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Abstract—Recent results established that EM enjoys global
convergence for Gaussian Mixture Models. For Mixed Linear
Regression, however, only local convergence results have been
established, and those only for the high signal-to-noise ratio
(SNR) regime. In this work, we completely characterize the global
optimality of EM: we show that starting from any randomly
initialized point, the EM algorithm converges to the true param-
eter β∗ at the minimax statistical rates under all SNR regimes.
Toward this goal, we first show the global convergence of the EM
algorithm at the population level. Then we provide a complete
characterization of statistical and computational behaviors of EM
under all SNR regimes with finite samples. In particular: (i)
When the SNR is sufficiently large, the EM updates converge to
the true parameter β∗ at the standard parametric convergence
rate O((d/n)1/2) after O(log(n/d)) iterations. (ii) In the regime
where the SNR is above O((d/n)1/4) and below some constant,
the EM iterates converge to a O(SNR−1(d/n)1/2) neighborhood
of the true parameter, when the number of iterations is of the
order O(SNR−2 log(n/d)). (iii) In the low SNR regime where
the SNR is below O((d/n)1/4), we show that EM converges
to a O((d/n)1/4) neighborhood of the true parameters, after
O((n/d)1/2) iterations. By providing tight convergence guaran-
tees of the EM algorithm in middle-to-low SNR regimes, we
reveal that in low SNR, EM changes rate, matching the n−1/4

rate of the MLE, a behavior that previous work had been unable
to show. 1

Index Terms—The EM Algorithm, Mixture of Linear Regres-
sion, Global Convergence, Sample Complexity, Minimax Rates

I. INTRODUCTION

THE expectation-maximization (EM) algorithm is a general-
purpose technique for estimating the model parameters

in problems with unobserved latent variables [12, 34]. In
particular, EM computes successively tighter upper bounds
of the negative log-likelihood function in the hope of finding
a good minimizer. In general, optimizing the likelihood in
the presence of missing data is an intractable problem due
to the non-convexity of the negative log-likelihood function.
Nevertheless, EM is still widely used in practice due to its
simplicity and good empirical performance [16, 25, 7, 23, 3].
Relatively little is understood about the theoretical properties
of EM.

Recent work has made progress in deriving theoretical
guarantees for EM for several statistical problems. It has been
demonstrated that when the Signal-to-Noise Ratio (SNR) is
high and certain regularity assumptions hold, EM converges
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locally if initialized near the global optimum; see, e.g., the
work in [39, 1, 17, 40, 41] and the references therein. For
the special case of Gaussian Mixture Models (GMM) with
two components, Xu et al. [36] and Daskalakis et al. [10]
have shown that a two-phase version of EM converges from
random initialization. As far as we know, no comparable global
convergence result is known for the related problem of Mixed
Linear Regression (MLR), despite the empirical success of EM
in this setting [11, 15].

The lack of global convergence guarantees for EM under
MLR is not simply an oversight. Rather, as we show later, the
structures of MLR differ significantly from GMM, even on the
population (infinite sample) level; consequently, EM exhibits
very different behaviors under these two models. Existing
techniques used to analyze EM under GMM—often based
on showing contraction in `2 distance—are fundamentally
insufficient for establishing global convergence of EM under
MLR. Furthermore, most prior work has studied instances
with strong separation (high SNR) and established linear
convergence of the EM algorithm with the standard parametric
statistical rate n−1/2. In contrast, the understanding of the EM
algorithm in the weak separation (low SNR) settings, especially
mixed linear regression, remains incomplete.

A. Basic Setup and the EM Algorithm
Mixed linear regression (MLR) models the regression setting

where different subsets of the response variables are generated
by different regressors. In the case of two components, which
we consider here, each data point (xi, yi) ∈ Rd×R is generated
by a mixture of two linear models with unknown regressors
±β∗ ∈ Rd:

yi = ci〈β∗,xi〉+ ei, i = 1, ..., n, (1)

where ei is the noise term, and ci ∈ {±1} is the hidden/latent
variable denoting whether the i-th data point (xi, yi) is
generated by +β∗ or −β∗. Finding the true parameter β∗

is known to be NP-hard in general even without noise [40].
Accordingly, a common assumption in the literature stipulates
that the covariates and noise terms, xi and ei, are sampled in-
dependently from Gaussian distributions; that is, xi ∼ N (0, I)
and ei ∼ N (0, σ2), where the noise variance σ2 is known. We
assume, moreover, that the hidden variables {ci} take values
±1 with equal probability and are independent of each other
and of everything else. We define SNR as η := ‖β∗‖/σ. We
assume that η is bounded from above by some (large enough)
constant ρ = O(1).

EM is an iterative algorithm for optimizing the likelihood
function of a latent variable model. At each iteration, EM



performs two steps: the E-step that computes the expectation
of the log-likelihood conditioned on the current estimate of
β∗, and the M-step that optimizes this conditional expectation.
For MLR, when we plug in the likelihood of the assumed
Gaussian distribution and replace the expectation with an
empirical average over observed data {xi, yi}, the M -step
becomes the weighted least squared loss minimization problem.
In this case, the finite-sample-based EM update, given the
current estimator β, has the following closed form expression:

β̃′ = Σ−1
n

(
1

n

n∑
i=1

tanh
( 〈β,xi〉

σ2
yi

)
yixi

)
, (2)

where Σ−1
n :=

(
1
n

∑n
i=1 xix

>
i

)
. For a derivation see Balar-

ishnan et al. [1] or Klusowski et al. [17].
The infinite-sample limit of the finite-sample EM, which we

call the population EM, has the following expression:

β′ = EX
[
EY |X

[
tanh

(
〈X,β〉
σ2

Y

)
Y

]
·X
]
. (3)

The above expression follows from taking the limit n → ∞
in the EM update formula (2) and simplifying the result using
the symmetry of the distribution of Y given X .

B. Main Contributions

In this work, we show that EM for MLR with two com-
ponents converges globally from random initialization. We
first establish this result in the infinite sample limit, i.e., for
the population version of EM. Along the way, we provide a
complete characterization of the landscape of the population
likelihood function, by classifying its local maxima, local
minima and saddle points. This geometric result implies non-
contraction in `2 distance of the EM iterates—in sharp constrast
to previous result to GMM—which therefore necessitates a
new convergence analysis based on the angle.

We then provide a finite sample analysis, starting by coupling
the finite-sample version of EM with the population EM. While
the ideas remain the same for the middle-to-high SNR regimes,
as we see below, finite-sample EM shows a very different
behavior from population EM in the low SNR regime. We
reveal this transition in statistical and computational behaviors
from middle to low SNR regimes that previous analysis had
missed. Collecting the results, we provide a complete picture
of the EM algorithm under all SNR regimes: we show that EM
converges to the true parameter starting from any randomly
initialized point at known minimax rates [8] in all SNR regimes.
We describe our contributions in more details as follows.

1) Population Analysis for Global Convergence: Previous
work on analyzing the EM algorithm for MLR relies on
demonstrating that the `2 distance between the current
iterate and the true solution β∗, contracts at every iteration
provided that the initial distance is already small. Such
a contraction, however, cannot hold globally, as the EM
update initialized randomly may in fact result in a larger
distance from β∗. This phenomenon was pointed out
in [17]. Nevertheless, we prove the global convergence
from careful observations on the population landscape as
described below:

1.1 Population Landscape: We provide a geometric expla-
nation in this paper by showing the existence of saddle
points of the log-likelihood function in the direction
orthogonal to β∗. These saddle points prevent a global
convergence in `2 distance of EM (which is equivalent
to gradient ascent). On the other hand, we show that
±β∗ are the only local maxima, hence suggesting that
global convergence can be proved by other means.

1.2 Global Convergence via Decreasing Angle: Instead
of proving a global convergence via the `2 distance, we
show that the angle between the iterate and β∗ is always
decreasing (unless we start from an exactly orthogonal
vector—a measure zero event). Consequently, EM
quickly enters a local region where the current iterate
is well aligned with the direction of β∗. In this local
region, we show that a contraction in distance indeed
holds. We use this argument to demonstrate that EM
converges to β∗ from any randomly initialized point
with high probability.

2) Finite-Sample Analysis and Minimax Rates: Using our
population results, we provide the finite-sample analysis
for the EM algorithm. However, unlike in the population
case, we show that finite-sample EM shows very different
behaviors in different SNR regimes as described below:

2.1 High-to-middle SNR regimes: when η & (d/n)1/4

(up to some logarithmic factor), we show that
finite-sample EM converges to β∗ within a
neighborhood of O(max{1, η−1}(d/n)1/2) after
O(max{1, η−2} log(n/d)) number of iterations.

2.2 Low SNR regime: when η . (d/n)1/4 (up to some
logarithmic factor), the EM algorithm converge to
β∗ within a neighborhood of O((d/n)1/4) when the
number of iterations is of the order of O((n/d)1/2).

For the finite-sample analysis, we focus primarily on two
aspects of the EM algorithm: (i) statistical rate, and (ii)
computational complexity. In the high SNR regime, we
have linear convergence to true parameters within

√
d/n

rate as noted previously in the literature. In contrast, in
the low SNR regime when η . (d/n)1/4, the statistical
rate is (d/n)1/4. We explain this transition in statistical
rate with a convergence property of the population EM
in the middle-to-low SNR regimes. The upper bound
on the statistical error given by EM matches the known
lower bound for this problem in all SNR regimes [8]. For
the computational complexity, the number of iterations
increases quadratically in the inverse of SNR until SNR
reaches (d/n)1/4. One can also observe that the number
of iterations is naturally interpolated at SNR = (d/n)1/4

from η−2 log(n/d) to
√
n/d. We note that our results

do not require sample-splitting (a technique using fresh
samples every iteration) which is crucial for getting the
sample optimality results in middle-to-low SNR regimes.

In summary, we obtain the following overall guarantee for
the finite-sample EM with n samples:

Theorem 1. Let β̃0 be a random initial vector in Rd such
that the direction of β̃0 is randomly sampled from the uniform
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distribution on the unit sphere. The norm of initial vector can be
any non-zero constant such that ‖β̃0‖ ≥ cσ(d log2(n/δ)/n)1/4

and n > Cd2 for some universal constants c, C > 0.
There exist universal constants C1, . . . , C5 > 0 such that the
following holds.

(a) (Middle-to-high SNR regimes) When η ≥
C1(d log2(n/δ)/n)1/4, with probability at least 1 − δ,
we have

‖β̃T − β∗‖ ≤ C2σmax{1, η−1}(d log2(n/δ)/n)1/2,

after we run the standard EM algorithm (2) for T =
C3 max{1, η−2} log(n/d) iterations.

(b) (Low SNR regime) When η ≤ C1(d log2(n/δ)/n)1/4,
with probability at least 1− δ, we have

‖β̃T − β∗‖ ≤ C4σ(d log2(n/δ)/n)1/4,

after we run either Easy-EM or standard EM for T =

C5 log(log(n/d))
√
n/(d log2(n/δ)) iterations.

C. Key Challenges and Comparison to Existing Approaches
for GMM

As mentioned earlier, several recent works have consider
the related problem of 2-component GMM and established
global convergence of the EM algorithm [36, 10, 13]. Here
we highlight the key challenges in our MLR setting as well as
the differences between our analysis and those for GMM in
prior works, deferring a more detailed discussion to subsequent
sections. Additional discussion on related work is provided at
the end of this subsection.

a) Population Analysis.: A key difference between MLR
and GMM is the presence of the covariates X in the regression
setting. Therefore, each observation (X, y) in MLR only
provides information along the X direction for the relative
position of the current iterate β and the true β∗. This difference
has far-reaching consequences: the geometry of the negative
log-likelihood function of MLR and the dynamics of the EM
algorithm are significantly different from those in the GMM
setting.

In particular, unlike GMM, in MLR there is a non-trivial
region where the EM iterate does not contract in Euclidean
distance to the true parameter. This difference is illustrated
in Figure 1: note that for MLR the distance ‖β − β∗‖2 first
increases than decreases. Consequently, the approaches in [10,
17], which are based on distance contraction in GMM, do not
work in our setting. For MLR, we need consider alternative
measures (or potential functions) under which the EM iteration
converges quickly. Specifically, we establish angle contraction
results in Section 3, and our analysis is divided into 3 phases:
• Phase 1: We start with random initialization, and thus, we

start with a small cosine value between the EM iterate β
and the true β∗. We show that the cosine value increases
at a (constant) linear rate and thus EM escapes the small-
angle region in O(log d) steps.

• Phase 2: Once the cosine value reaches O(1), the sine
value becomes a more appropriate potential function,
which decays at a (constant) linear rate to 0. Note that

the increase rate in the cosine value slows down when it
is close to 1.

• Phase 3: Eventually we want to show that iterate β
linearly converges to β∗ in `2-distance, which happens
after sufficient angle alignment.

Xu et al. [36] have used similar angle alignment arguments to
show convergence of the EM algorithm for GMM. However,
they only used the sine value as their potential function, re-
stricting the analysis to the asymptotic regime (in their analysis,
the convergence rates have not been explicitly specified). With
random initialization, the sine values converges slowly during
the first phase. We circumvent the issue by establishing the
linear increase in the cosine values during phase 1, showing
that EM escapes the initial phase after O(log d) iterations. The
work by Daskalakis et al. [10] has provided a non-asymptotic
convergence result for 2-GMM; however, they rely on global
`2-distance convergence, which does not hold in 2-MLR.

b) Finite-Sample Analysis.: Prior work has established
the local convergence of EM for both 2-component GMM and
2-compnent MLR in the high SNR regime (η = ‖β∗‖/σ >
1) [40, 10, 17]. To our best knowledge, no prior work has
shown the minimax optimality of the EM algorithm in the
middle or low SNR regimes. Our analysis for the low SNR
regime is inspired by the technique developed in Dwivedi et
al. [13]. However, they can only address the over-specified
settings (i.e., the SNR is ‖β∗‖/σ = 0), whereas we extend the
applicability of their techniques to show the minimax statistical
rates in all SNR regimes. In particular, we explicitly show the
transition of statistical rates from high to low SNR regimes
σmax(1, η−1)·

√
d/n to (d/n)1/4 through the careful analysis

of angle concentration and localization, which has not been
done in the context of analyzing EM algorithms.

D. Other Related Work

As mentioned, our knowledge of when EM converges to
a true solution is still limited. In general, it is known that
the EM algorithm may settle in a bad local optimum [34].
Classical results on convergence were infinitesimally local,
and asymptotic [28, 37, 25]. Recent study on the theoretical
understanding of EM has been initiated in Balakrishnan et
al. [1], which proposed a novel framework to analyze the EM
algorithm. Motivated by this work, there has been a line of
work that provides local analysis of EM when it starts from a
well initialized point [39, 40, 38, 19, 18].

More recent work has provided global analysis for the GMM
problem. For the mixture of two Gaussians, Xu et al. [36]
and Daskalakis et al. [10] establish guarantee convergence
of EM for this specific problem from a random initialization.
Extensions to other variants of GMM are considered in the
work [27, 26, 2]. For GMM with more components, however,
Jin et al. [14] proves that bad local optima exist and randomly
initialized EM converges to such a local solution with high
probability.

For MLR, only the local convergence of EM has been
recently established: when there are two components, the EM
algorithm converges to the global optimum if we start from
a point sufficiently close to the true parameter in `2 distance;
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see, e.g., [40, 39, 41, 1] and the references therein. A better
local contraction region was suggested in Klusowski et al. [17],
where the convergence is guaranteed inside a region where the
angle between the initial solution and the true parameter is
small. Still, all known results remain inherently local for MLR,
and in particular, are not satisfied by a random initialization,
even when a norm bound on the true parameter is known.

Moreover, previous results on MLR are strictly restricted
to high SNR regimes, i.e., when ‖β∗‖ is sufficiently larger
than σ. In a closely related problem of learning mixtures
of two Gaussians, [13] recently studied the EM algorithm
in an extreme case of the over-specified models, i.e., there
is no separation between two components. However, their
analysis is restricted to strictly over-specified settings, and
it has not been obvious to extend their result to low SNR
models. In another recent work, [35] has studied the EM
algorithm for learning a mixture of two weakly-separated
location Gaussians, establishing a minimax rate of the EM
algorithm after O(

√
n/d) iterations in middle-to-low SNR

regimes. However, their result requires the initialization to be
already within a small Euclidean ball of (d/n)1/4-radius, which
is restrictive. Our result does not suffer from small initialization
issue as in [35]. Furthermore, our proof strategy can be applied
to resolve the open issue with small initialization in [35].

MLR is an interesting problem by itself, for which many
algorithms beyond EM have been proposed. The work in Chen
et al. [8, 9] developed a lifted convex formulation approach that
achieves tight minimax error rates. A good initialization strategy
for EM based on Stein’s second-order lemma was proposed in
Yi et al. [40], though this seems to rely on the noiseless setting
which they study. The above two papers have focused on MLR
of two components case. Recent work has extended the focus to
multiple components. The work in [42, 24] develops gradient
descent based algorithms. In parallel, the work in [6, 41, 29]
considers algorithms that are based on tensor decomposition of
third order moments. EM is an attractive option among these
algorithms due to its generality, simplicity and computational
efficiency; moreover, EM is often applied to the output of other
algorithms to obtain an improved estimate.

E. Notations

We establish the notation used throughout the remainder of
the paper. We use ∠(u,v) to denote the angle between two
vectors u and v. The `2 norm for a vector is denoted by ‖ · ‖,
and the spectral norm (the largest singular value) of a matrix is
denoted by ‖ · ‖op . For two vectors u,v ∈ Rd, 〈u,v〉 = u>v
is the usual inner product between them.

We use (X, Y ) as a generic random variable representing
the covariate-response pair from the MLR model (1), and use
{(xi, yi)} as independent copies of (X, Y ). Due to a symmetry
between the regressors ±β∗, we focus on the convergence to
one of them, say β∗. We use βt to denote the estimate of β∗ at
the tth iteration of the population EM, and use θt := ∠(βt,β

∗)
to denote the angle formed by βt and β∗. When we intend to
understand a single iteration of the EM, we drop the subscript t,
and use β in place of βt for the current iterate and β′ in place
of βt+1 for the next iterate. Similarly, we use θ for θt and

and θ′ for θt+1. We assume without loss of generality that the
initial angle θ0 is in [0, π/2), where π/2 is excluded as it has
measure zero. An initial solution falling in the remainder of the
circle has precisely the same behavior, but with a convergence
to −β∗ instead of β∗.

For the iterates and angles in the finite-sample EM, we use ·̃
to distinguish them from the population case. For instance, β̃t
denotes the tth iterate of the finite-sample EM and θ̃t denotes
the angle between β̃t and β∗. Similarly, for a single iteration
of finite-sample EM with the current iterate β, the notations β̃′
and θ̃′ denote the next iterate and its angle with β∗, respectively.

Recall that σ is the known standard deviation of the noise
{ei}, and the SNR is defined as η := ‖β∗‖

σ , with the assumption
that η ≤ ρ = O(1).

F. Paper Organization

In Section II, we demonstrate a few structural properties
of the population EM update. The global convergence result
of the population EM is provided in Section III. The global
convergence and minimax results of the finite-sample EM in
the high and low SNR regimes are provided in Section IV.
The proofs of our main results are provided in Appendix A, B
and C. The paper is concluded in Section VI with a discussion
of future directions.

II. POPULATION EM AND LIKELIHOOD LANDSCAPE

In this section, we derive several structural properties of the
population EM update. By connecting the EM update with the
log likelihood of MLR, we provide a characterization of the
landscape of the likehood function. These results highlight the
main challenges in the MLR problem and the reasons why
they can be resolved, which serves as a starting point of our
subsequent proof for global convergence.

A. Explicit Expression for the Population EM Update

Given the current iterate β, we consider one iteration of the
population EM update (3) which yields the next iterate β′. Since
the distribution of the covariate X is spherically symmetric, we
may choose a convenient an orthonormal basis {v1, ...,vd} of
Rd as follows. We let v1 be a unit vector in the direction of β
and v2 be a unit vector that is in span{β,β∗} and orthogonal
to v1. In this case, X can be written as X :=

∑d
i=1 αivi,

where α = (α1, . . . , αd) ∼ N (0, I). Introduce the shorthands
b1 := 〈β,v1〉 = ‖β‖, b∗1 := 〈β∗,v1〉, b∗2 := 〈β∗,v2〉 and
σ2

2 := σ2 + b∗2
2. We may write the next iterate β′ as

β′ = Eα

[
EY |α

[
tanh

(
b1α1

σ2
Y

)
Y

] d∑
i=1

αivi

]
, (4)

where α ∼ N (0, I) and Y |α ∼ N (α1b
∗
1 +α2b

∗
2, σ

2). Without
loss of generality, we assume that b1, b∗1, b

∗
2 ≥ 0. The following

lemma provides an explicit expression of β′ under the above
orthonormal basis.

Lemma 1 (Explicit Update for Population EM). Let β 6= 0
be the current iterate and β′ be the next iterate defined in
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S :=Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
(5a)

R :=(σ2 + ‖β∗‖2)Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
(5b)

L(β) :=− EXEY |X
[
log

(
1

2
√

2πσ2
exp

(
− (Y − 〈X,β〉)2

2σ2

)
+

1

2
√

2πσ2
exp

(
− (Y + 〈X,β〉)2

2σ2

))]
(6)

equation (4). Then β′ is in span(β,β∗) and can be written as
β′ = b′1v1 + b′2v2 with

b′1 = b∗1S +R and b′2 = b∗2S, (7)

where S and R have the expressions in (5a), (5b). The expec-
tations above are taken over α1 ∼ N (0, 1) and z ∼ N (0, 1).
Moreover, we have S ≥ 0 and R > 0, where S = 0 if and
only if b∗1 = 0.

Lemma 1 is proved in Section A-A. Qualitatively, the lemma
establishes that the next iterate β′ remains in the linear subspace
spanned by the current iterate β and the true parameter β∗.
Moreover, if β is orthogonal to β∗, then β′ remains in span(β).
Consequently, if we run the population update starting from
some initial solution β0, then it holds that βt ∈ span(β0,β

∗)
for all t = 1, 2, . . .

The quantities b′1 and b′2 in Lemma 1 represent the projections
of β′ along v1 (direction of β) and v2 (the orthogonal direction
to β), respectively. From the expressions of b′1 and b′2, we can
further deduce the following quantitative properties of the
population EM dynamics:

1. Decreasing angle: When ∠(β,β∗) ∈
(
0, π2

)
, then

∠(β′,β∗) < ∠(β,β∗), that is, each iteration of popu-
lation EM strictly decreases the angle between the iterate
and the true parameter.

2. Contraction along β: In the direction of v1 (equivalently,
β), β′ moves towards a unique fixed point E(v1); i.e.,
|b′1 − E(v1)| ≤ |b1 − E(v1)| with equality holds if and
only if b1 = E(v1).

The first property immediately follows from the expression
of b′2. In particular, note that 0 ≤ tan∠(β′,β) =

b′2
b′1
≤ b∗2

b∗1
=

tan∠(β∗,β). When b′2
b′1
> 0, the angle strictly decreases; when

b′2
b′1

= 0, the angle remains the same. In particular, the latter

case b′2
b′1

= 0 happens if and only if b′2 = 0, which means
either b∗2 = 0 (i.e., β ∈ span(β∗)) or S = 0 (i.e., β ⊥ β∗).
The second property follows from the expression of b′1; the
derivation is given in Lemma 10.

B. Structural Properties of Population EM and Likelihood
Function

The population negative log-likelihood function L of the
MLR model (1) is given in (6), where X ∼ N (0, I) and
Y |X ∼ N (〈X,β∗〉, σ2). Interestingly, it can be shown that
the population EM update is equivalent to applying gradient
descent to the population negative log-likelihood.

Lemma 2 (Connection Between EM and Gradient Descent).
Given the current iterate β, the next iterates produced by the
population EM update (3) satisfies

β′ = β − σ2∇βL(β).

Consequently, the set of fixed points of the population EM
update is equal to the set of stationary points of the population
negative log-likelihood L.

Proof. Direct computation shows that the gradient of L given
in (6) admits the expression:

∇βL(β) =
1

σ2

[
β − E

[
tanh

(
〈X,β〉Y

σ2

)
YX

]]
. (8)

Comparing this equation with the expression of the population
EM update (7), we see that ∇βL(β) = 1

σ2 (β−β′). The lemma
follows.

Using the two properties derived in the last subsection, we
obtain the following complete characterization of the fixed
points of the population EM as well as the stationary points
of the population log likelihood.

Theorem 2 (Population EM and Log-likelihood). Let v be
an arbitrary unit vector orthogonal to β∗. In the subspace
span(v,β∗), the population negative log-likelihood function (6)
has exactly five stationary points:

β∗, −β∗, 0, E(v)v, −E(v)v,

where E(v) > 0. In particular, ±β∗ are global minima, 0
is a local maximum, and ±E(v)v are saddle points whose
Hessians have a strictly negative eigenvalue. Moreover, these
five points are the only fixed points of the population EM (4)
in span(v,β∗).

Theorem 2 is proved in Section A-B. In the left pane of
Figure 1, we illustrate the landscape of the negative log-
likelihood of MLR in dimension d = 2. Since ±β∗ are the
only local minima, it can be expected that population EM
(equivalent to gradient descent) converges to them from a
random initialization—we establish this result rigorously in
subsequent sections and provide non-asymptotic convergence
rates. On the other hand, due to the existence of saddle points,
the `2 distance of the EM iterates to β∗ cannot contract globally.
In particular, if the current iterate β is the near a saddle
point and the maximum 0, the next iterate β′ will first move
toward the saddle point before making progress to β∗, hence
‖β′ − β∗‖ > ‖β − β∗‖. This issue is only exacerbated in
higher dimensions, where most β’s are nearly orthogonal to
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Figure 1: Negative log-likelihood functions of MLR (left) and GMM (right) with true parameter β∗ = (1, 0). In both problems,
±β∗ are the only local minima. MLR has a local maximum at 0 and two non-zero saddle points along the x2 axis that are
orthogonal to β∗. GMM has a saddle point at 0 and no other stationary points.

β∗ and hence likely to be near a saddle point. A similar
non-contraction phenomenon for EM was pointed out in by
Klusowski et al [17]; here we provide a geometric explanation
in terms of the likelihood landscape.

We note that negative likelihood function of GMM does not
have such non-zero saddle points, as illustrated in the right
pane of Figure 1. Consequently, the `2 distance does decrease
globally in this problem, as is established in previous global
analysis of EM under GMM [10, 36]. This `2-distance-based
analysis, however, is fundamentally insufficient for proving
global convergence under MLR.

III. CONVERGENCE ANALYSIS OF THE POPULATION EM
In this section, we provide our main results on the global

convergence of the population EM. As mentioned, a major
challenge in the analysis is the non-contraction of the `2
distance of the EM iterates to the true parameter β∗. To address
this challenge, we adopt the new strategy of first proving a
rapid decrease in angle and then proving a geometric decrease
in `2 distance.

A. Convergence in Cosine

Recall that η := ‖β∗‖/σ is the SNR, and θ0, θ and θ′ denote
the angles that β∗ forms with β0 (initial iterate), β (current
iterate), and β′ (next iterate), respectively. By symmetry we
may assume without loss of generality that cos θ0 is positive.
For the early stage of the EM iterations, we focus on the cosine
of the angle and show that it increases geometrically with a
constant rate.

Theorem 3 (Cosine Convergence). When 0 ≤ θ < π
2 , the

population EM iteration (4) satisfies

cos(θ′) ≥ κ1(θ) cos(θ), (9)

where κ1(θ) =
√

1 + sin2(θ)

cos2(θ)+ 1
2 (1+η−2)

. In particular, when

θ ≥ π
3 , we have κ1(θ) ≥

√
1 + η2

2
3 +η2

. Consequently, if

cos(θ0) = Θ(1/
√
d), after T = O

(
max(1, η−2) log d

)
iter-

ations, we get θT < π/3 or equivalently cos(θT ) ≥ 1
2 .

Theorem 3 is proved in Section B-B. Note that using a
random initialization, we have cos θ0 = Θ(1/

√
d) with high

probability (see Lemma 16). Therefore, starting such an initial
angle θ0, Theorem 3 ensures that a logarithmic number of
iterations of the population EM is sufficient to achieve cos θt =
O(1).

Theorem 3 provides explicit characterization of the linear
convergence rate, where the ratio κ1(θ) between cos θ′ and
cos θ is bounded away from 1 when θ is bounded away from 0.
Therefore, this result is most useful in the early stage of EM.
As θ goes to 0, the ratio κ1(θ) approaches 1, in which case the
cosine of the angle is no longer informative for establishing
a linear convergence rate. In the following subsection, we
establish a complementary result for the sine of the angle.

B. Convergence in Sine

Our next theorem shows that the sine of the angle converges
geometrically to 0. This result is reminiscent of Theorem 3 in
Xu et al. [36], where they considered GMM and used a similar
argument to show asymptotic convergence. Here we provide
an explicit rate of convergence by quantifying the amount of
change in sine. This quantitative, non-asymptotic guarantee is
critical when we port the population-level results to the finite
sample setting.

Theorem 4 (Sine Convergence). When 0 ≤ θ < π
2 , the

population EM iteration (4) satisfies

sin θ′ ≤ κ2(θ) sin θ, (10)

where κ2(θ) =
(√

1 + 2η2

1+η2 cos2 θ
)−1

< 1. In particular,

when θ < π
3 , we have κ2(θ) <

(√
1 + η2

1+η2

)−1

.

Theorem 4 is proved in Section B-A. Note that the speed
of convergence increases as the angle decreases. This result
is most useful when the angle is bounded away from π/2—
complementary to the case covered by Theorem 3. In particular,
starting from an initial solution θ0 < π/3, Theorem 4 ensures
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that after T = O
(

max(1, η−2)
)

iterations, the population EM
outputs a solution satisfying θT < π/8.

We remark that in the high SNR regime (η � 1), the ratio
κ2(θ) can be much smaller than 1, despite depending on the
initial angle. In the low SNR regime (η � 1), however, the
ratio κ2(θ) cannot be smaller than 1 − O(η2), regardless of
the initial angle.

C. Convergence in `2 Distance

Combining the above results on cosine and sine, we can
conclude that eventually the population EM pushes any random
initial solution into a region with a small angle around β∗.
At this point, EM safely transits to the stage that exhibits a
contraction in `2 distance, which is the content of our next
result.

Theorem 5 (`2 Contraction). Suppose we have that θ < π/8.
Recall the shorthands b1 := ‖β‖, b∗1 := ‖β∗‖ cos(θ), b∗2 :=
‖β∗‖ sin(θ) and σ2

2 := σ2 + b∗22 . The following holds for the
population EM iteration (4):

• If b∗2 < σ or σ2
2

σ2 b1 < b∗1, then

‖β′−β∗‖ ≤ κ3(θ)‖β−β∗‖+κ3(θ)(16 sin3 θ)‖β∗‖ η2

1 + η2
,

(11a)

where κ3(θ) =

(√
1 + min

(
σ2
2

σ2 b1, b∗1

)2

/σ2
2

)−1

.

• If b∗2 ≥ σ and σ2
2

σ2 b1 > b∗1, we have

‖β′ − β∗‖ ≤ 0.6‖β − β∗‖. (11b)

Theorem 5 is proved in Section B-C. Note that the bound
(11a) has an additional term that depends on the angle and
SNR. When b1 is close to b∗1 and σ is small, we get a better
contraction bound in (11b).

Equipped with the above per-iteration contraction result, we
can bound the `2 error after t iterations of population EM and
conclude that it converges to β∗.

Corollary 1 (`2 Convergence). Suppose that the initial solution
satisfies θ0 < π/8. There exists a constant κ < 1 such that
after T iterations of the population EM, we have the error
bound

‖βT − β∗‖ < κT ‖β0 − β∗‖+ TκT ‖β∗‖ η2

1 + η2
. (12)

In particular, the constant κ can be taken to be the maximum
among

0.6,

√(
1 +
‖β0‖2
σ2

)−1

,

√
1− 0.8η2

1 + η2
. (13)

Corollary 1 is proved in Section B-D. We shall see in the
proof that the value of κ depends on max(κ3

2(θ0), κ3(θ0)),
which is upper bounded by max(κ3

2(π/8), κ3(π/8)) when
θ0 < π/8. Therefore, the convergence rate κ depends on the
SNR η as well as the norm ‖β0‖ of the initial solution. For
different values of the SNR η, the rate is either a constant or
1−O(η2), as was in the case of bounding the sine. Therefore,
T = O

(
max(1, η−2) log(1/ε)

)
iterations is sufficient to

achieve a solution ε-close to β∗.

Combining the above results on the cosine, sine and `2
distance, we conclude that starting from a random initial
solution, the population EM converges to β∗ and achieves an
ε error in `2 distance in O

(
max(1, η−2) log(d/ε)

)
iterations.

IV. FINITE SAMPLE ANALYSIS

We now turn to proving the convergence of the finite-sample
EM update given in equation (2). Throughout this section, we
assume that the number of samples n satisfies n ≥ Cd for
some sufficiently large constant C > 0. Our analysis is divided
into two cases: the middle-high SNR regime and the low
SNR regime. For high and middle SNR, i.e., η & (d/n)1/4,
we relate the finite EM update with the angle convergence
argument we used for the population EM. In contrast, for a
low SNR, i.e., η . (d/n)1/4, we do not require any angle
convergence argument since we only need to show that the
norm of the iterate shrinks until it enters in the ball of radius
(d/n)1/4. Thus, we handle the low-SNR regime in Section
IV-C separately.

For the bulk of this section, we assume the following:

Middle-to-High SNR regime: η ≥ C(d log2(n/δ)/n)1/4,
(14)

for some universal constant C > 0. In this regime, we show
that at each iteration, the finite-sample update is close to its
population counterpart up to a “statistical fluctuation” term εf ,
defined as:

εf := c

√
d ln2(n/δ)/n, (15)

for some absolute constant c > 0.
In this section, we use β to denote our current iterate, β′

for the output from one step of the population EM, and β̃′ for
the output from one step of the finite-sample EM. Accordingly,
θ̃′ denotes the angle between β̃′ and β∗. When we consider
the sequence of iterates generated by the finite-sample EM, we
use β̃t for the tth iterate and θ̃t for its angle with β∗.

Our results, summarized below, establish that the finite-
sample EM converges in four phases in the middle-to-high
SNR regime:

1) Possible initialization from Spectral Method: Start
from a randomly initialized vector β0. With high prob-
ability, the vector β0 satisfies cos(θ̃0) = Θ(1/

√
d). We

compare the statistical fluctuation εf to the threshold
min(1, η2)/

√
d, which amounts to the increase in co-

sine values. If εf > min(1, η2)/
√
d (equivalently, if

n < max(1, η−4) · d2 ln2(n/δ)), then we first use the
standard spectral method to get an initial vector β̃0 such
that cos(θ̃0) = Ω

(
max(1, η−2) · εf

)
. Otherwise, we set

β̃0 = β0 and directly go to Phase 2.
2) Decreasing Angle: Starting from β̃0 obtained from

Phase 1, which satsifies cos(θ̃0) ≥ Ω(εf ), run the
finite-sample EM for T1 = O

(
log(1/εf ) ·max(1, η−2)

)
iterations to get an iterate β̃T1 satisfying sin(θ̃T1) ≥
sin(π/25).
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3) Convergence in `2: Starting from β̃T1
obtained

from Phase 2, run the finite-sample EM for T2 =
O
(

max(1, η−2) log(n/d)
)

iterations to get an iterate β̃T2

satisfying ‖β̃T2
− β∗‖ ≤ O

(
max(1, η−1)

√
d/n

)
. This

matches the known minimax rates in the middle-to-high
SNR regime [8].

Remark 1 (Initialization). In this paper we do not resort to
the sample-splitting scheme, in which one draws a new batch
of samples at every iteration. In doing so, the challenge is to
establish the right uniform bound on the statistical deviation
over the parameter domain of interest. In the conference version
of our paper [20], we show that the deviation in cosine value
is max(εf/

√
d, ε2f ) when a sample-splitting scheme is used.

This allows us to analyze the EM algorithm as it is, instead
of using a spectral method for the initialization. It seems that
there is hard trade-off in the analysis between removing the
sample-splitting scheme and avoiding the need for spectral
initialization. As our focus is on the minimax-optimality of last
iterates of the EM algorithm, we compromise some generality
in our analysis by assuming spectral initialization when n is
small.

A. Global Convergence in Angle

We now provide the details for Phase 2 outlined above.
As discussed in the introduction, our approach is based on
coupling the finite sample EM iterate with the population
EM iterate. The work in Balakrishnan et al. [1] establishes a
concentration bound on the `2 distance between the population
and finite-sample iterates in the form of

‖β̃′ − β′‖ = O
(√
‖β∗‖2 + σ2

√
d/n

)
.

This type of bound implies local contraction in distance.
However, it is not sufficient for us, as we need to control
the angle when the iterate is outside of the local region for `2
contraction.

We establish a more refined bound, which shows that the
statistical error is (at most) proportional to the norm of the
current iterate:

Lemma 3. For any given r > 0, there exists a universal
constant c > 0 such that we have

P

(
sup
‖β̃′‖≤r

‖β̃′ − β‖ ≤ cr
√
d log2(n/δ)/n

)
≥ 1− δ. (16)

Lemma 3 is proved in Appendix D-B. Note that the bound
is holds uniformly over the parameter space, which is the
crucial property that allows us to remove sample-splitting in
the analysis. Using equation (16), we prove the following angle
concentration bound.

Lemma 4. With probability at least 1− δ, the following holds
for all β satisfying ‖β‖ ≤ C

√
‖β∗‖2 + σ2 for some universal

constant C > 0:

cos(θ̃′) ≥ κ1(θ)(1− 10εf ) cos(θ)− εf , (17)

sin2(θ̃′) ≤ κ2
2(θ) sin2(θ) +O(εf ), (18)

where κ1(θ) =
√

1 + sin2 θ
cos2 θ+ 1

2 (1+η−2)
≥ 1, and κ2(θ) =(

1 + 2η2

1+η2 cos2 θ
)−1

< 1.

Lemma 4, proved in Section C-A, allows us to show that
at each iteration, the finite-sample EM decreases the angle
between the iterate and the true parameter, up to a quantity that
depends on the statistical fluctuation εf ∝

√
d/n (and hence

on the sample size). The key idea in the proof of the lemma is
that when we bound the statistical error of the cosine value, we
need to control the error in the fixed direction u = β∗/‖β∗‖
instead of all directions in Rd.

A consequence of Lemma 4 is that when the statistical
fluctuation εf is small relative to the SNR η, the finite-sample
EM iterates have strictly decreasing angles in Phase 2 (and the
angles remain small in Phase 3). This result is formalized in
the following corollary, whose proof is given in Section C-B.

Corollary 2. If εf ≤ c1 min(1, η2) for a sufficiently small
constant c1 > 0, then with probability 1− δ, we have θ̃′ < θ
in each iteration of Phases 2, and θ̃′ ≤ π

25 in Phase 3.

We now combine the above arguments to establish multi-step
convergence of the angle. This is done in the theorem below,
whose proof is given in Section C-C.

Theorem 6 (Cosine Convergence, Finite-Sample). Suppose
that β̃(0) is an iterate obtained from Phase 1. We run the
finite-sample EM with n = max(1, η−2)d/ε2f samples. As long
as θ̃(t) > π/25 for all t < T , there exists an universal constant
c1 > 0 such that with probability 1− δ,

cos(θ̃(t)) ≥
(
1 + c1 ·min(1, η2)

)
· cos(θ̃(t−1)). (19)

In particular, if cos(θ̃(0)) = Θ(1), then we have cos(θ̃(T )) ≥
0.95 after T = O

(
max(1, η−2) log d

)
iterations.

B. Local Convergence after Initialization: Minimax Rates

Now that we have reached an angle below π/25, the
following theorem provides a convergence guarantee in `2
distance. One subtle issue is that with only the angle argument
above, we have not yet said anything about the norm of the
iterate. If the norm of the iterate is too small, then the EM
iteration might get stuck around 0, which is a suboptimal
stationary point (Theorem 2). To avoid over-complicating the
analysis, we assume for now that the norm of the iterate is also
well-initialized such that ‖β0‖ ≥ 0.9‖β∗‖. We later remove
this assumption by supplying a norm initialization lemma after
the angle alignment in Section C-D.

Theorem 7 (`2 Convergence, Finite-Sample in Middle-to-High
SNR Regimes). Suppose that β̃0 is an iterate obtained from
Phase 2 whose angle with β∗ satisfies θ̃0 <

π
25 . Furthermore,

suppose that ‖β̃0‖ ≥ 0.9‖β∗‖. Then, for any δ > 0, there exist
universal constants C1, C2 > 0 such that with probability at
least 1− δ,

‖β̃T − β∗‖ ≤ C1σmax{1, η−1}
(
d log2(nη/δ)/n

)1/2
after T ≥ C2 max{1, η−2} log(nη/d) iterations.
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(a) (b) (c)

Figure 2: Convergence behavior of the EM algorithm when d = 5: (a) statistical rates of EM iterates (i.e., ‖β̃T − β∗‖ at the
last iteration) for different SNRs; (b) linear convergence in high SNR regime; (c) slow convergence in low SNR regime.

In the high SNR regime with η & 1, our result matches the
minimax rate and in particular guarantees exact recovery when
the noise variance σ goes to zero. Our proof of this bound
uses an approach different from what is typically used in the
literature. In particular, instead of coupling β̃′ and β′ directly,
we use the sample covariance matrix 1

n

∑n
i=1 xix

>
i to our

advantage, which allows us to decompose the error β̃′−β∗ in
a way that correctly captures the behavior of the finite-sample
iterate β̃′ near β∗. In this local region, the finite-sample EM
in fact behaves similarly to the standard least-squares estimator
applied to two separate linear regression problems, in which
case the statistical error does not depend on the regressors ±β∗.
We conjecture that a more careful analysis can also resolve
even the logarithmic dependency on η, and leave it as future
work.

Another interesting point arises in the middle SNR regime
where (d/n)1/4 . η < 1. Our statistical rate scales as
η−1

√
d/n, which matches the known lower bound in the

middle SNR regime [8]. Note that this bound holds only when
η ≥ (d/n)1/4; if η becomes smaller, the problem transits to
the low SNR regime, which we investigate in detail in the next
subsection. The main challenge in the middle SNR regime is to
guarantee the progress toward β∗ despite the slow convergence
rate (1−η2). Since the statistical fluctuation εf per iteration is
uniformly

√
d/n, a naive approach based on the concentration

of the EM operator would require n ≥ η−6 so that not
only the EM iteration moves forward but the accumulation of
statistical errors is also controlled in all iterations. To avoid the
excessive sample requirement above, we adopt the localization
argument used in the recent works [13], which established
the convergence behaviors of the EM algorithm under over-
specified Gaussian mixtures. Specifically, the localized bound
in Lemma 3 is the key for obtaining the minimax rate in the
middle SNR regime as well as for the removal of sample-
splitting.

With Lemma 3, the core of our analysis consists of two main
steps: (i) refinement of the convergence rate of the population
EM operator, namely, the contraction coefficient of population
EM is shown to be 1−O(max{‖β‖2−η2, η2}), (ii) multi-level
application of uniform concentration bound for the EM opera-

tors, which shows that the statistical deviation is proportional
to ‖β‖

√
d/n. The EM update is shown to make progress until

η2‖β − β∗‖ < ‖β‖
√
d/N , at which point EM achieves the

desired minimax statistical error ‖β−β∗‖ ≈ ση−1
√
d/N . For

the complete proof, see Section C-E.

C. Finite Sample Analysis: Low SNR Regime

In this subsection, we turn our focus to the low SNR regime,
where

Low SNR regime: η ≤ C(d log2(n/δ)/n)1/4, (20)

for some universal constant C > 0. In this regime, instead of
bounding the distance between β and β∗, i.e., ‖β − β∗‖, we
aim to obtain a bound simply for ‖β‖. The triangle inequality
then gives ‖β−β∗‖ ≤ ‖β‖+‖β∗‖. Therefore, if we can show
that

‖βT ‖ . σ(d/n)1/4,

after some T iterations, then with the low SNR condition
‖β∗‖ . σ(d/n)1/4, we obtain the desired bound ‖β − β∗‖ .
(d/n)1/4. Therefore, we do not need the angle convergence
argument in this regime; proving convergence of the norm
suffices. Intuitively, in the low SNR regime, the EM algorithm
essentially cannot distinguish between β∗ = 0 and β∗ 6= 0. In
fact, this is true for any algorithm in view of the known lower
bound in the low SNR regime [8].

Finite sample analysis in the low SNR regime starts with
the following Taylor-like approximation on the norm of the
population EM iterate:

Lemma 5. There exists some universal constants cu > 0 such
that,

‖β‖(1− 4(‖β‖/σ)2 − cuη2)

≤ ‖β′‖ ≤ ‖β‖(1− (‖β‖/σ)2 + cuη
2).

Lemma 5 implies that the population EM iterates moves
toward 0 until ‖β‖ ≤ ‖β∗‖, afer which the iterate stays in
the ball of radius Õ(ση). To prove this result, we apply the
localization argument, which is valid until β reaches ση ≈

9



σ(d log2(n/δ)/n)1/4. The final product of our analysis is the
following finite-sample convergence theorem for the low SNR
regime.

Theorem 8 (`2 Convergence, Finite-Sample in Low SNR
Regime). Suppose η ≤ C(d log2(n/δ)/n)1/4 and ‖β̃0‖ =
O(σ). Then there exist universal constants C1, C2 > 0 such
that with probability at least 1− δ, we have

‖β̃T − β∗‖ ≤ C1σ(d log2(n/δ)/n)1/4

after T ≥ C2 log(log(n/d))
√
n/(d log2(n/δ)) iterations of

finite-sample EM.

The initialization condition ‖β̃0‖ = O(σ) is mild: even if
we start from an iterate with a much larger norm, one step
of EM would bring the norm down to O(σ). The proof of
Theorem 8 is given in Appendix C-F.

V. EXPERIMENTS

In this section, we corroborate our theoretical results via
numerical examples. In Figure 2, we present the statistical rate
and convergence behavior of EM algorithm under different
SNR regimes. We set d = 5 and initialize the EM iteration
in a neighborhood of the true parameters such that β0 =
β∗ + ru, where r = max{1, ‖β∗‖} · 0.1 and u is a random
unit vector. To evaluate the statistical rate, we run the EM
algorithm with different sample size n ∈ {128, 180, 256, ...}
(i.e., n increases by a factor of

√
2 each time). The final error

‖β̃T − β∗‖ is averaged over 5, 000 independent runs. The
stopping criterion is ‖β̃T − β̃T−1‖ ≤ 0.0001. In Figure 2(a),
we observe the standard n−1/2 rate in the high SNR regime,
and an approximately n−1/4 rate in the low SNR regime.
Interestingly, with an intermediate SNR = 0.3, the statistical
rate transitions from n−1/4 to n−1/2 as n increases. This is
consistent with the definition of low SNR ‖β∗‖ . (d/n)1/4,
which is relative to the sample size n rather than being an
absolute value.

We next investigate the convergence behavior of EM. We
run the EM algorithm with a fixed sample size n = 32768.
The estimation error ‖β̃t − β∗‖ in each iteration t is averaged
over 5, 000 independent runs. Figure 2(b) shows the high SNR
regime. Note that the y-axis is in log-scale and we can see the
linear convergence (up to the statistical error). In contrast, in
the low SNR regime showed in Figure 2(c), we can observe
that the convergence of the EM algorithm is no longer linear
and becomes significantly slower.

VI. CONCLUSION

In this paper, we studied the EM algorithm for a mixture
of two linear regression models. In the large sample limit,
we showed that EM converges to true parameters globally
without any specialized initialization. In finite sample case,
we showed that EM enjoys the same convergences behavior,
with the optimal statistical rates in all SNR regimes of interest,
matching the lower bounds provided in [8].

We believe that this work builds a ground for the analysis of
the EM algorithm, as well as the landscape of MLE problems
for a mixture of two Gaussian-style distributions. One potential

direction is to analyze the EM algorithm in more general
mixture models. This includes models with unequal mixing
weights; in the case of mixture of two Gaussians, this has been
done in [33], a follow-up of this paper. Considering mixture
models with more general noise covariance and more than two
mixture components, is also of interest and would require
additional techniques due to the existence of sub-optimal
local minima [14]. Another interesting regime is the high-
dimensional case with sparse parameters [32, 39, 5], aiming
to achieve the minimax rates in all SNR regimes, which may
exhibit additional challenges due to statistical-computational
trade-off [4]. We leave them as interesting future work.
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APPENDIX A
PROOFS FOR SECTION II

In this section, we prove the technical results in Section II. In particular, Lemma 1 is proved in Section A-A and Theorem 2
is proved in Section A-B.

A. Proof of Lemma 1

We restate the lemma below for readers’ convenience.

Lemma 1 (Explicit Update for Population EM). Let β 6= 0 be the current iterate and β′ be the next iterate defined in
equation (4). Then β′ is in span(β,β∗) and can be written as β′ = b′1v1 + b′2v2 with

b′1 = b∗1S +R and b′2 = b∗2S, (7)

where S and R have the expressions in (5a), (5b). The expectations above are taken over α1 ∼ N (0, 1) and z ∼ N (0, 1).
Moreover, we have S ≥ 0 and R > 0, where S = 0 if and only if b∗1 = 0.

Proof. Recall that we have dereived a representation of the EM update β′ in equation (3) after choosing an appropriate
orthonormal basis {vi}di=1 of Rd in which v1 = β/‖β‖ is the unit vector in the direction of the current estimator, and v2 is
the unit vector in span{β,β∗} that is orthogonal to v1. We restate equation (3) below:

β′ = Eα1,...,αd

[
EY |α1,...,αd

[
tanh

(
b1α1

σ2
Y

)
Y

]∑
i

αivi

]
,

where the expectation is taken over αi
iid∼ N (0, 1), and Y | α1, . . . , αd ∼ N (α1b

∗
1 + α2b

∗
2, σ

2),where b1 := 〈β,v1〉 = ‖β‖ > 0,
b∗1 =: 〈β∗,v1〉, and b∗2 := 〈β∗,v2〉. Since the inner expectation does not depend on αj for j ≥ 3, we have

Eα1,...,αd

[
EY |α1,...,αd

[
tanh

(
b1α1

σ2
Y

)
Y

]
αj

]
= Eα1,α2

EY |α1,α2

[
tanh

(
b1α1

σ2
Y

)
Y

]
· Eαj [αj ] = 0.

This implies that β′ is in the span of v1 and v2, and the expression (3) can be rewritten as β′ = b′1v1 + b′2v2, where b′1 and b′2

b′1 = Eα1,α2

[
EY |α1,α2

[
tanh

(
b1α1

σ2
Y

)
Y

]
α1

]
, (21a)

b′2 = Eα1,α2

[
EY |α1,α2

[
tanh

(
b1α1

σ2
Y

)
Y

]
α2

]
. (21b)

Note that we can write Y d
= α1b

∗
1 + α2b

∗
2 + σz ( d

= means equality in distribution) for some z ∼ N (0, 1) that is independent
of α1 and α2. We call it the first representation of Y . In addition, since α2 and z are independent and hence α2b

∗
2 + σz is

Gaussian with mean 0 and variance σ2
2 , we can also write Y d

= α1b
∗
1 + σ2z for some z ∼ N (0, 1) that is independent of α1, .

We call it the second representation of Y . We next prove that b′1 and b′2 have the explicit expressions claimed in Lemma 1. The
key tool is the Stein’s lemma for the Gaussian distribution.

We start with the second coordinate b′2. Continuing from equation (21b), we have

b′2
(i)
=Eα1,α2,z

[
tanh

(b1α1

σ2
(σz + α1b

∗
1 + α2b

∗
2)
)

(σz + α1b
∗
1 + α2b

∗
2)α2

]
(ii)
=Eα1,α2,z

∂

∂α2

[
tanh

(b1α1

σ2
(σz + α1b

∗
1 + α2b

∗
2)
)

(σz + α1b
∗
1 + α2b

∗
2)

]
,

=b∗2 · Eα1,α2,z

[
tanh

(b1α1

σ2
(σz + α1b

∗
1 + α2b

∗
2)
)

+
α1b1
σ2

(σz + α1b
∗
1 + α2b

∗
2) tanh′

(
α1b1
σ2

(σz + α1b
∗
1 + α2b

∗
2)

)]
(iii)
= b∗2 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
,

where in step (i), we use the first representation of Y ; in step (ii), we apply Stein’s lemma with respect to α2; and in step (iii),
we use the second representation of Y . This shows that b′2 = b∗2S as desired.

For the first coordinate b′1, we use a similar strategy but apply Stein’s lemma in a different way. Using the second representation
for Y , we rewrite equation (21a) as

b′1 =Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
(σ2z + α1b

∗
1)α1

]
(22)

=b∗1 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
α2

1

]
+ σ2 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
zα1

]
. (23)
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Applying Stein’s lemma to the first term in equation (23) with respect to α1 yields

b∗1 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
α2

1

]
=b∗1 · Eα1,z

∂

∂α1

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
α1

]
=b∗1 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+ α1

(
2b∗1b1α1

σ2
+
b1σ2

σ2
z

)
tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
=b∗1 · Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
+ b∗21 · Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
. (24)

On the other hand, applying Stein’s lemma to the second term in equation (23) with respect to z yields

σ2Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
α1z

]
= σ2

2Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
. (25)

Plugging the above identities (24) and (25) into equation (23), and using the relation that b∗1 + σ2
2 = ‖β∗‖2 + σ2, we obtain

that b′1 = b∗1S +R as desired.
Finally, we have R > 0 since it is the expectation of a random variable that is positive almost surely. For the quantity S, we

prove the following bounds in Section A-A1.

Lemma 6 (Lower and Upper Bounds for S). Let S, b1, b∗1 and σ2 be as in Lemma 1. We have

1−


√√√√

1 +
min

(
σ2
2

σ2 b1, b∗1

)
b∗1

σ2
2


−1

≤ S ≤ 1.

The lemma implies that S ≥ 0; moreover, S = 0 if and only b1 = 0 or b∗1 = 0. Since b1 := ‖β‖ 6= 0 by assumption, the
proof of Lemma 1 is complete.

1) Proof of Lemma 6:

Proof. Recall the expression for S:

S =Eα1Ez
[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
=2Eα1:α1≥0Ez

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
,

where the second equation holds due to the symmetry of the distribution for z. We make use of two elementary properties of
the Gaussian distribution and the tanh function:

Lemma 7 (Lemma 1 [10]). Let u, θ ≥ 0 and X ∼ N (u, σ2), then EX [tanh′(θX/σ2)θX] ≥ 0.

Lemma 8 (Lemma 2 [10]). Let u, θ ≥ 0 and X ∼ N (u, σ2), then EX [tanh(θX/σ2)] ≥ 1− exp
(
−min(u,θ)·u

2σ2

)
.

We apply Lemmas 7 and 8 with u = α1b
∗
1 and θ = α1

σ2
2

σ2 b1 to obtain the following lower bounds on the two terms inside
the inner expectation of S:

Ez
[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
≥ 1− exp

−α2
1b
∗
1 min

(
b∗1,

σ2
2

σ2 b1

)
2σ2

2


Ez
[
α1b1
σ2

(y + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
≥ 0

Combining these two lower bounds, we obtain that

S ≥2Eα1:α1≥0

1− exp

−α2
1b
∗
1 min

(
b∗1,

σ2
2

σ2 b1

)
2σ2

2


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=Eα1

1− exp

−α2
1b
∗
1 min

(
b∗1,

σ2
2

σ2 b1

)
2σ2

2

 = 1−


√√√√

1 +
min

(
σ2
2

σ2 b1, b∗1

)
b∗1

σ2
2


−1

.

This proves the lower bound on S in Lemma 6. For the upper bound, we use the expression in equation (24) from proof of
Lemma 1 to obtain that

S = Eα1,z

[
α2

1 tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
− b1b

∗
1

σ2
α2

1 tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
≤ Eα1,z

[
α2

1 tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
≤ Eα1

[α2
1] = 1,

where the two inequalities above hold since tanh′(x) ≥ 0 and tanh(x) ≤ 1 for any x.

B. Proof of Theorem 2

Recall in Lemma 2 we show that the fixed points of population EM are the same as the stationary points of the negative
log-likelihood function. To prove Theorem 2, we first establish several technical lemmas.

We begin with an elementary lemma on smooth concave functions.

Lemma 9. Let f : R+ → R be a smooth and concave function, with a strictly decreasing derivative. Suppose that f satisfies
f(0) = 0, f ′(0) > 0, and limx→∞ f(x) = −∞. Then there exists a unique t > 0 such that f(t) = 0 and f ′(t) < 0. Moreover,
f(x) > 0 if x ∈ (0, t) and f(x) < 0 if x ∈ (t,∞).

Proof. Since f has a continuous gradient at 0 with f ′(0) > 0, there exists t1 > 0 such that f ′(x) > 0 for all x ≤ t1. We thus
conclude that f(x) > 0 for all x ∈ (0, t1] by the Fundamental theorem of Calculus. By the continuity of f and the condition
that limx→∞ f(x) = −∞, there exists t2 > 0 such that f(t2) < 0. Rolle’s theorem ensures that there exists t ∈ (t1, t2) such
that f(t) = 0. Since f(0) = 0, the mean value theorem ensures that there exists t3 ∈ (0, t) such that f ′(t3) = 0. Using the
assumption that f has a strictly decreasing derivative, we have f ′(x) ≤ 0 for all x ≥ t3 and f ′(x) > 0 for all x ∈ (0, t3). In
particular, f ′(t) < 0 as t > t3. Moreover, it follows that f(x) is strictly increasing on (0, t3) and it is strictly decreasing on
(t3,∞), therefore, f(x) > 0 when x ∈ (0, t) and f(x) < 0 when x > t.

Using the above lemma, we can characterize the dynamic of the population EM iteration along the direction of the current
iterate β.

Lemma 10 (Dynamics Along β). Suppose that 〈β,β∗〉 ≥ 0 and β 6= 0. Let v1 be the unit vector of β, and b′1 be the notation
used in Lemma 1, which denotes the the projection of the next EM iterate β′ onto span(v1). There exists a unique positive
number E(v1) satisfying 

‖β‖ < b′1 < E(v1) if ‖β‖ < E(v1),

E(v1) < b′1 < ‖β‖ if ‖β‖ > E(v1),

b′1 = E(v1) if ‖β‖ = E(v1).

Proof. We use the same notations as in the proof of Lemma 1. When v1 is fixed, b′1 only depends on b1 = ‖β‖ from the
expression (21a). Accordingly, we write

b′1 = f(b1) := Eα1,α2
EY |α1,α2

[
tanh

(
b1α1

σ2
Y

)
Y α1

]
to emphasize b′1 is a function of b1. Let us check a few properties of f :

1) f is smooth since the tanh funcion is smooth.
2) f is strictly increasing and concave, since its derivative

f ′(b1) = Eα1,α2
EY |α1,α2

[
(Y α1)2

σ2
tanh′

(
b1Y α1

σ2

)]
is positive and is strictly decreasing with respect to b1.

3) f(0) = 0 and f ′(0) > 1, since

f ′(0) =Eα1,α2
EY |α1,α2

[
(Y α1)2

σ2

]
=

3b∗21 + b∗22 + σ2

σ2
> 1.

Let us define the shifted function g(b1) := f(b1)− b1. The function g is a strictly concave and smooth function from Property
2 above. Moreover, we have g(0) = 0 and g′(0) > 0 from Property 3, and limb1→∞ g(b1) = −∞ from Property 4. With these
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properties of g, we deduce from Lemma 9 that there exists a unique E(v1) > 0 for g such that g(E(v1)) = 0. Moreover, we
have g(b1) > 0 when b1 < E(v1), g(b1) < 0 when b1 > E(v1). Equivalently, we have

‖β‖ < b′1 < E(v1) if 0 < ‖β‖ < E(v1),

‖β‖ > b′1 > E(v1) if ‖β‖ > E(v1),

b′1 = E(v1) if ‖β‖ = E(v1).

This completes the proof of Lemma 10.

With Lemma 10, we can characterize the fixed points of population EM in a two-dimensional subspace span(v,β∗).

Lemma 11 (Five Fixed Points in span(v,β∗)). Let v be an arbitrary unit vector satisfying v ⊥ β∗. In span(β∗,v), the
population EM update has exactly five fixed points: 0, β∗, −β∗, E(v)v and −E(v)v, where the number E(v) > 0 is given in
the proof of Lemma 10.

Proof. Recall our notation that β is the current iterate of population EM and β′ is the corresponding be next iterate. When
β = 0, we have β′ = 0 and thus 0 is a fixed point. It remains to consider non-zero fixed points.

We deduce from Lemma 1 that β is a fixed point if and only if b2 = b∗2S = 0, which means either b∗2 = 0 or S = 0. Note
that b∗2 = 0 if and only if β is in the same direction as β∗. Also note that S = 0 if and only if b∗1 = 0 (as we consider b1 6= 0),
or equivalently β is in the direction of v. We conclude that any non-zero fixed point must be either in span(β∗) or in span(v).

Finally, recall Lemma 10, which states that there is a unique non-zero contraction point along the positive direction of β.
Therefore, in span(β∗), β∗ and −β∗ are the only two fixed points. In span(v), E(v)v and −E(v)v are the only two fixed
points.

We are now ready to prove Theorem 2, which is restated below for readers’ convenience.

Theorem 2 (Population EM and Log-likelihood). Let v be an arbitrary unit vector orthogonal to β∗. In the subspace
span(v,β∗), the population negative log-likelihood function (6) has exactly five stationary points:

β∗, −β∗, 0, E(v)v, −E(v)v,

where E(v) > 0. In particular, ±β∗ are global minima, 0 is a local maximum, and ±E(v)v are saddle points whose Hessians
have a strictly negative eigenvalue. Moreover, these five points are the only fixed points of the population EM (4) in span(v,β∗).

Proof. In the subspace span(v,β∗), Lemma 11 shows that population EM has exactly five fixed points ±β∗, 0 and ±E(v)v,
which by Lemma 2 are the only stationary points of the negative log-likelihood L. Since L(β) equals KL divergence between
the MLR model with parameter β and the true model with parameter β∗, we see that ±β∗ minimizes L (with value 0) and is
hence the global maxima.

It remains to classify the other three stationary points. We do so by characterizing their Hessian, making use the following
proposition.

Proposition 1 (Hessian of Negative Log-Likelihood). The population negative log-likelihood L defined in (6) has the Hessian
matrix

H(β) =
1

σ2

(
I − EXEY |X

[
1

σ2
Y 2XX> tanh′

(
Y 〈X,β〉

σ2

)])
.

Moreover, if β is a stationary point orthogonal to β∗, then

〈β∗,H(β)β∗〉 ≤ − ‖β∗‖4

σ2(σ2 + ‖β∗‖2)
.

The proof of the proposition is postponed to Section A-B1. Using the proposition, we find the Hessian of L at 0 is negative
definite:

H(0) =
1

σ2

(
I − EXEY |X

[
1

σ2
Y 2XX>

])
= − 1

σ4
EX

[
〈β∗,X〉2XX>

]
� 0,

thereby proving that 0 is a local maxima.
Finally, we consider the stationary point E(v)v (the proof for −E(v)v is similar). We claim that E(v)v is a local minimum

of L restricted to the direction v. The claim follows from the following three observations: (i) the population EM update does
not increase the value of L, a general property of the EM algorithm. (ii) in Section II-A we showed that if population EM
is initialized in the subspace span(v) with v orthogonal to β∗, then the iterates remain in span(v) (see the discussion after
Lemma 1); (iii) Lemma 11 implies that in span(v), population EM contracts to the point E(v)v. On the other hand, we find
that E(v)v is a local maximum of L restricted to the direction of β∗, as Proposition 1 ensures that

〈
β∗,H

(
E(v)v

)
β∗
〉

is
strictly negative. Combining pieces, we conclude that E(v)v is a saddle point, thereby completing the proof of Theorem 2.
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1) Proof of Proposition 1:

Proof. Recall that Lemma 2 relates the gradient of the log-likelihood to the population EM update:

∇βL(β) =
1

σ2
(β − β′).

Plugging in the expression for next iterate β′ of the population EM update (3) and differentiating with respect to β, we find
that the Hessian matrix is

H(β) =
1

σ2
(I −∇ββ′)

=
1

σ2

(
I − EXEY |X

[
1

σ2
Y 2XX> tanh′

(
Y 〈X,β〉

σ2

)])
.

Let β a stationary point orthogonal to β∗. As before, we use the orthonormal basis {v1,v2, . . . ,vd} satisfying v1 = β
‖β‖

and v2 = β̂∗, and write X =
∑
i αivi, with αi

iid∼ N (0, 1) for i = 1, . . . , d. Also recall that b1 = 〈β,v1〉 and b′1 = 〈β′,v1〉
are respectively the projections of β and β′ onto the direction v1 (see Lemma 1). The stationary point β is a fixed point of
population EM, which means that

b1 = b′1 = Eα1,α2EY |α1,α2
α1Y tanh

(
b1α1

σ2
Y

)
. (26)

Let β̂∗ = β∗/‖β∗‖ be the unit vector of β∗. We compute σ2〈β̂∗,H(β)β̂∗〉 as follows:

σ2〈β̂∗,H(β)β̂∗〉 =1− 1

σ2
Eα1,α2

EY |α1,α2

[
Y 2α2

2 tanh′
(
α1b1
σ2

Y

)]
(i)
=1− 1

b1
Eα1,α2EY |α1,α2

∂

∂α1

[
Y α2

2 tanh

(
α1b1
σ2

Y

)]
=1− 1

b1
Eα1,α2

EY |α1,α2

[
α1Y α

2
2 tanh

(
α1b1
σ2

Y

)]
(ii)
=1− 1

b1
Eα1,α2

EY |α1,α2

∂

∂α2

[
α1Y α2 tanh

(
α1b1
σ2

Y

)]
,

where in steps (i) and (ii), we apply Stein’s Lemma with respect to α1 and α2, respectively. We decompose the last right hand
side into three terms:

σ2〈β̂∗,H(β)β̂∗〉 = 1− 1

b1
Eα1,α2EY |α1,α2

[
α1Y tanh

(
α1b1
σ2

Y

)]
︸ ︷︷ ︸

A

− b∗2
b1

Eα1,α2
EY |α1,α2

[
α1α2 tanh

(
α1b1
σ2

Y

)]
︸ ︷︷ ︸

B

− b∗2
σ2

Eα1,α2
EY |α1,α2

[
α2

1α2Y tanh′
(
α1b1
σ2

Y

)]
︸ ︷︷ ︸

C

. (27)

The term A equals 0 thanks to the fixed point condition (26). It remains to control the terms B and C.
For term B, we apply Stein’s Lemma with respect to α2 to obtain:

B =
b∗2
b1

Eα1,α2
EY |α1,α2

∂

∂α2

[
α1 tanh

(
α1b1
σ2

Y

)]
=
b∗22

σ2
Eα1,α2

EY |α1,α2

[
α2

1 tanh′
(
α1b1
σ2

Y

)]
.

Note that Y admits the representation Y d
= b∗1α1 + σ2z = σ2z with σ2 =

√
‖β∗‖2 + σ2 and z ∼ N (0, 1) is independent of

α1; moreover, we have b∗1 = 0 since β is orthogonal to β∗. It follows that

B
(i)
=
b∗22

σ2
Eα1,z

[
α2

1 tanh′
(
α1b1
σ2

σ2z

)]
=
b∗22

b1σ2
Eα1,z

∂

∂z

[
α1 tanh

(
α1b1
σ2

σ2z

)]
17



(ii)
=
b∗22

b1σ2
2

Eα1,z

[
σ2zα1 tanh

(
α1b1
σ2

σ2z

)]
(iii)
=

b∗22

b1σ2
2

Eα1,α2
EY |α1,α2

[
α1Y tanh

(
b1α1

σ2
Y

)]
(iv)
=

‖β∗‖2

σ2 + ‖β∗‖2
, (28)

where steps (i) and (iii) follows from the aforementioned representation of Y , step (ii) holds by applying Stein’s Lemma with
respect to z, and step (iv) follows from the fixed point condition (26).

We turn to the term C. Using symmetry of the distribution for z as well as the even property of the function tanh′, we may
take the expectation conditioning on the event that α1 ≥ 0, α2 ≥ 0. Doing so gives

C :=
b∗2
σ2

Eα1,α2
EY |α1,α2

[
α2

1α2Y tanh′
(
α1b1
σ2

Y

)]
=
b∗2
σ2

Eα1,α2,z

[
α2

1α2(b∗2α2 + σz) tanh′
(
α1b1
σ2

(b∗2α2 + σz)

)]
=

4b∗2
σ2

Eα1,α2:α1≥0,α2≥0α
2
1α2

[
Ez(b∗2α2 + σz) tanh′

(
α1b1
σ2

(b∗2α2 + σz)

)]
≥ 0, (29)

where the last step follows from Lemma 8 in Section A-A1.
Plugging equations (28) and (29) into equation (27), we obtain that

σ2〈β̂∗,H(β)β̂∗〉 = A−B − C ≤ − ‖β∗‖2

σ2 + ‖β∗‖2
.

Multiplying both sides by ‖β∗‖2/σ2 proves Proposition 1.

APPENDIX B
PROOFS FOR SECTION III

In this section, we prove the technical results in Section III. In particular, Theorems 4 and 3 on angle convergence are proved
in Sections B-A and B-B, respectively. Theorem 5 and Corollary 1 on `2 distance contraction are proved in Sections B-C
and B-D, respectively.

A. Proof of Theorem 4

We restate the theorem below for readers’ convenience.

Theorem 4 (Sine Convergence). When 0 ≤ θ < π
2 , the population EM iteration (4) satisfies

sin θ′ ≤ κ2(θ) sin θ, (10)

where κ2(θ) =
(√

1 + 2η2

1+η2 cos2 θ
)−1

< 1. In particular, when θ < π
3 , we have κ2(θ) <

(√
1 + η2

1+η2

)−1

.

Proof. Using the explicit expression (7) of the population EM update given in Lemma 1, we compute the sine of the angle θ′

between β′ and β∗:

sin θ′ =
Rb∗2

‖β∗‖
√
R2 + S2‖β∗‖2 + 2SRb∗1

= sin θ
1√

1 + (S/R)2‖β∗‖2 + 2(S/R)b∗1

≤ sin θ
1√

1 + 2(S/R)b∗1
. (30)

Recall that we have defined the quantities b∗1 = ‖β∗‖ cos(θ) and b∗2 = ‖β∗‖ sin(θ). Since R > 0 by Lemma 1, it suffices to
prove the lower bound S ≥ b∗1

σ2+‖β∗‖2R, which gives us the claimed result by plugging it into (30).
To establish the lower bound on S, we first observe from the expression for S and R in equation (5) that

S =Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

σ2z tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
︸ ︷︷ ︸

A

+ b∗1Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
= A+

b∗1
σ2 + ‖β∗‖2

R.
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We claim that A ≥ 0. Indeed, applying Stein’s lemma with respect to z yields

A =Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

σ2z tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
=Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
z2

]
.

We further rewrite the last right hand side as

Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
z2

]
=

1

2
Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
z2

]
+

1

2
Eα1,z

[
tanh

(
α1b1
σ2

(−σ2z + α1b
∗
1)

)
z2

]
=

1

2
E
[(

tanh

(
−α1b1

σ2
σ2z +

α2
1b
∗
1b1
σ2

)

)
+ tanh

(
α1b1
σ2

σ2z +
α2

1b
∗
1b1
σ2

)

))
y2

]
≥ 0,

where the last step follows from the numerical inequality that tanh(c+ x) + tanh(−c+ x) ≥ 0 for all x ≥ 0 and any real
number c. Combining pieces, we obtain that A ≥ 0 and hence S ≥ b∗1

σ2+‖β∗‖2R as desired.
Finally, note that κ2(θ) is increasing with respect to θ. It follows that κ2(θ) < κ2(π/2) = 1 for all θ ∈ [0, π/2), and that

κ2(θ) ≤ κ2(π3 ) =
(√

1 + η2

1+η2

)−1

when θ ≤ π
3 . This proves the last part of Theorem 4.

B. Proof of Theorem 3

We restate the theorem below for readers’ convenience.

Theorem 3 (Cosine Convergence). When 0 ≤ θ < π
2 , the population EM iteration (4) satisfies

cos(θ′) ≥ κ1(θ) cos(θ), (9)

where κ1(θ) =
√

1 + sin2(θ)

cos2(θ)+ 1
2 (1+η−2)

. In particular, when θ ≥ π
3 , we have κ1(θ) ≥

√
1 + η2

2
3 +η2

. Consequently, if cos(θ0) =

Θ(1/
√
d), after T = O

(
max(1, η−2) log d

)
iterations, we get θT < π/3 or equivalently cos(θT ) ≥ 1

2 .

Proof. Theorem 4 establishes that sin θ′ ≤ κ2(θ) sin(θ) for all θ ∈ [0, π2 ), with κ2(θ) =
(√

1 + 2η2

1+η2 cos2(θ)
)−1

. It follows
that

cos(θ′) =

√
1− sin2(θ′)

≥
√

1− κ2(θ)2 sin2(θ)

=

√
cos2(θ) + (1− κ2(θ)2) sin2(θ)

= cos(θ)

√
1 +

1− κ2(θ)2

cos2(θ)
sin2(θ) (31)

= cos(θ)

√
1 +

sin2(θ)
1
2 (1 + η−2) + cos2(θ)

= cos(θ)κ1(θ).

Since κ1(θ) is increasing with respect to θ, it follows that κ1(θ) ≥ κ1(π3 ) when θ ∈ [π3 ,
π
2 ).

C. Proof of Theorem 5

We first state a lemma that is essential for the proof of Theorem 5. Recall the notations defined in Section II. Also recall the
explicit expression (7) for the population EM update, which involves the quantities S and R:

S :=Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
+
α1b1
σ2

(σ2z + α1b
∗
1) tanh′

(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
R :=(σ2 + ‖β∗‖2)Eα1,z

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(σ2z + α1b
∗
1)

)]
.

Lemma 12 (Property of b′1). b′1 is increasing in b1. Consequently, b′1 is upper bounded by the limit value

lim
b1→∞

b′1 =
2

π

(
b∗1 tan−1

(
b∗1
σ2

)
+ σ2

)
. (32)
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Proof. We first show that b′1 is increasing in b1 by making use of the expression (21a) for b′1 previously derived. Differentiating
b′1 with respect to b1 gives

db′1
db1

= Eα1,α2
EY |α1,α2

[
tanh′

(
b1α1

σ2
Y

)
Y 2α2

1

]
≥ 0. (33)

Next, we show the limit value of b′1. Recall that b′1 = b∗1S +R by equation (7) in Lemma 1. Applying Stein’s lemma with
respect to z, we may rewrite the term R as

R =
σ2 + ‖β∗‖2

σ2
Eα1,z

[
tanh

(
α1b1
σ2

(σ2z + α1b
∗
1)

)
zα1

]
.

In the limit b1 →∞, tanh function becomes sign function, hence

lim
b1→∞

R =
σ2 + ‖β∗‖2

σ2
Eα1,z[sign(α1(σ2z + α1b

∗
1))zα1]

=
σ2 + ‖β∗‖2

σ2

[
1

π

∫ ∞
0

2α1e
−α

2
1
2

(∫ ∞
α1b
∗
1

σ2

ze−
z2

2 dz

)
dα1

]

=
σ2 + ‖β∗‖2

σ2

[
2

π

∫ ∞
0

α1e
−α

2
1b
∗2
1

2σ22 e−
α2
1
2 dα1

]

=
σ2 + ‖β∗‖2

σ2

2

π

σ2
2

b∗21 + σ2
2

=
2σ2

π
. (34)

Turning to the term S, we observe that limc→∞ cx tanh′(cx) = 0 for all x. It follows that

lim
b1→∞

S =Eα1,z [sign(α1(σ2z + α1b
∗
1))]

=
1

π

∫ ∞
0

∫ α1b
∗
1

σ2

−α1b
∗
1

σ2

e−
z2

2 dz

 e−
α2
1
2 dα1

=
2

π

∫ ∞
0

∫ α1b
∗
1

σ2

0

e−
z2

2 dz

 e−
α2
1
2 dα1 =

2

π
tan−1(b∗1/σ2). (35)

Plugging equations (34) and (35) into limb1→∞ b′1 = b∗1 limb1→∞ S + limb1→∞R, we obtain the limit value of b′1, thereby
completing the proof of the lemma.

We are now ready to prove Theorem 5, which is restated below.

Theorem 5 (`2 Contraction). Suppose we have that θ < π/8. Recall the shorthands b1 := ‖β‖, b∗1 := ‖β∗‖ cos(θ), b∗2 :=
‖β∗‖ sin(θ) and σ2

2 := σ2 + b∗22 . The following holds for the population EM iteration (4):
• If b∗2 < σ or σ2

2

σ2 b1 < b∗1, then

‖β′ − β∗‖ ≤ κ3(θ)‖β − β∗‖+ κ3(θ)(16 sin3 θ)‖β∗‖ η2

1 + η2
, (11a)

where κ3(θ) =

(√
1 + min

(
σ2
2

σ2 b1, b∗1

)2

/σ2
2

)−1

.

• If b∗2 ≥ σ and σ2
2

σ2 b1 > b∗1, we have
‖β′ − β∗‖ ≤ 0.6‖β − β∗‖. (11b)

Proof. Using the basis system introduced in Section II-A, we can write ‖β − β∗‖2 = |b′1 − b∗1|2 + |b′2 − b∗2|2. The second term
|b′2 − b∗2| can be as

0 ≤ (b∗2 − b′2) = (1− S)b∗2 ≤

(√
1 + min

(
σ2

2

σ2
b1, b∗1

)
b∗1/σ

2
2

)−1

b∗2 ≤ κ3(θ)b∗2, (36)

where we use the lower bound of S from Lemma 6.
It remains to upper bound |b′1 − b∗1|. We shall make use of the following consistency property of the population EM update:

When b1 = σ2

σ2
2
b∗1, the expression (22) for b′1 gives that

b′1 = Eα1
α1

[
EY |α1∼N (α1b∗1 ,σ

2
2) tanh

(
α1b
∗
1

σ2
2

Y

)
Y

]
= Eα1

[α2
1b
∗
1] = b∗1. (37)

We separate the analysis into three cases.
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a) Case I. b1 ≤ σ2

σ2
2
b∗1:: In this case, we have

b′1 −
σ2

2

σ2
b1

(i)
= Eα1

α1E Y |α1

∼N (α1b
∗
1 ,σ

2
2)

[
tanh

(
α1(

σ2
2

σ2 b1)

σ2
2

Y

)
Y

]
− α1E Y |α1

∼N (α1
σ22
σ2
b1,σ

2
2)

[
tanh

(
α1(

σ2
2

σ2 b1)

σ2
2

Y

)
Y

]
(ii)

≥
(
b∗1 −

σ2
2

σ2
b1

)
Eα1

α2
1 min
µ∈(

σ22
σ2
b1,b∗1)

∂

∂µ

(
Ez∼N (0,1)

[
tanh

(
α1(

σ2
2

σ2 b1)

σ2
2

(z + µ)

)
(z + µ)

])
(iii)

≥
(
b∗1 −

σ2
2

σ2
b1

)
Eα1

α2
1

1− exp

−α2
1min

(
σ2
2

σ2 b1, b
∗
1

)2

2σ2
2



 , (38)

where in step (i) we use the consistency property in equation (37), in step (ii) we use mean-value theorem along with the case
assumption, and in step (iii) we apply Lemmas 7 and 8. Consequently, after some algebra we obtain that

0
(i)

≤ b∗1 − b′1 ≤ κ3
3(θ)

(
b∗1 −

σ2
2

σ2
b1

)
≤ κ3

3(θ)(b∗1 − b1) ≤ κ3(θ)(b∗1 − b1), (39)

where the inequality (i) holds thanks to Lemma 12, which states that b′1 is increasing in b1. Combining the bounds (36) and
(39), we obtain that

‖β∗ − β′‖ ≤ κ3(θ)‖β∗ − β‖.

b) Case II. b1 > σ2

σ2
2
b∗1, σ > b∗2:: Following a similar procedure as above in equation (38), we have

0 ≤ b′1 − b∗1 ≤ κ3
3(θ)

(
σ2

2

σ2
b1 − b∗1

)
= κ3

3(θ)(b1 − b∗1) + κ3
3(θ)

b∗2
2

σ2
b1. (40)

By the case condition, we κ3(θ) =
(√

1 +
b∗1

2

σ2
2

)−1

=
√

σ2+b∗2
2

σ2+‖β∗‖2 . We further divide the analysis into two subcases:
Case II(a): Suppose that b1 > 2b∗1 or equivalently, b1 < 2(b1 − b∗1). Then we have

b′1 − b∗1 ≤ κ3
3(θ)(b1 − b∗1)

(
1 + 2

b∗2
2

σ2

)
= κ3(θ)(b1 − b∗1)

(
σ2 + b∗2

2

σ2 + ‖β∗‖2

)(
1 +

2b∗2
2

σ2

)
= κ3(θ)

(
σ2 + b∗2

2

σ2 + b∗1
2 + b∗2

2

σ2 + 2b∗2
2

σ2

)
︸ ︷︷ ︸

A

(b1 − b∗1).

Note that the term A is less than 1 since the nominator is no bigger than the denominator. Indeed, we have

σ2(σ2 + b∗21 + b∗22 − (σ2 + b∗22 )(σ2 + 2b∗22 )

= σ2(b∗21 − 2b∗22 )− 2b∗42

(i)

≥ σ2(b∗21 − 4b∗22 )
(ii)

≥ 0,

where step (i) holds because b∗2 < σ and step (ii) holds because b∗2
b∗1

= tanh(θ) = tan π
8 < 1/2. It follows that

0 ≤ b′1 − b∗1 ≤ κ3(θ)(b1 − b∗1),

in which case we have ‖β′ − β∗‖ ≤ κ3(θ)‖β − β∗‖ as desired.
Case II(b): Suppose that b1 < 2b∗1. Note that we can assume that b1

b∗2
2

σ2 ≥ ( 1
κ2
3(θ)
− 1)(b1 − b∗1). Otherwise, we can easily get

0 ≤ b′1 − b∗1 ≤ κ3(b1 − b∗1) similarly by plugging the condition b1
b∗2

2

σ2 ≤ ( 1
κ2
3(θ)
− 1)(b1 − b∗1) into the inequality (40). Squaring

both sides of the inequality (40), we obtain that

(b′1 − b∗1)2 ≤ κ6
3(θ)(b1 − b∗1)2 + κ6

3(θ)

(
2

(
b∗2
σ

)2

b1(b1 − b∗1) +

(
b∗2
σ

)4

b21

)

≤ κ6
3(θ)(b1 − b∗1)2 + κ6

3(θ)

(
b∗2
σ

)4

b21

(
2κ2

3(θ)

1− κ2
3(θ)

+ 1

)
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= κ6
3(θ)(b1 − b∗1)2 + κ6

3(θ)

(
b∗2
σ

)4

b21

(
2σ2 + 2b∗2

2 + b∗1
2

b∗1
2

)
︸ ︷︷ ︸

B

.

We bound the term B as follows:

B = κ6
3(θ)

(
b∗2
σ

)4

b21

(
2σ2 + 2b∗2

2 + b∗1
2

b∗1
2

)
= κ2

3(θ)

(
b∗2
σ

)4

b21

(
2σ2 + 2b∗2

2 + b∗1
2

b∗1
2

)(
σ2 + b∗2

2

σ2 + ‖β∗‖2

)2

= κ2
3(θ)b∗2

4

(
b21
b∗1

2

)(
2σ2 + 2b∗2

2 + b∗1
2

σ2 + b∗2
2 + b∗1

2

)(
(σ2 + b∗2

2)2

σ4

)
1

σ2 + ‖β∗‖2
(i)

≤ κ2
3(θ)b∗2

4 · 4 · 2 · 4 ·
(

1

σ2 + ‖β∗‖2

)
= κ2

3(θ)
32b∗2

2

σ2 + ‖β∗‖2
b∗2

2,

where the inequality (i) follows from the assumption that b1 < 2b∗1 and b∗2 < σ. Therefore, we get (b′1 − b∗1)2 ≤ κ2
3(θ)(b1 −

b∗1)2 + κ2
3(θ)

32b∗2
2

σ2+‖β∗‖2 b
∗
2

2. Combining this bound with (b′2 − b∗2)2 ≤ κ2
3(θ)(b2 − b∗2)2, we obtain

‖β′ − β∗‖2 ≤ κ2
3(θ)‖β − β∗‖2 + κ2

3(θ)
32b∗2

2

σ2 + ‖β∗‖2
b∗2

2.

We further upper bound the last right hand side using the inequality
√
a2 + b2 ≤ a+ b2

2a . Doing so and recalling the definition
of the SNR η := ‖β∗‖

σ gives

‖β′ − β∗‖ ≤ κ3(θ)‖β − β∗‖+ κ3(θ)
16b∗2

2

σ2 + ‖β∗‖2
b∗2

‖β − β∗‖
b∗2

≤ κ3(θ)‖β − β∗‖+ κ3(θ)(16 sin3 θ)‖β∗‖ η2

1 + η2
,

where we use the fact that b∗2 = ‖β∗‖ sin(θ) and b∗2
‖β−β∗‖ =

b∗2√
(b1−b∗1)2+(b∗2)2

≤ 1.

c) Case III. b1 > σ2

σ2
2
b∗1, σ < b∗2:: In this case, we are able to establish a constant rate of contraction in local region with

high SNR.
First note that b′1 ≥ b∗1 and the difference (b′1 − b∗1) is increasing in b1. Therefore, invoking Lemma 12 yields

b′1 − b∗1 ≤
2

π

(
σ2 + b∗1 tan−1

(
b∗1
σ2

))
− b∗1

≤ 2

π

(
σ2 + b∗1 tan−1

(
b∗1
b∗2

))
− b∗1

≤ 2

π
(
√

2− θ cot θ)b∗2,

where we use the fact that σ2
2 = σ2 + b∗2

2 ≤ 2b∗2
2, tan−1

(
b∗1
b∗2

)
= π

2 − θ, and b∗1 = b∗2 cot θ. One can verify that θ cot θ is
decreasing in [0, π2 ]. It follows that

b′1 − b∗1 ≤
2

π

(√
2− π

8
cot

π

8

)
b∗2 ≤ 0.3b∗2.

On the other hand, we have

b∗2 − b′2 = (1− S)b∗2 ≤
b∗2√

1 + (b∗1/σ2)2

≤ b∗2√
1 + 1

2 (b∗1/b
∗
2)2

=
b∗2√

1 +
cot2 π

8

2

≤ 0.51b∗2.

Combining the above two bounds, we obtain that

‖β′ − β∗‖ ≤ 0.6b∗2 ≤ 0.6‖β − β∗‖,

thereby completing the proof of Theorem 5.
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D. Proof of Corollary 1

We restate the corollary below for readers’ convenience.

Corollary 1 (`2 Convergence). Suppose that the initial solution satisfies θ0 < π/8. There exists a constant κ < 1 such that
after T iterations of the population EM, we have the error bound

‖βT − β∗‖ < κT ‖β0 − β∗‖+ TκT ‖β∗‖ η2

1 + η2
. (12)

In particular, the constant κ can be taken to be the maximum among

0.6,

√(
1 +
‖β0‖2
σ2

)−1

,

√
1− 0.8η2

1 + η2
. (13)

Proof. Recall that θ is the angle between the current iterate and β∗, and that θ′ is the angle between the next iterate and β∗.
The sine convergence result in Theorem 4 ensures that θ′ < θ. Recall Theorem 5, which establishes contraction of the `2
distance in each iteration. We shall first show that the contraction ratio decreases as angle gets smaller, that is, κ3(θ′) ≤ κ3(θ)
or equivalently

min

(
σ
′2
2

σ2
b′1, b

′∗
1

)2

/σ
′2
2 ≥ min

(
σ2

2

σ2
b1, b

∗
1

)2

/σ2
2 . (41)

Since θ′ < θ, we have b
′∗
1 > b∗1, b

′∗
2 < b∗2 and σ′2 < σ2. The analysis is divided into two cases.

• If σ2
2

σ2 b1 ≥ b∗1, then the right hand side of equation (41) is b∗21 /σ
2
2 . From equation (40), we have b′1 ≥ b∗1. Thus the left

hand side of equation (41) satisfies

min

(
σ
′2
2

σ2
b′1, b

′∗
1

)2

/σ
′2
2 ≥ min

(
σ
′2
2

σ2
b∗1, b

∗
1

)2

/σ2
2 ≥ b∗21 /σ

2
2 .

• If σ2
2

σ2 b1 < b∗1, then the right hand side of equation (41) is σ2
2

σ2 b1/σ
2. From equation (38), we have b′1 >

σ2
2

σ2 b1. Thus the left
hand side of equation (41) satisfies

min

(
σ
′2
2

σ2
b′1, b

′∗
1

)2

/σ
′2
2 ≥ min

(
σ2

2

σ2
b1, b

∗
1

)2

/σ2
2 =

σ2
2

σ2
b1/σ

2.

Combining the above two cases, we have shown that κ3(θ′) ≤ κ3(θ). This result implies that the `2 contraction ratio κ3(θt)
for the t-th iteration can be uniformly upper bounded by κ3(θ0). We also recall that κ2(θ0) is the corresponding contraction
ratio for the sine convergence. We claim that their maximum, max(κ3(θ0), κ3

2(θ0)), is upper bounded by the quantity κ defined
in the statement of Corollary 1. Indeed, we have the bound

max(κ3(θ0), κ3
2(θ0))

(i)

≤max

0.6,

√1 +
min(

σ2
2

σ2 b1, b∗1)2

σ2
2

−1

,

√1 +
2b∗1

2

σ2 + ‖β∗‖2

−3


≤max

0.6,

(√
1 +
‖β0‖2
σ2

)−1

,

(√
1 +

η2 cos2 θ0

1 + η2 sin2 θ0

)−1

,

(√
1 +

2η2 cos2 θ0

1 + η2

)−3


(ii)

≤ max

0.6,

(√
1 +
‖β0‖2
σ2

)−1

,

√
1− 0.8η2

1 + η2

 := κ.

Here step (i) holds because the first two quantities correspond to the two possible contraction rates in Theorem 5, and the third
quantity corresponds to κ2(θ0)3; step (ii) holds since θ0 < π/8.

With the above bound on the contraction ratios, we can then apply Theorem 5 to the t-th iteration of population EM to obtain

‖βt+1 − β∗‖ ≤ κ‖βt − β∗‖+ κ(16 sin3 θt)‖β∗‖
η2

1 + η2

≤ κ2‖βt−1 − β∗‖+ 2κ2(16 sin3 θt−1)‖β∗‖ η2

1 + η2

...
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≤ κT ‖β0 − β∗‖+ TκT (16 sin3 θ0)‖β∗‖ η2

1 + η2

≤ κT ‖β0 − β∗‖+ TκT ‖β∗‖ η2

1 + η2
,

where the recursion step above holds because Theorem 4 ensures that sin3(θt) ≤ κ3
2(θt−1) sin(θt−1) ≤ κ3

2(θ0) sin(θt−1) ≤
κ sin3(θt−1) for all t ≥ 1, and the last inequality above holds because θ0 < π/8. This completes the proof of Corollary 1.

APPENDIX C
PROOFS FOR FINITE-SAMPLE EM IN MIDDLE-HIGH SNR REGIMES

In this section, we prove the technical results in Section IV on finite-sample EM. We need the following norm conditions for
the estimator can be naturally met as the EM iteration proceeds:

Lemma 13 (Norm Bounds). If ‖β̃‖ ≤ ‖β∗‖/10, then

‖β̃′‖ ≥ ‖β̃‖(1 + d1 ·min{1, (‖β̃‖/σ)2}).

Otherwise, if ‖β̃‖ ≥ ‖β∗‖/10, then we have

‖β̃′‖ ≥ ‖β
∗‖

10
(1 + d2 ·min{1, η2}).

for some universal constants d1, d2 > 0. Furthermore, for every β̃ ∈ Rd, we have ‖β̃′‖ ≤ 3
√
‖β∗‖2 + σ2.

Lemma 13 states that if we start from ‖β∗‖/10, then we stably remain above ‖β∗‖/10. On the other hand, if we start from
small initialization, then we can wait for initial O(min(1, ‖β̃‖/σ)−2) iterations for the starting estimator to become larger than
‖β∗‖/10. We defer the proofs to Appendix D-D.

A. Proof of Lemma 4

We restate the lemma below for readers’ convenience.

Lemma 4. With probability at least 1− δ, the following holds for all β satisfying ‖β‖ ≤ C
√
‖β∗‖2 + σ2 for some universal

constant C > 0:

cos(θ̃′) ≥ κ1(θ)(1− 10εf ) cos(θ)− εf , (17)

sin2(θ̃′) ≤ κ2
2(θ) sin2(θ) +O(εf ), (18)

where κ1(θ) =
√

1 + sin2 θ
cos2 θ+ 1

2 (1+η−2)
≥ 1, and κ2(θ) =

(
1 + 2η2

1+η2 cos2 θ
)−1

< 1.

Proof. Since n ≥ d log2(n/δ)/ε2f with εf := c
√
d log2(n/δ)/n, with probability at least 1− δ, from Lemma 3 it follows that∣∣∣〈β̃′ − β′,β∗〉∣∣∣ ≤ ‖β∗‖‖β‖ ·O (εf ) , (42)

‖β̃′ − β′‖ ≤ ‖β‖ ·O(εf ). (43)

The cosine of the angle between β̃′ and β∗ can be bounded as follows,

cos θ̃′ =
〈β̃′,β∗〉
‖β̃′‖ ‖β∗‖

=
〈β′,β∗〉
‖β̃′‖ ‖β∗‖

+
〈β̃′ − β′,β∗〉
‖β̃′‖ ‖β∗‖

= cos θ′
‖β′‖
‖β̃′‖

+
〈β̃′ − β′,β∗〉
‖β̃′‖ ‖β∗‖

≥ cos θ′

(
1− ‖β̃

′ − β′‖
‖β̃′‖

)
− |〈β̃

′ − β′,β∗〉|/‖β∗‖
‖β̃′‖

where the last step from the triangle inequality. To proceed, we apply the concentration bounds (42) and (43); we also make
use of Lemma 13 which ensures ‖β̃′‖ = O(‖β‖). It follows that

cos θ̃′ ≥ cos θ′(1−O(εf ))−O (εf )

≥ κ(θ)(1−O(εf )) cos θ −O (εf ) , (44)

where the last step follows from Theorem 3 on the cosine convergence of population EM.
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Turning to the sine of the angle, we have that

sin2 θ̃′ = 1− cos2 θ̃′

≤ 1− cos2 θ′ + cos2 θ′ − cos2 θ̃′

(i)
= sin2 θ′ +O(εf )
(ii)
≤ κ′(θ) sin2 θ +O(εf ), (45)

where in step (i) we use a similar approach as before to obtain the bound | cos2 θ′ − cos2 θ̃′| ≤ 2| cos(θ′)− cos(θ̃′)| = O(εf ),
and in step (ii) we use Theorem 4 on the sine convergence of population EM.

B. Proof of Corollary 2

We restate the corollary below for readers’ convenience.

Corollary 2. If εf ≤ c1 min(1, η2) for a sufficiently small constant c1 > 0, then with probability 1 − δ, we have θ̃′ < θ in
each iteration of Phases 2, and θ̃′ ≤ π

25 in Phase 3.

Proof. We consider three cases for θ. When θ ≥ π
3 , by inequality (17) we have

cos(θ̃′) ≥κ1(θ)(1− 10εf ) cos(θ)−O (εf )
(i)
≥κ1(θ)(1− 10εf ) cos(θ)− cos(θ)O(εf )
(ii)
≥ cos(θ)

(
κ1

(π
3

)
(1− 10εf )−O(εf )

)
where step (i) holds since the output of Phase 1 satisfies cos(θ) = Ω

(
max(1, η−2) · εf

)
, and step (ii) holds since κ1(θ) is

increasing in θ. Since εf ≤ c1 min(1, η2) for a sufficiently small c1 by assumption, we have κ1(π3 )(1− 10εf )− O(εf ) > 1

and hence θ̃′ < θ in Phase 2 as desired.
When π

25 ≤ θ <
π
3 , againby inequality (18) we have

sin2(θ̃′) ≤κ2(θ) sin2(θ) +O(εf )

≤κ2

(π
3

)
sin2(θ) +O(εf ),

where the last step holds because κ2(θ) is increasing in θ). Under our assumption on εf and the case assumption on θ, we
have κ2

(
π
3

)
sin2(θ) +O(εf ) < sin2(θ) and hence θ̃′ < θ in Phase 3 as desired.

Finally, when θ ≤ π
25 , again by inequality (18) we have

sin2(θ̃′) ≤ κ2(θ) sin2(θ) +O(εf )

≤ κ2

( π
25

)
sin2

( π
25

)
+O(εf ),

where the last step holds by the increasing property of κ2(·) and the case assumption on θ. Under our assumption on εf , we
have κ2

(
π
25

)
sin2

(
π
25

)
+O(εf ) ≤ sin2( π25 ) and hence θ̃′ ≤ π

25 in Phase 3 as desired.

C. Proofs of Theorem 6

We first prove Theorem 6, which is restated below for readers’ convenience.

Theorem 6 (Cosine Convergence, Finite-Sample). Suppose that β̃(0) is an iterate obtained from Phase 1. We run the finite-
sample EM with n = max(1, η−2)d/ε2f samples. As long as θ̃(t) > π/25 for all t < T , there exists an universal constant
c1 > 0 such that with probability 1− δ,

cos(θ̃(t)) ≥
(
1 + c1 ·min(1, η2)

)
· cos(θ̃(t−1)). (19)

In particular, if cos(θ̃(0)) = Θ(1), then we have cos(θ̃(T )) ≥ 0.95 after T = O
(

max(1, η−2) log d
)

iterations.

Proof. The key idea in the above theorem is that when we bound the statistical error of cosine value, we need to bound an
error in one fixed direction u := β∗/‖β∗‖ instead of all directions in Rd to bound `2 norm. More specifically, we first express
the cosine value after one-step iteration:

cos θ̃′ =
(β∗)>β̃′

‖β̃′‖‖β∗‖
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=
u>(β′ − β̃′)
‖β̃′‖

+
u>β′

‖β′‖
‖β′‖
‖β̃′‖

,

≥ −max

(
εf√
d
, ε2f

)
· r

‖β̃′‖
+
u>β′

‖β′‖
‖β′‖

‖β′‖+ rεf

≥ κt cosαt

(
1− rεf
‖β′‖

)
−max

(
εf√
d
, ε2f

)
r

‖β′‖ − rεf
,

where the last inequality comes from Theorem 3 for the population EM.
We need to show that we have r/‖β′‖ = O(1). If this is true, we can set εf as some sufficiently small absolute constant

(that does not depend on η). To show this, we apply Lemma 3 for several values of r = C0, C02−1, ..., C02−l+1, C02−l where
C0 = 3C and l = O(log(n/d)). We can replace δ by δ/ log(n/d) for union bound, which does not change the order of
statistical error. Pick k such that C02−k ≤ ‖β‖ ≤ C02−k+1 = r.

When ‖β‖ ≤ ‖β∗‖/10, we can apply the Lemma 13 to see

r/‖β′‖ ≤ C02−k+1/(C02−k) = 2,

where we used r = 2−k+1. Therefore, r/‖β′‖ = O(1). On the other hand, if ‖β‖ ≥ ‖β∗‖/10, then we divide the cases when
‖β∗‖ ≥ 1/max(3, c2) where c2 > 0 satisfies the lower bound given in Lemma 5:

‖β′‖ ≥ ‖β‖(1− 4‖β‖2)− c2‖β‖‖β∗‖2.

When ‖β∗‖ ≥ 1/max(3, c2) and ‖β‖ ≥ ‖β∗‖/10, by Lemma 13 we have r/‖β′‖ ≤ C0 max(3, c2) = O(1) since all parameters
here are universal constants. On the other hand, if ‖β∗‖ ≤ 1/max(3, c2) and ‖β‖ ≥ ‖β∗‖/10, then from Lemma 13 we have

‖β′‖ ≥ ‖β‖(1− 3‖β‖2)− c2‖β‖‖β∗‖2 ≥ ‖β‖/2.

Therefore, r/‖β′‖ ≤ C02−k+1/(C02−k−1) = 4 = O(1).
From the above case study, we have that

cos θ̃t+1 ≥ κt cos θ̃t(1− c1εf )− c2 max

(
εf√
d
, ε2f

)
,

for some absolute constants c1, c2 > 0. Now observe that as long as sin θt > cθ, κt = 1 + c3 min{1, η2} for some sufficiently

small constant cθ, c3 > 0. Also, recall that we are considering the middle-to-high SNR regime when η2 ≥ cη
√
d log2(n/δ)/n

for some sufficiently large constant cη > 0, whereas εf ≤ c
√
d log2(n/δ)/n for another fixed constant c > 0. Therefore, there

exists a universal constant c4 > 0 such that for all cos θ̃ ≥ εf , we have

cos θ̃t+1 ≥ (1 + c4 min(1, η2)) cos θ̃t.

After t = O(η−2 log(d)) iterations starting from cos θ̃0 = 1/
√
d, we have cos θ̃t ≥ 0.95 or sin θ̃t ≤ 0.1.

D. Stability and Convergence after Alignment

In this subsection, we see how the alignment is stabilized and the norm increases in case we start from small initialization.
a) Sine stays below some threshold.: Once β and β∗ are well-aligned, using sin2 θ = 1− cos2 θ, similar arguments can

be applied for sin values:

sin2 θ̃′ ≤ (1− c1 min(1, η2)) sin2 θ̃, if sin2 θ̃ ≥ c2
sin2 θ̃′ ≤ c2, else sin2 θ̃ ≤ c2,

for some absolute constants c1 > 0 and sufficiently small 0 < c2 < 0.01 given that cos θ̃ > 0.95.
b) Initialization from small estimators after alignment.: After the angle is aligned such that sin θ ≤ c2. We see how fast

‖β‖ enters the desired initialization region that Theorem 7 requires, when ‖β‖ ≤ 0.9‖β∗‖.
Let us first consider the case 0.1‖β∗‖ ≤ ‖β‖ ≤ 0.9‖β∗‖. We recall Theorem 5 such that

‖β∗ − β′‖ ≤ κ‖β − β∗‖+ 16κ · sin2 θ‖β − β∗‖ η2

1 + η2

≤ κ(1 + (16 sin2 θ)η2)‖β − β∗‖,

where κ < 1− c3η2 for some absolute constant c3. By appropriately setting c2 and c3, we have

‖β∗ − β′‖ ≤ (1− c4 min(1, η2))‖β − β∗‖,
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for some constant c4 > 0. Since we are in the regime η2 ≥ cη
√
d log2(n/δ)/n for sufficiently large cη , by appropriately setting

the constants we have ‖β̃′ − β∗‖ ≤ (1− c5 min(1, η2))‖β − β∗‖ for some absolute constant c5 > 0, as long as we are in the
region 0.1‖β∗‖ ≤ ‖β‖ ≤ 0.9‖β∗‖. Hence after O(max(1, η−2)) iterations, we reach to the desired initialization region.

Now we consider the case ‖β‖ ≤ 0.1‖β∗‖. In this case, by Lemma 13, we can show that

‖β′‖ ≥ ‖β‖(1 + c6 min{1, ‖β‖2, ‖β∗‖2}),

for some universal constant c6 > 0. After O(max{‖β‖−2, ‖β∗‖−2}) iterations, we enter ‖β‖ ≥ ‖β∗‖/10. Note that when we
start with ‖β̃0‖ = Ω(1), ‖β̃t‖ will stay above min{Ω(1), ‖θ∗‖/10} throughout all iterations due to Lemma 13 and Lemma 5.

E. Proof of Theorem 7

We restate the theorem below for readers’ convenience.

Theorem 7 (`2 Convergence, Finite-Sample in Middle-to-High SNR Regimes). Suppose that β̃0 is an iterate obtained from
Phase 2 whose angle with β∗ satisfies θ̃0 <

π
25 . Furthermore, suppose that ‖β̃0‖ ≥ 0.9‖β∗‖. Then, for any δ > 0, there exist

universal constants C1, C2 > 0 such that with probability at least 1− δ,

‖β̃T − β∗‖ ≤ C1σmax{1, η−1}
(
d log2(nη/δ)/n

)1/2
after T ≥ C2 max{1, η−2} log(nη/d) iterations.

To prove the theorem, we consider two cases when η ≥ 1 and η ≤ 1.
Case (i) 1 ≤ η = O(1): Given the initialization conditions in Theorem 7, we can get the following corollary of Theorem 5.

Corollary 3. When η ≥ 1 and sin θ < 0.1, we have

‖β′ − β∗‖ < 0.9‖β − β∗‖.

Furthermore, from the uniform concentration Lemma 3 for all β : ‖β − β∗‖ ≤ O(‖β∗‖), we have

‖β̃′ − β′‖ ≤ C‖β∗‖
√
d log2(n/δ)/n,

with probability 1− δ for some universal constant c > 0. From here, with η = O(1), we can check that

‖β − β∗‖ . 0.9t‖β − β∗‖+O

(
σ

√
d log2(n/δ)/n

)
.

Case (ii) C(d log2(n/δ)/n)1/4 ≤ η ≤ 1: In this case, the result of Theorem 5 shows that:

Corollary 4. When η ≤ 1 and sin θ < 0.1, we have

‖β′ − β∗‖ ≤
(

1− 1

8
η2

)
‖β − β∗‖. (46)

In order to analyze the convergence of finite-sample EM operator, we first divide the iterations into several epochs. Let
C̄0 = ‖β̃0 −β∗‖. We consider that in each lth epoch, β satisfies C̄02−l−1 ≤ ‖β−β∗‖ ≤ C̄02−l. Note that such consideration
of dividing into several epochs is only conceptual, and does not affect the implementation of the EM algorithm.

Consider we are in lth epoch such that C̄02−l−1 ≤ ‖β − β∗‖ ≤ C̄02−l. The key idea is that in each epoch, EM makes a
progress toward the ground truth as long as the improvement in population operator overcomes the statistical error, i.e.,

1

8
η2‖β − β∗‖ ≥ 2cr

√
d log2(n/δ)/n,

where c is a constant in Lemma 3. Here, since ‖β‖ ≤ ‖β∗‖+ ‖β − β∗‖, we can set r = ‖β∗‖+ C̄02−l. This in turn implies
that in lth epoch, if the following is true:

1

8
η2C̄02−l−1 ≥ 2cr

√
d log2(n/δ)/n ≥ 4c(‖β∗‖+ C̄02−l)

√
d log2(n/δ)/n,

then we have

‖β̃′ − β∗‖ ≤
(

1− 1

16
η2

)
‖β − β∗‖,

due to the concentration of finite-sample EM operators. Arranging the terms, we require that

C̄02−l
(
η2 − c1

√
d log2(n/δ)/n

)
≥ c2‖β∗‖

√
d log2(n/δ)/n,
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for some universal constants c1, c2 > 0. Recall that we are in middle SNR regime where (with appropriately set constants)

η2 ≥ (c1 + 1)

√
d log2(n/δ)/n.

Therefore, β is guaranteed to move closer to β∗ as long as

C̄02−l ≤ c2‖β∗‖η−2 ·
√
d log2(n/δ)/n ≤ c2η−1 · σ

√
d log2(n/δ)/n.

Note that each epoch takes O(η−2) iterations to enter the next epoch. We can conclude that after l = O(log(n/d)) epochs, we

enter the region where ‖β − β∗‖ ≤ c2η−1σ
√
d log2(n/δ)/n for some absolute constant c2 > 0.

For δ probability bound, we can replace δ with δ/ log(n/d) and take a union bound of the uniform deviation of finite-sample
EM operators given in Lemma 3 for all epochs. This does not change the complexity in the final statistical error.

Finally, the required number of iterations in each epoch is O(η−2) to make ‖β−β∗‖ a half. Since the total number of epoch
we require is O(log(n/d)), the total number of iterations is at most O(η−2 log(n/d)), concluding the proof in middle-high
SNR regime.

Remark 2. When ‖β∗‖ � σ so that η = ω(1), we have to show that the final statistical error is only proportional to σ. For
this case, we are not aware of how to give a good uniform concentration bound on the finite-sample based EM operator.
Furthermore, the analysis have to take a completely different path using a event-wise concentration (e.g., [19]) to tighten the
statistical fluctuation of EM operators. See our conference version [21] for more details on how we handle this case in the
high SNR regime.

F. Proof of Theorem 8

We restate the theorem below for readers’ convenience.

Theorem 8 (`2 Convergence, Finite-Sample in Low SNR Regime). Suppose η ≤ C(d log2(n/δ)/n)1/4 and ‖β̃0‖ = O(σ).
Then there exist universal constants C1, C2 > 0 such that with probability at least 1− δ, we have

‖β̃T − β∗‖ ≤ C1σ(d log2(n/δ)/n)1/4

after T ≥ C2 log(log(n/d))
√
n/(d log2(n/δ)) iterations of finite-sample EM.

We divide the phases into two when ‖β̃0‖ is greater than 0.2σ, and then study when we start from the norm smaller than
0.2σ. Note that we start from ‖β̃0‖ = O(σ).

1) Proof for the Case ‖β̃0‖ ≥ 0.2σ: First, suppose ‖β‖ ≥ 2/3σ. Then,

‖β′‖ ≤ sup
u∈Sd−1

E
[
(X>β∗)(X>u) tanh

(
Y X>β

σ2

)]
+ E

[
z(X>u) tanh

(
Y X>β

σ2

)]
≤ sup
u∈Sd−1

√
E[(X>β∗)2]E[(X>u)2] + E[|z(X>u)|],

≤ ‖β∗‖+ E[|z(X>u)|] ≤ ‖β∗‖+ 2σ/π.

where z ∼ N (0, σ2) such that Y = X>β∗ + z. Since the uniform deviation of finite-sample EM is given by Lemma 3 as

2‖β‖
√
d log2(n/δ)/n, we can conclude that

‖β̃′‖ ≤ ‖β′‖+O

(
σ

√
d log2(n/δ)/n

)
≤ ‖β∗‖+ 2/π +O

(
σ

√
d log2(n/δ)/n

)
≤ 2/3σ.

Next, suppose 0.2σ ≤ ‖β‖ ≤ 2/3σ. Let v1 = β/‖β‖, and v2 is orthogonal to v1 such that span(v1,v2) = span(β,β∗).
We can start from

β′ = E
[
Y α1 tanh

(
Y α1‖β‖
σ2

)]
v1 + E

[
Y α2 tanh

(
Y α1‖β‖
σ2

)]
v2,

where α1 = X>v1 and α2 = X>v2. We will see in Appendix D-A that 〈β′,v2〉 ≤ 1
2‖β‖η

2 ≤ c0σ
√
d log2(n/δ)/n for some

absolute constant c0 > 0. Therefore, we focus on bounding the first term.
Let a = 4, and define event E := {α2

1 + (z/σ)2 ≤ a}. We expand β′ as follows:

β′>v1 ≤
‖β‖
σ2

E[y2α2
11E ] + E[|Y α1|1Ec ]
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≤ ‖β‖
σ2

E[z2α2
11E ] + E[|zα1|1Ec ] +O(‖β∗‖).

By converting the above expression to Rayleigh distribution with α1 = r cosw, (z/σ) = r sinw, we can more explicitly find
the values of the expectations in the above equation. That is,

E[(z/σ)2α2
11E ] =

1

2π

∫ 2π

0

cos2 w sin2 wdw

∫ 4

0

r5 exp(−r2/2)dr ≈ 1− 0.013,

and

E[|(z/σ)α1|1Ec ] =
1

2π

∫ 2π

0

| cosw sinw|dw
∫ ∞

4

r3 exp(−r2/2)dr ≤ 0.002,

Therefore, using ‖β‖ > 0.2σ,

〈β′,v1〉 ≤ ‖β‖(1− 0.013) +O(σ + ‖β∗‖) ≤ γ‖β‖,

where γ = 0.997 < 1. Since the deviation of finite-sample EM operator is in order σ
√
d log2(n/δ)/n, we can conclude that

‖β′‖ ≤ γ‖β‖+O

(
σ

√
d log2(n/δ)/n

)
.

Hence we can conclude that after T = O(1) iterations, ‖β̃T ‖ ≤ 0.2σ.
2) Convergence after ‖β0‖ ≤ 0.2σ: As mentioned in the main text, the core idea of the low SNR regime is that EM

essentially cannot distinguish the cases between β∗ = 0 and β∗ 6= 0. Therefore, instead of studying the contraction of population
EM operator to β∗, we study its contraction to 0.

From Lemma 3, we immediately have that

sup
‖β‖≤r

‖β̃′ − β′‖ ≤ cr
√
d log2(n/δ)/n,

for some universal constant c > 0. Given the contraction of population EM operator and the deviation bound between the
sample and population EM operators, we are ready to study the convergence behaviors of EM algorithm under the low SNR
regime. Our proof argument follows the localization argument used in Case (ii) of middle SNR regime. In particular, let the

target error be εn := c
√
d log2(n/δ)/n with some absolute constant c > 0. We assume that we start from the initialization

region where ‖β‖/σ ≤ εα0
n for some α0 ∈ [0, 1/2).

The localization argument proceeds as the following: suppose that εαl+1
n ≤ ‖β‖/σ ≤ εαln at the lth epoch for l ≥ 0. We let

c > 0 sufficiently large such that

εn ≥ 4cuη
2 + 4 sup

β∈B(β∗,rl)

‖β̃′ − β′‖/rl,

with rl = εαln . During this period, from Lemma 5 on contraction of population EM, and Lemma 3 concentration of finite sample
EM, we can check that

‖β̃′‖ ≤ ‖β‖ − 0.5‖β‖(‖β‖/σ)2 + cu‖β‖η2 + sup
β∈B(β∗,r)

‖β̃′ − β′‖

≤ ‖β‖ − σ

2
ε3αl+1
n +

σ

4
εαl+1
n .

Note that this inequality is valid as long as εαl+1
n ≤ ‖β‖ ≤ εαln . Now we define a sequence αl using the following recursion:

αl+1 =
1

3
(αl + 1). (47)

The limit point of this recursion is 1/2, which will give εα∞n ≈ (d/n)1/4 as argued in the main text. Hence during the lth

epoch, we have

‖β̃′‖ ≤ ‖β‖ − σ

4
εαl+1
n .

Furthermore, the number of iterations required in lth epoch is

tl := (εαln − εαl+1
n )/εαl+1

n ≤ ε−1
n .

After getting out of lth epoch, it gets into (l+ 1)th epoch which can be analyzed in the same way. From this, we can conclude
that after going through l epochs in total, we have ‖β‖ ≤ εαl+1

n . Note that the number of EM iterations taken up to this point
is lε−1

n .
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It is easy to check αl = (1/3)l(α0 − 1/2) + 1/2 from (47). We can set l = C log(1/β) for some universal constant C such
that αl is 1/2− β for arbitrarily small β > 0. In conclusion,

‖β̃t‖/σ ≤ ε1/2−βn ≤ c · (d ln2(n/δ)/n)1/4−β/2,

with high probability as long as t ≥ ε−1
n l &

√
d/n log(1/β) where c is some universal constant. Hence we can set β =

C/ log(d/n) to get a desired result ‖β̃t‖ ≤ cσ ·(d ln2(n/δ)/n)1/4. Since ‖β∗‖ ≤ C0σ(d ln2(n/δ)/n)1/4, it implies ‖β̃t−β∗‖ ≤
c1σ(d ln2(n/δ)/n)1/4 where c1 is some universal constant.

Note that we need the union bound of the concentration of sample EM operators for all l = 1, ..., C log(1/β), such that the
argument holds for all epochs. For this purpose, we can replace δ by δ/ log(1/β). This does not change the order of εn, hence
the proof is complete.

APPENDIX D
TECHNICAL LEMMAS FOR FINITE-SAMPLE EM

In this Appendix, we give several deferred proofs for the main theorem. For the simplicity of the presentation, we assume
here that σ = 1, but original results hold with proper scaling.

A. Proof of Lemma 5

Let α1 = X>v1 and α2 = X>v2, where v1 = β/‖β‖ and span(v1,v2) = span(β,β∗).
a) Upper Bound:: We first bound the first coordinate of the population operator from equation (3):

〈β′, v1〉 = Eα1,α2,Y [tanh(Y α1‖β‖)α1Y ] ,

We will expand the above equation using Taylor series bound of x tanh(x):

x2 − x4

3
≤ xtanh(x) ≤ x2 − x4

3
+

2x6

15
. (48)

Now we unfold the equation above, we have

〈β′, v1〉 =
1

‖β‖
Eα1,α2,Y [tanh(Y α1‖β‖)Y α1‖β‖]

≤ 1

‖β‖
Eα1,α2,Y

[
(Y α1‖β‖)2 − (Y α1‖β‖)4

3
+

2(Y α1‖β‖)6

15

]
≤ 1

‖β‖
Eα1,z

[
(α1‖β‖(z + α1b

∗
1 + α2b

∗
2))2 − (α1‖β‖(z + α1b

∗
1 + α2b

∗
2))4

3

+
2(α1‖β‖(z + α1b

∗
1 + α2b

∗
2))6

15

]
,

where z ∼ N (0, 1) and we used Y = α1b
∗
1 + α2b

∗
2 + z with b∗1 = 〈β∗,v1〉 and b∗2 = 〈β∗,v2〉. Note here that, any (constantly)

higher order terms of Gaussian distribution is constant. Hence instead of computing all coefficients explicitly for all monomials,
we can simplify the argument as

〈β′, v1〉 ≤
1

‖β‖
Eα1,z

[
(α1‖β‖z)2 − (α1‖β‖z)4

3
+

2(α1‖β‖z)6

15

]
+ c1‖β‖‖β∗‖2,

= ‖β‖(1− 3‖β‖2 + 30‖β‖4) + c1‖β‖‖β∗‖2, (49)

for some universal constant c1 > 0. Since we assumed ‖β‖ < 0.2, we have 3‖β‖2 − 30‖β‖4 ≥ ‖β‖2. We conclude that

〈β′,v1〉 ≤ ‖β‖(1− ‖β‖2 + c1‖β∗‖2).

Then we bound the value in the second coordinate of the population operator:

〈β′,v2〉 = Eα1,α2,Y [tanh(Y α1‖β‖)Y α2] ,

where Y |(α1, α2) ∼ N (α1b
∗
1 + α2b

∗
2, 1). In order to derive an upper bound for the above equation, we rely on the following

equation which we defer the proof to the end of this section:

E [tanh(Y α1‖β‖)Y α2] = b∗2 E
[
α2

1 tanh(α1‖β‖(z + α1b
∗
1))− ‖β‖b∗1α2

1 tanh′(α1‖β‖(z + α1b
∗
1))
]
, (50)

where z ∼ N (0, 1 + b∗2
2) with subsuming α2 from the equation. From (50), we can check that

E [tanh(Y α1‖β‖)Y α2] ≤ b∗2 E
[
α2

1 tanh(α1‖β‖(z + α1b
∗
1))
]
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=
b∗2
2
E
[
α2

1 tanh(α1‖β‖(z + α1b
∗
1)) + α2

1 tanh(α1‖β‖(−z + α1b
∗
1))
]

≤ b∗2E
[
α2

1 tanh(α2
1‖β‖b∗1)

]
,

≤ ‖β‖b∗1b∗2E
[
α4

1

]
≤ 1

2
‖β‖‖β∗‖2,

where we used tanh(a+ x) + tanh(a− x) ≤ 2 tanh(a) for any a > 0 and x ∈ R.
From the above results, we have shown that

‖β′‖ ≤ |〈β′,v1〉|+ |〈β′,v2〉| ≤ ‖β‖
(
1− ‖β‖2 + c‖β∗‖2

)
, (51)

for some universal constant c > 0.
b) Lower Bound:: To prove the lower bound of the population EM operator, we again expand the equation using Taylor

series (48):

‖β′‖ ≥ |〈β′,v1〉| ≥ ‖β‖(1− 3‖β‖2)− c2‖β‖‖β∗‖2. (52)

The result follows immediately with some absolute constant c2 > 0.
c) Proof of equation (50):: For the left hand side, we apply the Stein’s lemma with respect to α2. It gives that

E[tanh(‖β‖α1Y )Y α2] = E
[
d

dα2
tanh(‖β‖α1Y )Y

]
= E

[
d

dα2
tanh(‖β‖α1(z̄ + α1b

∗
1 + α2b

∗
2))(z̄ + α1b

∗
1 + α2b

∗
2)

]
= E[b∗2 tanh(‖β‖α1(z̄ + α1b

∗
1 + α2b

∗
2))

+ (‖β‖α1b
∗
2)(z̄ + α1b

∗
1 + α2b

∗
2) tanh′(‖β‖α1(z̄ + α1b

∗
1 + α2b

∗
2)]

= b∗2 E[tanh(‖β‖α1(z + α1b
∗
1)) + ‖β‖α1(z + α1b

∗
1) tanh′(‖β‖α1(z + α1b

∗
1)))]

where z̄ ∼ N (0, 1) and z ∼ N (0, 1 + b∗2
2). For the right hand side, we apply the Stein’s lemma with respect to α1. First, we

check the first term in the right hand side that

E[α2
1 tanh(‖β‖α1(z + α1b

∗
1))]

= E
[
d

dα1
(α1 tanh(‖β‖α1(z + α1b

∗
1)))

]
= E

[
tanh(‖β‖α1(z + α1b

∗
1)) + α1

d

dα1
tanh(‖β‖α1(z + α1b

∗
1)

]
= E

[
tanh(‖β‖α1(z + α1b

∗
1)) + ‖β‖α1(z + 2α1b

∗
1) tanh′(‖β‖α1(z + α1b

∗
1)
]
.

Plugging this into (50) and subtracting the remaining term gives the result that matches to the left hand side.

B. Proof of Lemma 3

For this result, we need the following lemma:

Lemma 14. Suppose ‖β∗‖ ≤ ρ for some universal constant ρ > 0. Then for any given r > 0, with probability at least 1− δ,
we have

sup
β:‖β‖≤r

∥∥∥∥∥ 1

n

n∑
i=1

yixi tanh
(
yix
>
i β
)
− E

[
YX tanh(YX>β)

]∥∥∥∥∥ ≤ cr
√
d ln2(n/δ)

n
, (53)

for some universal constant c > 0.

Proof of Lemma 3. Let us assume that n ≥ Cd for sufficiently large constant C > 0. To simplify the notation, we use
Σ̂n = 1

n

∑
i xix

>
i . Observe that

‖β̃′ − β′‖ ≤ |||Σ̂−1
n |||op‖

1

n

n∑
i=1

yixi tanh(yix
>
i β)− β′‖+ |||Σ̂−1

n − I|||op‖β′‖.

The first term can be bounded by c1r
√
d log2(n/δ)/n with some absolute constant c1 > 0 using the results of Lemma 14.

For the second term, since X ∼ N (0, I), from a standard concentration of measure we directly get

|||Σ̂−1
n − I|||op = |||Σ̂−1

n |||op|||Σ̂n − I|||op ≤ c2
√
d ln(1/δ)/n,
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for some universal constant c2 > 0. If we can show that ‖β′‖ ≤ O(r), then we are done. To see this, first we check that

‖β′‖ = ‖E[YX tanh(YX>β)]‖ ≤ ‖β‖|||E[Y 2XX>]|||op.

It is easy to check that E[Y 2XX>] = I + 2β∗β∗>, hence |||E[Y 2XX>]|||op = 1 + 2‖β∗‖2 ≤ 1 + 2C2 = O(1). Therefore,
‖β′‖ ≤ c3‖β‖ ≤ c3r with a constant c3 = (1 + 2C2). This completes the proof of Lemma 3.

C. Proof of Lemma 14

Proof. We start with the standard discretization argument for bounding the concentration of measures in l2 norm. Let
Z(β) := 1

n

∑n
i=1 yixi tanh

(
yix
>
i β
)
− β′. The standard symmetrization argument gives that [31].

P
(

sup
‖β‖≤r

‖Z(β)‖ ≥ t
)
≤ 2P

(
sup
‖β‖≤r

∥∥∥∥∥ 1

n

n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥ ≥ t/2

)
, (54)

where εi are independent Rademacher random variables. We define a good event E := {∀i ∈ [n], |yi| ≤ τ, |x>i β∗| ≤ Cτ} as
before, where τ = Θ

(√
log(n/δ)

)
. Then the probability defined in (54) can be decomposed as

P

(
sup
‖β‖≤r

∥∥∥∥∥ 1

n

n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥ ≥ t/2

∣∣∣∣E
)

+ P (Ec).

We are interested in bounding the following quantity for Chernoff bound:

E

[
exp

(
sup
‖β‖≤r

λ

n

∥∥∥∥∥
n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥
)∣∣∣∣E

]
,

where we used Chernoff-Bound with some λ > 0 for the last inequality. We first go some steps before we can apply the
Ledoux-Talagrand contraction arguments [22], with fi(β) := tanh

(
|yi|x>i β

)
. First, we use discretization argument for removing

l2 norm inside the expectation.

E

[
exp

(
sup
‖β‖≤r

λ

n

∥∥∥∥∥
n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥
)∣∣∣∣E

]

≤ E

[
exp

(
sup
u∈Sd

sup
‖β‖≤r

λ

n

n∑
i=1

εiyi(x
>
i u) tanh

(
yix
>
i β
))∣∣∣∣E

]

≤ E

[
exp

(
sup
j∈[M ]

sup
‖β‖≤r

2λ

n

n∑
i=1

εiyi(x
>
i uj) tanh

(
yix
>
i β
))∣∣∣∣E

]

≤
M∑
j=1

E

[
exp

(
sup
‖β‖≤r

2λ

n

n∑
i=1

εiyi(x
>
i uj) tanh

(
yix
>
i β
))∣∣∣∣E

]
,

where M is 1/2-covering number of the unit sphere S and {u1, ..., uM} is the corresponding covering set. Now for each uj ,
we can apply the Ledoux-Talagrand contraction lemma since |fi(β1)− fi(β2)| ≤ |yi||x>i β1 − x>i β2| for β ∈ B(0, r):

E

[
exp

(
sup
‖β‖≤r

2λ

n

n∑
i=1

εiyix
>
i uj tanh

(
yix
>
i β
))∣∣∣∣E

]

= E

[
exp

(
sup
‖β‖≤r

2λ

n

n∑
i=1

εi|yi|x>i uj tanh
(
|yi|x>i β

))∣∣∣∣E
]

≤ E

[
exp

(
sup
‖β‖≤r

2λ

n

n∑
i=1

εiy
2
i (x>i β)(x>i uj)

)∣∣∣∣E
]

≤ E

[
exp

(
sup

v∈Sd−1

2rλ

n

n∑
i=1

εiy
2
i (x>i v)(x>i uj)

)∣∣∣∣E
]
, (55)

where we define v := β/‖β‖. Again, we can apply the 1/2-covering number argument to bound this by

M∑
k=1

E

[
exp

(
4rλ

n

n∑
i=1

εiy
2
i (x>i uk)(x>i uj)

)∣∣∣∣E
]
.
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Note that yi(x>i uj)|E is sub-Gaussian with Orcliz norm O(τ(1+‖β∗‖)) = O(τ). Since the multiplication of two sub-Gaussian
variables is sub-exponential, it implies that y2

i (x>i uk)(x>i uj)|E is sub-exponential with Orcliz norm O(τ2) [30]. Now we need
the lemma for the exponential moment of sub-exponential random variables from [30].

Lemma 15 (Lemma 5.15 in [30]). Let X be a centered sub-exponential random variable. Then, for t such that t ≤ c/ ‖X‖ψ1
,

one has

E[exp(tX)] ≤ exp(Ct2 ‖X‖2ψ1
),

for some universal constant c, C > 0.

Finally, note that εiy2
i (x>i v)(x>i u1) is a centered sub-exponential random variable with the same Orcliz norm. Equipped

with the lemma, we can obtain that

E

[
exp

(
4λr

1

n

n∑
i=1

εiy
2
i (x>i uk)(x>i u1)

)∣∣∣∣E
]
≤ exp(Cλ2r2τ4/n), ∀|λr/n| ≤ c/τ2,

which yields

E

[
exp

(
sup
‖β‖≤r

λ

n

∥∥∥∥∥
n∑
i=1

εiyixi tanh
(
yix
>
i β
)∥∥∥∥∥
)∣∣∣∣E

]
≤ exp

(
Cλ2r2τ4/n+ C ′d

)
, ∀|λ| ≤ n/cτ2r,

where we used logM = O(d) with some C,C ′, c > 0. Combining all the above, we have that

P
(

sup
β∈B(β∗,r)

‖Z(β)‖ ≥ t
)
≤ exp

(
C0λ

2r2τ4/n+ C1d− λt/2
)

+ P(Ec).

From here, we can optimize for λ = O(t/r2τ4) with setting t = O
(
r
√
dτ4/n

)
. Since t = O

(
r
√
d log2(n/δ)/n

)
, this

concludes the proof.

D. Lower Bound on the Norm: Proof of Lemma 13

Let α = ∠(β,β∗). We recall here that b∗1 = β∗ cosα, b∗2 = β∗ sinα.
a) Case (i):: cosα ≤ 0.2. This case we essentially give a norm bound for cosα = 0. Suppose that ‖β‖ ≤ ‖β∗‖/10. We

can first check that

‖β′‖ ≥ |〈β′, v1〉| = Eα1,α2,Y [tanh(Y α1‖β‖)Y α1]

= Eα1,α2,z[tanh((α1b
∗
1 + α2b

∗
2 + z)α1‖β‖)(α1b

∗
1 + α2b

∗
2 + z)α1],

where α1, α2, z ∼ N (0, 1). The above quantity is larger than the following b∗1 = 0 case:

Eα1,α2,z[tanh((α2b
∗
2 + z)α1‖β‖)(α2b

∗
2 + z)α1] = Eα1,z̄[tanh(z̄α1‖β‖)z̄α1],

where z̄ ∼ N (0, 1 + (b∗2)2) = N (0, σ2
2). We can lower bound the following quantity such that

Eα1,z̄[tanh(z̄α1‖β‖)z̄α1] ≥ σ2Eα1,z[tanh(σ2zα1‖β‖)zα1]

≥ σ2Eα1,z[tanh(zα1‖β‖)zα1].

If ‖β‖ > 0.5, then through the numerical integration we can check that Eα1,z[tanh(0.5zα1)zα1] > 1/π. Hence, we immediately
have that

|〈β′, v1〉| ≥
1

π
σ2 ≥

sinα

π
‖β∗‖ ≥ 1

5
‖β∗‖,

since sinα > 0.9 in this case. Since we are considering the case when ‖β‖ ≤ ‖β∗‖/10, clearly we have

‖β′‖ ≥ ‖β‖(1 + 1 ·min(1, ‖β‖2)).

If ‖β‖ < 0.5, then we get a lower bound using Taylor expansion:

Eα1,z̄[tanh(z̄α1‖β‖)z̄α1] ≥ σ2

(
Eα1,z[‖β‖(zα1)2]− 1

3
Eα1,z[‖β‖3(zα1)4]

)
= σ2‖β‖(1− 3‖β‖2) = ‖β‖

√
1 + 0.96η2(1− 3‖β‖2),

where ‖β∗‖ = η. Here, we consider three cases when η ≥ 5, 5 ≥ η ≥ 1, 1 ≥ η. When η ≥ 5, then we immediately have
|〈β′, v1〉| ≥ 1.25‖β‖. In case 5 ≥ η ≥ 1, we first note that since ‖β‖ ≤ ‖β∗‖/10, we check the value of

‖β‖
√

1 + 0.96η2(1− 0.03η2).
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We can again, numerically check that
√

1 + 0.96η2(1− 0.03η2) ≤ 1.25 for 1 ≤ η ≤ 5. Finally, when η ≤ 1, then a simple
algebra shows that

‖β‖
√

1 + 0.96η2(1− 0.03η2) ≥ ‖β‖(1 + 0.3η2).

Combining all, we can conclude that when ‖β‖ ≤ ‖β
∗‖

10

‖β′‖ ≥ ‖β‖(1 + 0.25 ·min(1, ‖β∗‖2)) ≥ ‖β‖(1 + 0.25 ·min(1, ‖β‖2)).

Now note that 〈β′, v1〉 increases in ‖β‖, hence for all ‖β‖ ≥ ‖β∗‖/10, it holds that

‖β′‖ ≥ ‖β
∗‖

10
(1 + 0.25 ·min(1, ‖β∗‖2)).

b) Case (ii):: cosα ≥ 0.2. Again, we can only consider when ‖β‖ ≤ ‖β∗‖/10 since the other case will immediately follow.
Their claim in this case is that |〈β′, v1〉| ≥ min

(
σ2

2‖β‖, b∗1
)
. Hence we consider two cases when σ2

2‖β‖ = (1+η2 sin2 α)‖β‖ ≤
b∗1 = ‖β∗‖ cosα and the other case.

In the first case when σ2
2‖β‖ ≤ b∗1, it can be shown that (see equation (39))

b∗1 − 〈β′, v1〉 ≤ κ3(b∗1 − σ2
2‖β‖),

where κ ≤
√

1 + (b∗1)2
−1

. Rearranging this inequality, we have

〈β′, v1〉 ≥ ‖β∗‖(1− κ3) cosα+ κ3(1 + η2 sin2 α)‖β‖
≥ ‖β‖2(1− κ3) + κ3(1 + η2 sin2 α)‖β‖
≥ ‖β‖+ (1− κ3)‖β‖.

Note that 1− κ3 ≥ c1 min(1, b21) for some constant c1 > 0. On the other side, if σ2
2‖β‖ ≥ b∗1, then we immediately have

〈β′, v1〉 ≥ ‖β∗‖/5 ≥
‖β∗‖

10
(1 + 1 ·min(1, ‖β∗‖2)) ≥ ‖β‖(1 + 1 ·min(1, ‖β‖2)).

Combining two cases, we have that

‖β′‖ ≥ ‖β‖(1 + c1 ·min(1, ‖β‖2)).

Now similarly to Case (i), since 〈β′, v1〉 is increasing in ‖β‖, when ‖β‖ ≥ ‖β∗‖/10, we have

‖β′‖ ≥ ‖β
∗‖

10
(1 + c2 ·min(1, ‖β∗‖2)),

where c2 = c1/100. Collecting all results in two cases, we have Lemma 13.

APPENDIX E
AUXILIARY LEMMAS

A. Random Angle of a Gaussian

The following lemma characterizes the quality of a random initial iterate for EM.

Lemma 16 (Angle between a Gaussian and a fixed vector). Let X ∈ Rd be a random vector with independent standard
Gaussian entries. With probability at least 0.9− 2 exp(−cd), we have | cos(∠(X, e1)| = β(1/

√
d), where e1 := (1, . . . , 0) is

the first standard basis vector in Rd.

Proof. Note that cos(∠(X, e1)) = α1/
√∑d

i=1 x
2
i . Since the x2

i ’s are independent sub-exponential random variables, By
standard concentration result ensures that

P

(∣∣∣∣ d∑
i=1

x2
i − d

∣∣∣∣ > δd

)
≤ 2 exp(−cdδ2),

for some absolute constant c > 0. On the other hand, since α1 ∼ N (0, 1), we have |α1| ∈ (0.01, 2) with probability at least
0.9. Combining, we conclude that with probability 0.9− 2 exp(−0.01cd),

0.01√
1.1d

≤ |α1|√∑d
i=1 x

2
i

≤ 2√
0.9d

.
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B. Concentration of Second Order Moments

Lemma 17. With probability at least 1− δ, we have

||| 1
n

n∑
i=1

y2
i xix

>
i − I|||op = O

(‖β∗‖+ 1)2

√
d ln2(n/δ)

n

 , (56)

Proof. Let εi be an independent Rademacher variable and zi = N (0, 1). We can write yi = εix
>
i β
∗+ zi. We use the truncation

argument for the of concentration of higher order moments. First define the good event E := {∀i ∈ [n], |zi| ≤ τ, |x>i β∗| ≤ τ2|}.
We will decide the order of τ later such that P (E) ≥ 1− δ. Let Ỹ ∼ Y |E , X̃ ∼ X|E and (ỹi, x̃i) be independent samples of
(Ỹ , X̃). It is easy to check that Ỹ X̃ is a sub-Gaussian vector with Orlicz norm O(τ + τ2) [30]. To see this,∥∥∥Ỹ X̃∥∥∥

ψ2

= sup
u∈Sd−1

sup
p≥1

p−1/2E
[
|Y (X>u)|p|E

]1/p
(57)

≤ (τ + τ2) sup
u∈Sd−1

sup
p≥1

p−1/2E
[
|X>u|p1E

]1/p
/P(E)1/p (58)

≤ (τ + τ2)K, (59)

for some universal constant K > 0 and the last inequality comes from the pth moments of Gaussian is O((2p)p/2) and
P (E) ≥ 1− δ.

Now we decompose the probability as the following:

P

(
||| 1
n

n∑
i=1

y2
i xix

>
i − I|||op ≥ t

)
≤ P

(
||| 1
n

n∑
i=1

y2
i xix

>
i − I|||op ≥ t|E

)
+ P(Ec)

≤ P

(
||| 1
n

n∑
i=1

ỹ2
i x̃ix̃

>
i − E[ỹ2x̃x̃>]|||op ≥ t/2

)
︸ ︷︷ ︸

(a)

+ P
(
|||E[Ỹ 2X̃X̃>]− I|||op ≥ t/2

)
︸ ︷︷ ︸

(b)

+P(Ec)︸ ︷︷ ︸
(c)

.

We can use a measure of concentration for random matrices for (a) given that n ≥ Cd for sufficiently large C > 0 [30], and
bound by exp

(
− nt2

C(τ+τ2)4 + C ′d
)

for some constants C,C ′ > 0. The bound for (c) is given by n exp(−τ2), hence we set

τ = Θ
(√

log(n/δ)
)
, τ2 = ‖β∗‖τ.

Finally, for (b), we first note that

E[Y 2XX>] = E[Ỹ 2X̃X̃>]P (E) + E[Y 2XX>1Ec ].

Rearranging the terms,

|||E[Ỹ 2X̃X̃>]− I|||op ≤ |||E[Ỹ 2X̃X̃>]|||opP (Ec) +
√

sup
u∈Sd

E[Y 4(X>u)4]
√
P (Ec)

≤ (τ + τ2)2n exp(−τ2/2) + 3(τ + τ2)2
√
n exp(−τ2/4) ≤

√
1/n.

We can set t = O

(
(‖β∗‖+ 1)2

√
d log2(n/δ)/n

)
and get the desired result.

C. Initialization with Spectral Methods

Lemma 18. Let M = 1
n

∑n
i=1 y

2
i xix

>
i − I . Let the largest eigenvalue and corresponding eigenvector of M be (λ1,v1). Then,

there exists universal constants c0, c1 > 0 such that

|λ1 − ‖β∗‖2| ≤ c0(‖β∗‖2 + 1)

√
d log2(n/δ)

n
.

Furthermore, if ‖β∗‖ ≥ c1(d log2(n/δ)/n)1/4, then

sin∠(v1,β
∗) ≤ c0

(
1 +

1

‖β∗‖2

)√
d log2(n/δ)

n
≤ 1

10
.
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Proof. The lemma is a direct consequence of Lemma 17 and matrix perturbation theory [31]. Note that E[y2
i xix

>
i ] = I+2β∗β∗>

(e.g., see Lemma 1 in [41]).

The above lemma states that when ‖β∗‖ is not too small, we can always start from the well-initialized point where it is well
aligned with ground truth β∗. In low SNR regime where ‖β∗‖2 . (d/n)1/2, we cannot guarantee such a well-alignment with
β∗ since the eigenvector is perturbed too much. However, the largest eigenvalue can still serve as an indicator that ‖β∗‖ is
small. Hence in all cases, we can initialize the estimator with β̃0 = max{0.2,

√
λ1}v1 to satisfy the initialization condition that

we required in Phase 1.
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