two decades ago. We developed software for the quick, easy, and reproducible prediction
52 of bacterial and archaeal transcripts from ONT direct RNA sequencing data. These predictions are
53 urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including
54 regulation of virulence factors, and for the development of novel RNA-based therapeutics and
55 diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.

56 **Introduction**

57 Genomics, genome-enabled technologies, computational biology, and large-scale data mining are
58 essential for rigorous, modern experiments on all organisms. Whole genome sequencing and protein-
59 based annotation are now routine, low-cost approaches for analyzing bacteria and archaea. But often
60 the annotation, and thus analysis and experimental validation, is limited to predicted protein-coding
61 regions and a few highly conserved non-coding RNAs (ncRNAs) like the rRNAs and tRNAs. Yet, pathogen
62 RNA transcripts, particularly ncRNAs and RNA-mediated regulation, offer an unexplored set of druggable
63 targets, diagnostics, and potential therapeutics (1). In this context, a transcript is a physical RNA
64 molecule made from a DNA template that has discrete start and end sites generated by a diversity of
65 molecular mechanisms (e.g., promoter/terminator, post-transcriptional processing) (**Figure 1**).

66 In bacteria, transcripts are frequently considered within the paradigm of operons as put forth by Jacob
67 and Monod (2), which was summarized recently as “sets of contiguous and functionally related genes
68 cotranscribed from a single promoter up to a single terminator” (3), including the operator regulatory
69 region (**Figure 1**). Using this definition, polycistronic transcripts are encoded within operons, which also
70 include regulatory regions. It is unclear if a monocistronic transcript and its regulatory regions would
71 also be considered an operon. Operons are widespread in bacterial/archaeal genomes, with ~630-700
72 defined operons in *Escherichia coli* (4). Experimentalists have predicted operons using read counts
73 and/or sequencing depth without algorithms (e.g. (5, 6)), and efforts have been made to develop
74 algorithms for their prediction (7-13). For example, the Rockhopper algorithm predicts operons using a
75 naïve Bayes classifier to combine strand, intergenic distance, and coordinated differential expression in
76 a unified probabilistic model (14).

77 Oftentimes, bacterial transcripts and operons are conflated, but fundamentally, the classical definition
78 of operon is a DNA-based definition, defining a region in DNA that extends beyond the RNA-based

79 transcripts to include the promoter/operator and terminator. Operons can have multiple transcripts due
80 to post-transcriptional processing (15), alternate terminators (e.g. attenuation) (10, 16, 17), and
81 alternate transcriptional initiation sites (3). There is a need for both DNA-based annotation of operons
82 and RNA-based annotation of transcripts. Fundamentally, RNA-seq is transcript quantification, therefore
83 it should be measured at the RNA/transcript level not the DNA/operon level. Rockhopper has been used
84 for differential expression of its predicted operons (11), but it yields different results than a
85 corresponding transcript-focused analysis (3).

86 Fundamental biological differences such as a high coding density and polycistronic transcripts in
87 bacterial genetics means that we cannot merely apply the same laboratory and computational methods
88 that were designed and optimized for humans and eukaryotic model organisms, with the false
89 assumption that they will work because bacteria are “simpler” than humans. Currently most
90 bacterial/archaeal RNA-seq studies are conducted by applying tools designed for eukaryotic transcripts
91 using bacterial coding sequence (CDS) predictions. Even when issues with counting algorithms are
92 mitigated for a CDS-focused analysis of polycistronic transcripts (18), measurements of CDSs in
93 polycistronic transcripts are dependent on one another yet are treated as independent measurements
94 with the statistics used to detect differential expression. This results in errors in variance estimations in
95 differential expression tools (19). Comparisons of the StringTie algorithm for transcript prediction and
96 Rockhopper have previously noted some of these issues, as well as the need for long RNA sequence
97 reads to resolve these problems (10).

98 *E. coli* K12 is a well-studied genome that has some transcript predictions (17, 20), anti-sense RNA
99 characterization (21), and transcriptional start site and terminator predictions (17, 22-25), all of which
100 are aggregated and manually curated in RegulonDB (26) and EcoCyc (27). But even for this well studied
101 organism, reference annotation files (like GFF or GTF files) lack transcript annotations, and it can be
102 difficult, if not impossible, to ascertain and use transcript structures for a differential expression

103 analysis. The current work done to characterize transcripts and transcriptional regulation in *E. coli* (e.g.,
104 (26)) is not possible for more than a few microorganisms, yet there is immense bacterial biodiversity.
105 Therefore, we sought to develop a fast, simple, rigorous, and reproducible method for identifying
106 bacterial transcripts that can be widely applied and takes advantage of recent advances in RNA
107 sequencing, including PacBio IsoSeq and Oxford Nanopore Technologies (ONT) direct RNA Sequencing
108 both of which have been applied previously to bacteria including *E. coli* (3, 28-30). Transcript predictions
109 will enable differential expression analyses to be expanded to include non-coding RNAs (ncRNAs) and
110 also use the latest transcript-based differential expression analysis tools like Salmon (31) and Kallisto
111 (32). Transcript predictions are also needed to inform consequences of genetic knock-in and knock-out
112 experiments (e.g., (33)), identify regulatory sequences (e.g., (10, 16, 34)) and detect post-transcriptional
113 processing (e.g., (15, 35)). Recent studies (10, 28, 36) reveal a much more complex picture of bacterial
114 transcripts with post-transcriptional processing and potentially multiple promoters and terminators,
115 including transcripts beginning or ending in the middle of adjacent coding sequences due to the coding
116 density (17).

117 In this study, we describe a quick, easy, and reproducible method and algorithm for whole
118 transcriptome sequencing and structural annotation using ONT direct RNA sequencing. We tested the
119 methods on the *E. coli* K12 and E2348/69 strains and then also apply this algorithm to existing public
120 data for *Pseudomonas aeruginosa* strains SG17M and NN2 (37), *Listeria monocytogenes* strains Scott A
121 and RO15 (38), and *Haloferax volcanii* (39).

122 **Results**

123 **ONT direct RNA sequencing of *E. coli* transcripts**

124 We generated ONT direct RNA sequencing data (**Figure 2**) from RNA isolated from *E. coli* K12 and
125 pathogenic *E. coli* E2348/69 (40) grown at 37 °C with aeration in LB and DMEM media (**Table 1, Table**

126 **A1**), which are virulence gene inducing growth conditions (15, 41-44). *E. coli* K12 annotation is available
127 for comparison in RegulonDB (26) and EcoCyc (27) and includes transcript predictions (17, 20), anti-
128 sense RNA characterization (21), and transcriptional start site and terminator predictions (17, 22-25).
129 The inclusion of *E. coli* E2348/69 allows us to interrogate transcript predictions in a related but clinically-
130 relevant enteropathogenic *E. coli* (EPEC) strain with plasmids (40) that has pathogenesis-associated
131 operons, which have had fine scale analysis of transcription (15, 44). We focused on using ONT direct
132 RNA sequencing, where RNA was sequenced directly in the pore (**Figure 2K**), to predict bacterial
133 transcripts (**Figure 2E**) because it does not have template switching (36). Additionally, ONT direct RNA
134 sequencing data lacks genomic DNA contamination since sequenced RNA and DNA have markedly
135 different signals, which is used by Guppy to eliminate DNA reads with high fidelity. RNA advances
136 through the pore more slowly and with a higher electrical current range than DNA, which is apparent in
137 all RNA reads since RNA is loaded into the pore using a ligated DNA adaptor (**Figure 2I**, **Figure A1**).

138 **Predicted *E. coli* K12 transcripts**

139 Using the 5,266,309 ONT reads generated for *E. coli* K12 (**Table 1**), we predicted transcripts using the
140 algorithm that we developed to predict transcripts in prokaryotic genomes using ONT sequencing reads
141 first predicting transcript start/stop sites where there is an over-abundance of reads starting/ending and
142 then identifying start/stop site combinations supported by the ONT sequencing data using models based
143 on the observed characteristics of ONT sequencing, which is described in more detail below. We
144 identified 3,902 strand-specific contiguously transcribed (CT) regions in the K12 genome with 1,055 that
145 had >20 reads that we used for predictions (**Table 1**). The 1,055 CT regions used for predictions were on
146 average 4 kbp and included 521 regions on the (+)-strand spanning 2.07 Mbp and 534 regions on the (-)-
147 strand spanning 2.14 Mbp (**Table 1**). There were 3,618 predicted transcripts with 1,465 predicted
148 transcripts on the (+)-strand and 2,153 predicted transcripts on the (-)-strand (**Table 1**). There were 289
149 (27%) regions with only a single transcript predicted (**Table 1**), meaning 73% of CT regions contained

150 more than one transcript either because operons overlap or because there were multiple overlapping
151 transcripts.

152 Of the 3,618 predicted transcripts, 2,484 were predicted to be mRNAs (**Figure 1**) and 1,134 were
153 predicted to be ncRNAs (**Figure 1, Table 1**). mRNAs were defined as transcripts that have at least one
154 annotated CDS found completely within the transcript boundaries, whereas a ncRNA was defined as a
155 transcript that lacks a CDS found completely within the transcript boundaries (**Figure 1**). It is important
156 to note that frequently the 5'-end of CDSs (and the N-terminal portion of the protein encoded by them)
157 are incorrectly annotated, such that the assignment of transcripts as mRNA/ncRNA needs further
158 manual refinement including possible curation of the N-termini of proteins; additionally, protein
159 annotation may be informed and improved through transcript structural annotation. However, given
160 these definitions, the average mRNA was 1,618 bp with the smallest and largest being 131 bp and
161 13,305 bp, respectively (**Table 1**). The average ncRNA was 517 bp with the smallest and largest being 52
162 bp and 2,947 bp, respectively (**Table 1**). Of these 1,134 predicted ncRNAs, 23 (2%) were already
163 described in the reference annotation file and are ~23% of the 98 previously annotated ncRNAs in the
164 reference annotation file (**Table 1**).

165 Of the 4,494 annotated coding sequences (CDSs), 2,357 were in an annotated transcript while 2,775
166 were not, suggesting that with these growth conditions we annotated transcripts associated with half of
167 the predicted CDSs, which is consistent with previous results(45). Of those, 1,341 (57%) CDSs were
168 associated with a single transcript and 90% of CDSs were associated with <4 transcripts (**Table 1, Figure**
169 **3A**). While 1,564 of the predicted transcripts contained only a single CDS (**Table 1, Figure 3B**), the
170 predicted transcript with the largest number of CDSs encoded within it contained 17 CDSs, including *glf*,
171 *gnd*, *insH7*, *rfbABCDX*, and *wbbHIJKL* (**Table 1**).

172 Using the predicted mRNAs (excluding ncRNAs) and CDSs, we predicted the 5'- and 3'-untranslated
173 regions (UTRs). The median 5'-UTR was 53 bp and the most common length (mode) was 14 bp, while the
174 median 3'-UTR was 72 bp, and most common length (mode) was 36 bp (**Table 1, Figure 3CD**). This is
175 consistent with previous reports that the 5'-UTR is 20-40 nt (24), despite previous reports that ONT
176 sequencing cannot capture the terminal 5'-end of transcripts (39).

177 **Complexity of bacterial transcription**

178 Our predictions detect tremendous bacterial transcript structural variation while confirming previous
179 experimentally verified predictions. For example, in the *thr* operon, three transcripts were predicted,
180 including the previously described *thrL* transcript for the leader peptide, the *thrLABC* transcript, and a
181 *thrBC* transcript (46) (**Figure 2E**).

182 Other regions were more complex, like the region from 4,080-4,087 kbp encompassing *fdoGHI* and *fdhE*
183 (**Figure 4**). RegulonDB (26) and EcoCyc (27) describe this entire region as an operon with two
184 promoters—one that makes a transcript for the entire region and a second smaller internal transcript
185 encoding *fdhE* that is started from a promoter within *fdoH* (**Figure 4**). The ONT data suggested
186 differential expression of the transcript isoforms where *fdoGHI* was largely untranscribed in DMEM
187 relative to LB while *fdhE* was transcribed in both (**Figure 4**). A small ncRNA was observed in DMEM when
188 *fdoG* was not transcribed. (**Figure 4**). We predicted 11 different transcripts in this entire region,
189 including the *fdhE* transcript that started in *fdoH* (**Figure 4**). This algorithm likely underpredicted long
190 transcripts, due to the limitations of the ONT technology as described below. So despite evidence for a
191 complete *fdoGHI-fdhE* transcript, we did not predict it, likely because there was insufficient sequencing
192 depth (**Figure 4**). But there was robust evidence for many of the other transcripts predicted that were
193 not currently in RegulonDB, EcoCyc or the annotation file, including a transcript of just *fdoG*, just *fdoGHI*,
194 two putative overlapping small RNAs that overlap the end of *fdoI* and the beginning of the *fdhE*

195 transcript, and four putative overlapping small RNAs that overlap the beginning of *fdoG* (**Figure 4**). In a
196 typical differential expression analysis that uses CDS regions, these four putative small RNAs overlapping
197 *fdoG* would likely be misinterpreted as expression of *fdoG* in DMEM. Importantly, while we detected
198 these transcripts, we cannot ascertain that they have a function, and they could merely be stable
199 degradation products of transcription. Regardless, they are likely to confound and obfuscate differential
200 expression analyses.

201 Across the 11 transcripts predicted in the *fdoGHI/fdhE* region, there was variation in transcript start and
202 end sites, as previously described (15, 24). This variability included slightly longer transcripts that extend
203 beyond *fdhE* that are observed under both growth conditions and was reproducible across all
204 sequencing runs (**Figure 4**). This variability was seen in many regions, suggesting that transcription
205 initiation and termination are flexible.

206 **Predicted *E. coli* E2348/69 transcripts**

207 The 60% fewer reads sequenced for *E. coli* E2348/69 relative to K12 led to fewer transcript predictions
208 (**Table 1**), particularly fewer ncRNA predictions, but otherwise the results are quite similar. The longest
209 predicted mRNA for E2348/69 was *nuoABCEFGHIJKLMN*, a known operon (47, 48). Unlike the K12 strain,
210 the E2348/69 strain contains two plasmids (NZ_CP059841.1 and NZ_CP059842.2, respectively) and
211 mRNA and ncRNAs were predicted on both plasmids. Of the four ncRNAs in the reference annotation,
212 we predicted two (*rnpB* and *ssrS*). Additional known ncRNAs missing in the reference annotation file
213 were identified, including *glmY* and *glmZ*, both of which are important for regulation of the *LEE* operon
214 and virulence (44).

215 The transcription of *LEE* operons, which are found in the E2348/69 genome, has been extensively
216 studied. It was previously shown that for *LEE4*, a promoter upstream of *sepL* produces a *sepL-espADB*
217 transcript that is post-transcriptionally cleaved with RNase E to generate an *espADB* transcript and a

218 *sepL* transcript that is then further endonucleolytically degraded (15) (**Figure 5**). A putative
219 transcriptional terminator was previously identified downstream of *espB* within *cesD2*, but it was
220 hypothesized that there is readthrough transcription of the terminator (15). The ONT sequencing data
221 here provided evidence for readthrough of the transcriptional terminator. Very few reads included both
222 the *cesD2-vapB-escF* region and *sepL*, which may be an indication that processing to remove *sepL* is
223 more efficient on the longer transcript that terminates after *espF*, although we can't rule out that the 6
224 kbp transcript of the whole region was not predicted due to the size limitations of ONT direct RNA
225 sequencing. Consistent with the latter, the 4 kbp *sepL-espADB* transcript has been detected by Northern
226 blots in multiple studies (15, 44), yet it was very infrequently detected here. Prior 5'- and 3'-rapid
227 amplification of cDNA ends (RACE) of *LEE4* transcripts revealed variation in transcript ends, which we
228 also detected, with multiple reads supporting a longer transcript at the 5'-end of *sepL*, which seems to
229 be a frequent phenomenon across all transcripts. Additionally, we predicted single CDS transcripts that
230 encode for *espA*, *espB*, and *espF*.

231 Using existing E2348/69 short read data from the SRA (PRJEB36845/E-MTAB-88804) and the long read
232 ONT data generated here, we compared differential expression results from EdgeR (50) for (a) existing
233 CDSs predictions using FADU (18) and short reads, (b) the transcripts predicted here using Salmon (31)
234 and short reads, and (c) the transcripts predicted here using Salmon (31) and long reads generated here
235 (**Figure 6**). There is discordance between the TPM (transcript per million) values calculated for all three
236 (**Figure 6GHI**) as well as assignment of genes as differential expressed in a transcript- and CDS-focused
237 analyses of only the Illumina reads (**Figure 6J**).

238 **Data re-use and transcripts in *Listeria monocytogenes*, *Pseudomonas aeruginosa*, and**
239 ***Haloflexax volcanii***

240 Through data re-use, we also predicted transcripts using published ONT data for *P. aeruginosa* strains
241 SG17M and NN2 strains (Bacteria:gamma-Proteobacteria (37), *L. monocytogenes* strains Scott A and
242 RO15 (Bacteria:Firmicute) (38), and *H. volcanii* (Archaea:Halobacteria) (39). All five of these strains had
243 fewer sequencing reads than we had for *E. coli*, leading to fewer predictions of transcripts, including
244 both mRNA and ncRNA (**Table 1**). Yet we were still able to predict 274-1103 transcripts across the five
245 strains and those transcripts were similar to the *E. coli* data with respect to mean/median mode 3'-UTR
246 lengths, proportion of single CDS transcripts, proportion of single transcript CDSs, size distribution of
247 mRNA, and size distribution of ncRNA (**Table 1**). The 5'-UTR predictions were of similar length across the
248 bacterial strains. However, the archaeal reads frequently did not extend beyond the 5'-end of the CDS
249 such that monocistronic mRNAs were erroneously called ncRNAs and very long 5'-UTRS were predicted
250 for polycistronic transcripts resulting in an increased median (**Table 1**). It may be that the 5'-end
251 predictions of the CDS are flawed due to calling the longest ORF, or it may be that the *H. volcanii* UTRs
252 are shorter than the bacterial 5'-UTRS and/or were not well captured with the ONT technology. Across
253 all seven strains examined, two of the longest transcripts were phage transcripts and two were *nuo*
254 transcripts (**Table 1**). The inclusion of *L. monocytogenes* was an important test case since it is a firmicute
255 with leading strand transcription bias (49), which led to fewer and longer CT regions, but did not prevent
256 high quality transcript predictions. While there was ONT direct RNA data for further species of gamma-
257 Proteobacteria, we limited this analysis to just two species with two strains each from this taxon.
258 Overall, these results suggest that this simple sequencing method combined with this algorithm can be
259 applied widely to archaeal/bacterial genomes to enable rigorous and robust transcript predictions.

260 **Characteristics of ONT direct RNA sequencing of *E. coli* transcripts**

261 To develop rigorous methods and algorithms to predict these transcripts, we needed to understand the
262 characteristics of ONT direct RNA sequencing of bacterial transcripts, which we expected to differ from
263 sequencing of eukaryotic transcripts given the differing physical features and stability of prokaryotic and

264 eukaryotic RNA. Overall, transcripts >5 kbp were difficult to obtain in a single read (**Figure 7A**), but reads
265 were sequenced that span most predicted operons as well as exceed the boundaries of existing operon
266 prediction (**Figure 7AB**). While *E. coli* has known transcripts >10 kbp, we did not generate reads >9 kbp
267 (**Table 1**). This is could be due to laboratory handling and is , at least in part, likely due to the ONT
268 technology since we observe that (a) this was reproducible across multiple systems and RNA molecules
269 we know must be full length, like rRNAs (**Figure 7C**), (b) there was 5'-truncation of transcripts in 11.7 kbp
270 full-length *in vitro* transcribed (IVT) polyadenylated RNA (**Figure 7D**), and (c) there were many
271 incomplete reads for the 1.4 kbp yeast enolase 2 (ENO2) RNA calibration strand provided by ONT (**Figure**
272 **7E**). Sequenced transcripts were also 3'-truncated (**Figures 2ABCD, 4AC, 5ABCD**), as previously described
273 for ONT (28, 36, 37) and PacBio IsoSeq (30) sequencing of bacterial transcripts, possibly from (a) random
274 fragmentation of RNA, (b) RNA degradation, and/or (c) incomplete transcription in a bacterial cell.
275 Additionally, we found that shorter transcripts were preferentially sequenced relative to longer
276 transcripts (**Figure 7F**). This is despite counts/RPKMs being reported as well correlated between Illumina
277 cDNA-based sequencing, ONT cDNA-based sequencing, and ONT direct RNA sequencing (51), as well as
278 when nanopore direct RNA sequencing CPMs are compared to the absolute concentration of a spike-in
279 (52).

280 To address incomplete reads and preferential sequencing of shorter transcripts, we first predicted
281 transcript start/stop sites in locations where there is an over-abundance of reads starting and ending.
282 Subsequently, the actual transcripts were defined by measuring the strength of the connection between
283 those start and stop sites using a model that supports the characteristics of truncated transcripts where
284 smaller transcripts were preferentially sequenced. In this way, we predicted 12-15 kbp mRNAs, despite
285 having a shorter max ONT read length (**Table 1, Figure A2**).

286 ONT direct RNA sequencing uses changes in electrical current to detect RNA modifications including N6-
287 methyladenosine (m⁶A), 5-methylcytosine (m⁵C), inosine, pseudouridine, and many more (53). At a

288 minimum, posttranscriptional modifications were expected in bacterial tRNA and rRNA (54), but might
289 also be present in mRNA and would lead to nonrandom changes in sequencing depth and base calling
290 errors (55, 56). To alleviate this issue, we used a depth calculation computed assuming every base is
291 equally present in a read using start/end positions of bed files for mapped reads. This also enables
292 predictions in the presence of errors in the reference or sequence divergence from the reference (e.g.,
293 (57)).

294 Chimeric RNA sequencing reads were detected in all samples, including chimeras between the ONT
295 ENO2 calibration strand and sample RNA (**Figure 2H, Table A1**). A subset of these were *in silico* chimeric
296 reads, with a spike observed in the electrical current when analyzing the raw signal data, indicating an
297 open pore state that was missed by the MinKNOW software (**Figure A3AD**). Others lacked this spike and
298 could be either ligase-mediated chimeras or *in silico*-mediated chimeras where the open pore state was
299 too short to be detected (**Figure A3BC**) (58). In our analysis, this was addressed by removing the clipped
300 portions of mapped reads. When mapping reads to a reference genome, portions of a mapped read that
301 do not align with the reference will be either “soft-clipped” or “hard-clipped.” A soft clipped read has a
302 portion that does not align to any other area of the reference (e.g., the ENO2 portion of an ENO2/mRNA
303 chimeric read), whereas a hard clipped read has two portions that align to different parts of the
304 genome. For soft- and hard-clipped reads we used the primary alignment, ignoring the clipped portion
305 of the read.

306 **The Transcript Prediction Algorithm**

307 Therefore, based on these characteristics of ONT sequencing described in the previous section, we
308 developed tp.py, for transcript prediction written in Python. The algorithm examines each CT region
309 separately along with the reads completely contained within that region. CT regions were initially
310 defined through the bed input file and subsequently refined to subdivide regions based on a minimum

311 depth cut-off (default=2). Ultimately a region needs to have a minimum number of reads fully contained
312 within it to be considered (default=2). The change in depth of the sequencing reads for each genomic
313 position of the CT region (D_{reg}) ignoring mismatches/indels was calculated as

314
$$\Delta D_{reg} = D_{reg(n+1)} - D_{reg(n)}$$

315 Potential start and stop sites were predicted at positions where $|\Delta D_{reg}|$ surpasses a threshold
316 (default=4) and always included the first and last position of the region. ONT sequencing has issues
317 identifying precise ends of transcripts due to polyA-trimming as well as sequencing 5'-ends, such that
318 predicted start/stop sites in close proximity (default=100) were grouped. Default parameters were
319 initially established empirically upon examination of results for representative areas of the genome and
320 confirmed to maximize sensitivity and specificity for this data set (**Figure A4**).

321 Candidate transcripts were predicted using the Cartesian product of all predicted start and stop sites.
322 The total read count (N_{tot}) was calculated from the number of total reads that are mapped to all
323 transcripts that fully contained them, allowing for mapping to multiple transcripts. The count of
324 exclusively assigned reads (N_{ea}) was calculated after mapping each read to the shortest transcript that
325 fully contains it. The candidate transcripts were processed from shortest to longest computed as $Ratio =$
326 N_{ea} / N_{tot} . If this ratio was less than the threshold (default=0.2), the candidate transcript was discarded. If
327 possible, reads from discarded transcripts were re-assigned to longer transcripts, and the N_{ea} was
328 recalculated such that reads initially assigned to now discarded transcripts can be used to support a
329 longer transcript. All transcripts that meet the ratio at the end of the analysis were reported in a gff
330 annotation file and a bed file.

331 The algorithm runs in about an hour on a single core computer depending on the parameters and the
332 size of the data set. We attempted to compare the results to assemblies of the ONT direct RNA reads
333 with existing tools, including TAMA (tc_version_date_2020_12_14) (59), Cupcake (v.29.0.0) (60), and

334 StringTie (v1.3.4d) (61), but they failed to recapitulate the complexity of the bacterial transcripts
335 accurately (**Figure A5**).

336 **Discussion**

337 In most bacteria, transcripts are not characterized and CDSs serve as a proxy, albeit a poor one. Here,
338 we show that bacterial long read transcriptome data can be used to predict bacterial transcripts using
339 an algorithm we designed for the complexities and nuances of prokaryotic transcripts. Application of this
340 algorithm to ONT data from four species revealed extensive transcript structural variation, transcription
341 of RNA on both strands in some regions, overlapping transcripts, and a diversity of non-coding RNAs.
342 The extent of transcript structural diversity highlights the need for algorithmic and analysis
343 improvements that are important for rigorous differential expression analyses, molecular evolution
344 analyses, and other analyses as well as laboratory experiments like making knock-outs/ins or promoter
345 analysis. This method should enable predictions for one strain using another strain's data, but given that
346 we haven't ascertained how much transcript structural diversity there is between strains, it may be ill-
347 advised. For that reason, we did not, for example, use the SG17M and NN2 data to make available
348 predictions for the research community for the frequently used *P. aeruginosa* PA01.

349 There were differences observed between a differential expression analysis using short/long reads as
350 well as using transcripts/CDSs. Discordance between short and long reads may be due to: (a) shorter
351 transcripts being preferentially sequenced relative to longer transcripts in ONT sequencing (**Figure 7F**, as
352 described below), (b) the benefits in statistical analyses of larger numbers of Illumina reads, (c) improper
353 attribution of short reads to overlapping transcripts/isoforms, or (d) differences in the incubation
354 conditions of the cultures used in collecting the long and short read data sets. However, using only the
355 Illumina reads, there are more differences than similarities between analyses using CDSs and those
356 using transcripts despite using the same raw data for each analysis (**Figure 6J**). This is consistent with our

357 previous comparisons of CDS- and transcript-focused analyses using simulated data (19). While some of
358 these may relate to transcripts falling just over or under an analysis threshold, others relate to
359 transcription of an overlapping ncRNA being mis-attributed to an overlapping CDS, as seen with *fdnG*
360 (**Figure 6ABCDEF**).

361 There is still room for improvement for bacterial transcript predictions, both through lab
362 experimentation and bioinformatics. The greatest improvement in the lab would be in obtaining more
363 full-length reads, particularly for long transcripts, which is a challenge for all long-read sequencing
364 platforms. For ONT, the new chemistry may improve the yield and length, and further improvements to
365 length may be possible by altering the reverse transcription method needed to remove RNA secondary
366 structure by changing the enzyme (62). The issue of missing the last few bases of the read, which
367 represents the 5'-end of the transcript, is a more significant issue for those looking for single base pair
368 resolution of transcript ends. Ligating an adaptor to the read prior to sequencing shows promise in
369 addressing that issue (52, 63). We also saw a significant amount of fragmentation at the 3'-ends that
370 may be either incomplete transcription, 3'-degradation of transcripts, random breakage, or sequencing
371 biases that need to be better understood. Incomplete transcription is intriguing and may reflect the
372 fundamental biology since (a) bacterial transcription and translation are coupled and (b) bacterial
373 transcripts are short-lived and frequently in the process of being synthesized, since bacterial mRNAs are
374 made at a rate of 40-80 nt/sec (64) while the average mRNA half-life is only 2-10 minutes (65). In
375 contrast, eukaryotic RNAs have to be spliced to create mature mRNA before being exported from the
376 nucleus and have increased stability and a longer half-life.

377 When discussing taxonomy, Stephen J. Gould emphasized that “classifications both reflect and direct
378 our thinking” (66). Going on to say that “the way we order represents the way we think” (66).
379 Annotation has many similarities to taxonomy, and similarly genome annotation both reflects and
380 directs our thinking. For bacteria, annotation is currently protein-centric, influencing our results and

381 ways of thinking. Historically, this is likely due to the connection between the definition of a gene and
382 protein, but practically it also relates to the ease with which we can computationally predict proteins.
383 However, with new experimental methods and abilities, it is time for a sea change in bacterial genome
384 annotation. The experimental and computational methods here are easy and quick, and thus they
385 should be implemented widely. Additionally, there is a need for associated new ontology standards for
386 describing transcripts and operons in annotation files that will better describe these features, similar to
387 changes made in eukaryotic annotation files to accommodate alternative splicing and alternative
388 transcripts (67). A harmonization of the standards for bacteria and eukaryotes would be ideal, such that
389 there is a standard that spans the incredible biological diversity and commonalities across the domains
390 of life.

391 **Conclusions**

392 Here we use bacterial long read transcriptome data and a new algorithm we developed to predict
393 transcripts from this data for two strains of three diverse bacterial species including both Gram-negative
394 and Gram-positive bacteria. Our analysis reveals a tremendous amount of transcript structural variation,
395 transcription of RNA on both strands in some regions, overlapping transcripts, and a diversity of non-
396 coding RNAs, which we provide as new annotation for these genomes. Bacterial transcriptional
397 structural variation has a richness that rivals or surpasses what is seen in eukaryotes and provides a rich
398 new set of therapeutic and diagnostic targets.

399 **Methods**

400 **Bacterial cultures**

401 Cryogenically preserved *E. coli* K12 MG1655 or E2348/69 were streaked onto an LB agar plate and
402 placed in an incubator overnight at 37 °C. A single colony was selected to inoculate LB broth for an

403 overnight culture. The overnight culture was diluted 1:100 in LB broth and harvested at the optical
404 density specified in **Table 1A**. For DMEM, overnight cultures were grown in LB broth and diluted 1:100 in
405 DMEM.

406 **RNA Isolation**

407 To isolate RNA, the Qiagen RNeasy Mini Kit was used according to Qiagen RNA Protect Reagent
408 Handbook Protocols 4 and 7 with Appendix B on-column DNase digestion (Qiagen, Hilden, Germany).
409 The RNA was assessed with UV-Vis spectrophotometry (Denovix DS-11, Wilmington, DE), Qubit RNA HS
410 Assay Kit (Fisher Scientific, Waltham, MA), and TapeStation RNA ScreenTape (Agilent, Santa Clara, CA).
411 RNA preparations were stored at -80 °C until ready for polyadenylation and sequencing, except for the *E.*
412 *coli* K12 MG1655 harvested at an optical density OD₆₀₀ of 0.2. The RNA isolated from this one culture
413 was treated four different ways. For SRR27982843, 4 µg of the freshly isolated RNA was immediately
414 polyadenylated and then taken into library preparation and sequenced, as detailed below. The leftover
415 polyadenylated RNA was stored at -80 °C alongside the original RNA isolation which had been frozen
416 without polyadenylation. Two months later, the original, unpolyadenylated RNA was thawed and
417 polyadenylated just before library preparation and sequencing (SRR27982841). On that same day, the
418 RNA that had been polyadenylated before being frozen was thawed and taken directly into library
419 preparation and sequencing (SRR27982841). Four months after the original RNA isolation, the RNA that
420 had been polyadenylated before storing at -80 °C was thawed again and polyadenylated again before
421 library preparation and sequencing (SRR27982840).

422 **Oxford Nanopore Sequencing**

423 RNA was polyadenylated with *E. coli* poly(A) polymerase (M0276S, New England Biosciences, Ipswich,
424 Massachusetts) at 37 °C for 90 s – 30 min (Table S1) according to the manufacturer's protocol and
425 sequenced with the Direct RNA Sequencing kit (SQK-RNA002, Oxford Nanopore Sequencing, Oxford, UK)

426 according to protocol version DRS_9080_v2_revR_14Aug2019. The prepared RNA library was loaded
427 onto R9.4.1 flow cells (FLO-MIN106D) in a MinION device Mk1B (MIN-101B). Sequencing runs were
428 terminated at 24 h. Fast5 files were basecalled using Guppy version 6.4.2 (68) generating FASTQ files
429 with the high accuracy model using the rna_r9.4.1_70bps_hac config file on a GPU cluster.

430 **Read Mapping, Transcript Prediction, and Analysis**

431 FASTQ files were mapped to the reference genome (**Table A2**) using minimap2 (v2.24-r1122; options:
432 -ax map-ont -t 2) (69). Alignments were sorted and filtered with samtools view (v1.11; option: -F 2308)
433 (70) generating bam files that were merged and indexed. BED files were generated with bamToBed
434 (v2.27.1; options: -s -c 6,4 -o distinct,count) (71) and filtered with awk to remove regions with fewer
435 than 20 reads. The tp.py algorithm was run in python (v.3.11.4). Statistics on regions, predicted
436 transcripts, and other features were calculated with perl (v5.30.2). Perl (v5.30.2) was also used to merge
437 the transcript and reference gff annotation files and identify mRNAs, ncRNAs, and UTRs. ONT
438 sequencing, transcript predictions, and reference CDS predictions were visualized in R (v3.6.3). E2348/69
439 reads from the SRA for PRJEB36845/E-MTAB-88804 and counted against the E2348/69 with the
440 transcript predictions presented here using Salmon (v. 1.10.2) (31). Before differential expression was
441 assessed, genes not meeting the required CPM cutoff of 5 in at least 3 samples were removed. The
442 samples were grouped based on the treatment status, and differentially expressed genes were
443 identified with EdgeR v3.30.3 using the quasi-likelihood negative binomial generalized log-linear model.
444 Statistical significance was set at an FDR cutoff < 0.05 after correction with the Benjamini Hochberg
445 method. A heatmap was drawn in R v4.2.1 using heatmap.3 of the z-score transformed $\log_2(\text{TPM})$ values
446 for differentially expressed genes with the columns ordered based on a dendrogram generated using
447 pvclust v2.2-0.

448 The full set of commands are described at: <https://github.com/jdhotopp/tp.py-Direct-RNA-Sequencing->
449 Manuscript-/tree/main (a DOI will be acquired after commands are finalized following review of the
450 manuscript).

451 **Acknowledgements**

452 This project was funded by federal funds from the National Institute of Allergy and Infectious Diseases,
453 National Institutes of Health, Department of Health and Human Services under grant numbers
454 U19AI110820 and T32AI162579, the National Science Foundation grant number EF 2025384, and the
455 American Cancer Society grant IRG-18-160-16-IRG. The funding bodies had no role in the design of the
456 study and collection, analysis, and interpretation of data and in writing the manuscript.

457 **Data availability**

458 The ONT FASTQ file accessions for the data generated in this proposal are SRR18061005, SRR18061002,
459 SRR27982845, SRR18061004, SRR18061003, SRR23886068, SRR27982844, SRR27982843, SRR27982842,
460 SRR27982841, and SRR27982840.

461 **References**

462 1. Eichner H, Karlsson J, Loh E. 2022. The emerging role of bacterial regulatory RNAs in
463 disease. *Trends Microbiol* 30:959-972.

464 2. Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. *J
465 Mol Biol* 3:318-56.

466 3. Forquet R, Jiang X, Nasser W, Hommais F, Reverchon S, Meyer S. 2022. Mapping the
467 Complex Transcriptional Landscape of the Phytopathogenic Bacterium *Dickeya dadantii*.
468 *mBio* 13:e0052422.

469 4. Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J. 2000. Operons in *Escherichia
470 coli*: genomic analyses and predictions. *Proc Natl Acad Sci U S A* 97:6652-7.

471 5. Mader U, Nicolas P, Depke M, Pane-Farre J, Debarbouille M, van der Kooi-Pol MM,
472 Guerin C, Derozier S, Hiron A, Jarmer H, Leduc A, Michalik S, Reilmann E, Schaffer M,
473 Schmidt F, Bessieres P, Noirot P, Hecker M, Msadek T, Volker U, van Dijl JM. 2016.
474 *Staphylococcus aureus* Transcriptome Architecture: From Laboratory to Infection-
475 Mimicking Conditions. *PLoS Genet* 12:e1005962.

476 6. Kroger C, MacKenzie KD, Alshabib EY, Kirzinger MWB, Suchan DM, Chao TC, Akulova V,
477 Miranda-CasoLuengo AA, Monzon VA, Conway T, Sivasankaran SK, Hinton JCD, Hokamp
478 K, Cameron ADS. 2018. The primary transcriptome, small RNAs and regulation of
479 antimicrobial resistance in *Acinetobacter baumannii* ATCC 17978. *Nucleic Acids Res*
480 46:9684-9698.

481 7. Bergman NH, Passalacqua KD, Hanna PC, Qin ZS. 2007. Operon prediction for sequenced
482 bacterial genomes without experimental information. *Appl Environ Microbiol* 73:846-54.

483 8. Pertea M, Ayanbule K, Smedinghoff M, Salzberg SL. 2009. OperonDB: a comprehensive
484 database of predicted operons in microbial genomes. *Nucleic Acids Res* 37:D479-82.

485 9. Taboada B, Estrada K, Ciria R, Merino E. 2018. Operon-mapper: a web server for precise
486 operon identification in bacterial and archaeal genomes. *Bioinformatics* 34:4118-4120.

487 10. Warrier I, Ram-Mohan N, Zhu Z, Hazery A, Echlin H, Rosch J, Meyer MM, van Opijnen T.
488 2018. The Transcriptional landscape of *Streptococcus pneumoniae* TIGR4 reveals a
489 complex operon architecture and abundant riboregulation critical for growth and
490 virulence. *PLoS Pathog* 14:e1007461.

491 11. McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool
492 CK, Tjaden B. 2013. Computational analysis of bacterial RNA-Seq data. *Nucleic Acids Res*
493 41:e140.

494 12. Tjaden B. 2015. De novo assembly of bacterial transcriptomes from RNA-seq data.
495 *Genome Biol* 16:1.

496 13. Chen X, Chou WC, Ma Q, Xu Y. 2017. SeqTU: A Web Server for Identification of Bacterial
497 Transcription Units. *Sci Rep* 7:43925.

498 14. Tjaden B. 2020. A computational system for identifying operons based on RNA-seq data.
499 Methods 176:62-70.

500 15. Lodato PB, Kaper JB. 2009. Post-transcriptional processing of the LEE4 operon in
501 enterohaemorrhagic Escherichia coli. Mol Microbiol 71:273-90.

502 16. Yanofsky C. 2007. RNA-based regulation of genes of tryptophan synthesis and
503 degradation, in bacteria. RNA 13:1141-54.

504 17. Adams PP, Baniulyte G, Esnault C, Chegireddy K, Singh N, Monge M, Dale RK, Storz G,
505 Wade JT. 2021. Regulatory roles of Escherichia coli 5' UTR and ORF-internal RNAs
506 detected by 3' end mapping. Elife 10.

507 18. Chung M, Adkins RS, Mattick JSA, Bradwell KR, Shetty AC, Sadzewicz L, Tallon LJ, Fraser
508 CM, Rasko DA, Mahurkar A, Dunning Hotopp JC. 2021. FADU: a Quantification Tool for
509 Prokaryotic Transcriptomic Analyses. mSystems 6.

510 19. Chung M, Bruno VM, Rasko DA, Cuomo CA, Munoz JF, Livny J, Shetty AC, Mahurkar A,
511 Dunning Hotopp JC. 2021. Best practices on the differential expression analysis of multi-
512 species RNA-seq. Genome Biol 22:121.

513 20. Karp PD, Ong WK, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M,
514 Latendresse M, Midford PE, Subhraveti P, Gama-Castro S, Muniz-Rascado L, Bonavides-
515 Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler IM, Paulsen I. 2018.
516 The EcoCyc Database. EcoSal Plus 8.

517 21. Lybecker M, Zimmermann B, Bilusic I, Tukhtubaeva N, Schroeder R. 2014. The double-
518 stranded transcriptome of Escherichia coli. Proc Natl Acad Sci U S A 111:3134-9.

519 22. Feng CQ, Zhang ZY, Zhu XJ, Lin Y, Chen W, Tang H, Lin H. 2019. iTerm-PseKNC: a
520 sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics
521 35:1469-1477.

522 23. Conway T, Creecy JP, Maddox SM, Grissom JE, Conkle TL, Shadid TM, Teramoto J, San
523 Miguel P, Shimada T, Ishihama A, Mori H, Wanner BL. 2014. Unprecedented high-
524 resolution view of bacterial operon architecture revealed by RNA sequencing. mBio
525 5:e01442-14.

526 24. Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B, Jimenez-
527 Jacinto V, Salgado H, Juarez K, Contreras-Moreira B, Huerta AM, Collado-Vides J, Morett
528 E. 2009. Genome-wide identification of transcription start sites, promoters and
529 transcription factor binding sites in *E. coli*. PLoS One 4:e7526.

530 25. Kim D, Hong JS, Qiu Y, Nagarajan H, Seo JH, Cho BK, Tsai SF, Palsson BO. 2012.
531 Comparative analysis of regulatory elements between *Escherichia coli* and *Klebsiella*
532 *pneumoniae* by genome-wide transcription start site profiling. PLoS Genet 8:e1002867.

533 26. Salgado H, Gama-Castro S, Lara P, Mejia-Almonte C, Alarcon-Carranza G, Lopez-Almazo
534 AG, Betancourt-Figueroa F, Pena-Loredo P, Alquicira-Hernandez S, Ledezma-Tejeida D,
535 Arizmendi-Zagal L, Mendez-Hernandez F, Diaz-Gomez AK, Ochoa-Praxedis E, Muniz-
536 Rascado LJ, Garcia-Sotelo JS, Flores-Gallegos FA, Gomez L, Bonavides-Martinez C, Del

537 Moral-Chavez VM, Hernandez-Alvarez AJ, Santos-Zavaleta A, Capella-Gutierrez S, Gelpi
538 JL, Collado-Vides J. 2023. RegulonDB v12.0: a comprehensive resource of transcriptional
539 regulation in *E. coli* K-12. *Nucleic Acids Res* doi:10.1093/nar/gkad1072.

540 27. Karp PD, Paley S, Caspi R, Kothari A, Krummenacker M, Midford PE, Moore LR,
541 Subhraveti P, Gama-Castro S, Tierrafría VH, Lara P, Muniz-Rascado L, Bonavides-
542 Martinez C, Santos-Zavaleta A, Mackie A, Sun G, Ahn-Horst TA, Choi H, Covert MW,
543 Collado-Vides J, Paulsen I. 2023. The EcoCyc Database (2023). EcoSal
544 Plus:eesp00022023.

545 28. Grünberger F, Knüppel R, Jüttner M, Fenk M, Borst A, Reichelt R, Hausner W, Soppa J,
546 Ferreira-Cerca S, Grohmann D. 2020. Exploring prokaryotic transcription, operon
547 structures, rRNA maturation and modifications using Nanopore-based native RNA
548 sequencing. *bioRxiv* doi:10.1101/2019.12.18.880849.

549 29. Pitt ME, Nguyen SH, Duarte TPS, Teng H, Blaskovich MAT, Cooper MA, Coin LJM. 2020.
550 Evaluating the genome and resistome of extensively drug-resistant *Klebsiella*
551 *pneumoniae* using native DNA and RNA Nanopore sequencing. *Gigascience* 9.

552 30. Yan B, Boitano M, Clark TA, Ettwiler L. 2018. SMRT-Cappable-seq reveals complex
553 operon variants in bacteria. *Nat Commun* 9:3676.

554 31. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-
555 aware quantification of transcript expression. *Nat Methods* 14:417-419.

556 32. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq
557 quantification. *Nat Biotechnol* 34:525-7.

558 33. Mateus A, Shah M, Hevler J, Kurzawa N, Bobonis J, Typas A, Savitski MM. 2021.
559 Transcriptional and Post-Transcriptional Polar Effects in Bacterial Gene Deletion
560 Libraries. *mSystems* 6:e0081321.

561 34. Mejia-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, Stormo GD, Eilbeck K,
562 Palsson BO, Galagan JE, Collado-Vides J. 2020. Redefining fundamental concepts of
563 transcription initiation in bacteria. *Nat Rev Genet* 21:699-714.

564 35. Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP. 2015. RNA-binding
565 proteins involved in post-transcriptional regulation in bacteria. *Front Microbiol* 6:141.

566 36. Grunberger F, Ferreira-Cerca S, Grohmann D. 2022. Nanopore sequencing of RNA and
567 cDNA molecules in *Escherichia coli*. *RNA* 28:400-417.

568 37. Pust MM, Davenport CF, Wiehlmann L, Tummler B. 2022. Direct RNA Nanopore
569 Sequencing of *Pseudomonas aeruginosa* Clone C Transcriptomes. *J Bacteriol*
570 204:e0041821.

571 38. Duru IC, Ylinen A, Grigore-Gurgu L, Riedel CU, Paulin L, Auvinen P. 2022. RNA editing,
572 RNA modifications, and transcriptional units in *Listeria monocytogenes*, PREPRINT
573 (Version 1). doi:<https://doi.org/10.21203/rs.3.rs-1530110/v1>.

575 39. Grünberger F, Knüppel R, Jüttner M, Fenk M, Borst A, Reichelt R, Hausner W, Soppa J,
576 Ferreira-Cerca S, Grohmann D. 2019. Exploring prokaryotic transcription, operon
577 structures, rRNA maturation and modifications using Nanopore-based native RNA
578 sequencing. *bioRxiv* doi:doi.org/10.1101/2019.12.18.880849.

579 40. Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T, Henderson IR, Harris D,
580 Asadulghani M, Kurokawa K, Dean P, Kenny B, Quail MA, Thurston S, Dougan G, Hayashi
581 T, Parkhill J, Frankel G. 2009. Complete genome sequence and comparative genome
582 analysis of enteropathogenic *Escherichia coli* O127:H6 strain E2348/69. *J Bacteriol*
583 191:347-54.

584 41. Hazen TH, Daugherty SC, Shetty AC, Nataro JP, Rasko DA. 2017. Transcriptional Variation
585 of Diverse Enteropathogenic *Escherichia coli* Isolates under Virulence-Inducing
586 Conditions. *mSystems* 2.

587 42. Hazen TH, Michalski J, Luo Q, Shetty AC, Daugherty SC, Fleckenstein JM, Rasko DA. 2017.
588 Comparative genomics and transcriptomics of *Escherichia coli* isolates carrying virulence
589 factors of both enteropathogenic and enterotoxigenic *E. coli*. *Sci Rep* 7:3513.

590 43. Hazen TH, Daugherty SC, Shetty A, Mahurkar AA, White O, Kaper JB, Rasko DA. 2015.
591 RNA-Seq analysis of isolate- and growth phase-specific differences in the global
592 transcriptomes of enteropathogenic *Escherichia coli* prototype isolates. *Front Microbiol*
593 6:569.

594 44. Gruber CC, Sperandio V. 2014. Posttranscriptional control of microbe-induced
595 rearrangement of host cell actin. *mBio* 5:e01025-13.

596 45. Haas BJ, Chin M, Nusbaum C, Birren BW, Livny J. 2012. How deep is deep enough for
597 RNA-Seq profiling of bacterial transcriptomes? *BMC Genomics* 13:734.

598 46. Cho BK, Zengler K, Qiu Y, Park YS, Knight EM, Barrett CL, Gao Y, Palsson BO. 2009. The
599 transcription unit architecture of the *Escherichia coli* genome. *Nat Biotechnol* 27:1043-9.

600 47. Archer CD, Elliott T. 1995. Transcriptional control of the *nuo* operon which encodes the
601 energy-conserving NADH dehydrogenase of *Salmonella typhimurium*. *J Bacteriol*
602 177:2335-42.

603 48. Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T. 1995. Isolation and characterization of
604 the proton-translocating NADH: ubiquinone oxidoreductase from *Escherichia coli*. *Eur J
605 Biochem* 230:538-48.

606 49. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H,
607 Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P,
608 Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H,
609 Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J,
610 Jackson D, Jones LM, Kaeberst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E,
611 Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-
612 Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, et al. 2001. Comparative
613 genomics of *Listeria* species. *Science* 294:849-52.

614 50. McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor
615 RNA-Seq experiments with respect to biological variation. *Nucleic Acids Res* 40:4288-97.

616 51. Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T,
617 James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin S, McNeill L, Wallace
618 EJ, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank D, Juul S, Clarke J, Heron AJ,
619 Turner DJ. 2018. Highly parallel direct RNA sequencing on an array of nanopores. *Nat
620 Methods* 15:201-206.

621 52. Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall AJ, Barton
622 GJ, Simpson GG. 2020. Nanopore direct RNA sequencing maps the complexity of
623 *Arabidopsis* mRNA processing and m(6)A modification. *Elife* 9.

624 53. Furlan M, Delgado-Tejedor A, Mulroney L, Pelizzola M, Novoa EM, Leonardi T. 2021.
625 Computational methods for RNA modification detection from nanopore direct RNA
626 sequencing data. *RNA Biol* 18:31-40.

627 54. Anonymous. 2011. *Ribosomes: Structure, Function, and Dynamics*.
628 SpringerWienNewYork, Austria.

629 55. Liu H, Begik O, Lucas MC, Ramirez JM, Mason CE, Wiener D, Schwartz S, Mattick JS,
630 Smith MA, Novoa EM. 2019. Accurate detection of m(6)A RNA modifications in native
631 RNA sequences. *Nat Commun* 10:4079.

632 56. Piechotta M, Naarmann-de Vries IS, Wang Q, Altmuller J, Dieterich C. 2022. RNA
633 modification mapping with JACUSA2. *Genome Biol* 23:115.

634 57. Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW, Rasko DA, Ernst RK. 2019.
635 Genomic and Phenotypic Diversity among Ten Laboratory Isolates of *Pseudomonas
636 aeruginosa* PAO1. *J Bacteriol* 201.

637 58. White R, Pellefigues C, Ronchese F, Lamiable O, Eccles D. 2017. Investigation of chimeric
638 reads using the MinION. *F1000Res* 6:631.

639 59. Kuo RI, Cheng Y, Zhang R, Brown JWS, Smith J, Archibald AL, Burt DW. 2020. Illuminating
640 the dark side of the human transcriptome with long read transcript sequencing. *BMC
641 Genomics* 21:751.

642 60. Tseng E. 2023. cDNA_Cupcake. https://github.com/Magdoll/cDNA_Cupcake. Accessed
643 05/11/2023.

644 61. Shumate A, Wong B, Pertea G, Pertea M. 2022. Improved transcriptome assembly using
645 a hybrid of long and short reads with StringTie. *PLoS Comput Biol* 18:e1009730.

646 62. Zeglinski K, Montellese C, Ritchie ME, Alhamdoosh M, Vonarburg C, Bowden R, Jordi M,
647 Gouil Q, Aeschimann F, Hsu A. 2023. An optimised protocol for quality control of gene
648 therapy vectors using Nanopore direct RNA sequencing. *bioRxiv*
649 [doi:https://www.biorxiv.org/content/10.1101/2023.12.03.569756v1:2023.12.03.569756](https://www.biorxiv.org/content/10.1101/2023.12.03.569756v1:2023.12.03.569756)
650 .

651 63. Yan B, Tzertzinis G, Schildkraut I, Ettwiller L. 2022. Comprehensive determination of
652 transcription start sites derived from all RNA polymerases using ReCappable-seq.
653 Genome Res 32:162-174.

654 64. (ed). 2015. Cell Biology by the Numbers (Draft July 2015). book.bionumbers.org.
655 Accessed May 22, 2022.

656 65. Laalami S, Zig L, Putzer H. 2014. Initiation of mRNA decay in bacteria. Cell Mol Life Sci
657 71:1799-828.

658 66. Gould SJ. 1983. Hen's Teeth and Horse's Toes: Further Reflections in Natural History. W.
659 W. Norton & Company.

660 67. Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD,
661 Weissman S, Snyder M. 2007. What is a gene, post-ENCODE? History and updated
662 definition. Genome Res 17:669-81.

663 68. Technologies" ON. 2024. Guppy software overview.
664 https://community.nanoporetech.com/docs/prepare/library_prep_protocols/Guppy-protocol/v/gpb_2003_v1_revax_14dec2018/guppy-software-overview. Accessed May 9.
665

666 69. Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
667 34:3094-3100.

668 70. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin
669 R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078-9.

670 71. Quinlan AR. 2014. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr
671 Protoc Bioinformatics 47:11 12 1-34.

672

673 **Tables**

674 **Table 1. Characteristics of Predicted Transcripts for *Escherichia coli*, *Listeria monocytogenes*, and *Pseudomonas aeruginosa***

Feature	<i>Escherichia coli</i> K12 (GCF_000005845.2)	<i>Escherichia coli</i> E2348/69 (GCF_014117345.2)	<i>Listeria monocytogenes</i> Scott A (CM001159.1)	<i>Listeria monocytogenes</i> RO15 (CADEHJ000000000.1)	<i>Pseudomonas</i> <i>aeruginosa</i> SG17M (NZ_CP080369.1)	<i>Pseudomonas</i> <i>aeruginosa</i> NN2 (NZ_LT883143.1)	<i>Pseudomonas</i> <i>aeruginosa</i> NN2 (NZ_LT883143.1)	<i>Haloflexax</i> volcanii (GCF_00025685.1)
Number of contigs in reference	1	3	1	2	1	1	1	5
Number of reads used	5,266,309	3,025,047	1,679,073	1,664,744	220,553	1,196,279	1,196,279	1,438,670
Number of CT Regions for Predictions (>20 reads)	1,055	1,071	525	464	391	1,209	1,209	640
Number of Regions on (+)-strand	521	528	238	206	181	612	612	318
Number of Regions on the (-)-strand	534	543	287	258	210	597	597	322
Span (bp) on (+)-strand	2,068,709	1,951,551	703,660	589,005	530,329	1,944,294	1,944,294	893,429
Span (bp) on (-)-strand	2,135,707	1,827,581	821,637	759,698	589,348	1,886,100	1,886,100	974,115
Average span (bp) + strand	3,968	3,777	2,946	2,848	2,915	3,174	3,174	2,807
Average span (bp) - strand	3,997	3,446	2,851	2,932	2,786	3,155	3,155	3,022
Number of Transcripts	3,618	2248	881	793	274	1103	1103	613
Number of Transcripts on the (+)-strand	1,465	1101	402	361	79	495	495	241
Number of Transcripts on the (-)-strand	2,153	1147	479	432	195	608	608	372
Number of Regions with 1 transcript	289	429	218	199	85	258	258	226
Maximum Number of Transcripts per Region	254	141	32	31	68	63	63	27
Mean 3'-UTR (bp)	150	126	122	112	163	236	236	180
Median 3'-UTR (bp)	72	62	48	47	59	78	78	84
Maximum 3'-UTR (bp)	2,716	1,261	1,306	1,245	2,235	2,809	2,809	2,040
Mean 5'-UTR (bp)	134	119	137	114	185	205	205	373
Median 5'-UTR (bp)	53	49	36	33	93	85	85	207*
Maximum 5'-UTR (bp)	2,122	2,817	2,303	2,303	1,835	1,943	1,943	2,955
Number of genes	4,494	4,809	3,038	3,149	6,349	6,380	6,380	3,956
Number of genes in annotated transcript	2,360	2,037	765	680	209	765	765	385
Number of genes associated with just 1 transcript	1,341	1,300	636	554	168	572	572	301
Maximum number of transcripts a single gene is associated with	15	12	6	7	4	6	6	10
90% of genes are associated with fewer than this number transcripts	4	4	3	3	3	3	3	3
Number of transcripts with 1 gene	1,563	1,096	349	316	79	398	398	167
Maximum number of genes in a single mRNA	17	14	38	22	15	15	15	15
90% of transcripts have fewer than this many genes	4	4	4	3	3	3	3	3
Number of predicted mRNAs	2,487	1,844	536	491	133	601	601	263
Average predicted mRNA size (bp)	1,617	1,732	1,660	1,607	1,590	1,735	1,735	1,948
Largest predicted mRNA (bp)	13,305	15,256	29,034	10,791	14,168	12,709	12,709	10,463
Smallest predicted mRNA (bp)	131	129	224	209	183	146	146	136
Number of predicted ncRNAs (including ones in reference annotation file)	1,131	404	345	302	141	502	502	350*
Average predicted ncRNA size (bp)	550	649	497	524	578	538	538	724*
Largest predicted ncRNA (bp)	2,947	2,916	2,585	2,588	6,361	2,851	2,851	3,045*
Smallest predicted ncRNA (bp)	89	80	95	136	97	77	77	81*
Genes in longest mRNA	glf, gnd, insH7, rfbABCDX, wbbHIJKL	nuoABCEFGHIJKLMNOP	phage (LMOSA_9400-LMOSA_9770)	rplBCDEFNOPRVWX, rpmCD, rpsCEHJQS, secY	fusA, rplJL, rpoBC, rpsGL, tuf	(PANN_06920-PANN_07050)	nuoABCD1HIJ1J2KLMN	phage

*The reads for this species frequently do not extend beyond the 5'-end of the CDS, essentially meaning transcripts start where translation is predicted to start. When this happens for a polycistronic transcript, the result is a very long 5'-UTR as seen with the increased median, and when this happens for a monocistronic transcript, the mRNA is erroneously called a ncRNA. While this likely occurs for all of the organisms, it is acute for the *H. volcanii* data. It may be that the 5'-end predictions of the CDS are flawed due to calling the longest ORF, or it may be that the *H. volcanii* UTRs are shorter than the bacterial 5'-UTRs.

675
676
677
678
679

680 **Figures**

681 **Figure 1 – Overview of Transcript, Operon, and UTR Definitions Used**

682 The interrelationship of genomic features described in this manuscript are illustrated, including
683 the relationship of operon, CT region, CDS, mRNA, ncRNA, and proteins for
684 monocistronic/polycistronic transcripts with/without transcript isoforms. The genes and
685 genome are fictitious and used merely to illustrate the definitions of key terms.

686 **Figure 2 – Overview of the Experimental/Analysis Workflow**

687 Plus-strand ONT direct RNA sequencing reads (shown as lines) are mapped from 1 bp to 6 kbp in the *E.*
688 *coli* K12 genome (NC_000913.3), which corresponds to the *thr* operon, and sorted by their transcription
689 stop site for *E. coli* K12 grown in rich LB media (left sorted, **A**; right sorted, **C**) and DMEM media (left
690 sorted, **B**; right sorted, **D**). Our algorithm predicts 3 transcripts (**E**), and 4 CDSs in the annotation file are
691 illustrated (**F**). The transcript for the leader peptide *thrL* is recovered in both growth conditions. (**G**) RNA
692 was isolated from *E. coli* K12 grown at 37 °C with aeration in LB and DMEM media. (**H**) Squiggle plot for
693 two sequencing reads in tandem. In this case, the open pore state was missed by the software resulting
694 in a chimeric read. In both reads the DNA adapter can be observed with lower current followed by a
695 relative flat plateau that corresponds to the polyA tail. This is followed by the electrical current changes
696 associated with the RNA moving through the pore. (**I**) Plots show the electrical current for the same
697 length DNA and RNA highlighting that the signal to base ratio is different for RNA and DNA. (**J**) The
698 standard ONT direct RNA sequencing library was used on bacterial RNA that was *in vitro* polyadenylated
699 following RNA isolation. Library construction and (**K**) loaded on an ONT MinION device for nanopore
700 sequencing.

701 **Figure 3 – Characteristics of Transcript Predictions**

702 The distribution of the number of instances of CDS by transcripts/CDS (**A**) and the distribution of the
703 number of instances of transcripts by CDSs/transcript (**B**) are shown for *E. coli* K12, *E. coli* E2368/69, *L.*
704 *monocytogenes* ScottA, *L. monocytogenes* RO15, *P. aeruginosa* SG17M, *P. aeruginosa* NN2, and *H.*
705 *volcanii*. The data points in these discrete distributions are connected by lines for visualization purposes.
706 The inset in each illustrates how transcripts/CDS and CDSs/transcript are defined. The size distributions
707 of predicted 5'-UTRs (**C**) and 3'-UTRs (**D**) are plotted for each of the six strains examined with an inset
708 that zooms in on 0-350 bp to better illustrate the distribution of the majority of the data.

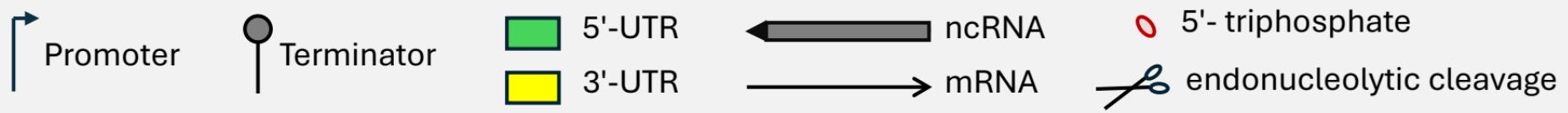
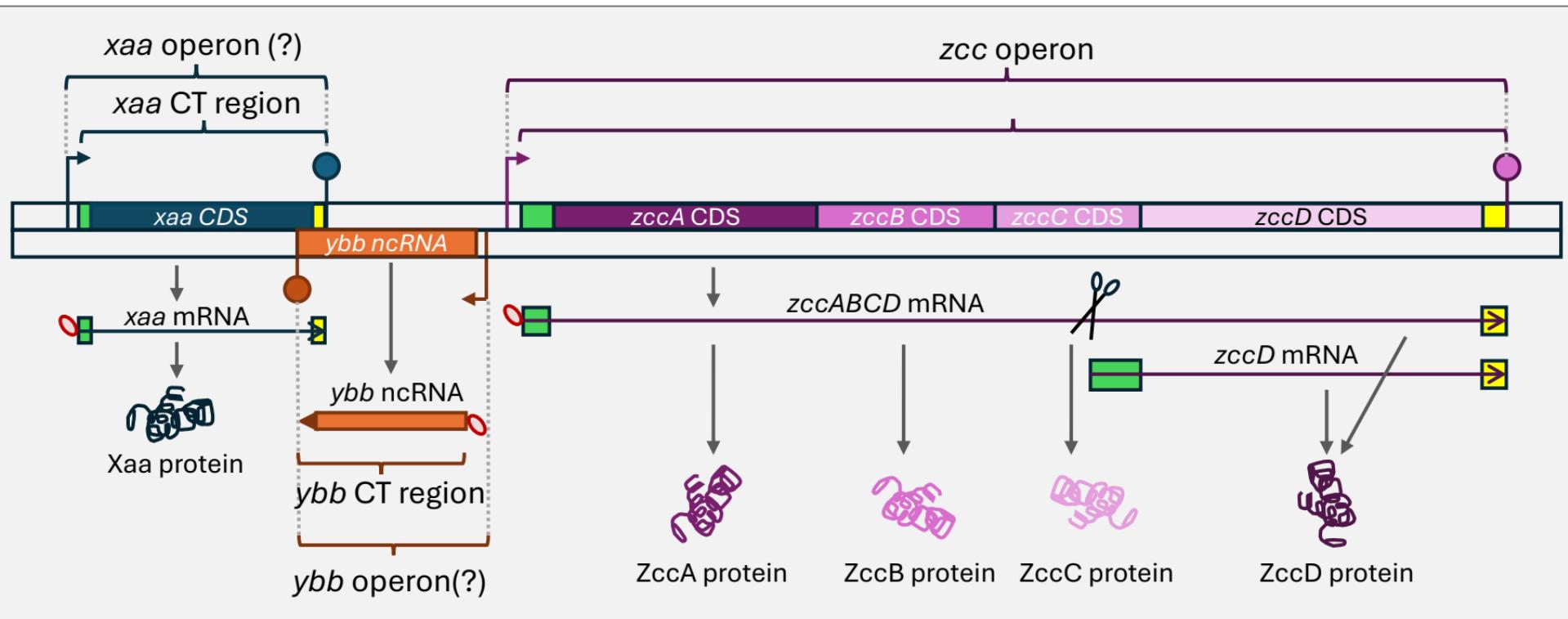
709 **Figure 4 – *fdoGHI-fdhE* Transcripts**

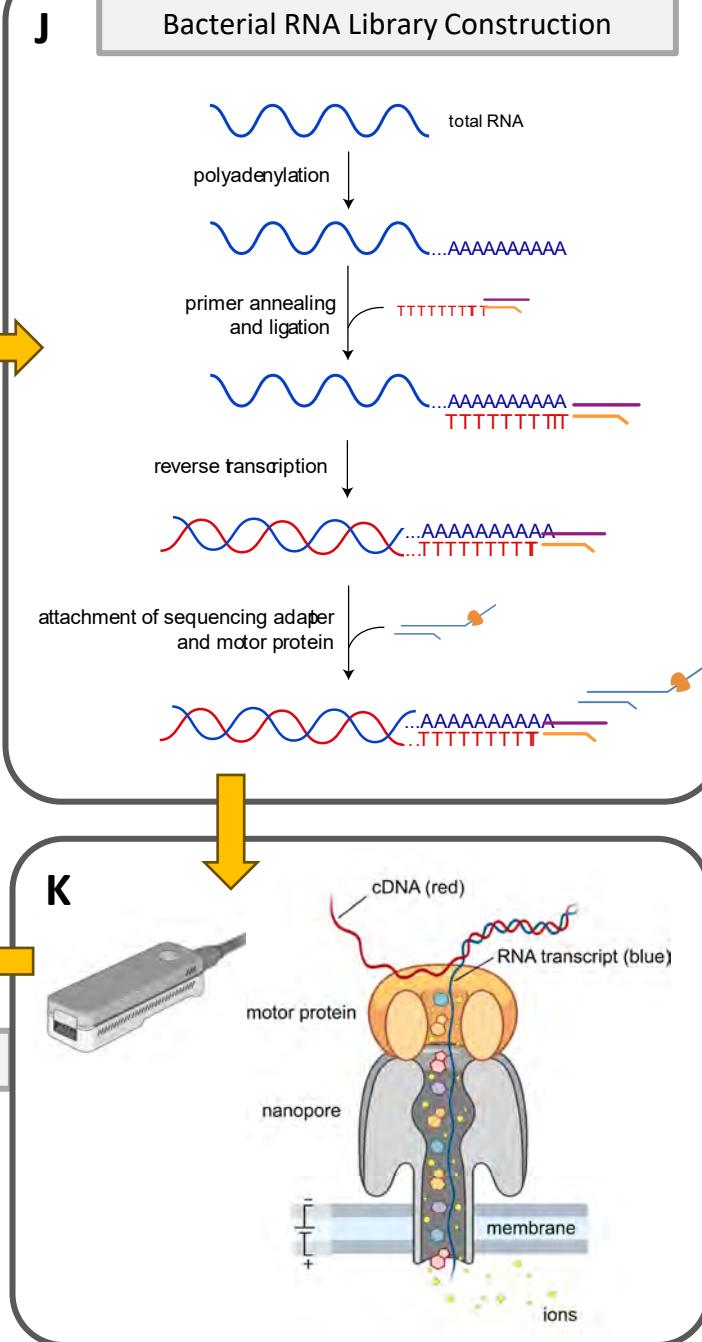
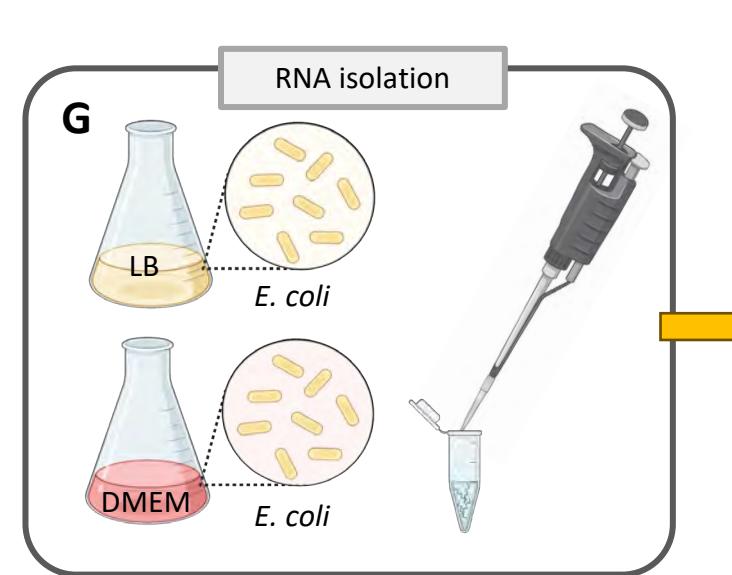
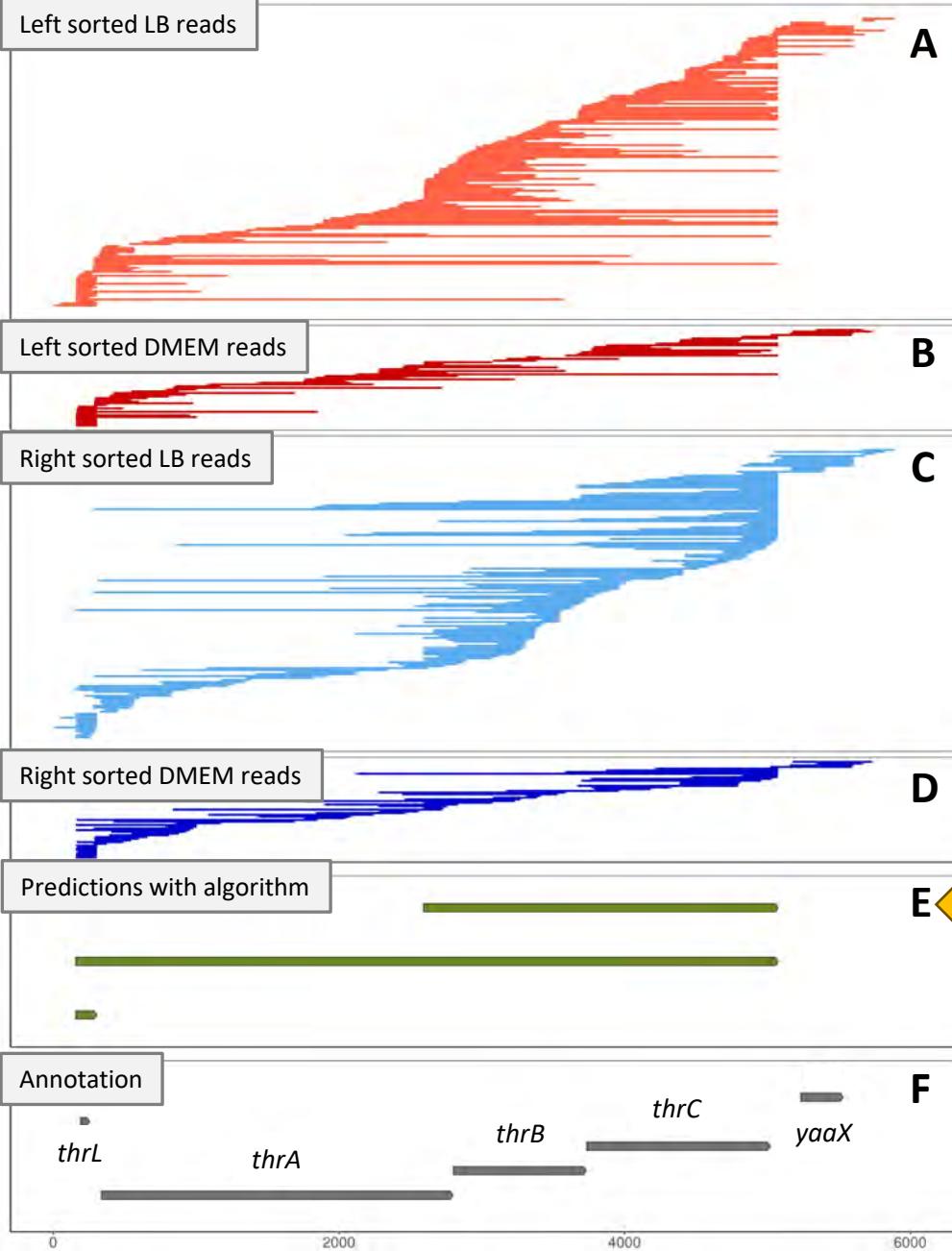
710 Reads mapping to the minus strand of the *E. coli* K12 genome (NC_000913.3) grown in LB (**A, C**) and
711 DMEM (**B, D**) are shown for a region from 4,080-4,088 kbp. To facilitate the visualization of the starts
712 and stops of transcripts, reads were sorted by either their left most (**A, B**) or right most (**C, D**) position
713 and plotted from top to bottom accordingly. Transcript predictions from our algorithm (**E**) and the
714 predicted CDSs in the reference annotation file (**F**) are shown with arrows indicating the direction of
715 transcription and with transcripts/CDSs on the different strands having different shading (light for the
716 (+)-strand and dark for the (-)-strand).

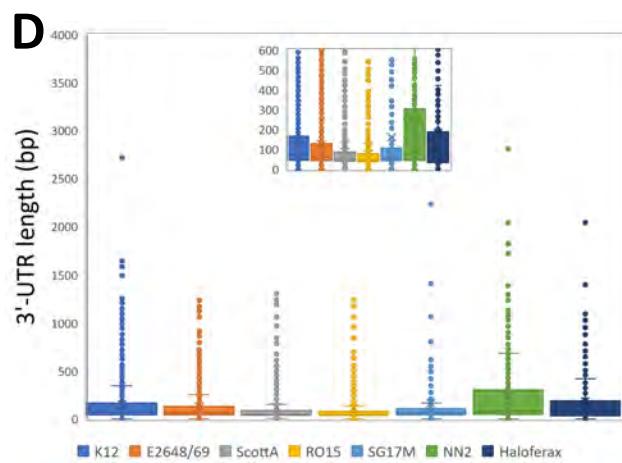
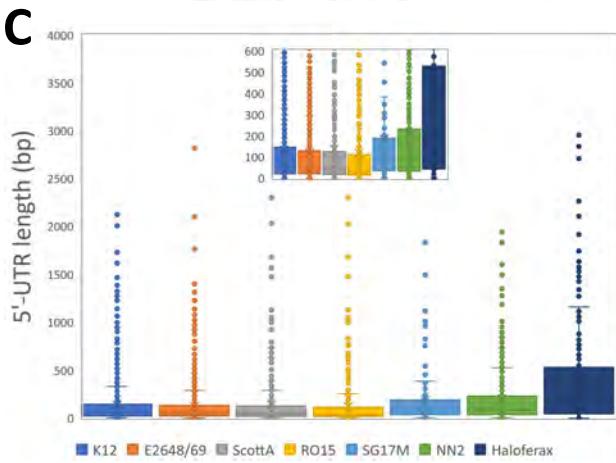
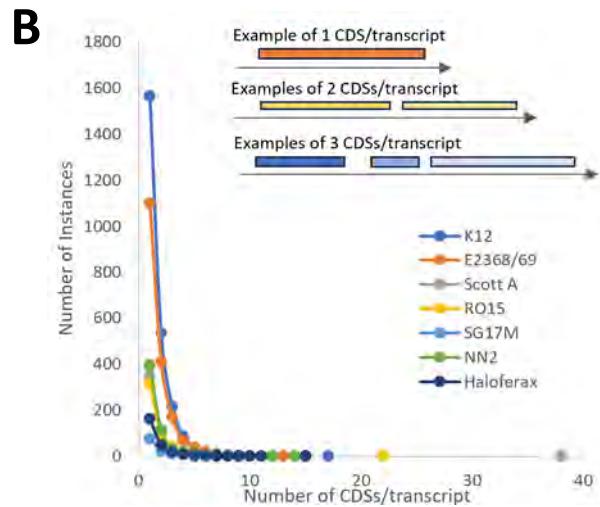
717 **Figure 5 – *LEE4* Operon**

718 Reads are illustrated that map to the plus strand (**A, C**) and minus strand (**B, D**) of the *E. coli* E2348/69
719 genome (GCF_014117345.2) grown in LB or DMEM for a region from 72-78 kbp. There are no reads from
720 the LB conditions on the (+)-strands. To facilitate the visualization of the starts and stops of transcripts,
721 reads were sorted by either their left most (**A, B**) or right most (**C, D**) position and plotted from top to
722 bottom accordingly. Transcript predictions from our algorithm (**E**) and the predicted CDSs in the
723 reference annotation file (**F**) are shown with arrows indicating the direction of transcription and with

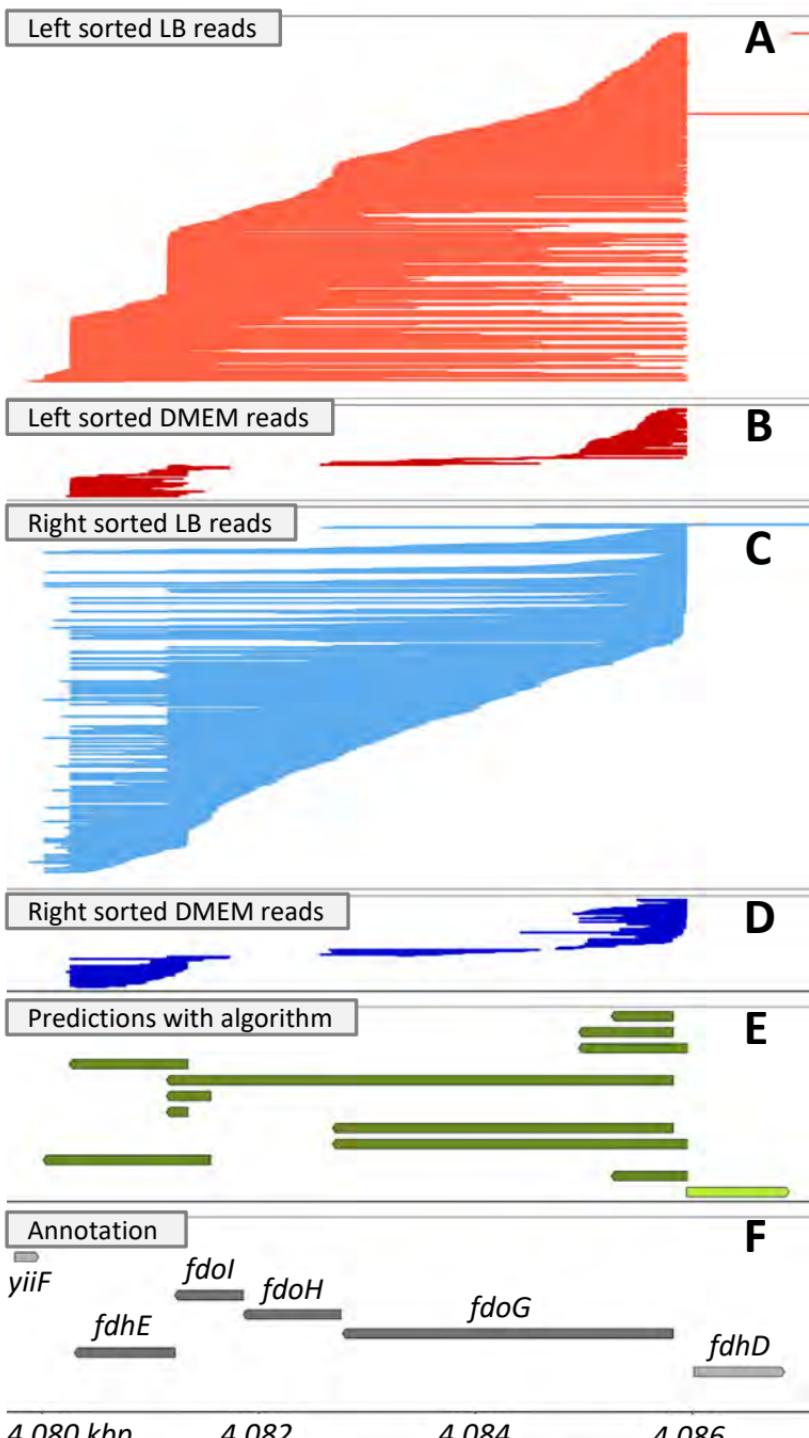
724 transcripts/CDSs on the different strands having different shading (light for the (+)-strand and dark for
725 the (-)-strand).



726 **Figure 6 – Differential expression of predicted transcripts**




727 Reads are illustrated mapping to the plus strand of the *E. coli* E2348/69 genome (GCF_014117345.2)
728 grown in LB (**A, C**) or DMEM (**B, D**) from 4.730-4.735 Mbp sorted by either their left most (**A, B**) or right
729 most (**C, D**) position. Transcript predictions from our algorithm (**E**) and the predicted CDSs in the
730 reference annotation file (**F**) are shown with arrows indicating the direction of transcription. Table of
731 transcripts per million (TPM) values calculated with Salmon (31) for transcripts and FADU (18) for CDSs
732 (**G**) for the same region shown in panels **ABCDEF**. For ONT reads, only Salmon was used. Plot of the
733 $\log_2(\text{TPM})$ for all CDSs and all corresponding transcripts for ERR393285 showing the discordance
734 between TPMs calculated based on transcripts and CDSs for the same Illumina data (**H**). Heatmap
735 clustered by genes for the $\log_2(\text{TPM})$ for all CDSs calculated with FADU (18) and all corresponding
736 transcripts calculated with Salmon (31) for Illumina and ONT reads generated from LB and DMEM (**I**).
737 Differences observed between a transcript-based differential expression analysis and a CDS-based
738 differential expression analysis with FADU (18) are summarized showing the differences in up- and
739 down-regulated genes (**J**).

740 **Figure 7 – ONT sequencing characteristics that informed algorithm development**


741 Size distribution of all of the *E. coli* K12 ONT sequencing reads aligning outside the rRNA reads compared
742 to the distribution of predicted operons (**A**). For the 285,619 reads that are longer than the operon they
743 map to, the length of reads is plotted relative to the size of the operon they map to (**B**). Normalized
744 sequencing depth from the 3'-end to the 5'-end for *E. coli* K12 16S rRNA, *E. coli* K12 23S rRNA, and IVT
745 RNA (SRR23886069), all thought to be complete, showing the 3'-bias in sequencing (**C**). Distribution of
746 read lengths for the 1.3 kbp yeast enolase ONT spike-in (**D**) and an 11.7 kbp IVT RNA (**E**) from

747 SRR23886069 where only reads ending at the far right position are shown. The log transformed ratios of
748 Illumina (SRR3111494) and ONT (SRR23886071) TPM values for RNA isolated from adult female *Brugia*
749 *malayi*, a filarial nematode and invertebrate animal, is compared to the transcript length, illustrating
750 how shorter transcripts have more Illumina reads relative to ONT reads than longer transcripts (**F**). Our
751 interpretation is that ONT sequencing is biased toward shorter transcripts. The inset uses the heat
752 function to show the intensity of the points in the region which contains most of the data.

A

Left sorted (+)-strand reads

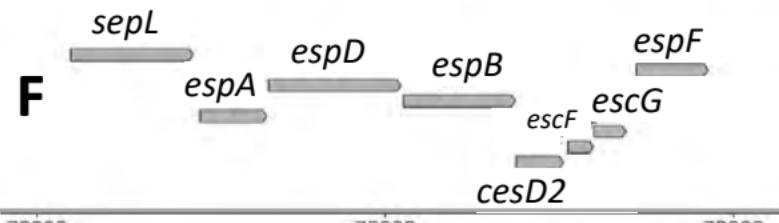
B

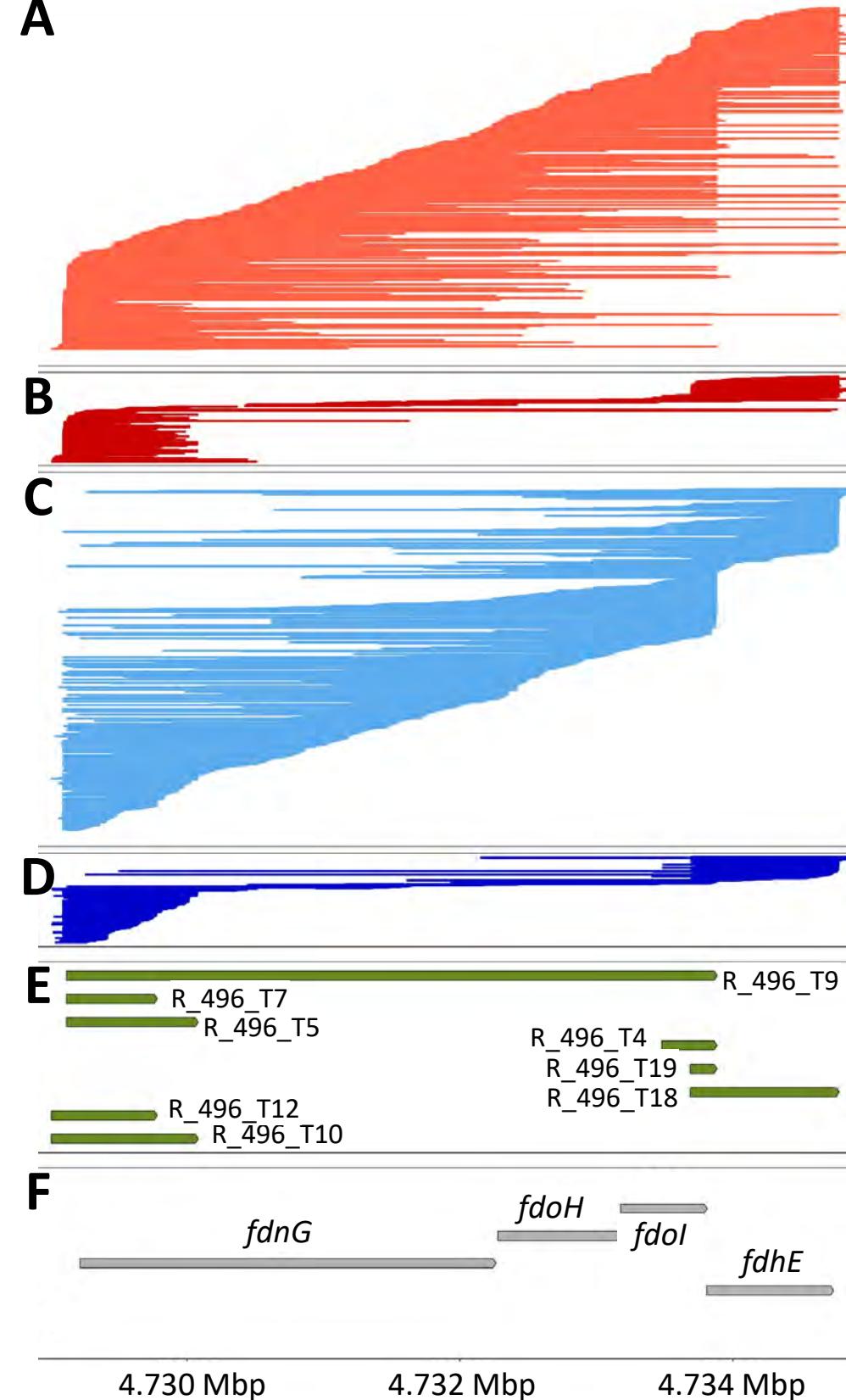
Left sorted (-)-strand reads

C

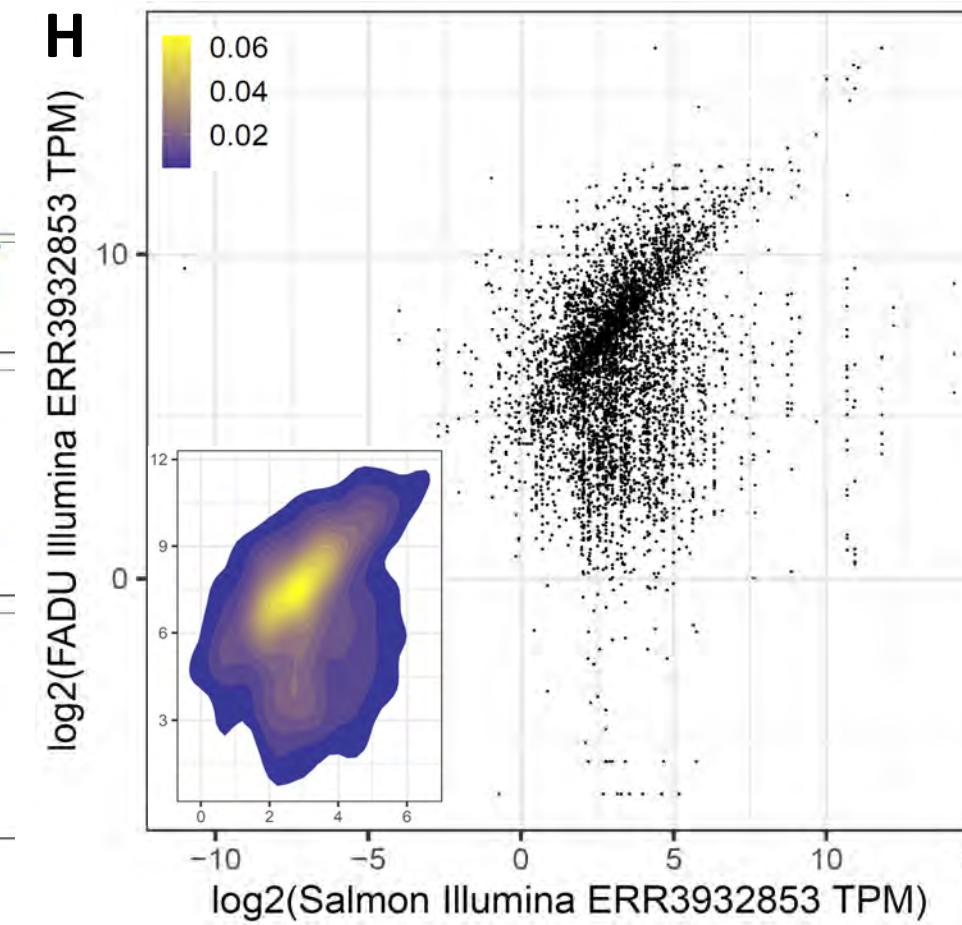
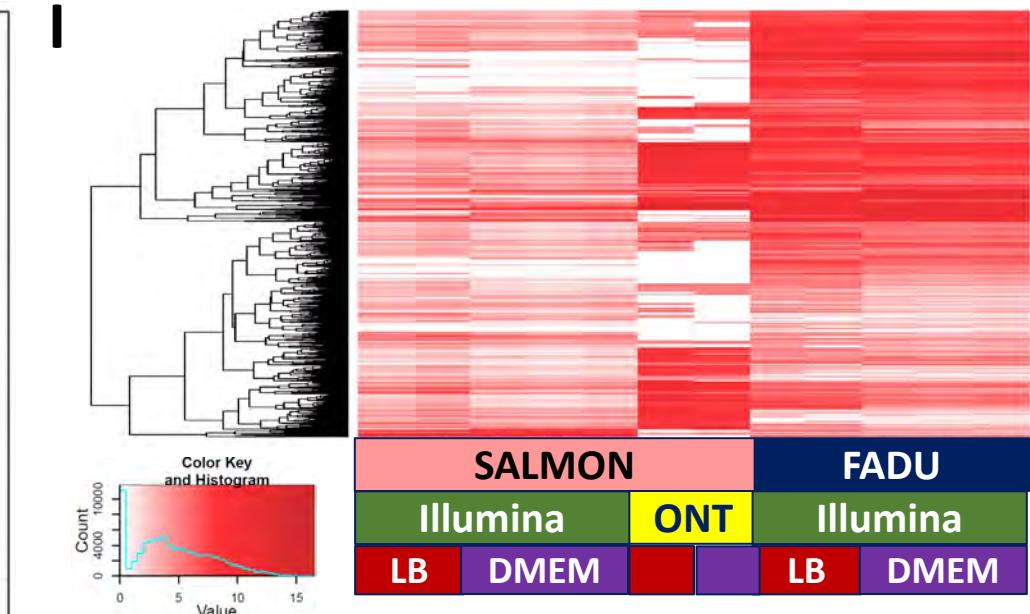
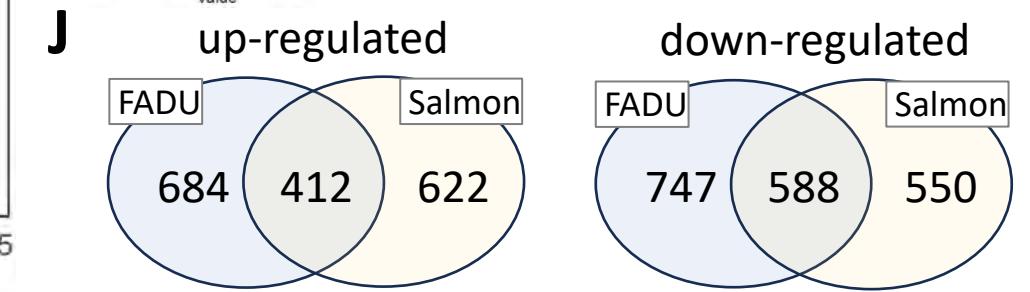
Right sorted (+)-strand reads

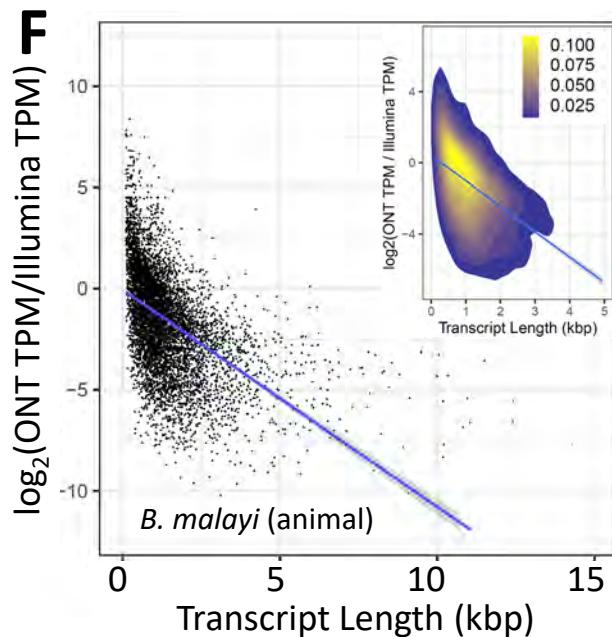
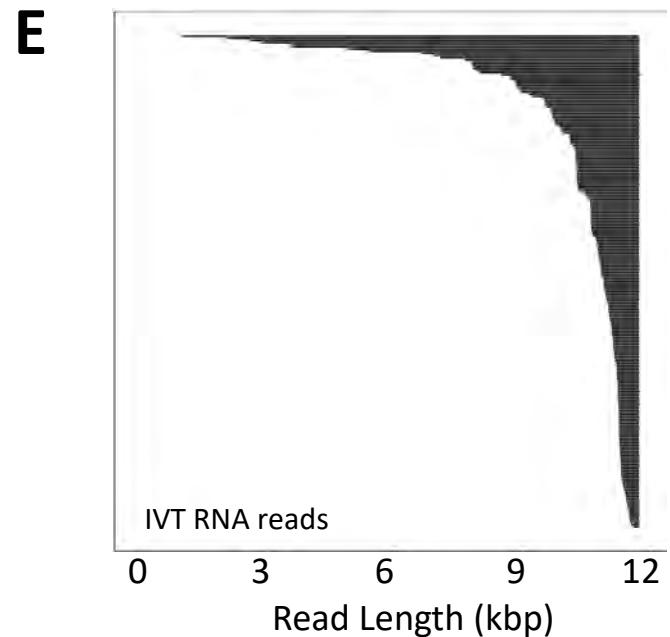
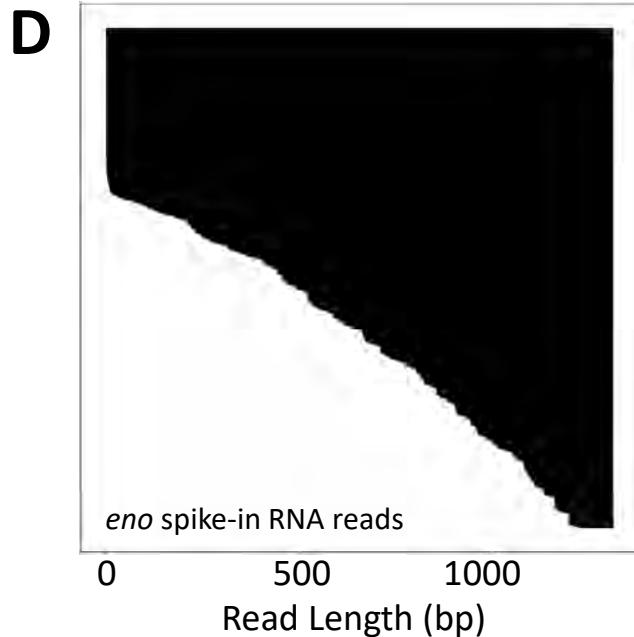
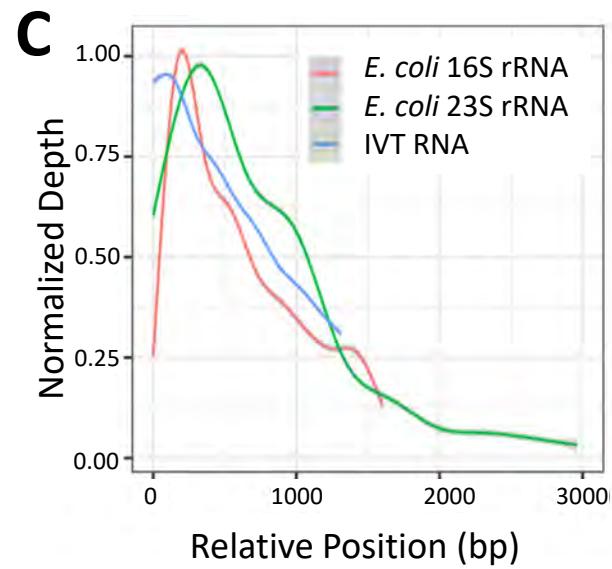
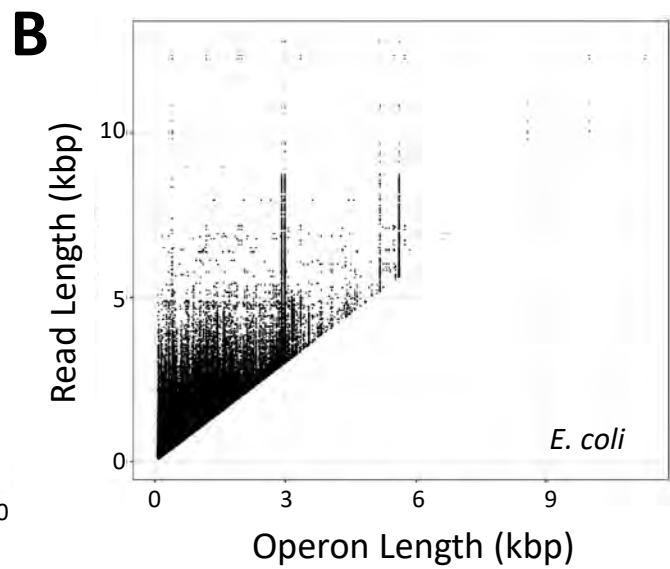
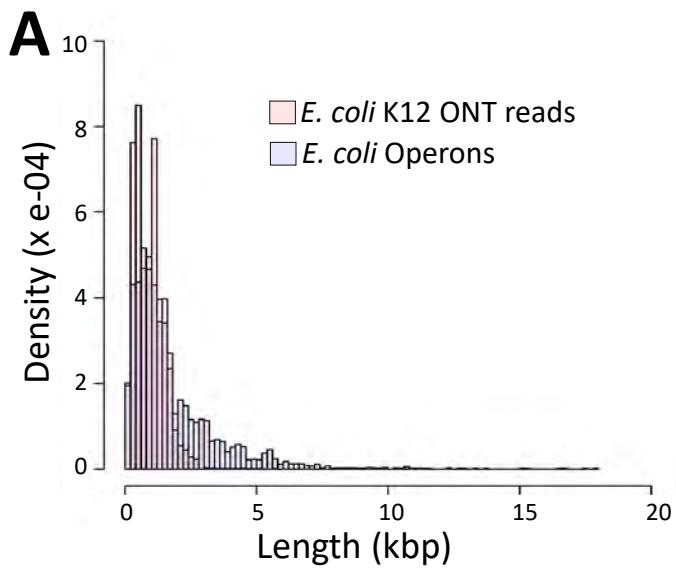
D


Right sorted (-)-strand reads


E

Predictions with algorithm




F







Annotation

A**G**

SRA		ERR3932847	ERR3932848	ERR3932849	ERR3932853	ERR3932854	SRR18061003	SRR18061004
Media		DMEM	DMEM	DMEM	LB	LB	DMEM	LB
Sequencing Technology		Illumina	Illumina	Illumina	Illumina	Illumina	ONT	ONT
Transcript	Gene							
R_496_T12	5'-end- <i>fdnG</i>	0	0	0	17.3	5.61	0	0
R_496_T10	5'-end- <i>fdnG</i>	13.8	9.06	26.4	32.7	48.2	1191	582
R_496_T7	5'-end- <i>fdnG</i>	0	0	0	0	0	0	0
R_496_T5	5'-end- <i>fdnG</i>	0	0	0	0	0	0	0
R_496_T9	<i>fdnG/fdoH</i>	4.47	4.70	6.56	21.5	35.6	420	4643
R_496_T4	3'-end- <i>fdol</i>	3.63	1.49	1.69	0	0	16.7	75.5
R_496_T19	3'-end- <i>fdol</i>	0	0	0	0	0	0	0
R_496_T18	<i>fdhE</i>	9.62	9.26	9.51	10.5	9.53	479	879
CDS	Gene							
WP_012579028.1	<i>fdnG</i>	198	194	315	1115	927		
WP_000331385.1	<i>fdoH</i>	119	112	97.7	594	492		
WP_000829013.1	<i>fdol</i>	147	129	115	472	334		
WP_000027712.1	<i>fdhE</i>	182	193	145	318	167		

H**I****J**

