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Abstract

We investigate the landscape of the negative log-likelihood function of Gaussian Mixture Models
(GMMs) with a general number of components in the population limit. As the objective function is
non-convex, there can exist multiple spurious local minima that are not globally optimal, even for well-
separated mixture models. Our study reveals that all local minima share a common structure that
partially identifies the cluster centers (i.e., means of the Gaussian components) of the true location
mixture. Specifically, each local minimum can be represented as a non-overlapping combination of two
types of sub-configurations: (1) fitting a single mean estimate to multiple Gaussian components or (2)
fitting multiple estimates to a single true component. These results apply to settings where the true
mixture components satisfy a certain separation condition, and are valid even when the number of
components is over- or under-specified. We also present a more fine-grained analysis for the setting of
one-dimensional GMMs with three components, which provide sharper approximation error bounds with
improved dependence on the separation parameter.
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1 Introduction

Mixture models, such as the Gaussian mixture model (GMM), are a class of latent variable models that offer
a flexible approach to approximate complex multi-modal distributions. These models have been widely used
in statistical inference with heterogeneous data. A standard method for estimating the parameters of GMM
is maximum likelihood estimation, which seeks the global minimum of the negative log-likelihood function
of the model. The statistical properties of the maximum likelihood estimators, including its asymptotic
consistency [38] and finite-sample error rates [10, 29, 21], have been well studied.

However, estimating GMMs poses significant computational challenges, and the extent of these challenges
is not fully understood. The negative log-likelihood function of GMM is non-convex and generally has
multiple local minima. Consequently, standard iterative algorithms, such as the Expectation-Maximization
(EM) [15], are only guaranteed to converge to a local minimum [11, 23]. A recent study [22] shows that for
GMDMs with three or more well-separated components, there provably exist spurious local minima that may
be arbitrarily far from the global minimum in both Euclidean distance and in likelihood values; moreover,
randomly initialized EM algorithms converge to a spurious local minimum with high probability. For certain
special cases of GMMs, such as those with two equally weighted components, it has been shown that the
negative log-likelihood function in fact has no spurious local minimum, and the EM converges to the global
minimum from arbitrary initialization [14, 13]. These global convergence results, however, are the exceptions
rather than the norm as demonstrated in [22]. Despite the negative theoretical results, iterative methods
such as the EM and its variants are routinely applied to GMMs in practice.

Motivated by the above challenges and ubiquity of iterative methods, in this paper we perform a more
fine-grained investigation of the likelihood landscape and local minima structures of GMMSs. Specifically, we
seek to answer the following question:

“Do spurious local minima possess informative structures related to the global minimum?”

1.1 Owur Contributions

We consider the problem of estimating the component means of a GMM with a general number of equally
weighted components. Suppose that one fits a mixture of & Gaussians with means B = (81,...,8k) to
data generated by a true mixture of k. Gaussians with true means ©* = (07,...,0; ). We investigate the
structures of the local minima of the negative log-likelihood function in the population limit (i.e., the sample
size n — 00).

Our main contribution is a proof that all local minima B of the negative likelihood share a similar
structure that partially identifies the means @* of the true mixture model. Specifically, each local minimum
only involves two types of sub-configurations: either a single estimated center 3; is close to the average of
several true component means {0%}, or several estimated centers {3;} are close to a single true center 0*.
Moreover, these sub-configurations involve disjoint sets of estimates and component means. Notably, this
result holds even when the number of components in the fitting model, k, is different from the number of
components in the true model, k..

To illustrate the above structure, let us consider an example scenario where k = 5 and k, = 4. A local
minimum B of the negative log-likelihood has the form

1
51%5(9T+9§)7,@2%ﬁ3%ﬁ4%0§ and G35 ~ 0. (1)

The relationship between B and ®* can be summarized by the association graph given in Figure 1. This
association graph can be decomposed into three disjoint subgraphs, each of which is a star graph containing
only one mean estimate 3;, or only one true component mean 6. We refer to the first type of subgraphs



as “one-fits-many” (one 3; fits many 0%*’s), and the second type “many-fit-one”. The main theorem in this
paper, Theorem 2, states that all local minima of the population negative log-likelihood exhibit a similar
combinatorial structure (potentially plus some unassociated estimates). In particular, each local minimum
B corresponds to a disjoint union of complete bipartite graphs (75, Ss)a=1,2,... (potentially plus a degenerate
pair (79, So) with Sy = ()); each bipartite graph is between a subset of estimated centers 7, C [k] and a subset
of true component means S, C [k.], such that at least one of 7, and S, is a singleton, as shown in Figure 1.
Moreover, Theorem 2 provides upper bounds on the approximation errors in equation (1), characterizing
how the errors depend on the separation between the true mixture components.

0; 0; 03 0;
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Figure 1: Association between mean estimates {3;} and true component means {€*} in a local minimum.

The above results apply to GMMs with any values of k£ and k.. Specializing to the exemplar setting
of one-dimensional GMM with k, = 3 components, we show that sharper results can be obtained via a
more fine-grained analysis. In particular, we show that the approximation errors diminish at a quadratic
exponential rate with respect to the separation between true component means (Theorem 3).

The above findings complement the negative results in [22] on the existence of spurious local minima
arbitrarily far from the global optimum ©* in FEuclidean distance. Our results show that all local minima
are close to ®* in a different sense, as they partially recover the structure of ®*. Consequently, standard
iterative algorithms such as the EM algorithm and gradient methods, starting from an arbitrary initial
solution (except from a set of measure zero [41, 23, 26]), converge to a solution that is informative of @*.

While there has been a long line of research on algorithms and theoretical guarantees for learning GMMs,
we emphasize that our focus in this paper is not on obtaining quantitative improvements on these results.
Rather, we aim to understand the structural properties of the non-convex likelihood function and iterative
methods for optimizing the likelihood. Nevertheless, we expect that our structural results will have important
implications for developing better algorithms, especially in the overparameterized regime where k > k,; we
elaborate on this point in Section 5.

1.2 Related Work

In 2006, Srebro posed the question of whether the population negative log-likelihood function of GMMs has
spurious local minima [34]. In 2016, Jin et al. answered this question in the negative for the general case
with k. > 3 [22]. Motivated by the computational considerations in estimating GMMs, recent works seck to
understand the finer properties of the likelihood function as well as those of the EM algorithm—arguably
the most popular algorithm for GMMs.

One line of work investigates the local behaviors of the likelihood in a neighborhood around the global
optimum, which is relevant to the EM starting from a sufficiently good initial solution. The work in [3]
proposes a general framework for establishing the local geometric convergence of the EM; implicit in their
results is that the negative log-likelihood function of a two-component GMM has no other local minima near
the global minimum. The extension to multiple-component settings is considered in the work [46]. Further
work in this line studies GMMs with additional structures [48, 40, 20], the EM with unknown mixture weights
and covariances [9], confidence intervals constructed using the EM [11], and the setting where the number
of components is under-specified [19].

Another line of work studies global properties of GMMs and the EM in certain restricted settings, mostly
that with k, = 2 (typically equally weighted) components. In this setting, the work in [14, 43] proves that



the EM initialized at a random solution converges to the global minimum, showing that the negative log-
likelihood function has no spurious local minimum that is not globally optimal in this case. This fact is
further investigated in the work [28], which proposes a general framework for transferring the properties of
the population likelihood function to its empirical counterpart. Extensions to mixtures of two log-concave
distributions [32] or two linear regressions [25] have also been considered. A more recent set of papers study
the delicate behaviors of the EM when the two components have small or no separation, or when the number
of components is mis-specified [18, 17, 24, 42]; in these settings, the EM may exhibit a slower, non-parametric
statistical error rate. The above global results for k£, = 2 usually do not generalize to k., > 3, as spurious
local minima provably exist in the latter [22]. Moreover, additional spurious local minima may arise when
the mixture weights are not equal [44].

Our recent work [33] studies the related problem of optimizing the (non-smooth) k-means objective
function, which can be viewed as a limit of the log-likelihood function of GMMs when the posited variance
of Gaussian components goes to zero. The results in [33] and this paper are similar in spirit: spurious local
minima provably exist but possess additional hidden structures. However, the theoretical results in this
paper are substantially sharper and apply to the over/under-parameterized regime k # k.. The proofs in
this paper rely on quite different techniques and are also considerably simpler than [33] in several aspects,
taking advantage of the rich structures in the smooth log-likelihood objective function for GMMs.

We remark that several recent works [27, 16] have developed new algorithms for k-means and GMMs
that explicitly leverage the one-fits-many/many-fit-one structures studied in [33] and this paper.

1.3 Organization

This paper is organized as follows. In Section 2, we provide formal definitions and notation that are used
throughout the paper. In Section 3, we present preliminary analytical results for the likelihood landscape of
GMDMs. Section 4 contains the main technical results of this work. Specifically, in Section 4.1, we state the
structures of local minima, and in Section 4.2, we discuss their implications. Additionally, in Section 4.3, we
explore how we can improve the approximation error bounds in the main theorem in the example setting of
a one-dimensional GMM. Section 5 provides discussion on the our results and future directions.

The remaining sections are dedicated to technical details and proofs. In particular, Sections 6, 7 and 8
contain the proofs for the theoretical results in Sections 3, 4.1 and 4.3, respectively. We defer subsidiary
items, such as proofs of technical lemmas, to the Appendix.

2 Problem setup

In this section, after introducing the basic notation, we describe the problem setup of Gaussian mixture
models and the associated maximum likelihood estimation approach.

2.1 Notation

We let N denote the set of positive integers, and N := N U {0}. For each m € N, let [m] := {1,2,...,m}
and [m]p := [m] U {0}. Given a set T C N, let |Z| denote the cardinality of Z and Z(i) denote the i-th
smallest integer in Z, so Z(1) < --- < Z(|Z|). Let R denote the real numbers and Ry := {z € R : > 0}.
We generally use curly letters (e.g., 7)) to denote sets. For a set 7 C R%, let int 7 denote its interior.

We use boldface lowercase letters, e.g., , to denote deterministic (column) vectors, of which z; is
the i-th element. In particular, e; = (0,...,0,1,0,...,0)" is the i-th standard basis vector in R%, and
1, =(1,1,...,1) € R? is the vector of all ones. We let ||z|| denote the Euclidean ¢; norm of z.

We use boldface capital letters, e.g., X, to denote matrices. In particular, I; is the d-by-d identity matrix.
We identify a matrix with an ordered set of column vectors, and let X; € R? denote the j-th column vector
of X. For any X € R™™ and any Z C [m], we let X(Z) € R¥*/Z| denote a matrix such that X (Z); = Xz;).
We write X > 0 when X is symmetric positive semidefinite.

We use sans-serif letters, e.g., x and X, to denote random variables and vectors. For a probability measure
v, we write x ~ v to denote that x is distributed per v. For any u € R and ¥ € R4*? such that 3 > 0, we
denote by N (u,X) the Gaussian distribution with mean w and covariance X; moreover, we let ¢(- | u, X)
denote the probability density function of N'(u,X). With an underlying probability measure specified, we



use E and PP to denote the expectation and probability. Given a sample space €2 and an event A C (), the
indicator function 14 : @ — {0,1} is defined such that 14(x) = 1 if and only if x € A. We sometimes use
1(z € A) to denote 1 4(x).

2.2 Gaussian Mixture Models

Consider a mixture of k, equally weighted Gaussian distributions, denoted by v*, which has the density

FO= 3 R0, @

s€[k«]

where fZ(-) denotes the density of the s-th mixture component, which is a Gaussian distribution. Specifically,
we assume that fZ(-) := ¢(- | 8%,021,) for some 87 € RY and 0 € R,. Let X = {z1,...,z,} C R be a
collection of n i.i.d. samples generated from v*.

The goal of Gaussian mixture modeling is to fit a k-component mixture of Gaussians, denoted by v, to
the data X. Assuming o is known a priori, we may write the density of v as

=5 3 F0 Q)

1€ (K]

where f;(-) := ¢(- | Bi,021,) for some B3; € R4 i € [k]. We refer to {3;, i € [k]} as the fitted centers, or mean
estimates. Note that the number of fitted components k& may differ from the number of true components k..
This covers the exact-parametrization (k = k.), over-parametrization (k > k.) and under-parametrization
(k < k) settings.

To avoid cluttered notation, we have suppressed the dependence of f* and {f*} on {0}, and likewise
for the dependence of f and {f;} on {3;}. We use E, and P, to denote the expectation and probability,
respectively, under the true mixture model v*. Similarly, for each s € [k,], we use E; and P, to denote the
expectation and probability, respectively, under the s-th true Gaussian component with density fr. Note
that E, = ki > sefk,) Es and Py = ki > sefr,) Ps by definition in (2). For clarity, we generally use s, s to
index true mixture components (e.g., 8%, f¥), whereas i, j are used to index the components in the fitted
model v (e.g., B, fi).

For the true mixture model v*, we define the maximum and minimum component separations as

Amax = max ”0: - 0:’” ’
s,8'€[k«]

A= min |05~ 03] @
s,s"€[ky]
s#£S

We refer to Apin/o as the Signal-to-Noise Ratio (SNR). Lastly, we define the condition number of v* as

Al’l’l?),X
pim B (5)

2.3 Maximum Likelihood Estimation

Given the data X from the true model v*, the maximum likelihood principle is a standard approach for fitting
amodel v to X. Let ®* = (67,...,0; ) € R”* and B = (B4,...,B) € R** denote the component mean
parameters of the true and fitted models, respectively. The population negative log-likelihood function L—
the infinite sample limit (i.e., n — 00) of the sample negative log-likelihood—is given by

L(B) = L(B | ©)
— —E. [log f(x)
= Dict, (F11f) — E. [log £*(x)]. (6)



where x is a random variable distributed per v*, Dk, (f*||f) := E. [log ];(Xx))} is the Kullback-Leibler (KL)

divergence between v* and v, and the entropy term —E, [log f*(x)] does not depend on B. The maximum
likelihood approach involves finding B that minimizes the negative log-likelihood, i.e.,

Be in L(B). 7
arg min L(B) (7)
When k = k,, it is clear from (6) and the non-negativity of KL divergence that ®* is a global minimizer of
L. However, L is generally not convex and has local minima other than ®* [22]. This fact poses a significant
computational challenge for solving (7) because standard algorithms (such as the EM and gradient methods)
are only guaranteed to find a local minimum, which can be substantially suboptimal.

Remark 1 (Euclidean invariance of L). It is easy to verify that the function L is invariant under a Euclidean
transformation, i.e., rotations, translations, reflections, and a sequence thereof. That is, for any orthonormal
matrix U € R%*? and vector v € R?, the following holds:

LUB+v®1,, |UG +v®1,,)=L(B|OY

where v ® 13, = [v v] € R¥k«In the analysis we frequently make use of this invariance property
to choose a convenient coordinate system.

3 Preliminary Analysis

In this section, we present a preliminary analysis for the landscape of the likelihood function of Gaussian
mixture models. In Section 3.1, we characterize the stationary points of the population negative log-likelihood
function L. In Section 3.2, we derive an equivalent form of the stationary condition (Theorem 1), which
immediately implies several useful properties of the stationary points of L. These results will be used in our
analysis in subsequent sections.

3.1 Coefficients of Association and Optimality Conditions

Here we define the coefficients of association, which are then used to characterize the first-order and the
second-order optimality conditions for L as well as the fixed points of the EM and gradient methods. Most
of the materials in this subsection are not new, at least in the exact parameterization setting (k = k).
Nevertheless, we collect these results here to set the stage for subsequent analysis.

3.1.1 Coefficients of Association

The coefficient of association, defined below, measures the relative strength of association between a data
point & and each of the k estimated components {f; : i € [k]} in the fitted mixture model.

Definition 1. Let z € RY, B = (B1,...,0:) € R¥** and 0 € R be given. For each i € [k], the coefficient
of association between x and B; at level o is defined as

Yi(x) = i (x; B, o)
_ ||T/—f37t\|2)

b ov (-2

f(iB) a Zje[k] exp (_w) .

The association coefficient 1;(x) takes the form of a soft (arg)min function and can be viewed as an
approximation of the indicator function of 3; being the closest to « among all the fitted centers {3; : j € [k]};
that is,

(8)

vilw) ~ 1{i = arg min 2 — 6 |

The analysis in this paper makes use of this intuitive interpretation. From a Bayesian perspective, one may
also interpret 1;(x) as the posterior probability of a data point & belonging to the i-th fitted component,



given the current estimate B of the component means. As such, the quantity ¥;(x) appears in the E-step of
the EM algorithm, as we shall see momentarily. With x denoting a random data point generated from the
true distribution v*, the induced scalar random variables

WV, = ’lﬁi(x), XS [k‘}, (9)

correspond to the association coefficients between the random vector x and B = (3; : i € [k]).

3.1.2 First-order and Second-order Characterizations of Optimality for L

Here we discuss the optimality conditions that characterize the local minimizers of the population negative
log-likelihood function L defined (6).

First-order necessary condition The gradient of L can be expressed in terms of the association coeffi-
cients, as stated in the following lemma.

Lemma 1. Let B = (B4,...,8;) € R¥™* and o > 0. The partial derivatives of L at B admit the expression

) 1 .
55, /B = o2 Bl (Bi-x)], i<k (10)

It follows from Lemma 1 that B is a stationary point of L (i.e., VL(B) = 0) if and only if

E. [Wi(Bi =x)] =0, Vie[k], (11)
which is equivalent to
* wi .
fi= T, vicl (12)

Equations (11) and (12) are the first-order necessary condition for B being a local minimizer of for L.

Second-order necessary condition We can also write the Hessian of L using the coefficients of associ-
ation, as done in the next lemma.

Lemma 2. Let B = (B1,...,B:) € R™* and 0 > 0. The second-order partial derivatives of L at B admit
the expression
T L(B) = LB [, (8, -8~ )]
0600, gb LT I ' (13)
1
0y~ B[V {0 L= (B, =B =0}

for alli,j € [k], where 0;; is the Kronecker delta (i.e., 6;; =1 if i = j, and 0;; = 0 otherwise).

The Hessian V2L(B) can be expressed as a kd x kd matrix whose (i, j)-th block (of size d-by-d) is
%{%L(B) for i,j € [k]. Any point B that satisfies

VL(B)=0 and V?L(B) >0 (14)

is called a second-order stationary point. Equation (14) is the second-order necessary condition for B being

a local minimizer of L.
In summary, we have the following inclusion relation:

{B € R¥* . B is a local minimizer of L}yC{B¢e RIxE VL(B) =0 and V?L(B) > 0}
C{BeR¥™* . VL(B)=0}.



3.1.3 Connection between the Stationarity Condition and the EM Algorithm

The EM algorithm is a popular iterative method for optimizing the likelihood function. In the population
setting, the EM update takes the form

E, [Wix] 3; 1 0
E vl 7" E.[vi] 9B

Bi «~ L(B), Vielk], (15)
where we have combined the E-step (computing V;) and the M-step (computing (3;) into one update. The
EM update (15) can be viewed as a fixed point iteration for solving the stationary condition (12), or as
a gradient descent-like (or quasi-Newton) algorithm with a coordinate-dependent step size 1/E, [V;] [45].
Therefore, the fixed points of the EM algorithm correspond to the stationary points of L, and the stable
fixed points of the EM correspond to the local minimizers.

Our results in Section 3.2 provide further characterizations of the stationary points and local minimizers
of L. In light of the above discussion, these results immediately apply to the solution returned by the EM
algorithm and other local algorithms including gradient descent and Newton methods.

3.2 Properties of the Stationary Points of L

Our first theorem provides a necessary and sufficient condition for the (first-order) stationary points of L.
Recall that ®* = (0{, o5, ..., 0;;*) is the true parameters for the Gaussian mixture model whose density is
given in (2).

Theorem 1 (Equivalent stationary condition). A point B = (B1,...,B%) € R™** is a stationary point of L
if and only if

SB D BV = Y OIE V], Vi€ k] (16)

jelk]  s€lka] $€[ka]

We prove Theorem 1 in Section 6.2 using the Stein’s identity.

Equation (16) is equivalent to the original stationary condition (12). However, the expression in (16) is
often more useful as it exposes the relationship between the fitted centers {3,} and the true centers {67 }.
This result plays a key role in establishing the main results of this paper in Section 4.

Equation (16) links the estimates B to the true component centers ®* by establishing a system of equa-
tions: for each i € [k], a convex combination of the estimates 8; weighted by w; = > | Es [V W] is
equated to a convex combination of true component centers 8% weighted by w’, := E, [W;]. This system of
equations implicitly characterizes possible configurations of (first-order) stationary points. The four corol-
laries in Section 3.2.1 derive various useful properties of the stationary points and local minimizers of L from
equation (16). Although these corollaries might seem intuitive, proving some of them could be challenging
using other methods, particularly when &k # k..

3.2.1 General Geometric Properties of Stationary Points

The result in the first corollary is probably well known. It states that for any stationary point of L, the
weighted average of the fitted centers must equal the mean of the true centers.

Corollary 1 (Mean consistency). If B € R¥** s q stationary point of L, then
SERARTER o)
JEIK] i s€lky]

Proof of Corollary 1. Adding up the equation (16) over i € [k] and using the fact that >, V; = 1
surely, we obtain that 371 85 > ey Es (V5] = g 05 Since 3o . Es [W;] = kE, [V], the proof
is complete. O

The next corollary states that any stationary point of L must lie in the linear subspace spanned by the
true component centers.



Corollary 2 (Linear span). If B € R™F* is q stationary point of L, then we have
lgi Gspan{@j,se [k*]}a i€ [k]

With this property, we can restrict ourselves in subsequent analysis to span {07}, a k.-dimensional subspace
of R?. This property is particularly useful when k, is much smaller than d. The proof of Corollary 2 is
deferred to Section 6.3.

3.2.2 Two Extreme Cases of Fitting Gaussian Mixtures

We consider two extreme cases of the problem of fitting a mixture model of k& Gaussians to data generated by
a mixture of k, Gaussians: the case with k, = 1, and the case with £k = 1. Theorem 1 readily identifies the
stationary points in each of these cases. Specifically, the population log-likelihood L has a unique stationary
point that is the global minimizer, when we fit multiple Gaussians to a single one (Corollary 3), or a single
Gaussian to multiple ones (Corollary 4).

As we show shortly in Section 4, these two settings are the atomic cases of the general setting with
arbitrary k£ and k.. In particular, any local minimizer of L can be decomposed into a non-overlapping
collection of the global minimizers of sub-problems in these two settings (plus a collection of vectors that are
almost irrelevant, if any); see Theorem 2 and Section 4.2.

Case 1 (k. =1) If the true model has only one component with mean 67, then L has a unique stationary
point corresponding to the true center, regardless of the number £ of fitted centers. There are no other local
or global minimizers.

Corollary 3 (Fitting k& Gaussians to one Gaussian). If k. = 1, then L has a unique stationary point
B ¢ R™F such that
B: =07, Vielk].

Proof of Corollary 3. Without loss of generality we may assume that 87 = 0 (see Remark 1). If B is a
stationary point of L, then Corollary 2 implies that 3; € span{07} = {0},Vi € [k]. Conversely, if 8; = 0 for
all 4, then ;(x) = + for all © € R? and the stationary condition (12) is satisfied by B. O

Corollary 3 is related to a recent line of work in [18, 17, 42] on the setting where the number of components
in the mixture is over-specified (i.e., k > k). In the canonical over-specified setting where one fits a mixture
of k = 2 Gaussians to data from a single Gaussian, the work above showed that the EM algorithm converges
towards the true center from random initialization (albeit with a slower convergence rate and a larger
statistical error (d/n)'/* than in the exact-specified setting). At the population level, Corollary 3 provides
a more general result, applicable to any number k£ > 1 of specified components and any descent algorithms
beyond the EM.

Case 2 (k= 1) As a sanity check, we consider an under-specified setting with & = 1 and k, > 1, that
is, fitting a single Gaussian to a mixture of multiple Gaussians. In this case, we have 1 (z) = 1, V& € RY,
hence equation (16) immediately implies the following result (its proof is trivial):

Corollary 4 (Fitting One Gaussian to k. Gaussians). If k = 1, then L has a unique stationary point
B = (81) € R¥*! satisfying

1
Br=1- Z]az = E.[x].

* SE Ky

We thus recover the elementary fact that the Maximum Likelihood Estimator of fitting a single Gaussian to
a dataset is given by the sample mean.
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4 Main Results: Combinatorial Structures of Local Minima

In this section, we present the main results of this work. Section 4.1 gives the main theorem (Theorem 2),
which characterizes the common structures shared by all local minima of L with an arbitrary number of
mixture components, k., k > 1. In Section 4.2, we discuss the implications of this result by connecting it to
the decomposability of mixture learning problem instances. In Section 4.3, we show that the approximation
error bounds in Theorem 2 can be exponentially improved in the example setting of a one-dimensional
three-component mixture of Gaussian distributions.

4.1 Main Theorem Statement

To state the main theorem, we define the Voronoi cells induced by a solution B and the associated index
function.

Definition 2 (Voronoi cells). Let B = (83;)_; € R¥™* and i € [k]. The i-th Voronoi cell of B is defined as
Vi =Vi(B) = {z e R |z - Bi| < || - Byl ,Vj € [k]}
— {w € RY: gy() > y(2), Vi € (K]}

The index function induced by B is a function g : R® — [k] such that

(17)

tp(z) =min{i € k] : ¢ € V;(B)}.
The mazimum width of the Voronoi cells relative to B is defined as

Deen(B) = max I, 165 — B85l
Note that when {3;} are distinct, the Voronoi cells partition the ambient subspace R? (up to a set of
measure zero). Also let deg = dimspan {0% : s € [k.]} denote the effective dimension of the true mixture
v* (cf. Corollary 2); note that deg < min{d, k.}. Finally, recall the signal-to-noise ratio Ay,/o and the
condition number p = Apax/Amin defined in equations (4) and (5).
We are ready to present the main theorem of this paper.

Theorem 2 (Main theorem). Let B € R4** be a local minimizer of L(-|©*). If

Amin
S 72(V2r 4-1) - ky - KR, (18)
g

and’

Amin Dce B
—=> \/72(\/27r+1) -kf-k3-(5k*+2k)-$7 (19)

then there exist ¢ € N, and two collections of sets T == {T, C [k] : a € [q) U {0}} and S := {S, C [k«] : a € [q]},
for which the following properties hold.

1. (Simple partitions) There exist gy with 0 < qo < q such that the following properties hold:

(a) T is a partition of [k].

(b) S is a partition of [k.].

(c) |Tal =1 foralla e {1,2,...,q0}.

(d) |Tal =2 and |S,| =1 for alla € {qo+1,...,q}.

2. (Mutual exclusiveness) Suppose that i € T, and j € Ty, for a,b € [q] U {0} with a # b. If i # j, then
Bi # B;.

INote that the SNR condition in (19) includes a solution-dependent quantity, Dee(B), tied to the local minimizer B. In
4.2.1, we discuss replacing this condition using a coarse universal upper bound, D¢ep1(B) < Amax + 0k«v/deg, which eliminates
the solution dependence but leads to a more restrictive SNR condition. We speculate a tighter universal upper bound for
Decen(B) is attainable and leave it as an open question.
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3. (Approximation error)
(a) (one-fits-many) For each a € {1, -+ ,qo},

1 1 % Dcell(B) 1/2 1/2
- ﬁiG_WZQS §(a~kf-k3~(k*+k) + k- dE (20)
@ seSS

where i, denotes the unique element in T2.

(b) (many-fit-one) For each a € {qo +1,--- ,q},
1 Deen(B VR
S e R ) R (1)
where s, denotes the unique element in Sg.
4. (Non-association) Let a € {1,...,q}. If s € S, and i € To, then

Bk o \Y?
E, [V,] < : ., and
[ ]N (k*+k Amin) o

Kok o \'7?
PaV) S (s .

(22)

Theorem 2 formalizes the structural results discussed in Section 1.1 and Figure 1: all local minimizers
of L involves disjoint one-fit-many and many-fit-one associations between {3;} and {0} (plus potentially
some non-associations). In Section 4.2 below, we provide detailed discussions on the interpretation and
implication of Theorem 2, as well the quantitative aspects and proof ideas of the theorem.

4.2 Implications and Discussions of Theorem 2

The main message of Theorem 2 is the following: as far as the local minimizers of the negative log-likelihood
is concerned, fitting a GMM can be decomposed into multiple smaller subproblems that involve simple
GMDMs. To further explain this result, let us elaborate.

Mixture fitting problems Let k, k, € N and ©* = (01‘, cee 0;’;*). We let GMM(k, ©®*) denote the problem
instance of fitting k mean estimates to a true GMM with means ®*. We denote a global minimizer of
GMM(k, ®*) by
BFO" = in L(B|©*
arg min L(B | ©) (23)
where the population negative log-likelihood L is defined in (6). In Section 3.2.2 we discussed two cases
where the global minimizer is unique and simple:

o If k, = 1, namely, ®* = (8}), then B*®" = 67 for all i € [k].

o If k=1, then B*®" = (B3) where 3= L 3", 0%,
Implications of Theorem 2 For general values of k and k,, Theorem 2 states that all local minimizers
B = (34,...,B%) of L possess a common combinatorial structure. Specifically, each of the fitted centers 3;
(¢ € [k]) must correspond to one of the three possibilities below, depending on which 7, the index ¢ belongs

to. Recall that for any X € R¥™ and any Z C [m], we let X (Z) € R*IZ| denote a submatrix of X such
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e (One-fits-many) First, suppose that i € T, for some a € [go], in which case B(7,) = 3; is a singleton.
With the notation defined in (23), the approximation bound (20) states that

1 ~ N
i~ Y 0 = BIT®7(5) 24
CEEAPIR ! (24)

B(T.) =8
where the last equality follows from Corollary 4. In other words, 3; is close to the mean of true centers
in ®*(S,), which in turn is the global minimizer of the one-fits-many subproblem GMM(1, ®*(S,,)).

e (Many-fit-one) Second, suppose that i € 7, for some a € [q] \ [qo], in which case ©®*(S,) = (0}) is a
singleton. The approximation bound (21) states that

B(T.) = (B1),o,. ~ (0%,....,0%,) = B7*/®" (5, (25)

where the last equality follows from Corollary 3. In other words, the fitted centers {3;};c7, are all
close to the true center 87 , which in turn is the global minimizer of the many-fit-one subproblem

GMM(k, €7 ). Here we remark “one-fits-one” is subsumed under “many-fit-one” configurations.

e (Non-association) Third, if ¢ € Ty, then the inequalities in (22) state that 8; is not strongly associated
with any of the true component means 0%, s € [k.]. This implies that most of the data points
generated from the true mixture model v* are far away from 3; in comparison with other fitted centers
Bj, Vj € [k \ To. In other words, B, is virtually not used at all to fit any of the k, components in the
true mixture v*.

Moreover, the simple partition property (Theorem 2, Claim 1) ensures that every i € [k] belong to one and
only one of T,, a € [¢]op. As a result, the three configurations, namely, one-fits-many, many-fit-one, and
non-associations, indeed exhaust all possibilities.

We highlight the symmetry between equations (24) and (25). Therefore, one can informally summarize
the implications of Theorem 2 in terms of the decomposability of a given mixture problem instance. If B is
any local minimizer of L, then there exist partitions T = {7, C [k] : a € [q]o} and S = {S, C [k.] : a € [¢]}
such that

B(T.) ~ BT, vaelg

where for all a € [q], either |T,| =1 or |S,| =1 holds. That is, any local minimizer of L—identified as a set
of vectors—can be decomposed into the global solutions of simple sub-problems in the ‘one-fits-many’ and
‘many-fit-one’ settings (up to some approximation error and plus a collection of non-associated estimates).
While not mathematically precise, this decomposability property can be written schematically as

q
oM (k, ©%) ~ @D MM ([T, |, ©*(Sa)) ,
a=1
with the understanding that the decomposition is with respect to a local minimizer of the negative log-
likelihood function, and different minimizers lead to different decompositions.

We illustrate these results from Theorem 2 with an example. Suppose that we are fitting £ = 6 estimated
centers to data generated by a mixture of k, = 5 Gaussians with true component means ©* = (05, ...,6;).
A minimizer B = (831,...,8s) € R¥6 of L correspond to gy = 2, ¢ = 3 and the partitions T = {7, : a € [q]o}
and S = {S, : a € [¢]} with

To = {1,2}, T = {3}, To = {4}, Tz = {5,6},
S1=1{1,2,3}, Sy = {4}, 83 = {5}.

The association between {3;} and {0} is depicted by the bipartite graph in Figure 2. The graph can be
partitioned into three types of star graphs indexed by: (i) To (non-associated centers); (ii) (71,S1) and
(T2, S2) (one-fits-many); (iii) (73, S3) (many-fit-one).

We highlight that our paper focuses on characterizing local minima structure, distinguishing sub-GMM
components, and providing upper bounds on approximation errors and cross-association. We note that our
results do not specify the quantity or sizes of these local minima or different GMM problems, i.e., values like
90, ¢, |Tal, etc., are not addressed. Additionally, we conjecture that the non-association set could potentially
be empty, but leave its proof as an open question for future exploration.
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Non-associated One-fits-many Many-fit-one

To={1,2} T. = {3} T2 = {4} Ts = {5,6}
161 BZ ﬂ3 64 135 ﬂG
° ° e ° o °
* * * * *
67 6 63 0 05
S =1{1,2,3} Sy = {4} Ss = {5}

Figure 2: Illustration of the association between fitted centers {3;} and true centers {87} in a local minimum.

4.2.1 Quantitative Remarks on Theorem 2

We discuss several quantitative aspects of Theorem 2, assuming k = k, for the convenience of discussion.

Universal upper bound on D (B) Theorem 2 and in particular the SNR requirement (19) involve
a solution-specific quantity Dcen(B) that depends on the local minimizer B under consideration. If one
desires, the following universal upper bound for Dce(B) can be used instead. By utilizing the first-order
optimality condition (12), we note that

215;1 E, [\Uix}

le;l Eq [Wi]

Y B W] 65 + B[V - (x— 67)]
- Zf*zl Es [\UZ] .

Bi =

She, B [wi] 62

Observe that -
SEEAm

is in the convex hull of {0% : s € [k.]}. For each s € [k.], we have
B [Wi - (<= O]} < Es[[[Wi - (x— )]
<El k- ex]]

<oy defr.

Hence, we have Deej(B) < Apax + 0ksv/degr < Apax + ok«Vks for all local minimizers B. Using this upper
bound, the SNR requirement (19) can be simplied to Ay,/0 > Cp - kS for some universal constant C. We

note that this is only a crude upper bound, and we conjecture that a tighter universal upper bound for
Dcon(B) is attainable.

SNR requirements By the preceding remark, Theorem 2 requires the SNR to satisfy Ay, /o > Cp - kS.
The dependence on k¢ is likely an artifact of our analysis due to the use of the Voronoi-cell-based arguments
and union bounds; see Propositions 1-3. While this paper does not focus on algorithmic guarantees, we
remark that this SNR condition is sufficient for, e.g., spectral methods to learn the true model [39]. We

conjecture the conclusions of Theorem 2 would hold as long as A, /0 is on the order of ki/ 2 or above,
which corresponds to the SNR range where clustering-based mixture-learning methods succeed [12, 39].

Approximation error bounds Observe that the approximation error bounds (20) and (21) are of order
(Dcell(B) ) 1/2

- - k2. Here, we make three points interpreting this result.
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ﬂZ Ace]l(B) = Amin ﬁl

0% & ° 0% .- »® 0%
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4 *‘1 - *
RN B ey v
. T
ﬂ] Distance between groups & A, e O
Can be made ﬂz
arbitrarily large
0 * 0 %
°p, 6= 05 || = || a1 - @F — ) + Ex1¥1 - 05 -6 ||
Group 1 Group 2 < (Ei[¥5] + Ey['¥,]) - Ace(B)
(a) Amax has little effects on the difficulty of mixture (b) Our analysis of the approximation error yields an
learning problem and our error bounds. upper bound that relies on the “cellular width” Deen (B).

Figure 3: Illustrative examples that support our remarks on Theorem 2.

e Firstly, since Deen(B) S Amax (excluding the extra ok.v/deg term), the approximation error is upper
bounded by (Lmx)'/?. i3,

o

e Secondly, this approximation error bound is no greater than % due to the condition (19). In
particular, when A, is sufficiently large so that Deen(B) - k8 < A2, | this becomes significantly
smaller that Apn.

e Lastly, multiplying o to both sides of (20) and (21) reveals that the approximation becomes exact in
the noiseless limit o — 0.

Similarly to the SNR requirements, we believe these error bounds admit room for improvement in terms of
their specific scaling with respect to the problem parameters, as showcased in Section 4.3 to follow.

Cross-association bounds We remark that the non-association property in Claim 4 of Theorem 2 actually
holds beyond i € Ty. In Section 7, we present a more general Theorem 4, which establishes this property
for i € Ty. We did not include this result in the statement of Theorem 2 because Theorem 2 is derived
from Theorem 4 by rearranging the (quasi-)partitions (T,S) via an iterative procedure described in Section
7.3.2 (Algorithm 2), and some of the (4,s) pairs could be affected by this procedure. In fact, the set 7y
(corresponding to non-associated nodes in Figure 2) is likely an artifact of our analysis, and we conjecture
that Theorem 2 in fact holds with 7 = 0.

(In)dependence on problem parameters A, and A, Observe that the cross-association bounds
(22) decreases as the SNR A;ﬂ‘“ increases. This is expected because the SNR determines the difficulty of
separating one component in the mixture from others, and higher SNR makes separating components in the
mixture easier. On the other hand, the maximum separation Ap.x has minimal impact on the problem’s
difficulty and our error bounds. To illustrate, consider the scenario in Figure 3a with £ = 3 and k, = 5,
where the mixture components {67, ...,0:} can be divided into two groups that are roughly Ap,.x away, and
a local minimizer B satisfies 81 ~ (07 +63)/2, B2 =~ (05 + 0})/2 and B3 ~ 6. Even if the distance ~ Apax
between the groups becomes significantly large, it barely affects the difficulty of estimating the component
centers within each group. Specifically, the approximation errors |32 — (05 + 03)/2| and |33 — 6f| are
mostly determined by the configurations within group 2, and these errors remain almost constant when the
inter-group distance Apax — 00.

Dependence on the auxiliary parameter D, (B) The approximation error bounds (20) and (21)
depend on the “cellular width” parameter Dce(B). This dependence stems from our proofs of Proposition 4
and Lemma 16. Using the “2-estimates-and-3-centers” scenario in Figure 3b, we outline below the key
proof steps that yield the dependence on Do (B) and argue that this dependence might be unavoidable in
general. Using the first-order optimality condition (11), we obtain 23:0 E, [W;(8; —x)] =0 foralli € {1,2}.
Therefore, the approximation error for Bo satisfies B3 — 05 = E1[Wa] - (07 — 05) + E2[W3] - (05 — 65), because
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Eo[W3] = 1 and Eq[Ws], E1[Ws5] & 0. Suppose we increase Dcen(B) by moving 87 and 63 away from each other
along the horizontal direction. Note that the association coefficient E;[W5], which is mostly determined by
the distance difference ||32— 07 ||*— |31 — 67]|?, remain largely unchanged; similarly for Eo[W;]. Consequently,
the error By — 6] grows with 07 — 0§ and 05 — 6, which in turn grow with Dcen(B). While not a formal
proof, the above observation suggests that some form of dependence on D..(B) may be necessary in the
presence of “one-fit-many”.

4.2.2 Proof Ideas for Theorem 2

Here we outline the key ideas of the proof for Theorem 2, which will be detailed in Section 7. Our analysis
centers on the expectation of the product of association coefficients, E, [W; W], for 8; and 8; with respect
to the component measure f¥. This quantity reflects the strength of interaction between the estimates 3;,
B; and the true cluster mean 0}. Specifically, E; [W;W;] is very close to 0 unless 3;,3; are both close to 6.
Also recall that the Hessian V2L (B), whose expression (13) involves E, [W;W;], must be positive semidefinite
at a local minimizer B. Combining these two facts allow us to extract structural information of B.

We implement the above strategy by quantifying the connection between Eg [W;V,] and ||3; — 07%]|, as
well as E; [W;] and Py (V;), through a set of auxiliary propositions (see Section 7.2.1) based on probabilistic
and geometric arguments. Collecting these propositions, we argue that every second-order stationary point
of L must possess a certain set of combinatorial and geometric properties, which depend on a thresholding
parameter ¢ > 0 that is used to distinguish between ‘large’ and ‘small’ values of E; [W;V,] in our analysis.
When the signal-to-noise ratio, Anin/o, is sufficiently large, we choose a specific value of § (see Section
7.2.2), and the combinatorial and geometric properties reduce to those presented in Theorem 2.

4.3 Improvability of the Approximation Error Bounds in Theorem 2

We believe it is possible to improve upon the approximation error bounds in Claim 3 of Theorem 2. To explore
this possibility, we focus on the exemplary setting with k = k, = 3 and d = 1, that is, ones fits three centers
to a one-dimensional three-component GMM. By a refined analysis, we show that the coarse apiproximation
error bounds, expressed in (20) and (21), can be sharpened exponentially to the form e~(A"/7%)  where
A=Apin=1/2 Apax-

Theorem 3 (Tight error bounds for 3-component GMM). Let d = 1, k = k. = 3, 0 > 0, and ©* =
(0%,65,0%5) = (—A,0,A) for some A > 0. If AJo > 216.319. (/21 + 1), then there exists a constant C' > 0
such that every local minimizer B = (81, B2, B3) of L satisfies exactly one of the following possibilities (up
to permutation of the indices of {B;} and that of {07,0%}):

LB~ 505 +65)] <o e A By — 03| <o e A7, and B, [Wy] < e AN/,
2. |81 — 5 (07 +05)|| <o e A and B — 05| < o e CAY i € {2,3);
3. 1B — 07| <o e CA* e {1,2,3).

Theorem 3, whose proof is presented in Section 8, provides tighter bounds on the approximation error
and the association coefficient, E, [W3], both of which decrease exponentially fast as a function of the SNR
A/o. As a result, as the SNR increases, each fitted enters is either exponentially close to a true center (or
to the mean of two), or its association coefficient (and hence its Voronoi cell) becomes exponentially small.
In fact, since L has no other local minima near the true centers * due to existing local results on GMM [3],
the approximation errors in Possibility 3 above are actually zero, in which case B = ®* is the exact global
minimizer.

Compared to Theorem 2, Theorem 3 provides more refined information on the possible configurations
that a local minimizer can admit. For instance, Theorem 3 rules out the possibility of having one center
B =~ %(0}‘7 + 03%) fitting two non-adjacent true centers, thanks to the one-dimension assumption d = 1.
Theorem 3 also eliminates the possibility that one estimate fits all three true centers, i.e., 31 ~ (65 +65+63),
while the other two estimates 35, 33 are far away from the true centers and have non-association. Such a one-
fit-all configuration fails to capture the mixture structure of the data, but we note that formally excluding
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this possibility in a general setting is not easy due to the issue of “local minimum at infinity”.? Theorem 3
addresses this issue when d = 1 and shows that any finite 8 of this form cannot be a local minimum. It
remains open whether one can exclude Scenario 1 in Theorem 3 that involves a non-associated center.

The proof of Theorem 3 builds upon the coarse characterization of local minima state in Theorem 2 and
its general form Theorem 4. The coarse characterization restricts the local minimizers of L into a small
neighborhood of a few ideal solutions, such as (67, 03,03) and ((07 + 03)/2,03,0%). By further exploiting
the first-order stationary condition (12), we show that the local minimizers must be exponentially close to
these ideal solutions within this neighborhood. We believe that this strategy could be extended beyond the
one-dimensional three-component setting, and we leave this to future work.

The case of a mis-specified model The techniques used in the proof of Theorem 3 also apply to the
case where the number of mixture components is under-specified. Recall that Corollary 4 addresses the
scenario where a single Gaussian is used to fit a mixture of three Gaussians, in which case the overall mean
B1 = 3 (07 + 65 + 63) is the only stationary point. The corollary below deals with fitting a two-component
GMM to a three-component GMM.

Corollary 5 (Tight bounds for underfitting 3-component GMM). Let d =1, k = 2, k. = 3, 0 > 0 and
0% = (07,05,05) = (—A,0,A) for some A > 0. If AJo > 2'6.310. (/21 4 1), then there exists a constant
C > 0 for which every local minimizer B = (31, 82,8s3) of L satisfies (up to permutation of the indices of
{8;} and that of {6;,65})

1
Hﬂl 3 (07 +63)

182 — 03] < o - e CA/

’ <og- e_CAZ/"2 and
(26)

We prove Corollary 5 in Section 8.3 using intermediate results from the proof of Theorem 3.

We remark that Corollary 5 is related to the recent work by Dwivedi et al. [19], who study a similar
under-specification setting. They consider fitting a symmetric 2-mixture %N(,31702) + %N(,ﬁh(ﬂ) to a
3-mixture of the form IN(0}(1 + a),0?) + IN(07(1 — a),0?) + N (—07,0%). They provide finite-sample
convergence rates for the EM algorithm, assuming that the EM starts from an initial solution sufficiently
close to the global minimizer. Note that in the setting of Corollary 5, we effectively establish that there is
no other local minimizer besides the global minimizer B ~ (3 (0} + 63),63), and thus the EM converges to
this solution from any initialization.

5 Discussion

In this paper, we study the population negative log-likelihood of GMMs with a general number of components,
and show that all local minimizers have the common structure that partially reveals the locations of the true
components in the global minimum. Our findings have many algorithmic implications and point to a variety
of ways of improving iterative methods for learning GMMs—we mention a few here.

(i) Better initialization schemes, such as those that pick k initial centers that are far away from each other,
are useful for finding a local minimizer free from the one-fits-many sub-configuration and therefore
facilitate the retrieval of a global minimimizer. This ideas underlies the k-means++ and several other
clustering algorithms [4, 2, 5, 6].

(ii) Given any local minimizer (e.g., obtained by the EM algorithm), it may be possible to refine the solution
iteratively and recover the remaining components by deflating the components already recovered.

(iii) Another natural idea is to resolve the one-fits-many and many-fit-one sub-configurations by adding
more center estimates or combining redundant centers. In fact, several improved versions of the EM
are based on this “split-and-merge” operation [36, 37, 49].

2When B2 and B3 go to infinity, and hence, move away from the data, the negative log-likelihood L approaches a constant
function of (B2, 33), and the function 81 — L((B1,B2,33)) approaches the negative log-likelihood of fitting a single Gaussian
to a mixture of three. In this limiting case, 81 = %(91‘ + 6% + 03) is indeed a local minimum (see Corollary 4).
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A particularly promising algorithmic idea suggested by our results is over-parameterization, which helps
avoid spurious local minima. In particular, when the number of fitted centers k is sufficiently larger than the
number of true components k., one expects that the one-fits-many sub-configuration is unlikely to occur.
Therefore, an overparmeterized iterative method is likely to converge to a local minimizers that involves
only many-fit-one and near-empty subconfigurations, which can then be pruned to identify most (if not all)
true components and hence the global minimizer. A similar idea was proposed in the work by Dasgupta
and Schulman [13], who propose to over-specify & in the EM algorithm and, after convergence, merge fitted
centers that are close to each other (corresponding to many-fit-one) and remove fitted centers with low
mixing weights (corresponding to non-association). Recent work on non-parametric maximum likelihood
estimation [31, 47], which can be interpreted as an extreme form of overpameterization with k& — oo,
demonstrates great potential of this approach.

There are several avenues for future research to improve upon the analysis presented in this paper. First,
it is of immediate interest to obtain sharper results regarding the SNR requirement, approximation error
bounds, and the strength of association across different sub-configurations (see Remarks on Theorem 2 in
Section 4.1). Achieving these goals may require developing analytical techniques that do not rely on Voronoi-
cells, as their use in our analysis essentially impedes the propagation of influence from a component beyond
its own cell, which possibly have led to suboptimal guarantees. Another direction for future research is to
extend our population-level results to the finite-sample setting, for which the uniform concentration and
localization techniques developed in [28, 18] could be useful. In addition, it would be interesting to explore
the low-SNR regime, where the mixture components have small or even no separation, as the structures of
the local minima may become more complicated in such cases. Finally, it would be valuable to understand
whether the phenomenon of structured local minima holds more generally in other mixture and latent
variable models; for example, empirical evidences in a recent study [8] suggest that this phenomenon may
be universal.

6 Deferred Proofs from Section 3

6.1 Proofs of Lemma 1 and Lemma 2

Proof of Lemma 1. Recall that f;(z) := ¢(x | B;,0%) = == exp ( — ||@ — ,@i||2 /20?), and hence,

270
Ofi(®) |- filx) (x—Bi) ifj=i,
oB; {0 if j 1. (27)
Since f := %Zie[k] fi, it follows that
0 0
55, H(B) = ~ 5B 0w /4]
(@) B %Zie[k] a%jfi(x)
" f(x)
® _g [i waj(X)’(Xﬂj)}
" f(x)

—~
a
N

= %'E*[Wj'(ﬁj—x)}’

where (a) follows from exchanging the expectation and differentiation using the dominated convergence
theorem?, (b) follows from (27), and (c) follows from the definition of W; in (9) (see Definition 1 as well). O

3We omit explicitly mentioning this argument in the rest of this paper.
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Proof of Lemma 2. First of all, we compute the partial derivative of ¢;(x). For each j € [k], we observe that
) 0 1fi(x)
() = —
25,"") = 98, 1@
15 @) f@) - @) o (@)
K @)
@ L[ 2= filz) - (x—B;) -y

Nl
N\’»—-\
—
L8

1

o2

~

[Vi() - 615 — Yi(@) ()] - (2 — By). (28)

where (a) follows from (27). Therefore, we obtain that

0? (@) 0 (1
s B 2o o <U2 B[V (8, —x>])

0 ()0 +w ()]

® [(;[wi Sy W] (x @-)) (B - ﬂ . ["’i ' (c‘fﬁjﬁjﬂ

= % ‘E, |:Wi\|/j (B —x)(Bi —x)q + 65 - Es {\ui . {Id - % (B; = x)(B; _X>T}:| ’

where (a) follows from Lemma 1, (b) is by the chain rule, and (c) is due to (28). The proof is complete after
rearranging terms. O

6.2 Proof of Theorem 1

We apply the Stein’s identity [35] to prove Theorem 1. Specifically, we make use of the following multivariate
version of the Stein’s identity specialized to the identity covariance setting.

Lemma 3 (Stein’s identity). Suppose x ~ N (u,0%I,) and g : R? — R is a differentiable function. Then
E[g(x) - (x —p)] =0 - E[Vg(x)].
Next, we present a proof of Theorem 1.

Proof of Theorem 1. Fix an arbitrary ¢ € [k] and compute the derivative Vi);(x) with respect to . Recall
from (8) that
e—llz—=Bill*/(2%)
TS e e A @)
1
- e (lz—B: P llz—3;17) /(20%) "
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Taking the derivative, we have

@ 5 =Bl —l==8,1%)/207 (3, _ B . &
le xXr) = — !
: (le—Bil12—llz—Bel?)/(20)2 *
JE[K] Zée[k] €
o—llz=BilI2/(20)? ,— | &—B; 112/ (20)? B
:Z ) D) '(Bi_l@j)'UQ
jel (Zee o—llz—B] /<2a)2)
o ? Z iz ) (Bi — Bj)

JE[K]

:gz.( - ila) )

JE[K]

where the last step follows from the fact that -, ¥;(x) = 1. Noting that x ~ N(65, 02I,) under the
density f7, we apply the Stein’s identity (Lemma 3) to obtain that for all (s,i) € [k.] x [K],

s [Wi + 0% - Es [V (%)
=0 B, (Vi + B B [Wi] = > BBl [WiW5]. (29)

Recall from the stationarity condition (12) that 3 is a stationary point of L if and only if

Zse[k*] Es [Wix]
D seinn Bs (Wil

Combining this condition with the above expression for Eg [V, - x] in (29), we obtain that for all ¢ € [k],

Y Ew Z(e* JVi+ BB W] - Y 8- R }).

s€[kx] s€[ky] JE[K]

Bi = Vi € [k].

Rearranging terms yields
> Zﬁj = ) 0:-E W], Vielk],
s€lky] g s€[kx]

which is equivalent to the condition in (16). Thus, the proof is complete. O

6.3 Proof of Corollary 2

Proof of Corollary 2. Given B = (B1,...,08:) € R¥* let k' € N, denote the number of distinct elements
(=columns) in B. Note that ¥’ < k, and that we may assume Bi,...,0; are all distinct without loss
of generality (by permuting the order). For each i € [K'], let Z; := {i’ € [k] : By = B;}, m; := |T;|, and
W= Yieg, Vo = mi Vi

Then we observe that for all i € [K'],

S O0E V=) Y 6: B[y

s€ (k4] ' €L; s€[ky]

SN0 > B E vy - (16)

' €L; s€lky] jE[K]

2.2 D> BBy

€T s€lk.] je[k'] 3 €L,

Yo > BB Vv (30)

s€lk.] jE[K']
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Letting W/ := (W], ..., W, )T € R¥*1 we can rewrite the condition (30) as the following matrix equation:
=T
© & =B E, [V V| (31)
where

— - T ’
® = (B[] ... E.[W]] eR“¥, and
B’ = B([K']) € R&¥

-
Next, we claim that the &’-by-k’ matrix E, [\IJ’ vl ] is invertible. If we assume otherwise, there exists
a nonzero vector u € R¥ such that

which implies that
’U,T\E/: Z ulmz\U,:O
i€[k’]

almost surely with respect to f*. This is equivalent to the condition that

]

e[k’

almost everywhere (with respect to the Lebesgue measure) because f*(x) > 0 for all z € R?. Because
m; > 1> 0forallie[k]and {8;: i€ [k']} are distinct, the k' functions m; - 1; : & — m; - e~ le=Bil*/(20%)
i € [K'] are linearly independent. This renders a contradiction.
o LT
Finally, we obtain from (31) using the invertibility of E, [\IJ’ Vg ] that

I ok I T —»,T -1
B =0"-& .E, |V .V .

Therefore, 3; belongs to the column space of @* for all ¢ € [k'], and the proof of Corollary 2 is complete. [

7 Proof of Theorem 2 (the Main Theorem)

This section is dedicated to proving the main theorem of this paper, namely, Theorem 2. To this end, we
start in Section 7.1 by presenting Theorem 4, which serves as the master theorem of this work and from
which Theorem 2 is derived as a special instance. In Section 7.2, we prove Theorem 4 by relying on five
propositions that we introduce in Section 7.2.1. We then proceed in Section 7.3 to derive Theorem 2 from
Theorem 4 by choosing specific parameters (Section 7.3.1) and making slight adjustments (Section 7.3.2)
when necessary.

Throughout this section, we assume that B = (B1,...,8;) € R?*F is an arbitrary, yet fixed, local
minimizer of L, unless stated otherwise. To avoid clutter, we may omit the explicit reference to B in our
notation, such as when referring to the coefficient of association ;(x) or the Voronoi cell V;, when it is clear
from the context.

7.1 A Complete Version of Theorem 2

To state the master theorem, we define a relaxed notion of a partition of a finite set. To better understand
of this relaxation, it is helpful to first recall the formal definition of a partition.

Definition 3. A family of sets T is a partition of X if and only if all of the following conditions hold:

e T does not contain the empty set, i.e., ) ¢ T.

21



o The sets in T cover X, i.e., |Jqer A = X.
e The elements of T are pairwise disjoint, i.e., VA,B € T, if A# B then AN B = 0.
We now introduce the notion of a quasi-partition, which relaxes the third requirement above.

Definition 4 (Quasi-partition of a set). Let T be a family of sets and Z,J C T such that ZNJ = 0. T is
an (Z,J)-quasi-partition of X if and only if all of the following conditions hold:

e T does not contain the empty set, i.e., ) ¢ T.
e The sets in T cover X, i.e., |Jyer A =X

o The elements of T are pairwise disjoint except for pairs across T and J, i.e., VA, B € T such that
A# B, if ANB #0, then either (1) Ac T and Be€ J or (2) Ae J and B€T.

Remark 2. Suppose that T is an (Z, J)-quasi-partition of X for some Z, J C T. Then for each = € X, there
exist either one or two sets in T that contain x. Moreover, if there are two sets that contain x, then one
should belong to Z with the other being a member of 7.

7.1.1 Statement of the Master Theorem

Theorem 4 (Master theorem). Let k, k. € N, @* € R and B € R¥** be a local minimum of L(-| ©*).

: 4ky-o 1 . : [
If 6 € Ry satisfies A < 6 < e then there exist ¢ € N, and two collections of sets T° :=

{Ti e lkl:a€lqlo} and S := {S] € [k.] : a € [q]}, for which the following properties hold.
1. (Simple quasi-partitions) There exist qo with 0 < qo < q such that the following properties hold:
(a) TO\{TS} is a ({7;‘5 o {TI Z:q0+1)—quasi—partition of [K]\ T
(b) S° is a partition of [k.].
(c) |T2| =1 for all a € [qo].
(d) |Tal > 2 and |S,| =1 for all a € [q] \ [qo]-

2. (Mutual exclusiveness) Suppose that i € T2 and j € T for a,b € [glo with a # b. If i # j, then
Bi # B;-

3. (Approximation error)

(a) (one-fits-many) Let

D B) = 0 — 3.1.
cent(B) max s, 105 — 85l

For a € [qo],
1 1 Deen(B
- ﬂia—@ Z 03 SlS(v27r+1> ~k3-(5k‘*—|—2k’)-¢-6
o
@ sess
32)
1 8k 1 4 (
oo e =+ 2k - (VA 4) + }
s {r e VA0
+ 3.
where i, denotes the unique element in T2.
(b) (many-fit-one) For a & [q] \ [qo],
1 2k
— ;— 07 || < * ; 5,
SlBi-eill<=  VieTs (33)

where s, denotes the unique element in Sg.
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4. (Near-empty cross-association) Let (a,b) € [q] % [qlo such that a #b. If s € S? and i € T, then
a b

E, [V;] <9(V2r +1) - &(a) -
Py (Vi) <3(V2r +1) - &(a) -

and

’ 34)
5 (

where

N k4 ifa c [qo],
Rla)=1q,5
k> if a € [g] \ [qo]-
7.1.2 Construction of the Collections of Sets T? and S’ in Theorem 4

Here, we describe an algorithm that produces the collections of sets, T® and S?, in the statement of Theorem
4. For the convenience of presentation, we define two types of sets. For any i € [k] and for any § > 0, we let

A = {s el | s@) =i and  max PPl g o) < 5}. (35)
33" €lk] o
For any s € [k,] and for any ¢ > 0, let
VSILIANE } o

Remark 3. Intuitively, A9 is the set of true cluster indices that are exclusively associated to 3; at level 4.
Similarly, we can interpret £ as the set of indices of estimated centers that contend for the possesion of 7.

Then we describe a procedure to construct covers of [k.] and [k], whose pseudocode can be found in
Algorithm 1. For any inputs § > 0 and B € R4*F Algorlthm 1 outputs ¢ € N and ¢ € N along with two
collections of sets, namely, T® = {T‘g}q and S = {85

Algorithm 1 Construction of partitions of [k.] and [k]

Input: § € R,, B € R¥*k

OUtPUt qo0, 4, T(s = {T5 a= 07 6 = {Sg Z*l
1: Initialize a <+ 0

2: fori=1,2,...,k do
3 if A?#0 then
4: a+—a+1

5: 7;5 — {Z}
6
7
8
9

SO+ A? {See (35) for definition of A9}
end if
: end for
1 Qo < a
10: RO« [k \ (UB_, S2) {‘Remaining’}
11: for s=1,2,...,k, do
12: if s€R’ then

13: a+—a+1

14: To « & {See (36) for definition of £}
15: 8%« {s}

16: end if

17: end for

18: g < a

19: T = K]\ Uy 72
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7.2 Proof of Theorem 4
7.2.1 Five Preparatory Propositions

Here we present five key propositions that establish useful properties of association coefficients (Propositions
1 and 2), geometry of local minima (Propositions 3 and 4), and combinatorial properties of the covers T, S?
constructed by Algorithm 1 (Proposition 5). We will use these propositions to prove Theorem 4 in Section
7.2.2. Proofs of Propositions 1 through 5 are deferred to the Appendix (Appendices A through E).

Strength of associations First of all, we present a proposition that controls the strength of association
between the estimate B; and the true mean 67, measured in two quantities Py (V;) and E,[W,].

Proposition 1 (Association bounds). Let B € R be an arbitrary ordered set of vectors. For any
(s,4) € [ki] x [k] and any sequence (o; € Ry : j € [k]\ {i}), if 0} ¢ intV;, then

1. P; (Vi) < Mi(ex, B), and
2. Es[V;] < 3Mi(c, B).
where
M;i(a, B) = (\/ﬂ—l— 1) k2 Z max{l, c:} -Eg [V, V5] - exp ( 18 = ﬁJ”)
FERI\{i} J
Proposition 1 states that if 87 ¢ intV; and E, [V;V,] is small for all j € [k] \ {¢}, then the Voronoi cell

associated with B3; must have a small size (under v*) as well as a small coefficient of association to v}. We
present a proof of Proposition 1 in Appendix A.

Corollary 6. Let B € R™F be an arbitrary ordered set of vectors and let (s,i) € [k.] x [k]. If 6% ¢ intV;,
then

2 B W] <9(V2r+1)  k* ey Hﬁi;ﬁju B [V V5]

Proof of Corollary 6. Let z € Ry and Let f, : Ry — Ry be a function such that f.(«) = max {1, é} -exp(a
z). Observe that

. . Lo : oz
Jat o =i { e (Do) e ()
B {e -z if 2> 1 (minimum attained at a = 1),
e ifz<1,
<e-z.

Then the conclusion of this corollary immediately follows from Proposition 1. O

Exclusion principle for associations Recall from (35) that for any ¢ € [k] and any ¢ > 0,
.A? — {S c [k}*] ”/83 ﬁ] ||

B(0;) =1 and jg}gﬁ] . Es [V, V] < 6}.
Proposition 2 Let B € R¥™* be an arbitrary ordered set of vectors, let i € [k], and let 6 € Ry. If AS # ()
and § < m, the following three statements hold:
1. B; # Bj for all j € [k]\ {i};

2. 1—-E;[Vy] §9(\/27r+1) kY-8 for all s € A%;
Py (VS) < 3(V2r+1) - k* -6 for all s € AS.

Proposition 2 states that when the parameter § is sufficiently small, the mixture components with s € Af
are almost exclusively associated to 8;. This claim is quantified in two different measures, namely, E; [W;]
and P [V;]. We present a proof of Proposition 2 in Appendix B.
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Proximity of B controlled by product of association coefficients Next, we discuss several useful
properties of B, which is a local minimum of L. First, we present a proposition that establishes several

upper bounds on the proximity of the estimates, 3;, to the true centers, 8}.

Proposition 3 (Proximity bound, I). Let B be a local minimum of L. For all i,j € [k] such that i # j, the

following three statements hold:

1Bi=Bill® ~ Ex[VitV;]
Z' (7'ZJ S ]E*[\UIWJ]] 7

Hm 6 I? ~ 2(B.[¥i]+1)

2. mingek,) < ET and

g. 1B:=b:l” 9” < 2k, %forallse[k]

Proposition 3 states that if E, [V;W;] is large for some 4, j € [k] with ¢ # j, then 3; and 8, must be both
close to each other (Claim 1). Moreover, there exists a true center 8} that is close to both 8; and 3; (Claim
2). Claim 3 of Proposition 3 provides a weaker, yet still useful, upper bound for our analysis. We postpone

our proof of Proposition 3 to Appendix C.
Corollary 7. Let B be a local minimum of L, let 6 € Ry, and s € [k.]. If 3 # 0, then for alli € E2,
18:— 63 _ 2%,
o )
Proof of Corollary 7. Observe that if £ # (), then |£%| > 2 by definition. Choose any i € £ and any
j € &2\ {i}. Then
18- Byl @ E.fwi+ v
o = Bi— 5JH -E, [Wi . \Uj]
(b) k CEL W, 4+ V)
= 1Bi— ﬁ;ll E [V - W;]

INS

© ke
5

where (a) follows from Proposition 3, Claim 1; (b) follows from E.[W; - W;] > L E,[W; - W,]; and (c) is from
i,] € 5;?. Next, we obtain by Proposition 3 that

18— 0:1% _,,  Eu[Wi)+1

o2 = m
B E. [V;] +1 118 — Bill
=2k, - )
18: =85l B [ - W] o
< 2k, - 2k

K

O

Approximation error bound for local minima of L Here, we argue that the mean estimates 3; (for
1 € [k]) in the so-called ‘one-fits-many’ configuration are well approximated by the barycenter of several
true component means, 8. We recall the definition of A9 from (35). With aid of the set A2, we state an

approximation error bound as follows.
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Proposition 4 (Proximity bound, II). Let B € R%** be a local minimum of L. If § € R, satisfies that

iﬁ <90 < m, then fO’F all i € [k] with .Af 7& @,
1 § 5k,  Deen(B) A (B) 4k, 1
~|3; <18 (V2 1 . . e . L=
o Pi ’Aé gée 8( Tt ) <|Af| o Tk o o |AZ] 6

o o vevo-19))

where Deon(B) = mae g maxee s v, 85 — B, and AL3\(B) = min, ¢ 4s max, e s 67 — 65

We remark that Aifu(B) < 2Den(B). Also, we conjecture that the v/d term in (37) is an artifact of our
analysis, and thus, is removable. Our proof of Proposition 4 is deferred to Appendix D.

Properties of the covers constructed by Algorithm 1 Lastly, we discuss some properties of the
collections {7;5}220 and {Sg}zzl produced by Algorithm 1. Specifically, we argue that these are collections
of non-empty sets that cover [k] and [k.], respectively, which possess useful combinatorial properties.

Proposition 5. Let § € R, and B € R¥** be a local minimum of L. Let TS = {7—5}(1 and S° = {S‘S}
be the collections of sets produced by Algorithm 1. If F== dkco o5 < then T5 and S° possess the

following properties.

- 18(\/7—&-1) k4

1. For all a € [q], both T2 and SO are not empty. Moreover,
(a) |TO| =1 for all a € [qo], and
(0) |71 2 2 and |S7| =1 for all a € [q] \ [qo]-

2. {7;5}220 covers [k] and {Sg}zzl covers [k, i.e.,

a
U T2 = [K] and U S8 =
a=1

3. Leta € [q] and s € [k.]. If s € S, then tg(0%) € T2.
4. S% is a collection of disjoint sets, i.e., SSNSS =0 for all a,b € [q] such that a # b.
5. T° is a collection of partially disjoint sets. That is,

(a) T2 0765 =0 for all a € [q];
(b) 7;5 N 7;)5 — @ fO?” all a7b = [qo] such that a # b; and
(¢) T2NTP =0 for all a,b € [q]\ [qo] such that a # b.

We defer the proof of Proposition 5 to Appendix E.

Remark 4. Proposition 5 states that S9 is a partition of [k,]. Nevertheless, T? falls short of being a partition
of [k] for two reasons: (i) 7 may or may not be empty; and (ii) we do not have disjointness for index pairs
(a,b) € [q0] x ([q] \ [90])- Indeed, this motivated us to define the notion of quasi-partitions as in Definition
4. While our current analysis cannot resolve these issues, we conjecture that 7 = @) and 7.2 7> = 0 for all
(a,b) € [q0] x ([q] \ [q0]), i-e., TO\ {7} forms a partition of [k].
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7.2.2 Completing the Proof of Theorem 4

Proof of Theorem 4. We prove the four claims one by one, using the propositions stated in Section 7.2.1.

Proof of Claim 1 (Simple quasi-partition). This is straightforward from Proposition 5.

Proof of Claim 2 (Mutual exclusiveness). First, suppose that i € T2 for some a € [go]. Then A9 # (), and
thus, 8; # B; for all j € [k] \ {¢} by Proposition 2, Claim 1.

Second, suppose that i € T, for some a € [q] \ [go]. Then S° = {s,} for some s, € [k.]. Let b € [g]o \ {a}
and assume that there exists j € 7,2 \ {i} such that 8; = 3;. Then ¢;(x) = ¥;(x) for all z € R%, and thus,
j € T2 because i € Sffa implies j € Efa. It follows that j € T, 07;5, however, this contradicts the disjointness
property of T° proved above (Claim 1 of this theorem).

Proof of Claim 8 (Approzimation error bounds).

(a) For a € [qo], notice that T2 = {i,} and S = A? . Then the inequality (32) immediately follows from
Proposition 4, cf. (37).

g

(b) For a € [q]\[ao], note that S = {s,} and T2 = &2, = {i € [K] : max;ep oy L2520 -, [wow] = 6.
Thus, we obtain the inequality (33) by applying Corollary 7.

Proof of Claim 4 (Weak cross-associations). First, suppose that s € Sg for some a € [go], and let i,

denote the unique element in 7. We observe that s € AJ by construction of the sets 72 and S! in
Algorithm 1. Then it follows from Proposition 2 that for all i € [k] \ {i.},

E, (W] <1-E,[W;,] <9 (\/27r + 1) E*.5, and

P, (V) <P, (Vi) <3(Var+1) k-6

Second, suppose that s € S° for some a € [q] \ [go]. Let s, denote the unique element in S°. By Claim 3
of Proposition 5, if tg(8}) = i, then i € T.2. Then we observe that if i € [k] \ 7.2, then (1) t5(6%) # i, and
thus, 62, & int V;; and (2) max;ep iy 2Pl E, [V, - W] < § by definition of € . Therefore, it follows

from Proposition 1 (Corollary 6) that for all i € [k]\ 72,

E, [V,] <9 (\/%+ 1) k.5, and

Psa(Vi)§3(m+1)-k3~5.

7.3 Obtaining Theorem 2 from Theorem 4
7.3.1 Remarks that Simplify Theorem 4

In this section, we make three remarks on Theorem 4, which will be used to simplify the conditions and
conclusions of the theorem. First of all, we remark on the minimum separation between the components
in the true Gaussian mixture model required to apply Theorem 4. Second, we discuss the reduction of
dimensionality from the dimension of ambient space, d, to the effective dimension (Definition 5) of the given
problem instance, deg, which leads to a significant improvement of approximation error bound (32) when
k.« < d. Lastly, we determine the optimal value for the auxiliary parameter § € R, that approximately
minimizes the approximation error bound (32).
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Minimum requirement on the signal-to-noise ratio Note that Theorem 4 is vacuous unless there

. . 4k, o 1 . . o . PN .
exists § € Ry satisfies T=% < 4§ < I LTEINER This requires the minimum signal-to-noise ratio, cf. (4), to

exceed a certain threshold. Specifically, in order to apply Theorem 4, we need the minimum SNR requirement
(18) to be satisfied:

Amin
R S 72(V2m 4 1) - k- KL

(2

Effective dimensionality For any given instance GMM(k, ®*) of Gaussian mixture learning problem, we
define its effective dimension as follows.

Definition 5. Given a Gaussian mixture learning problem instance GMM(k,®*), its effective dimension,
denoted by deg, is defined as
dot := dim ©* = dimspan {0 : s € [k.]}. (38)

Note that deg < d by definition. It follows from Corollary 2 that if B € R%** is a stationary point
of L(- | ©®*), then 3; € Vg« for all i € [k], where Vg := span{0% : s € [k.]}. If deg < d, then we may
choose an (ordered) orthonormal basis of R? whose first d.g basis vectors span the subspace Vg-. Under the
coordinate system specified by this basis, we can represent 8% = (6*.,0) with 8*/ € R for all s € [k,].
Likewise, for a stationary point B € R?¥** of L, we can represent its elements as 3; = (3},0) with 3] € Rde,
for all ¢ € [k].

Then we observe that the probability density function of an isotropic Gaussian distribution is coordinate-
wisely decomposable. That is, for any u,x € R? and any o € R,

d
d(@ | w,0°Iy) = [[ (1 | wa,0?).
i=1

Under the coordinate system specified above,
fi(@) = ¢(x | 6;,0%14)
= ) @1dee | 07,0 a) - O @agr1:a | 0,0° Lamag),
fi(x) = ¢(x | B, 0°14)
= ¢(

o L1:deg | /6;’ 02Ideﬂ) ’ ¢(mdeﬂ‘+1:d ‘ 0, 0-2Id*deff)’

for all s € [k.] and for all i € [k], respectively. Therefore, for all X = (z1,...,@)) € V. = Rderxk
L(X |©)=L(X'|©)
where ©*' = (] ...,6%) ) € R%a** Thus, a local minimum of L(- | ©®*) is a local minimum of L(- | ©*")

(with a change of coordinates), and vice versa. Consequently, we may replace the dimension d in (32) of
Theorem 4 by the effective dimension deg, which satisfies deg < min{d, k. }.

Remark 5. If deg < d and B € R¥* is a stationary point of L(- | ®*), then for every i € [k], the i-th
Voronoi cell of B takes the form V; & V! x R4 for some V) C Vig-.

Approximately optimal choice of parameter § Lastly, we optimize the value of § to minimize the
approximation error bounds (32) and (33). If ¢o = 0, there does not exists “one-fits-many.” Thus, we may

simply choose the largest value 6 = m to optimize the approximation error bound (33).

If go # 0, we choose a particular value of § that minimizes the upper bound (32). Observe, e.g., by
the AM-GM inequality that for any A, B > 0, mingsg {A(5 + %} = 2v/AB, which is achieved by * =

arg mingso {46+ 5} = /BJA. With the choice of A = 18 (V27 + 1) -k* - (5k. + 2k) - 2B and B = {2,

}. (39)

we obtain

. |B
"=\

Nl
W=

. 2k
a€lao { (9 (V2m +1) - k3 - (Bk. + 2k:)>

(i)
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Next, we ensure § = §* satisfies the requirement ‘X“# <6< in Theorem 4. Firstly, since

1
18(v/27+1)-k*
|S2| < k. for all a € [go), the lower bound % < §* is satisfied if

4k, - o 2 o

< )
Amin \/9 (\/ 21 + 1) . kd . (5]€* + 2k) Dcell(B)

or equivalently, if the inequality in (19) holds:

Dcell(B) < 1 (Amin>2
o 72 (V2 +1) - k2 - k3 - (5k. + 2k) o '

Secondly, the upper bound §* < m is automatically satisfied when % > T72(V2m +1) - ky - k*
as in (18). To see this, it suffices to notice that Do (B) > %Amin when ¢g > 1. Then we observe that

5o 2k, 1 e N
~\9(V2r+1) k3 (5k. +2k) |S3| Deen(B)
(@)

@ Ak, o\’
T \9(V2r41) k3 (Bky +2k)  Amin

® 1 ( 2k >5
T 18(V2m+1) -kt \ Bk +2k

< ! ,

T8 (Ver+1) -kt

where (a) follows from |S| > 1 and Deen(B) > 3 Amin, and (b) is due to (18).
All in all, if the conditions (18) and (19) are met, then the approximation error bounds (32) and (33) in
Theorem 4 reduce to the following: Va € [go] and Va € [g] \ [qo] respectively,

1 1 Dcell(B) 2 3 1/2 1
= .,75 || < [ =T k23 (kK k, - d\/?
p Bi. 1S3] = s N< pe * (kv + k) +

5 Az-lln +k* 'd1/2,
1/2
%H@-—O;H S <Dcel;®‘kf'k3'(k*+k)>
< A

min

2

g

Likewise, the cross-association bounds in (34) are bounded from above by

g (Foke o V(K ke o P
~ k* +k Dcell(B) ~ k* +k Amin '

Here, the last inequality follows from the observation that if go # 0, then Deen(B) > = Amin-

1
2
7.3.2 Distillation of Partitions from Quasi-partitions

We extract partitions of [k] and [k,] by slightly altering the quasi-partitions T° and S? in Theorem 4.
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Alteration process to distill decomposable partitions Let B be a local minimum of L(-|©®*), and
suppose that we are given ¢, qo, T, S as stated in Theorem 4. We define the set of ‘problematic indices’ by
letting

A {a € [g]\ [ao] : B # 0} (40)

where

Bt = {b e [qo] : Ta Ty # 0} .

We resolve the conflict in T for each of a € AP™P sequentially with a simple ‘surgery’ (Algorithm 2).

Algorithm 2 Alteration process to distill fully decomposable partitions
Input: qg,q,T,S that satisfy the conclusions of Theorem 4
Output: qg,q, T, S; these may be different from the inputs

1: for a € AP™P do

2: if 7:1 \ UbeB{clonf 7;) 7& (Z) then

3: Ta <+ Ta\ Ubeggonf To {T is also updated accordingly}
4: else

5: i < argmin 7,

6: by < the unique element b € Bflonf such that T, = {i}

7 Spy ¢ Sp, US, {Merge S, to Sp, }
8: T+ T\{T.}, S+ S\ {S.}

9: for a’ € [¢] \ [a] do

10: Tar—1 ¢ Tar, Sar—1 = Sur {Update the group index for a’ > a}
11: end for

12: qg+—q—1

13:  end if

14: end for

Properties of the output of Algorithm 2 Let (g, qo,T,S) be any tuple that satisfies the conclusions of
Theorem 4, and let (¢, ¢}, T',S") = Alg(q, qo, T, S) where Alg is Algorithm 2. We observe that (¢, ¢f, T', S')
satisfy the conclusions in Claims 1 through 3 of Theorem 4, and moreover, T’ is a partition of [k]. This
observation is formally stated in the following proposition, whose proof is deferred to Appendix F.

Proposition 6. Let k, k, € N, @ € R and B € R™* be a local minimum of L(-|©%*). Let q,qo € N,
and T,S be collections of subsets of [k], [k«], respectively. If q,qo, T,S satisfy the conclusions of Theorem /,
then (¢',q0, T',S") = 419(q, g0, T, S) where Alg is Algorithm 2 has the following properties:

1. Claim 1 in Theorem /4 holds for (¢',q}, T',S"). Moreover, T’ is a partition of [k].
2. Claim 2 in Theorem J holds for (¢, q, T',S').
3. Claim 3 in Theorem J holds for (¢, q, T',S').

7.3.3 Derivation of Theorem 2 from Theorem 4

Proof of Theorem 2. Given B, we choose § = 0* per (39). Then, we let g, o, T,S be the outputs of the
construction algorithm (Algorithm 1), and let ¢,qo, T,S = Alg ((j, q~0,'ﬁ‘, S) where Alg is the distillation

algorithm (Algorithm 2). With these, Theorem 2 immediately follows from Theorem 4 and Proposition
6. O

8 A Fine-grained Analysis for One-dimensional GMM

In this section, we prove Theorem 3 (and Corollary 5). Our proof consists of four steps outlined here:

30



1. (Step 1) Enumerate all possible configurations of tuples (g, qo,|7o|) that satisfy the simple quasi-
partition property for local minima; see Claim 1 of Theorem 2.

2. (Step 2) For each (g, qo, |To|), identify all possible compositions of T and S that satisfy the near-empty
cross-association property established in Claim 4 of Theorem 2.

3. (Step 3) For each composition, establish refined approximation error bounds individually.
4. (Step 4) Regroup the compositions for the convenience of presentation.

In Section 8.1, we state and prove useful technical lemmas. Thereafter, in Section 8.2, we complete the
proof of Theorem 3 by detailing Steps 1 through 3. Lastly, in Section 8.3, we prove Corollary 5 following
essentially the same, yet simpler, argument in the proof of Theorem 3.

8.1 Useful Technical Lemmas
8.1.1 Additional Notation and Basic Facts about Gaussians
Let ¢ : R — R denote the probability density of the standard Gaussian, i.e.,

o(z) = me*'T. (41)

Let ® and @ denote the Gaussian cumulative distribution function and the Gaussian Q-function, respectively:

O(t) = /_ ¢(z) dz and Q(t) = /too o(z) dz. (42)

It is well known [7] that
t

A o),  Vt>0. (43)

P(t) < Q(t) <

S

Lemma 4 (Gaussian tail bounds). For any t > 0,

1
t+1

o(t) (t) < Q(t) < V2 - (t).

1
[ —
_t+Vﬁ+4¢
Proof of Lemma J. The upper bound is standard. The lower bounds can be found in |1, Formula 7.1.13]. O

Also, it can be verified that for all ¢t € R,
t o0
/ z-¢9(z) dz = —¢(t) and / z - P(z) dz = ¢(t). (44)
—o00 t

A more extensive list of Gaussian integrals can be found in [30] for example.
Moreover, we observe a simple equation, namely, for any z,y,d € R,

¢ +3) y) _ sty-a) (45)

oy +0) o(z)

Lastly, we make a simple observation that for any «,xg € R,

—z? a(z—xzg) _(mm)? S (a—2x0)
ez -e O =e" 2 g2 o). (46)

This readily implies that ¢(z) - e*(®=20) = $(z — ) - e3 (@—2%0),
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8.1.2 TUseful Technical Lemmas
For o, 8 € R, we define ¢,,3 : R = R be a function such that

o (@—B)*/2

wa,ﬂ (x) = e—(@—0)?/2 { ¢—(@—P)7/2" (47)

Lemma 5. Let o, 8 € R such that « <0< 8 and 8 > |a|. Then

Exon0,1) [$a,8(X) - (B =% | = B-Eq [as(x) - (20a,8(x) —1)]
g 0 (a + 5 1) .

«

Remark 6. We note that it is possible to obtain a tighter lower bound by refining the proof of Lemma 5
Specifically, we can derive a tighter lower bound for Eg [wa’g(x) : (Qwa,g(x) - 1)} by continuing from the
expression in (145) as follows*:

Bo [uus)- (200~ )] 2 = [ gt 0)- [n(2) ~ )]
> \/T/ 76(275) /2. [1—e***] - hi(z) dz
(z—c)?/2 5 — 1 . (b(C) Ooef(zfcf2a)2/2 P
& 4\/ﬂ /5 d 421 e+ 2a) //5 ¢
L Y A B Y L P
~3le ) sz @5 e

Lemma 6 (Variance lower bound). Let o, 8 € R such that o # B, and let 1o g be the function as defined in
(47). Then

a1 4 g’ 3
Varno) (Yas() > (a—B)2. <'“+ﬁ 18- a|> -

32V 27 2
Lemma 7 (Exponential association). Let 0 = 1, d = 1, s € [ki] and i, = argminep |3; — 0%]. For
€ [k \ {is}
4 o
B, W< (14— |e 5. 49
[ J] méj ( )

where §; == |3; — 0% — |B;, — 0%
Lemma 8 (Exponential accuracy). Let 0 = 1 and d = 1. Suppose that B be a stationary point of L. Let
€ [k], S C [k«], and § € Ry such that § > max{r 84/log(2V2 - kk, )} If

ml\I}{ ) 18; — 6311 = 11B: =651/ =6, VseS,

i_s — 0: Z(S, Vs € k‘* 87
18 sl k]\{}Hﬂa | (Ba] \
Bi — o
| >

4See (144) and (145) in Appendix G.1 (the proof of Lemma 5) for the definition of the functions g, h1, ha and more details.

then

< A4kk,Apax - €~ 64
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8.2 Completing the Proof of Theorem 3

This entire subsection is dedicated to the proof of Theorem 3, which follows the four-step strategy outlined
in the preamble of Section 8. Here we begin by making several preliminary observations. Thereafter, we
prove Theorem 3 by detailing Step 1 (Section 8.2.1), Step 2 (Section 8.2.2), and Step 3 (Section 8.2.3) of the
outlined argument.

Note that we may assume o = 1 by treating A/o as new A; thus, in the rest of the proof, we assume
o = 1 and write A in place of A/o. If A > 216.310. (/27 + 1), then the approximation error bounds in
Claim 3 of Theorem 2, cf. (21), reduce to the following.

e For a € [qo],
1 1/2
Bi— = >0 §<28~38-(\/277+1)-A) +2
[Sal 5€S, (51)
<A
32
where i, denotes the unique element in 7.
e For a € [¢] \ [qo], and for all i € T,
1/2
I8: —6: ] < (23 (Var +1) - A)
N (52)
= 102’

where s, denotes the unique element in S,.
Moreover, the cross-association bound in Claim 4 of Theorem 2, cf. (22), reduces to the following,.
Let (a,b) € [q] X [g]o such that a #b. If s € S, and i € Ty, then

1

and P, (V) < (53)

29 . 32
8.2.1 Step 1. Preliminary Screening

First of all, we enumerate all possible configurations of parameter tuples (g, qo, |7o|) that are allowed by the
quasi-partition property stated in Theorem 4. To this end, we first observe that (i) 1 < ¢ < min{k, k.} =3,
(if) 0 < go < ¢, and (3) 0 < |To| < k = 3. Next, we exclude some of these parameter combinations based on
the simple quasi-partition property of the collections T and S, cf. claim 1 of Theorem 4.

e Suppose that (g,qo) = (1,0). This is not allowed as |S| = 1 contradicts S = JI_, Su = [ki] =
{1,2,3}.

e Suppose that (¢,q0) = (1,1). Then |7;| = 1. Thus, |To| = 2 because To N 71 = 0 and To U T; = [k].
e Suppose that (g, qo) = (2,0). This is not allowed as |S;| = |Sz2| = 1 contradicts S; U S2 = {1, 2, 3}.

e Suppose that (g,qo) = (2,1). Then |71| =1 and | 72| > 2. Observe that 79N 72 = @ and UZ:OE = [k].
Thus, |7o| < 1.

e Suppose that (q,q0) = (2,2). Then |T;| = |T2] = 1. Observe that 7, N T, = 0 for all a,b € {0,1,2}
such that a # b, and that Ui:oﬁ = [k] = {1,2,3}. Therefore, |To| = 1.

e Suppose that ¢ = 3 and g9 € {0,1}. Then |T2| > 2, T3] > 2, and 72 N T3 = 0. This contradicts
Ui:o To = [k] because | T2 U T3] > 4. Thus, these configurations are forbidden.

e Suppose that (g,q0) = (3,2). Then |T1| = |T3] =1 and 71 N T3 = 0. Since Ty N T, = 0 for a € {1,2}
and Ui:o'ﬁz = [k] = {1,2, 3}, it must hold that |Tp| < 1.
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Table 1: All possible configurations of parameter tuples (g, qo, | To|) for the collections T,S that satisfy the
simple quasi-partition property stated in Theorem 4.

q q ol
0 0,1,20r3 impossible
1 Oor1 impossible
2 -
3 impossible
2 0 0,1,20r3 impossible
1 Oor1l -
2or3 impossible
2 0 impossible
1 -
20r3 impossible
3 Oor1 0,1,2o0r3 impossible
2 Oor1 -
20r3 impossible
3 0 -
1,20r3 impossible

e Suppose that (q,q0) = (3,3). Then |T1| = |Tz3| = |T3| = 1 and T1, T2, T3 are mutually disjoint. Since
ToNTe=0forace{1,2,3} and Ui:orz = [k] = {1, 2, 3}, it must hold that |To| = 0.

These are summarized in Table 1. In the next step, we consider each of these configurations (g, qo, | 7o)
and identify all possible compositions of T and S.

8.2.2 Step 2. Identification of All Possible Compositions of T and S for Local Minima

Next, we list all possible compositions of T and S for the remaining configurations of (g, qo, |7o|). Note that
we may freely relabel the indices of estimates {3; : ¢ € [k]} by a permutation of [k]. Also, we can relabel
the indices of the true component means {6% : s € [k,]} by flipping the order: (1,2,3) — (3,2,1). Thus, the
possible compositions of T and S are presented up to permutation of [k] and the flipping of the order in [k.].

L. (¢,90,|7T0l) = (1,1,2). The only possibility is 7o = {2,3}; T» = {1}; S1 = {1,2,3}.

2. (¢,90,|To]) = (2,1,0). There are two possibilities: (a) |71] = 1 and |T2| = 2; or (b) |T1] = 1 and
|73] = 3. In both cases, To =0
(a) Ty ={1}, T2 = {2,3}.
i S ={1,2}, S = {3}.
i S ={1,3}, S, = {2}.
(b) T = {1}, T2 = {1,2,3}.
i S ={1,2}, S = {3}.
ii. & ={1,3}, S ={2}.
3. (¢,90,|T0]) = (2,1,1). There are two possibilities: (a) [T1] = 1 and |T3] = 1; or (b) |T;| = 1 and
| 72| = 2. However, (a) is forbidden by the requirement |7,| > 2 for a € [g] \ [qo]. Thus, we may write
To = {S}v T = {l}v Tz = {172}'
(a) S1 = {172}7 8o = {3}
(b) & ={1,3}, S; = {2}.

4. (4,90, |Tol) = (2,2,1). We may write To = {3}; T = {1}, T2 = {2}.
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(a) S1 = {1,2}, 82 = {3}
(b) & ={1,3}, S2 ={2}.
5. (q,q0,|70]) = (3,2,0). To = 0. There are two possibilities: (a) |T3| = 2; or (b) |T3] = 3.

(a) T = {1}, T2 = {2}, T3 = {1,3}.
i. S1 = {1}, S2 = {2}, S3 = {3}.
S = {1, S = {3}, S5 = {2).
i, S = {2}, S = {1}, S; = {3).
(b) T ={1}, T = {2}, T3 = {1,2,3}
i. &1 ={1}, S2 = {2}, S3 = {3}.
ii. & ={1}, S; = {3}, S3 ={2}.
6. (¢,q0,T0]) = (3,2,1). To ={3}; Ty = {1}, T = {2}, T3 = {1,2}.

(a) Sy = {1}, S2 = {2}, S = {3}.
(b) &1 = {1}, S = {3}, S3 = {2}.

7. (¢,90,|T0]) = (3,3,0). The only possibility is 7o = 0; 71 = {1}, T2 = {2}, T3 = {3}; S1 = {1},
Sy = {2}, S = {3}.

Now we rule out some of these compositions via geometric considerations.

e The compositions with 7; = {1} and §; = {1,3}. We claim that it is impossible for a single
estimate B; to fit two non-adjacent centers {67,605 }. These include the compositions 2-(a)-ii, 2-(b)-ii,
3-(b) and 4-(b). Without loss of generality, we may assume 31 < (B2; also, we may assume (3 < (33
in 2-(a)-ii, 2-(b)-ii. Moreover, 81 # B2 by Theorem 2, Claim 2, and thus, 81 < B2. Let b = @
Then b > 0% because V; is a convex set and tp(05) = 1 (which implies 8% € V;; see Definition 2 for
the definition of index function ¢pg) by construction; recall Algorithm 1 and the definition of A? in
(35). Thus, V5 C [b,00) C (0%, 00). Therefore, Pa(Va) < Py ((0%,00)) = Q(A) where @ is the Gaussian
Q-function, cf. (42). Using the well-known upper bound for the Q-function, cf. (43), it follows that
Py(V2) < Q(A) < %\/%e_%z < 1. Observe that Po(V1) < 55055 < % by (53), which follows from
Theorem 2, Claim 4. Also, we can see that P5(V3) < 1, either by using 8> < 85 (when 3 € T3), or by
using (53) (when 3 € 75). Then we have

b

= w

3
1= PQ(R) < ZIFD2(Vi) <
=1

which is a contradiction. Therefore, these compositions are forbidden.

e The compositions with overlapping 7,’s, i.e., 71N T3 = {1}. We claim that when A is sufficiently
large, it is impossible for two groups of estimates, namely, 71 and 7, (a = 2 or 3), to share a common
estimate B;. These include the conpositions 2-(b) and 3 (a = 2 and ¢y = 1) as well as cases 5 and
6 (a = 3 and gp = 2) with all of their subcases. Note that 1 € 73 N 7,. Let 0% be the unique
element of S; and choose an arbitrary 8 € S,. Then we observe that |3; — 0% < A/32 by (51) and
181 — 0] < A/192 by (52). This yields A < |0F — 0| < |81 — 0| + |81 — 07| < 7TA/192, which is a
contradiction. Consequently, these compositions are excluded from our consideration.

In the end, we are left with only four cases as summarized in Table 2. In Step 3, we investigate each of
these four cases and establish more refined approximation error bounds.

8.2.3 Step 3. Refined Approximation Error Analysis for the Four Remaining Cases

In this step, we analyze the four remaining cases (Case A through Case D listed in Table 2) one by one.
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Table 2: All possible compositions (up to permutation symmetry) of the collections T,S that are remaining
after Step 2 of the proof of Theorem 3.

Case number (g, 90, |7T0|) ‘ To T T T3 ‘ Sy Ss S3
Case A / comp 1 (1,1,2) {2,3} {1} - - {1,2,3} - -
Case B / comp 2-(a)-i (2, 1,0) ) {1}  {2,3} - {1,2} {3} -
Case C / comp 4-(a) (2,2,1) 3+ {1} {2} - {1,2} {3} -
Case D / comp 7 (3,3,0) 0 {13 {23 {3 {1} {2} {3}

Step 3 - Case A We draw a contradiction to rule argue that Case A is impossible to happen.

To this end, we begin by observing that |3, — 0| < |3; — 0| for all i € {2,3} and all s € [k,]. If we
assume otherwise, there exists (i, s) € {2, 3} x [k.] such that |3; —0%| < |31 — 67|, which implies P,[V1] < 1/2.
Then it follows that max;c 233 {Ps[Vi]} > 1/4, which contradicts (53). Note that 83 = %256[3} 6* =0, and
thus, |81] < A/32, cf. (51). Thus, B2, 35 ¢ [67 —31A /32,605 +31A/32]. In what follows, we assume that 3o
and B3 are on the same side of this interval, namely, 85 < B2 < B3. This is illustrated in Figure 4. However,

0;=—A 0;=0 6;=A
ke ke
x x

B B PBs

Figure 4: Illustration of Case A in Step 3.

the opposite-side case, i.e., the case where B2 < 07 < 05 < B3, can be analyzed in a similar manner with a
minor modification to the argument that follows.
From the first-order stationarity condition, cf. (12), it follows that 3; = %}Eﬂj?}, Vi € [k], and therefore,

S€[kx«]

Summing up the equations (54) for ¢ € {2, 3} yields

0= E Vi (Bi—x]+ > (BEs[Ws: (B —x)]+Es[Ws- (85 —x)))

i€{2,3} s€{2,3}
> > B[V (Bi-x+ D Eo[(Wa+Ws)- (82— %), (55)
i€{2,3} s€{2,3}

where the last inequality follows from 35 < B3. Rewriting the first term in (55) using the Stein’s identity
(Lemma 3), cf. (29), we obtain that

> Ei [V (Bi —x)]

S0 B[Vl + > BBy [V

i€{2,3} i€{2,3} J€[k]
EID YD IR H B AA
i€{2,3} j€[k]
(d)
2> 0,

because (a) ;¢ Vs = 1 with probability 1 and (b) 8; > 87, Vj € [k]. Therefore, it follows from (55) that

0> Z (W +W3) - (B2 —x)]

s€{2,3}

= > EJ[(1-v)-(B2-x%)]. (56)

s€{2,3}
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In the rest, we will argue that E, [(1 — W) - (82 —x)] > 0 for s € {2,3} to draw a contradiction.
We define a function ¥P™* : R — R so that

prox e*|\95*ﬁ2“2/2
Y () = e~ llz=B1l?/2 4 e=llz=B2|12/2"

and define a random variable WP'* = ¢/P**(x). Note that ¥P**(z) is equal to the association coefficient of
B2 at x if there were only 81 and B2 (with B3 removed). We use WP ag a proxy of 1 — W, to facilitate our
subsequent analysis of Case A. Specifically, we observe that for each s € {2, 3},

Es [(1=W1) - (B2 —x)] = Es [WP - (B2 —x)] + Eq [(1 = Wy — WP) - (B —x)] . (57)
Then we can easily verify that
roX /62 B 0: /61 + ﬁ2 * 1
o (g2 2P (B g L) (59)

by Lemma 5. Then we also observe that

B [(1- 01— w) (B, )] 2 B, [(1 - Wi~ W) (8, %) 1x > Ba)]
®

Y B [(x—Bs) - 1{x > B}]

Y B, (x—67) 1{x > B)]

_/:Oezz~¢(z) dz

~

(@) %
= —0(B2 - 05) (59)
because (a) 1 — Wy — WP > 0; (b) |1 — Wy — WPoX| < 1; (¢) B2 > 07; and (d) follows from (44).
Letting 7, := w -0 — 5% 9* for s € {2,3}, we observe that 75 > 0, and thus,
(@ 1 ®)
) > ) > e T ;
Q(rs) > p— 1¢(7's) Z € o(7s) (60)
> ¢(s + 1),

where (a) follows from Lemma 4, (b) is due to e® > ¢+ 1, V¢t > 0, and (c) is from the observation t?/2 + ¢ <
(t+1)2, vt € R. Collecting (57), (58), (59), and (60) together with (56), we have

0> > E [(1—W1)- (82—

s€{2,3}
_ 0

=S ('38 ol 1)~ 0(6: - 0)))

s€{2,3}
(a) — 6
> %'05(7'34‘1)— > 6B - 67)

s€{2,3}

Yy (61)

where (a) is due to (B2 — 0%) - ¢(75s + 1) > 0. The last inequality (b) follows from the observations that ¢(t)
is strictly monotone decreasing for ¢ > 0 and that

/81 +ﬂ2 * 1

o] = —-0;———+1
T3 + B 3 ,31—0§+
3IA 32
< (B, — 0 SL
SBr=6y) - ot Rt
</62_9§7
Bo— 65  31A
s 256 2
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because By — 05 > 05 — (31 > % and A is assumed to be sufficiently large (to be precise, A > 216 .310.

(V271 +1)).

The inequality 0 > 0 in (61) is a contradiction, and we conclude that case A cannot happen.

Step 3 - Case B Recall from (51) and (52) in Step 0 of this proof that

07+ 03] A
‘ﬂl - 2 3727
18— 65l < = vie{2.3)
R TN LT
This implies that (1) [|B1 — 07 < 22, Vs € {1,2}; (2) |81 — 03] > ‘ 0 oiosl
% — % = %; and (3) [|3; — 0% > 1%? for all (i,s) € {2,3} x {1, 2}.

Recall §; = {1,2} in this case and let §; = 89A/192. Observe that 6; > max {\/‘L 81/log(2v/2 - kk*)}
and that the conditions in (50) are satisfied for ¢ = 1 with 6 = ¢; and S = S; because

191 17
0 =B — 67 > A L
N
192 Vs € {1,2},
47 1 (62)
— 0~ min |8 — 6] > A =
162~ 031~ min 118, ~ 031l > 518~ 10>
o
192

Applying Lemma 8, we obtain

52
Bl - S 4kk*Amax ) 6_6%1

07 + 63
2

= 8k, A - o~ A (63)

< 8kk, A - e~ 7587

It remains to establish an upper bound for max;c (2 3} [|3; — 65]|. To accomplish this, for each i € {2, 3},
we define a function " : R — R so that

o e~ lle=Bill*/2
) = Cemr T

and define a random variable WP = ¢P"*(x). Note that ¢} “*(z) is equal to the association coefficient of
Bi at x if there were only 3 and B3 (with B8; removed). We use WP as a proxy of V; to facilitate our
subsequent analysis of Case B.

Next, we make three preparatory observations as follows.

(a) First, it follows from the first-order stationarity condition, cf. (12), that

S EVi-(x—B)] =0, Vi€ l[k].

s€[k«]

This leads to the following: for all ¢ € [3],

Es[Wi-(x—B)]=— Y EJ[Vi-(x—B)]. (64)
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(b) Second, by the Stein’s identity (Lemma 3), we have the following equation, cf. (29): for all i € {2, 3},

]E3 [\U?FOX . (X — /61)] — 0;" . ]E3 [\U’LPYOX] _ Z I@j . ]E3 [w?rox\u?rox] .
je{2,3}

Then it follows that
EB [\UgrOX] . E3 [\USTOX . (X _ /62)] _ E3 [WIZ)FOX] . ES [\Ugrox . (X _ IB3)]

— _ Z {ﬁj . ]:E3 [wgrOX] . E3 [wgroxw?rox] _ B] . ]E3 [wgro){] . E3 I:\Ugroxwirole }
Jj€{2,3}
= — (B2 — B3) - Varz [W5"]

where Vars [z] := E3[z%] — E3[z)? for a random variable z.
(c) Third, for each i € {2, 3}, the proxy " (z) ~ 1;(x) in the sense that
]Eg |:(w;)rox _ \Uz)2:| _ ]E3 [(\U?rox . \Ul)Q]
< Es[W4].

As we observed [|81 — 63 — min;ep |8 — 03] > 252 A in (62), we apply Lemma 7 to obtain

By [(W9 = Wi)?] < By W]

768 _ _T8961 A2
<1+ —— | ¢ 1179648
- ( 281\/27T'A>

< 2547,

Combining these observations together, we get

182 = Bs| - Vaws [W5™] = |[Eg [W5™] - By [W5™ - (x — By)] — Es [W§™] - Eg |W3"™ - (x— Ba)]

< Y |[Eavr - g0
i€{2,3}

< D B (=Bl + Do [[Es [(w - wa) - (k= Bi)] |
i€{2,3} i€{2,3}

Then we obtain separate upper bounds for the two terms in (67) as the following.

e First term in (67). For each i € {2,3},

|Es [V - (x — B)] || (%) Z |Es [Wi - (x = 8i)] ||
se{1,2}
(b)

2y (B E [R-al])”
se{1,2}

© )
< 12A e~ msA”

(66)

- (65)

(67)

(68)

because (a) is due to (64); (b) follows from Cauchy-Schwarz inequality; and (c) for any (i,s) € {2,3} x
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{1,2}, it follows from (62) and Lemma 7 that
E, [V}] <E, [V

68\ _ o p
< |[1+ ———— | ¢ 1179648
o ( 8927 - A)

2
< 2¢~ Tavh ,

Ey|)x — Bi||* < 2 (Bqllx — 62> + E,|18; — 62]|?)

<2 <1 + max IB: — 0*||2>

i€{2,3
385
211 —A
< < * (192 ) )
<2-(3A)%
e Second term in (67). For each i € {2,3},
2 . .
Es|jx — Bi|” < 2 (Es|lx — 05| + Es||8: — 65]]*)

<2(1 ,— 052
<2 (1 o 18- 651°)

. <1+ (1:)2A)2)

and therefore,

B [(WP =) - (x = B)] || <

Combining (68) and (70) with (67), we have

B2 — B3| - Vars [WE™] < 24A - e~ =52 +35 A e~ A
< A . e A

Lastly, we apply Lemma 6 to obtain a variance lower bound

o

Varg (W5 > 182 — Byl - e ()"

32f

1/2

(71)

(72)

because ||[22522 — 5| + || By — Bs| < 2max{||B2 — 03|, |85 — 03]} < &A. Combining (71) and (72) yields

182 — Bs||° < 800v27A - el —5s)4"
< 800v27A - e~ A,

Consequently,
max [|3;63] < |82 — Bs]|

i€{2,3}
1/6
(800\/ A e sls“) .

We conclude this case with the two upper bounds (63) and (73).
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Step 3 - Case C In this case, ¢ = qg = 2, i.e., there are two ‘one-fits-many’ clusters. We observe that
07,05 €V, and 03 € Vs, (74)

which readily follows from the construction of these clusters; see Section 7.1.2, cf. Algorithm 1 and the
definition of the set A? in (35). Moreover, it follows from (51) that

‘ 0r+05 A A

B <33 and  [|B2 — 65]| < 39" (75)
We consider three possible subcases based on the location of (33, namely,
(i) Bs < Bu;
(ii) Bs > Be;
(iil) Bs € (B1,B2).

In the following, we discuss each of these three subcases individually.

B —

Subcase (i): Bs < B1. Letting ¢ = (B3 + B1)/2, we observe that V3 = (—o0,¢| and that ¢ < 67 by
observation 74. Thus, P1(V3) = Q(6; — ¢). Because

P1(Vs) = Q07 —¢) 2 ¢(0] —c+1) by (60) and

P1(Vg) < by (53),

1
29.33
we have 87 — ¢ > 19 where

70 = (2log(2? - 3%))"/* — 1 ~ 3.367.

Next, we recall from the first-order stationary condition, cf. (12), that

_ 23:1 E, [\U3 'X}
SIS A (7

We derive a lower bound for 83 to argue that 83 ~ c. To this end, we begin by observing that for all
o < BitBe
= 2

o(x — Bs)
V(™) 2 S B F ola = Ba)
1

T 11 2B Ba) (o)
In particular, this implies that
P3(x) >1— 26(61_'33)'(’”_6), Vr < c. (77)

Then we consider the numerator of (76). Due to the translation invariance, we may assume ¢ = 0 without
loss of generality, and therefore, it follows that

Szzﬂ-zs (W3- x] :Sz:ES [\llg-x-]l{xgc}]—i—;gllﬁs W3- x-1{x > c}]
S B - T{x < o
(ﬁ)gm x- 1{x < c}]
© imog—c)+23;<e;—c)-cg(0;—c>, (78)
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because (a) ¢¥3(z)-z-1{x > ¢} > 0; (b) ¥3(z) € [0,1] & x-1{z < ¢} <0; and (c) follows from the Gaussian
integral formula (44).
For each s € [3],

* * * 0:76 *
000~ )+ (67— 0)- QU6 ~ o) = (14 5o l6r -
1 *
:—0;_C+1¢(0570)

due to the upper and lower bounds for the Gaussian Q-function, cf. (43) and Lemma 4. Plugging this into
(78), we get

3 3
1 *
ZES (W3- x] > *Z méf’(es —c)
s=1 s=1 (79)
3
>—— ¢ (07 —¢).
2 0f—c+1¢( 1—¢
Thereafter, we consider the denominator of (76) and observe that
& @
> E (V5] > By [V - 1{x < c}]
s=1
® PR
> Ey [1{x < c}] — E; |2eBrBs)=0) . 1{x < ¢}
because (a) 13(z) > 0 and (b) 3(z) > 1 — 2eB1=Fs)(@=¢) vz < ¢ by (77). Observe that
Ei [I{x < c}] = Q67 — ¢)
and that
E, [6(51—ﬁ3)'(><—c) A{x < c}} —E, [ewl—ﬁs)-(z—(c—em 1{z<c— 9;}]
1 =01 . 2
— . (B1=Bs)-(z=(e=07)) . o=% (
e e z
\Y 2 /;oo
1 B1-83 oy [T 2
— 52 (B1—B5—2(c—67)) —3(2=(B1-B3)) ..
= e 2 ez dz (46
. /. (16)
— ¢ 301-9"  o3((Bi=Ba) (01— . (8, — B3) + (6] — ¢)).
Thus, we obtain
3 2 2
> Eo[Ws] = Q87 — ) —2¢7 2077 2 (Br=BOHOImNT.  ((8y — B5) + (6] — ©)) (80)
s=1

Further proceeding with the lower bound in (80), we use the upper and lower bounds for the Gaussian
Q-function, cf. (43) and Lemma 4, to obtain

; E [W } 1 4] ) ( 0 6_%(0;_0)2 . e%((lal—ﬁ3)+(9f—c))2
s > *_e)—2. _ 4 *_a)) .
=1 R e $(B: =) + (65 = <) (B1—Bs) + (67 —¢)
1 1
> . *_
Z3 g —ey1 Y070 (81)

with the last inequality following from 31 — 83 = 2(81 — ¢) > 2(6; + $3A —¢) > 2(0; — c+1).
In the end, we combine the lower bounds (79) and (81) with the stationary condition for B3 in (76) to

obtain ,
S _9“1*7(:+1¢ (67 —c) B
Bs—c= 1 1 0 —eo)
3 8 —ct1 - (07 —c)
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This implies that
. 15
9218 —cll = lIBr — el 2 81 - 1] > 54

which is a contradiction. Consequently, we conclude that Subcase (i) of Case C cannot happen.
Subcase (ii): B3 > B2. We recall the equivalent stationary condition (Theorem 1), cf. (16):
Zﬁj SRV = > 0B V], Vie k]
s€[k.] s€[k]

Letting ¢ = 3 and rearranging the terms, we obtain

Z Bj Z Es [W3W;] — Z 0 E; [W3] + Z (Bj — 03) - E3[W3W,] =0,

JE[K] se{1,2} se{1,2} JE[K]
whence it follows that
(B3 — 03) - B3 [W3Ws] — (B2 — 03) - B3 [WaWo] = — (B — 603) - B3 [WaWa] + > Y (0: = B)) - Eq W]

s€{1,2} j€[k]

(82)
Then we derive an upper bound for the absolute value of the expression on the right-hand side of (82).
e Note that |31 — 03] < 2 A < 2A, cf. (51). Moreover, |31 — 03| —[|81 — 03] > 22 A > V2A. Applying

Z 16
Lemma 7, we have
| = (81— 03) - B3 [W3W,] | < |81 — 03] - E3 [Wy]

2 _a2
< 2A- l—ki\/%A -e” 16 (83)
<3A-e 4

e Similarly, for each (s, j) € [2] x [3],

(05 — B)) - Es [W3WV;]| < (07 — By - Es [Vs5]
128 ) (8- 05)+434)°

2

< 3. e B

Noticing that B3 — 05 > 0% — B2 (because 05 € Vs), and gathering the upper bounds (83) and (84), we
obtain from (82) that

2
(85— 05) B[V - (W3 — Wa)] <3A- e~ 5 4 3A - ¢ s’

85
SGA-@fﬁlGA? (85)

Next, we proceed to prove a lower bound for Eg [W3 - (W3 — Wy)]. Defining a function ¥P™* : R — R so
that®
brox e llz—B2|?/2
WP () = e—llz=B202/2 4 g—llz—Bsl2/2’

prox

Note that 1P™*(x) > 1y(z) for all z € R. Letting WP = ()P (x) and W
Eg W3- (W3 — Wy)] > Eg [W3 - (W3 — WPHoX))
=E; [Wprox - \Upmx)} + B3 [W3 - (W3 — W) — 3 {W

=1 — WP* we thus have

. (WPTOX prox (Wprox . \Uprox):|

=E; {Wprox ) (Wprox _ \Uprox)} + Es [(\US PP WPTOX) | (Y — Wprox)i| .

(86)
Now we analyze the two terms in the right-hand side of (86).

5Note that here we define ¥P*°% differently from that used in Step 3 - Case A, although the underlying intuition is the same.
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e First, we observe the following inequality by modifying the proof of Lemma 5, cf. (48):

——prox ——Pprox

E, [Wp“”‘ (WP \UPYOX)} —E, [\u (20 - 1)}

3fo(3-9) ko)

where o = B2 — 0%, c = % —0;,and § = @ Note that

¢(c¢_(|_0)2a) Q ((15 c2a) — % ib(<l5_c>) Q <1 —c— 2a> “ (45)

because Q(z)/¢(z) is monotone increasing over = € R.

——Pprox

e Second, since |Wg + W™~ — WPX| < 2 we have

[Es [(ws + TP = wrme) - (uy - 7|
<2 Fy [U7 - vy
- B B) -~ Bs) 1
[p(x = B1) + ¢(x — B2) + ¢(x — B3)]  [d(x — Ba) + d(x — Bs3)]
<2-E3[V]

where (a) follows from Lemma 7; also see (83).

Combining (87), (88) and (89) with (86), we obtain

1 482293 2 B2 + B3 ) a2
Ey[Ws- (Vg — Wo)] > = (1—¢tmss ). _ 405 ) 3.0 %,
3 [V (Vs 2)]_4 ( e ) Q(ﬂgﬂz 5 3 e

Inserting (90) to (85) and observing B3 — 05 > 1(B3 — 32) yields

| —

'(ﬂS—ﬂz)'(l—e4g§_§)-Q( : —ﬂ2+ﬂ3+0§) <9A e TA

8 Bz — B2 2

(87)

(91)

If the inequality (91) holds, then either of the following must be true: (1) B3 — B2 is very small, namely,

Bs— B2 < %, or (2) B2 — 6% is positive, or very close to 0 so that 85 — 35 < e~C"2” for some sufficiently small

constant (e.g., C' = 1/200). Note that (1) cannot be the case, as it will violate the near-empty association

condition P3[V5] & 0. Also, 32— 603 cannot be positive. Thus, the only possibility is to have 05 — 33 < e‘C'Az,

which implies that 83 — 65 > C'A (e.g., C' = 1/20).

All in all, we conclude that this subcase may not be possible to happen, but if it occurs, then the following

must be true: there exist some absolute constant C > 0 such that

1, . N _OA2
181 — 567 +05)]) < e,
2

182 — 03] < =", and

E,[Vs] < e 2%

The approximation error bounds follow form Lemma 8.

Subcase (iii): Bs € (B1,82). We reach at a similar conclusion to Subcase (ii) using a similar argument.

We omit the details.
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Step 3 - Case D. Recall from (51) in Step 0 of this proof that
o A :
6 -85l < &, viel)

Thus, minj; ||B; — ;] — [|8; — 0] > 122 for all i € [3]. Observe that the premise of Lemma 8 is satisfied

with § = 15A/16 > max {\/%, 84/log(2v/2 - kk*)} Therefore, it follows from Lemma 8 that for all i € [3],

2
||61 - 0?“ S 4kk*AmaX : eigj

= T9A . e~ Tom1A’
because Apax = 2A and § = %A.

8.3 Proof of Corollary 5

Proof of Corollary 5. The proof follows the same lines as in the proof of Theorem 3 in Section 8. By rescaling,
we may assume unit variance 02 = 1. When k, = 3 and k = 2, the value ¢ and the sets {S,} and {SZ} in
Theorem 4 can only have, up to permutation of component labels, the following possibilities:

L. (Qa q0, |AO|) - (17 1, 1)
(a) So = {2}a S = {1}3 ST = {]‘ﬂ273}'
2. (Qa q0, |AO|) = (27270)'

(a) S = {1}’ST = {1a2}; Sz = {2}’55 = {S}a
(b) Sy ={1},57 ={1.3}; S2 ={2},55 = {2}.

We claim that Case 2b above, where 3; fits two non-adjacent centers {67,035}, is impossible. If we
assume it is possible, then we must have 31 # B2 by Theorem 2; say (31 < B2. In this case, it holds that
V) C (=00, B2) C (—00, 03], where the last inclusion holds since |82 — 03] < A/192 by (52) (cf. Theorem 4).
It follows that P3(V1) < P5 ((—o0,63)) = 3, contradicting the inequality P5(V;) > 1 —1/(2%-33) in (53).

In Case 1 above, 3 fits all three true centers and B2 has near-empty association. This case is impossible
by an argument similar to Case A in the proof of Theorem 3 (see Section 8.2, Step 3 - Case A).

In Case 2a above, 3; fits {07,053} and B3 fits 65. By an argument similar to Case B in the proof of
Theorem 3 (see Section 8.2, Step 3 - Case B), we find that the exponential error bounds in equation (26) of
Corollary 5 must hold. O
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A Deferred Proof of Proposition 1

A.1 Voronoi Cells and Their Geometry

In our analysis, the coefficients of association v;(x), i € [k] defined in Definition 1 play a key role in
characterizing the gradient, the Hessian and optimality conditions of L. These quantities represent the
strength of (soft-) associations between a data point & € R? and the centers 3;, which is quantified by the
relative magnitudes of the squared distances between  and the k centers; see (8). To better understand
the properties of 1;(x), it is useful to study the hard-association analogue thereof (i.e., ¥;(x) in the limit
o — 0), where a data point is associated only with the closest among the k centers. This hard association
induces a partition of the space R?, which is the so-called Voronoi diagram of R? generated by {84, .., 8k}

In this section, we take a closer look at this Voronoi diagram and elucidate its relationship with the
association coefficients 1;(x). Specifically, we recall the definition of Voronoi cells and introduce additional
useful notions related to them. Thereafter, we state and prove Lemma 9 that will be used in the proof of
Proposition 1 in Section A.3.
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Useful notions related to Voronoi cells We begin by recalling the definition of Voronoi cells from
Definition 2. Letting B = (3;)%_,, the i-th Voronoi cell associated with B has the following representations,
cf. (17):
V; = Vi(B)
={z eR": |lz - Bil < ||z - B;|,Vj € [*]}
={z e R : ¢;(x) > ¥;(x), Vj € [k]}.
For i,j € [k] with i # j, we let
= Bi + B;
Bij = B :
denote the mid point of 3; and B3;. Then the Voronoi cell can be equivalently represented as
Viz{:cERd:<:c—Bij,,6i—Bij>20, VjE[k]\{Z}}
This representation makes it clear that V; is a polyhedron generated by at most k£ — 1 linear inequalities.
Next, we define the set of points that are equidistant from 3; and 3;: for i, j € [k] with ¢ # j,
9y = {z eR: |z - Bl = [l - Bl|}
= {z e R?: yy(x) = ¢y(x)} (93)
= {93 eR?: <w_/8ija/3i _/Bij> 20}~
It is clear from the last expression of 0;; that 0;; is an affine subspace of codimension at most 1; observe
that 0;; = R? if and only if B; = B;. Note that 0;; is the affine hull of V; N'V;.
Remark 7. Note that if the 3;’s in B are distinct, then so are their associated Voronoi cells. In this case, the

Voronoi cells {V;}¥_; form a partition of R%, up to the (Lebesgue) measure-zero boundaries V; N V; C 9;;.
On the other hand, if 3; = 3; for some pair 4, j € [k], then V; = V; and 9;; = R?.

For a parameter a > 0, we define two parameterized families of sets

v {eert: (a-py, ngjgzj”> > —an. e[\,

[ (%]

The sets 175‘ and 5;‘; are the a - o-enlargements of V; and 05, respectively, with 120 =YV; and 5% = 0;j.

(94)

Remark 8. For any o > 0, and any ¢,j € [k] with ¢ # j, we have 171‘1 N ]7? - 5% Moreover, if 3; = B, for
some pair 4, j € [k], then 1710‘ = 17;‘ and 5{; =R
Finally, for a parameter 6 > 0 and 4,5 € [k] with i # j, we let
Gy = {= € R : gi(x)y;(x) > 0}, (95)
which denotes the set of points € R? that are simultaneously associated with both 3; and B; (at level 9).

A useful lemma The following lemma establishes the relationship among (1) the association coefficient

¥i(2); (2) the a-enlarged Voronoi cells V¥, 8{}‘, and (3) the set ij for some choices of @ > 0 and ¢ > 0.

Lemma 9 (Soft Voronoi cells and boundaries). Let B € R** be an arbitrary ordered set of vectors. For
any o € R, let

d=a,g,=a log k,
o« RN ﬂgll

1 i
5 _ 6(X7B70' — k2 exp ( ||l6 IB]>

& = 6;’3,0 = klz exp ( 18: - Bj)

For each i,j € [k] such that i # j, and for any a € R, the following inclusion relations hold.
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1. First, letting

we observe that

VecScvy, (96)
2. Second,
10 A Yo ) 17520/ 520’
3. Third,
e yres &

Proof of Lemma 9. We begin this proof by making a preparatory observation. Fix arbitrary 4,j € [k] with
i # j, and recall from (92) that B;; = (8; + B;)/2. Then we observe the equivalence of the following
expressions: for any a € R,

s Bi—By >>
<w @”n@ Bl =

=

R
w@—ﬂm{m B2 2 - Bil?} > —ac

1 1
& —2llw— B> w81 - acllt - 5]
1 2
& exp <—M||m -Gl )

> exp (_%igw_/@jHQ) -eXp( 18 — B])

<¢ﬁ@ﬁ>ﬁ@y@m( 18i - ﬁm)

Bi — B
& Yi(x) > () - exp < ! . 118: = Bl (99)
In the remainder of this proof, we prove each of the three claims in the lemma.

(1) Proof of Claim 1. First of all, we observe by (94) and (99) that for any o € R,

zeVr = ¢w@zwmwem( 'Wl‘“v, Vi e K\ {i}.

Because 3, i () = 1, we obtain
1
1+ (k—1)-exp ( 1Bi = 57“)

1 18 — Bill
kexp( pn e &R )

Yi(x)

Y

Y

To prove the second inclusion, we observe that for any o’ € R,

fi(x)
Zje[k] fi(@)

- fz >O‘//ij iL‘
J€E(k]
= fi(z) > " max f;(x).

JE[K]
J#i

11)1(.’13) Z Ol" — 1/)1(213) = Z OL”
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Combining the last inequality with (99), we obtain
~ 1
Pi(x) > o = xzeV® for o = Bi=Bi ﬂjH -log (a”) : (100)
Choosing o’ = + exp ( IB:~ ﬁj“) yields o = o + m log k.

(2) Proof of Claim 2. By the first claim of this lemma, i.e., (96), we observe that

z VNV
— min {03(@). 0@} > oxp (—al 2B
= @) > exp( sy,
Thus, it follows from the definition of the set gg‘j in (95) that
VENveECglh  for = 1exp< 15: UﬂJ”)

As max{¥;(x),¥;(x)} <1, ¢¥;(x)y,(x) > 6 implies min{e;(x),¥;(x)} > §. Therefore, by the same argument
as in (100), we get

zeg; = =zeVnV

where

1
& = -1
118: = B;ll ﬂJn g()

(8) Proof of Claim 3. Finally, we note that

megfjﬂﬂf

o 2 ﬁz ﬁz
— wew & <w_ﬁ”" 18 - ﬁzjll>>_

— wj(w)legeXp( 18: - ﬂj”) & wi(m)zwj(w)-exp( mzaﬂ]”)

by (96) and (99). Therefore,

zednyy = wm)wj(m)zlj?exp( Ilﬂigﬂ]n)

A.2 Helper Lemmas for the Proof of Proposition 1

Gaussian lemmas Let ¢, : R = R2 denote the probability density function of the Gaussian distribution
N(0,02), ie., ¢po(x) = \/%efx /297 for all € R. We denote by ¢ = ¢, omitting the subscript when

2702

o = 1. We observe that ¢, (z) = 2¢(2/0) for all 0 € Ry and all z € R.
Here we state and prove a simple technical lemma that will be used later in our analysis.

Lemma 10. For any o € Ry, any 7 € Ry, and any t1,t3 € R such that 0 < t; < tg < 00,

/tt2 bo(2)dz < (\/%+ 1) -Inax{l, Z}/tz 1{z—t1 <7} ¢d,(2)dz

ty
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Proof of Lemma 10. If T > to — o, then the conclusion trivially follows. In the rest of this proof, we assume
T <ty — t1 and consider two cases separately.

Case 1: 7 > o¢. In this case, we observe that

to L2
¢o(z)dz = /ti o(z)dz

t1+7

where (a) follows from Lemma 4, (b) is due to 7 > ¢, and (c) holds because ¢ is non-increasing on [&, LET].
It follows that

to to

ti+71
b(2)dz = / szt [ oe)dz

t1 t1 t1+T

< (vare) [ o

ty

— (\/%Jrl) /t21{2t1 <7} oé(2)dz

t1

Case 2: 7 < o. In this case, we follow a similar argument as above, observing that

to L2
-(z)dz = d
[ oot /ﬁqu(z)z
Sm.(b(fl”)
g

S(\/ﬂ+1—g) ¢(t1+7>

t1+‘r

§<\/ﬂ+1_1) [

((\ﬁ+1 )= —1 /MT

Consequently, it follows that

/m

t1+71

(\/74- 1) /t1+T $o(z)dz.

ty

t1+7 to
/ oo (2)dz + do(2)dz
o
;
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0 \/
Figure 5: Illustration for the proof of Lemma 11. The figure shows the polyhedral Voronoi cell V; and the
direction v = e; that defines the separating hyperplane between V; and 0. For each point = (z1,24)" €

int V;, the ray {x —be1,b > 0} intersects a facet F' of V; at a unique point y = y(x4), where F C 9;; for
some j = j,(z4) € [k]. The set £; indexes the Voronoi boundaries colored in blue and green.

e )

A useful geometric lemma Our proof of Proposition 1 relies on the following geometric lemma.

Lemma 11 (Controlling volume by intersection). Let B € R¥** be an arbitrary ordered set of vectors. For
any (s,1) € (k] x [k] and any (a; € Ry : j € [k]\ {i}), if 0 ¢ int V), then

1 VY A 9%
Ps (Vi) < (\/ﬁ—i— 1) j€§{i} max {1, aj} - Py (Vi "N o, ) . (101)

Proof of Lemma 11. We present this proof in four steps. In Step 1, we introduce some notation for the
convenience of the later steps. In Step 2, we derive an useful expression for the probability Ps(V;); see (103).

In Step 3, we establish a lower bound for Pj (1710‘ N 53) for j € [k]\ {i}, cf. (107). Finally, in Step 4, we
conclude the proof.

Step 1. We may assume that 6% = 0 without loss of generality, due to the Euclidean invariance; see
Remark 1. Since 6% ¢ intV; and V is a convex set, there exists a v € R? such that (v,z) > 0 for all
x € V; by the Separating Hyperplane Theorem. Again by the Euclidean invariance (rotational invariance, in
particular), we may assume that v = e;. For each point @ € int V;, the ray {a; —bey €RY:b> 0} intersects
a facet F' of the polyhedron V; at a unique point, which we denote by y = y(x), where F' C 9;; for some
J € [k] with B; # B;; we let j. = j.(x) denote such j (if there exist multiple such j’s, we pick the smallest).

It is clear that y and j. are independent of the first coordinate of &, hence, we can write y = y(x$) and
Je = ju(x2), where z¢ == (x3,...,24) € R¥7L. As a result, every x € int)); can be uniquely expressed as
z =y(xd) + b e; for some b = b(x) > 0. Note that for all z € V;,

w1 > yi(23) = (er,y(x3)) > 0
by construction of y and by the separating hyperplane theorem. For each i € [k], we let
Li={jek]\{i}:j= jx(22) for some x € intV; } .
See Figure 5 for an illustration of these notations.

Step 2. We overload notation and let ¢, denote the probability density function of A'(0,0%1,) for any

53



d € N;. As we assumed 0} = 0, we can write
P, (V;) = / 1{z €V} ¢o(x) dx
R4
fZ/ ]l{mEV & j.(xd) 73} o (T

JEL;

_ Z /Rd 1 [/ " 1{x eV} ¢o(x1) dml} -1 {]*(mg) - j} ) %(m%) d:cg (102)

JEL;

by the definition of j.(-) and £;, as well as the Fubini’s theorem.

Define the quantity u}(x4) := sup {1 € R: (z1,2)" € V;} with the convention that y; (x]) = u}(x§) =
0 when {(z1,29)" : 21 € R} NV; = 0. Then we observe that 0 < y;(x3) < uf(x§) < oco. Contmumg from
the equation (102), we have

(“’2
Z /]Rd . [/111 P (21) dxl] A {ju(x) =4} - ¢o(x3) daj. (103)

JEL:

Step 3. For each j € £;, we may write using a similar argument as in Step 2 that for any a@ > 0

P, (Ve ndg) e, (vinag)

®)

'y L VT) e enn T} -ono) d”“] L) = 7'} 9o (ah) dad

JE€L;

=2 /Rd . Vy“ N {“’ € 53‘}‘%(%) dxl} A {ju(@d) =5} bo(2d) dzd  (104)

J'eL;

where the inequality (a) holds because V; € V* and (b) is due to (102) and (103).
Next, we observe that for each j € £;, the following holds:

Ju(x3) =7 and z1 —y1 (z3) < ac = x e 0. (105)

Proof of Claim (105): Fix an @ € V; with j.(x) = j and 21 — y1 (23) < ao
we have (y(x4) — B, 8; — Bi;) = 0 by definition of 9;;; see (93). Therefore,
|<$*Bijvﬁz Bzy>|—|<m* ) Bi — Bzy>|
< |l —y(@3)| - 18: = By
= |£U1 Y1 132 | ||/81 /Bin
<ao- H/Bz - 51;“ .
The above inequality implies that « € 5% by definition of 9% f. (94).

z]’
By the logical implication (105), we have the following inequality for all v > 0:

1{eedy}>1{e -y (2f) <ao}-1{j.(28) = j}. (106)

Combining (104) and (106), we obtain

. Since y(xg) € 8;,

P <]~} 5) Z / /"?( . 1 {xl -1 (md) < acf} cdo(x1) daq | - 1 {j (a:d) :j} ) (md) dad
s\Yi i) = | (o) 2) = o #\ T2 o (Lo 2
(107)
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Step 4. By Lemma 10, we observe that for all a > 0,

u; (z5) 1 uj (z5)

/ (1) dzg < (\/%—F 1) -max{l, } / ll{xl—yl (wg) Saa}-%(wl) dz;.
Y1 (m%) « Y1 (mg)

Combining this inequality with (103) and the inequality (107), we have the following inequality hold for any

choice of o; € Ry for j € [k] \ {i}:

1 1 o ao
— P,(V;) < max<1l, — - P, (V7 N0,/
V2r+1 V) J;q X{ aj} (Z ”)
1 ~o o o
< Z rnax{l, } -IPy (Vij mai;) .
JEiRIE) I
O
A.3 Completing the Proof of Proposition 1
Proof of Proposition 1. We begin by proving the first claim, and then use it to prove the second claim.
(1) Proof of Claim 1. We choose an arbitrary sequence (o; € Ry : j € [k] \ {i}), and let & :=
2 exp (730@- m%f“') for all j € [k] \ {i}. Then we obtain the following upper bound
1 (a) 1 ~ai
=B V)< Y max{l, } P, (Vf” maf‘;)
var +1 jelrng} “
1 1 (63 ~Ot ~a
FEILING; *
< > maxql, Ll L g, VAR
T , o} of !
FEILING J
1
= k> Z max{l, }-ES[\I/i\U] eXp( Hﬂl ﬂj”)
o
JER\i} !
where (a) is obtained by Lemma 11, and (b) is due to Lemma 9, Claim 3.
(2) Proof of Claim 2. Summing E, [W;W;] over j € [k] \ {¢}, we obtain that
> B W] = B [Wi(1 - V)]
JelkN{}
=B, [V L] - By (W21 )] + B, Wil = wy) -1 {VF ]
(a) 1 C
> “EL(W, . ] ) _E. . :
> SE W, 1{V}] - P, () + 3E, {wl 1 {Vz H
1
= iEs [\Uz] — P (Vz)
where the inequality (a) holds because & € V¢ implies ¢; () < 1. Then it follows that
Eo[Wi] <2 Y Bl VW] + P, (V)
JeRN\{i}
1 i
SS(\/Qﬂ'—I—l)-k‘2 Z max{l, Oé_}~ES[\Ui\IJ] exp< ”'6 '6])
JER\{i} !
The last inequality follows from Claim 1 of this proposition. O
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B Deferred Proof of Proposition 2

Proof of Proposition 2. In this proof, we prove the three claims one by one.

(1) Proof of Claim 1. Fix an arbitrary i € [k] that satisfies A? # 0. Let S; := {j € [k] :

we may write

1
J | | 1- Z E, [wj]
! JERNS;
By definition of the set A2, we observe that for all pair (s,j) € A% x ([k]\ S;),

: 185 = Birll
0% ¢intV; and max W,V < 6.
#intY ek} o Ea[V5vs]

It follows from Corollary 6 (claim 2) and (109) that for all (s, j) € A x ([k]\ S;),

. 18:= Bl

-y j e[k]\{J}
<9(Var+1) Kk

(\/ T+ ) K6
Plugging (110) into (108), we obtain that for all s € A,

{1-9(Var+1) 15},

S
]ES

Es [W] < < +1 E,s [V V)]

1
Es wi 2
Wi = 15

Now we assume there exists i’ € S; such that ¢/ # 7. Then we have

E WV, = B [W2] > E,[W,]?

1 2
> m{ (\/7-1-1) 5}
1 2
> k—{ 9(Var+1) -k -6} .
Letting ¢, :=9 (\/ﬂ+ 1) for a shorthand, we observe that if & <5 k4,
1 4 2 31 1
E W] > {1-. k- 0) 215> soqa 20

which contradicts the assumption that s € A?. Consequently, S; = {4}, and the claim is proved.

B; = Bi}. Then

(108)

(109)

(110)

(111)

(112)

then it follows from (112) that

(2) Proof of Claim 2. Now that S; = {i}, it immediately follows from (111) that for all s € A?,

1—Es[wi]§9(\/ﬁ+1).k4-5.

(8) Proof of Claim 3.1t follows from Corollary 6 (claim 1) and (109) that for all s € A? and all j € [k]\ {4}

(note that S; = {i} by claim 1 proved above),
P, (V;) < 3 (\/ﬂ+ 1) ELs
by the same argument as in (110). Therefore, for all s € A?,

P(Vi)= > Ps(vj)szs(\/ﬁﬂ).k‘*-é.
jelkn g}
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C Deferred Proof of Proposition 3

C.1 A Helper lemma for the Proof of Proposition 3

Recall from Section 3.1.2 that any local minimum B of L must satisfy the first-order stationary condition
(12) and the second-order optimality condition V2L(3) = 0, where the Hessian V2L can be computed using
the expression (13) as stated in Lemma 2. Based on this fact, we state a lemma that is useful in our proof
of Proposition 3.

Lemma 12. Let B € R¥* be a local minimum of L. For anyi,j € [k] such that i # j, and any vi,vs € RY,
2

E. [%%—((@ —xv1) = (Bj = x,v2)) } < 0% for|* - Ba (W] + 02 - [|ua|* - . [W]. (113)

Proof of Lemma 12. First of all, V2L(B) = 0 because B is a local minimum of L. Thus, v V2L(B)v > 0

for all v € R%. We choose v to be the flattened vector of V' € R¥** guch that V; = v; and V; = vy, all
other columns being 0. Then we obtain by applying Lemma 2 that

8 82 8
ot v VIL(B)v = ot v/ [8&8@L<B)] v +0' v [%jaﬁjL(B)} vj + 20t v [WL(B)] vj
= E. [(Wi = D)W (B = x,0) + 0% Wy [on P + B (W) = DV, (8 = x,02)° + 0% 0 [[oa*]
+ 2B, [V (Bi — x,v1) (Bj — %, v2)] . (114)

Noticing that -,y Wir = 1 and Wy > 0 for all i’ € [k], we observe that W; +W; < 1. Then it follows from
(114) that

ot v V2L(B)w < —E, {wi\uj {UBi — % v1)? + (B; — x, v2)? }} +9E, [wiwj (B; —x,v1) (B; — %, v2) H
+ 0% B [V [[or]* 4+ ¥ oo
=-E. [wi\uj (B — x,v1) — (Bj — x,v2) )2} + oo )|? By [Wi] + 02 - wo]® - Ey (W]
To complete the proof, it suffices to recall v' V2L(B)v > 0. O
C.2 Completing the Proof of Proposition 3
Proof of Proposition 3. In this proof, we prove the two claims separately.

(1) Proof of Claim 1. Fix arbitrary ¢,j € [k] such that ¢ # j and let v;; := % Applying Lemma 12
with V1 = V2 = V;;, We obtain

0% B, [V + V] > E, |,V (8; — B, vi;)°
= 18; — Bj|I* - E. [WiV;].

Rearranging the terms, we obtain the desired inequality.

(2) Proof of Claim 2. Choose an arbibrary pair (s,i) € [k.] x [k] and let us—; := % First, we
observe that for any x € RY,
18: = 6:1° = (Bi — 07, si)
2
= (B = m o) + (@~ 02 ues) )
<2(Bi — @ Usi) 42 (@ — 0F, uy)? (115)
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Second, applying Lemma 12 with v; = us_,; and vy = 0, we get for all j € [k] \ {i},
o2 E, [V, > E, [wiwj (B — %, ussi)?] - (116)

Then it follows that for all j € [k] \ {i},

(a)
o EL W] 2 B (W (B - x us)’]

(2 ki Z E, [\UL\U] (Bi —x, us—>i>2:|

*

s€ k]
EE e N VAN R (AZRCE (117)
= k*se[k] 9 s i¥j i s s ] sy Us—q

where (a) follows from (116); (b) is by definition; see (2); and (c) is due to (115).
By our model assumption (Gaussian mixture model) the random variable z; := (x — 0%, us_;) is a
centered Gaussian random variable with variance 0. Therefore, for all (s,i,5) € [k.] x [k] x [K],

E, [V,V; - 27| <E, [2}] = 0. (118)
Plugging (118) into (117), we get for all j € [k] \ {7},
2 * |2 _ 2
o’ - E. [Vi] > — k gk:] < 118 =657 — o ) (119)

> -E, [V, V)] - Jnin, 18: — 6%” —

N | =

Rearranging the terms, we complete the proof of Claim 2.

(8) Proof of Claim 3. Continuing on the inequality (119), we observe that

o w2 S (FE ) 18- ) - o)

*5€k]

1
> B, [W,V;]- |8 — 07 —
=T s [(WVaV5] - [1Bi — 0%

for all s € [k,] and all j € [k] \ {i} because E, [W;W;] - [|B; — 6%]|* > 0 for all (s,4,) € [k.] x [k] x [k].

D Deferred Proof of Proposition 4

D.1 Helper Lemmas

Basic properties Recall the definition of the Gaussian Q-function Q(¢) = ftoo \/%e*%sz ds, and let Q7' :
(0,1) — R denote its inverse. That is, we write z = Q~1(t) if t = Q(z).
Lemma 13. Let x ~ N(0,1,) be the d-variate standard Gaussian random variable, and ¢ : R — [0,1].

Then
|Ex[$(x) - X]|| < ¢(2y)

where zy = Q7 (E[Y(x)]).

Lemma 13 implies an upper bound on the mean displacement of a Gaussian distribution A(0, I;) when

reweighted using %f() T




Proof of Lemma 13. Tt suffices to observe that

B[t ol = _sup  Exlte) (un)

< [ o) = olz),

O
Lemma 14. Let w,w' € {w € R¥* 1w, > 0,Vs € [k.], Z’; L Ws = 1}, and {vy,..., v, },{v],..., v } C
R?. Then
Vg — Zw vl < JJw —w'||; - m&gn] gelax lvs — v —|—Z |lwl (vs — )] .
Proof of Lemma 14. Applying triangle inequality, we obtain
k. k. k.
S wiwl] <[ S, —v;>H
s=1 s=1 s=1
k.
= z:(w6 —wl)(vs — 1)
s=2
k. k.
< (les—w;> ' Inax ||'vs—'v1||+ZHw —v)l|
s=2 s=1
k.
< Jlw—w'f|y- max  [lvs — o1 + 3w (v, — o).
s€lk s=1
Since the choice of vy is arbitrary, we can replace it with any vy, §" € [k.]. O

Properties of the coefficients of association Next, we present two useful properties of the coefficients
of association, which we use later in the proof of Proposition 4.
Recall the definition of set A from (35): for any i € [k] and for any & > 0,

Al = {5 € [k | tB(0F) =i and jrjgaeu[i] 18, Uﬁj ” E, [W,V,] < 5}.
We additionally define B¢ as follows: for any 4 € [k] and for any § > 0
B = {s € k] | tp(07) #i and jg{,i?\ﬁ} 18 Uﬁgll E, [V, V] < 5}. (120)

Lemma 15. Leti € [k] and 6 > 0. If A # () and & |A2UBY| > k. — 1.

Proof of Lemma 15. Observe that if s € [k,]\ (A? U Bf), then either of the following must be true by
definition of the sets A9 and B?:

(a) ¢tB(0%) =i and max;cp 16: = ’6]” Es [V, V] > 6; or
(b) LB(H:) 75 ¢ and max;e|k] 18i — BJ” -E, [\Ui\U‘] > 4.

In either cases, there must exists j € [k] \ {¢} such that 16: = ﬁj“ -Eg [W;W;] > 6. That is, 4,5 € 2 by
definition of the set £ presented in (36). By Corollary 7,

1B — 071l

- 5 . (121)
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Now we assume that ’A‘S U 85 <k,—1,1ie.,
such that s; # so. Observe that i € 8‘5 nesd

§27

165, — 05,1 < 118, — 05, 1| + 118, — 0, |l
4k, - o
< .

and therefore, it follows from (121) that

Ifé > 4k* 2 then 2% < A, contradicting the definition Ay, = min, e, 105 — 0

S#s
conclude that ‘A? U Bﬂ > ke — 1.

Lemma 16. Leti € [k] and § > 0. If A% # 0, then

mex|0] — B - Eo[v ] <45 (Vor+1) -k 8- Dean(B) + 40
S

where Deen(B) == max e[k MAXse[k,]:0* €V, lex — ;]

(k] \ (A2 UB?)| = 2. We choose s1, 52 € [k.] \ (A2 UBY?)

*||. Therefore we

O

Proof of Lemma 16. Choose an arbitrary s € B? and let j = t5(0}). Notice that j # i, and we recall from

(92) that Bij = % Then we define three quantities:

dij = Hﬁz —ﬁj”,

* 2 /8 ﬂl
=(0; — K
! < Bii- 118, = ,61||>

”_\/0* 80813 =)

In what follows, we prove the lemma by considering two cases: (1) d;; < Deen(B) or |t 4

(2) dij > Deen(B) and |t — %2| < %

Case 1. We observe that

1 E, [V,] (%) 2 Z 18 — ﬁ]” E, [V; V]

9(var+1) jernviy °
Z 5
JelRni)
< k3.4.

dij

or

(122)

where (a) is due to Corollary 6, Claim 2, and (b) is by definition of B?, cf. (120). Thereafter, we consider

the three subcases individually.
Case 1-A. First of all, suppose that d;; < Dcen(B). Observe that

105 — Bill < 165 — B[l + 118, — Bill
S Dcell(B) + dij
S 2Dcell(B)-

This, combined with (122), yields

167 — Bi| - B [Wi] <18 (\/§+ 1) k-6 Deent(B).

||9§ —Bill < 5||92 = Bjll < 5Dcen(B).
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Likewise, it follows from (122) that

|6z — Bil| - Eu[w:] <45 (V2r +1) k5 Dean(B). (124)

Case 1-C. Lastly, suppose that n > df . Similarly, we observe that

1/2
5+2)2+1
0~ 8.l < (W) jo: - 5,

S 5Dcell(B)7

and therefore,

6 — Bi|| - Es[Wi] <45 (\/27r + 1) k-8 Deen(B). (125)
Case 2. Now we suppose that (i) dij > Deen(B), (ii) |t — d;j < diﬁ and (iii) n < di". Observe that
dij\* 13
* 2 _ ) 2 2
Next, we fix a coordinate system: without loss of generality, we may let 8% = 0 and let e; = Hg%gj\l’ see

Figure 6. Writing « = (21, #3), we observe that for any o € (0, 3),

E, W] =B, (Wi 1{x <a-dy | +E [Wi-1{x > a-dy}].

It suffices to establish upper bounds for the two terms on the right hand side.

o If 21 < a-d;j, then
_ Hm—ﬁguz
e 20
() =
vi(®) k l=—8,/112
Ej’:l e 20%
_ll==8;12
< e 202
= l==8;l?
e 202

— ea% <ﬁi—ﬁj7m—,éij>

2
1 4ij

<o (3-0)%F

)%
—
0'2 .

Thus, E, [wi : 11{x1 <a- din <o (4

e Since 9;(x) < 1, we have

where (a) follows from Lemma 4.
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X1 Sd”/‘l‘ Xq >dl]/4
xg
dij /2
.B]
n
0r =0

Figure 6: Illustration for the proof of Lemma 16, specifically Case 2.

We optimize the value of a € (0,1/2) to balance these two upper bounds by solving % —a= 0‘;, and obtain
a* = /2 — 1. Therefore,

E. W] =B, (Wi 1{x <0 dy}| +E, [Wi - 1{x > a* - a5 }]

2 (127)
< 9e-(3-v2) 3
Combining (126) and (127), we obtain
1 i 3 a3
107 = Bi|| - Es[Wi] <o \/>3d” e (3-v2) 4 < 4o,
2 o
where the last inequality follows from observing max.>q { 13/2- z - e*(%*ﬁ) 22} < 4.
O

D.2 Proof of Proposition 4

Proof of Proposition 4. We present a proof of Proposition 4 in three steps.

Step 1. Preliminary observations Fix § > 0 and choose an i € [k] such that A? # (). Observe that

_ EJVix
Bi = AR
E,[Vi] [ v, ]
- -Eq : .
2 S 5 B

by Lemma 1, and more specifically, by (12). We let for each s € [k.],

Wy =

Dscpr Hs € A2}

0 otherwise.

_ 1{s € A} {ljé if s € A2,
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Then we define

Zws 0*— Ze*

s€[kx] SEAS

Further, we define two additional points in R¢ that serve as proxies of 3; to facilitate our analysis:
ﬁz/ = Z ws - B + Z Ws * Vs, (128)
seB) s€[k.]\B?

W
B = —_— v, 129
ZSEA;.; Ws ( )

SEA?

Observe that

B:_ﬁl(é) Zwsﬁl+ Z Ws - Vs _/81'

sEB? s€[k.]\B?
S IUUEVIRSD SEONCES)
SEA?S secy
)
= | 2w (B =B+ D we (v = B)
sEAS secsd

where (a) is due to (128) and (b) is due to (129). Therefore,

18 = Bill + 3w flos = Bl ] - (130)

sec?

1
"Bl € =——
o =1 < 5=

A2 Ws

By triangle inequality and (130), we obtain
18: = B:| < 1|8: = BY|| + |87 - 84|
G _8'll+— 1 153 )
<10l + sl =Bl e S -l 3

secy

Step 2. Establishing separate upper bounds Next, we establish upper bounds for the three terms on
the right hand side of (131).

Step 2-A. An upper bound on the first term in (131). Recall that B: = D oses Ws-Us and B =37 5wl -vs
where '

W' — Ws _ E, [wz]
T e Ws e Bs[Vi]
Therefore, by Lemma 14, we obtain
18 =Bl < | 2 1@ —wf] ) - min max [167 — 630+ > [l - (67— .. (132)
s€A? seA] seA?

Let g5 :=9 (V27 +1) - k* - §, to avoid cluttered notation. Recall from Corollary 6 and Proposition 2 that

1-EWi]<9(Var+1) k-6 =k-e5, Vs € A2, (133)
Ewi]<9(Var+1) k-6 =2, Vs € BY. (134)
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It follows from (133) that for all s € A?,

|y — w!| < max L _1-k-¢& ! _
oo A7 A A (L~ kees) A

_ |A1?| : % (135)
Let z,; == Q' (E,[W;]) for all s € A?, where Q is the Gaussian Q-funciton. Observe that
Tt 0ol = gy 3 B 03 o)
“Zw GZMHE ool
()
S s z;“b |
g ﬁ% o (136)

where (a) holds because v, = E; [% ~x}; (b) is by Lemma 13; and (c) follows from the observation: for
all s € A2,

1_Es[ ] k - S

=~ =

=  25; < =05
z§+1
—2s

Combining the inequalities (132), (135), (136), we obtain

= ¢(25) = ¢(—2z5) <

Q(—2c5) < 3k - 5.

Hil_k"aé SGA‘SSGA

~ k-
18: — B < %8 (mm max |07 — 07| +3-o> . (137)
Step 2-B. An upper bound on the second term in (131). Recall the definition of B? from (120) and that
Bi =3 e Ws - Bi + D selk 58 Ws * Vs, cf. (128). Thus, we observe that

1 1

ZseAf Wi Hﬁ ﬁz“ Z eA5 S&EB? Wg * (Us - ﬁl)
1
<. E W] (vs — B;)]] . 138
S B 2 B el (15
Recall that vy = E; [ B[ 7,] ] and thus,

E,[Wy] - ( I@l): E[V; - x] — Es[Wi] - B
Es [V, - (x = 6)] + E [Wi] - (6] — Bi)-

Observe that
[ B [Wi - (x = )] || <Es[Wi - fIx — 6]l]

< B, [x— 03] (139)
< oVd.
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By Lemma 16 and (139), we have

B3l - (v, = B)|| <45 (V2 +1) -k -6+ Dean(B) + o (Vd + 4)

(140)
=55 - Deen(B) + o (Vd + 4).
Combining (138) and (140), we obtain
8- 1] < LBl 55 DeerlB) ro(vd+) (141)
ZeA5w ’ |.Af| 1—Fk- &5 '

Step 2-C. An upper bound on the third term in (131). Recall that Cf is either an empty set or a singleton. If
C? = 0, there is nothing to prove. Thus, we assume C? = {so}. Let z,, := Q™' (E, [V;]), and observe that

Wi,

Eoo [Vi]
Z s W . ||’Uso :
s€Ay s

e ey (o

05, + 1162, = B:l)

1 * * .
Sy e CAUR DR D)
(a) 1 2k,
= |Af|.(1_k.€5)'(¢(zso)-a+ 5 -a)
1 o 1 2k,

where (a) follows from Lemma 13 and Corollary 7.

Step 3. Concluding the proof To conclude the proof, we insert the upper bounds (137), (141), and

(142) into (131) and observe that e5 :==9 (V27 + 1) - k* - § < 57 due to the assumption § < m

2 k- 28] |86| 555 ' Dcell(B) + J(\/&+4>
i — Bi|| < —— 0; — 03 : b
18 = Bill = 7=, (mm' S”+3">+|,4;5| [

N 1 o ( 1 +2k*)
1—Fk-es A \V2r &
i 2|B?| 20 1 2k,
< (225 BB +3-0) + 0 - (555 Den(B) + o (Vi +4) ) + Wi\t T

. 5k, 4k, -0 1
SlS(m+1)kd(|A6| cell(-B)+‘Z€ Acell( ))5+ |A5‘ 5

1 2
+J{M?|- <2k*-(\/&+4)+\/;> +3}.

E Deferred Proof of Proposition 5

Proof of Proposition 5. In this proof, we prove the four claims one by one.

(1) Proof of Claim 1 (non-emptiness). We begin by showing the non-emptiness of 7,?. First, it is clear
from line 5 of Algorithm 1 that 7,2 # ) for all a € [go]. Second, to prove 7.2 # () for all a € [g]\ [qo], we assume
Ja € [g] \ [qo] such that £ = () where s, € [k.] denotes the unique element in SJ. By this assumption,

Max; e [x] MaX;e[k]\ {i} 16: = B’H -Eg, [W;V;] < 4. In addition, we observe that s, ¢ A2 for all i € [k] because
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Sq € R?. These two observations together imply that ¢g (8% ) # i for all i € [k], which is a contradiction. As
a result, we conclude that 72 # () for all a € [g] \ [go]. Next, it is easy to observe that S #  for all a € [q]
by construction; see line 6 and line 15 of Algorithm 1.

Moreover, it is clear from the construction (see lines 5 and 15 in Algorithm 1) that |7| = 1 for all
a € [qo], and |S2| = 1 for all a € [q] \ [qo]. Lastly, we can verify that |T.?| > 2 for all a € [g] \ [go] because
|£9] > 2 unless €2 = () by definition, cf. (36).

(2) Proof of Claim 2 (covering). It is clear from line 19 of Algorithm 1 that UI;:O T9 = [k].

Next, we show that for all s € [k,], there exists a € [g] such that s € SJ. To this end, we choose an
arbitrary s € [k.] and consider two possibilities: (i) £ = (); and (ii) &° ;é (. If (i) is the case, then there
exists a € [go] such that s € S = A¢ where i, is the unique element of 7.; see lines 5 and 6 of Algorithm
1. If (ii) is the case, then there exists a € [q] \ [go] such that S = {s} by construction.

(3) Proof of Claim 3 (inclusion of Voronoi centers). For a € [qo], if s € S, then s € A where i, =
1 (0%) is the unique element in 7;‘5. Thus, it is clearly true by construction

Next, we let a € [q] \ [qo] and let s, denote the unique element in S°. Then it suffices to show that
i =1p(0%,) € £ . If we assume otherwise, then there must exist b € [q] \ [qo] such that b # a and i € 7).
Then it follows from Corollary 7 that

18:— 63,1 _ 2k
o )

where s; is the unique element in S,‘f . Also, we get

1_0* _0* *
18— 650 18— 65 _ 2k

o T jETs o )
because 8 € V;. Then we get
oz, — 65,1l < |8 — 65, ]| + [|B: —
4k, - o
<
)
< Amin

where the last inequality follows from the premise of the theorem that & > . This is a contradiction due

to the definition of A, in (4).

4ka

(4) Proof of Claim 4 (disjointness of S°).

(a) Let a € [qo].

e Suppose that b € [go] \ {a}. Assume that SS NS # 0, ie., Is € SS NS} # (. Letting i, and
i, denote the unique elements of 7. and 7;‘5, respectively, we observe that s € ,Afa N .A?b b
construction; see lines 5 and 6 of Algorithm 1. Then it follows that

(a)
E.[Vi] 2 1-9(Var+1) -k
01
2 )
where (a) is by Proposition 2 (Claim 2); and (b) is by the premise that § < m. Likewise,

we obtain E, [W;,] > 3, thereby, E, [W;, + W;,] > 1, which is a contradiction. Therefore, S;NS} =
() for all b € [go] \ {a}-

e Suppose that b € [g] \ [go]. We observe that 7,? C R® = [k.]\ (U%_ 1 82,) for any b € [g] \ [qo0], by
construction (see line 10 and line 15 in Algorithm 1). Thus, SN SJ = 0.

(b) Let a € [q] \ [g0] and b € [q] \ ([go] U {i}). It is obvious from construction that S3 NSy = 0.
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(5) Proof of Claim 5 (partial disjointness of T).

(a) Let a = 0. It is obvious that 72 N T,? = () for all b € [g] by definition; see line 19 of Algorithm 1.
(b) Let a € [qo].

e Suppose that b € [go] \ {a}. It is clear that 72 N T,° = 0 for all b € [go] \ {a} from line 5 of
Algorithm 1.
e For the case b € [q] \ [go], we do not claim disjointness for T°.

(c) Let a € [q]\ [q0]) and b € [g]\ ([g0] U{i}). We assume there exists i € [k] such that i € 72 NT7?. Letting
$q and s, denote the unique elements in Sg and S;f , respectively, we have

max =Bl g v =6 and
ek o

18: =Bl g, jwowy) = o
ek o

Then it follows from Corollary 7 that

HH:G, _0:b| < Hﬂl _0; |+ Hﬂl _9; |
4k, - o
<
< Amin

where the last inequality follows from the premise of the theorem that § > ZX“#. This is a contradiction

due to the definition of A, in (4): ’ 0; — 0%, || > Anin. Therefore, TN %}{;‘ = 0.

O

F Deferred Proof of Proposition 6

Proof of Proposition 6. Our proof is based on the induction argument. We let ¢(*), q(()t), T®,S® denote the
values and the collections of sets after the ¢-th iteration of the outermost loop in Algorithm 2. Assuming
the conclusions hold at the end of the ¢-th iteration, we consider the two possible scenarios at the (¢4 1)-th
iteration.

Scenario A: T \ Upcpeont To # 0, i.e., Line 3 of Algortihm 2 is executed.
1. Claim 1:

(a) Comparing T¢+1) to T®), we only have made one 7T, smaller (but 7, is still non-empty). To show
that the new T¢+D\ {75} is still a ({75} {7a}i—yy11)-quasi-partition of [k] \ 7o, it suffices to

a=1"

verify that Ureq (753 7 = [k] \ To. This is true because (Jycpeon Ty still contains the elements
that are removed from 7.

(b) St+1) is a partition because S*) is a partition and S¢+1) = S,

(¢) Claims 1-(c) and 1-(d) of Theorem 4 hold as the sets T/, @’ € [g] \ {a} and Sy, V' € [q] are
unaffected.

2. Claim 2 continues to hold as the sets 7o/, @' € [¢] \ {a} and Sy, V' € [¢] are unaffected.
3. Claim 3:

(a) Equation (32) still holds because the sets T,, S, remain unchanged for all a € [go].
(b) Equation (33) still holds because

ieﬁ\ﬁiﬁsz . 18; — 6| < max 18 -6z |-
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Scenario B: 7o \ Upegeont To = 0, i.e., Lines 5-12 of Algorithm 2 are executed.
1. Claim 1:

(a) The only change to T was removing 7, so we only need to Check the sets in the new T\ {7} still
cover [k] \ 7. This is true since the condition 7; \ U,c 4, 7o = @ implies that all the elements in
Ty are still contained in other 7,’s.

(b) S® is a partition of [k.] and we only merged two sets in S®). Thus, S+ is still a partition.
(c) It is trivial to see that Claims 1-(c) and 1-(d) of Theorem 4 continue to hold.

2. It is straightforward that Claim 2 continues to hold.
3. Claim 3:

(a) Recall from Lines 56 of Algorithm 1 that 75, = {i} where ¢ = argmin 7,. By the premise for
T®, we have

o 318 5oy s, Oill < 1 where e = (20 8% (VIR 1) o kP (k4 k) - D) V/2

2dif/f2, and
ol H/Bz -0 = (223 (V2 + 1) -k - k3 (b + k) - M)l/2 and s, denotes the

unique element in S,.
Therefore, it follows that

1 1 PR

_ ﬁ._i o* < 3 .-
o ' SaUSbO'se‘gL;Sbo ° ‘SaUSbo‘ o

2.0

SES,

B |S|

|8b0| 1
T e
‘SGUSb()' o |So‘ Z

SGS},
_ 1
‘Sbo| + 1

1
Si
|Sp, | + 1

< max{ey,e2} = e1.

|Sb0‘ 1
|S +1 o Bi

o H'BZ - Sa

SGS

“(ISby | - €1 + €2)

(b) Equation (33) holds because it is only 7, S, that are removed during the (¢ + 1)-th iteration, and
all the other sets 74/, Sar, @’ € [q] \ [q0] \ {a} remain the same.

O

G Deferred Proofs of Technical Lemmas in Section 8.1.2

G.1 Proof of Lemma 5

Proof of Lemma 5. In this proof we let Eg denote E, r(0,1)- By Stein’s identity (Lemma 3) and the premise
that 8 > |al, we have

Eo [¢a,5(x) - (8 =x)] = B Eo [¢a,s09°] + - Eo [(1 = Ya,5(x)) - Ya,5(x)]
> B+ Eo [Ya,s(9) - (2¢a,8(x) — 1)] . (143)

Letting ¢ == QT—W and § = ’B_Ta, we may write
Yap() - (2ap() —1) =€ 2 -g()
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where

e(w—c)é _ 6—(1—0)6 1
g(x) - (e(x—c)é + @—(x—c)zi) ’ (e—(x—c—6)2/2 + e—(m—c+6)2/2)' (144)
Observe that g(c + z) = —g(c — z). By a change of variable z = 2 — ¢, we obtain
1 a2 _g?
Bo [0 (20ns®) = 1)] = o= [ e g(a) e o
1 /OO () e—(HeBP/2 o~ 22 g
= — z4c)-e e z
V2T J s g
1 > 2 2
_ L sd). oA o (ete?/2 g,
= se+o)
=:h1(z)
1 > 2 2
- — glz+c) e (T2HeB /2 gm(mat0) /2 gy (145)
V21 Jo

=:ha(z)
Note that Z;Ei; =729 > 1, Vz > 0 because a < 0 by assumption. Because g(z + ¢) > 0 for all z > 0, we
have

B [ ()~ 1] 2 7= [ e +0)- [n(e) ~ ha(s)] a=

Then we observe that by definition, cf. (144), for all z > —1/a > 1/0,

e — e~

(625 + efzé) . (67(275)2/2 + ef(z+6)2/2)

z0

g(z+c) =

e—e ! 1
“etel 2072
1
16@—6)2/;

Y

Moreover, if z > —1/a, then Z;—Ez; = e 222 = ¢2 > 2, and therefore,

1 <1 2 1
EO [waﬁ(x) : (2wa7ﬂ(x) - 1)] > \/72—71_ /_1/a 16(2_5) /2. 5}?,1(2) dz

_ ! /OO (9%
8V2m J_1/a

2 (s e=B)?/2 | o~ (z+0)/2 g,

1 o 2
- —(z—c)*/2 d
= e z
8\/ 2 /1/a
1 1
_1 _1y 146
co(e-1) (146)
Combining (143) and (146) completes the proof. O

G.2 Proof of Lemma 6
Proof of Lemma 6. Recall the definition of ¢, g from (47) and observe that

e~ (@=8)*/2
Ya,p(x) = e—(@=a)?/2 | o—(x—p)%/2
1
1+ e (B-a)(z—237)"

(147)
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In this proof we let Eq denote E, xr(0,1) and Varg denote Var,ar(o,1)- Letting ¢ := %m’ 0 =p—a,and p=

Eo [ta,5(x)], we may assume ¢ > 0. Also, we may assume & > 0; if § < 0, we consider ¥y, 5(z) =1 — g ()
instead of ¢, g(x) as Varg [¢, g(x)] = Varg ¢! 5(x)|. We have
B B a,B
V27 - Varg (t,5(x) = V27 o |(tha,5() — )]
00 2
(@) 1 —a?
¢ 1 2 2 o 1 2 2
_ s L,z /2 s L, /2
- [m <1 _|_e—5.(z—c) M> € d$+/c (1 4 e-&-(z—c) M) € dz
oo 2 o0 2
_ 1 —22/2 1 —z2/2
= /_C (1 T ed-(z+c) - M) - € dx + /p <1 T e—8-(z—c) - /1/) -e dx

(b) [°° 1 2 1 9 )
1 4L o0-(z+c) _ — L o—x2/2
- /c <1 + ed(ate) ﬂ) + (1 T e 0o M) ] e dz,

2
where (a) follows from (147), and (b) follows from that ¢ > 0 and (HTl(HC) - u) >0 for all z € [—¢,(].

Because u? + v? > 1(u—v)? for all u,v € R, it follows that

2 1+ e—0(z—c) - 1+ ed-(z+c)

/°° (79 — =) —?/2 4
c (1 + 6*5'(90*6))2 (1 + 65'(I+C))2 ‘ v
2

/oo (€5~(z+c) _ 1) . 67;1;2/2 "
¢ (1+eata)?

1 ctez 6-(xz+c) _ 1 2
> / c>-fﬁﬂm, (148)

T 8 e\ 41

o) 2
\/%'VBIQ (waﬁ(x)) > 1/ ( 1 1 ) .6—352/2 dx

for any €1,e2 € R such that 0 < €; < €3. Note that we used e =) <1 < e‘””c), Yz > c to get the

. . . . (o) _q . .
inequality (a). Since the function = — W is non-decreasing, we have

crez [ oh(ate) _ 1\ 5(2eter) _ 1\ 2
/ <€6(+)) .e_m2/2 dx > (62 _ 61) . (65(2_’_)> .e—(c+52)2/2
cta \ETTTO 41 ed(eter) ]

(2 2 2
(Q_m.c(0+@).5mmm

V

20 (2¢c+e1)

@ - (2c4+0)\*  oeisy
:@+®<2&%%) . o=2cH)
> 352(6 +6)%- e 4eto)? (149)

where (a) is attained by choosing €; =, €2 = ¢+ 24. Inserting the lower bound (149) to (148), we obtain

1
32V 2w

Varg (¥a,5(x)) > 52 (c+6)%- e 4eto)?,

70



G.3 Proof of Lemma 7

Proof of Lemma 7. Let a > 0 be a parameter whose value will be determined later in this proof. Then we
write

Es [Wi] = Es [V - T{|x = Bj| = x = Bi,

>af] +Eg [V - 1{|x = B — [x = B,

< a}l]. (150)

We establish upper bounds for the two terms on the right-hand side of (150) separately.
First, for « such that |« — B;| — |z — B;,| > «, we have |z — ﬁj|2 > |z — Bi.|” + o2, and thus,

e~ le=B;*/2
e—03.,12

Zi’e[k]e le—B;112/2

e—lz—B;1%/2
<
= e~ lz=Bil?/2 4 e—lz—Bi,1?/2
< 1
STy

Pj(z) =

Therefore,

1
19 1{ix = B3] Ik B0 2 )] S B | b - Lk — 5]~ = i 2 )]

1
STt et

<a}§{xeR:< |ZJZI|>2(;—CY} =S,.

Es [V - 1{|x = B;| — [x— B,

(151)

Second, we observe that

{reR: |z -8z -8

Therefore,

<o} <Eg[V;-1{xeS,}]
<Es[1{x€ S.}]

Y
=Q <J - a) (152)
2
where @ is the Gaussian Q-function, cf. (42).
Plugging in (151) and (152) to (150) and using the @-function upper bound in (43), we obtain

1 1 1 5
E.[W)] € ———s + e CE e

T lte?2 4o \or

(NI

Choosing a = % and further simplifying this upper bound, we complete the proof.

G.4 Proof of Lemma 8
Proof of Lemma 8 Recall that 3; = ]]EE* [[W\Ij?], cf. (12), for all i € [k] and 0% = E,[x], for all s € [k.]. Moreover,
= 0 without loss of generality (see Remark 1). Thus,

LR PR

seS se[k

we may assume \S\ Yoees Oh

k]]E [Wix]

E (153)
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Then we observe that

STE Wi =) E[Wix]+ Y Eg[Wix]

s€[k] s€S s€[kJ\S
=D B+ (D0 D B+ Y E[Wix] (154)
SES seS je[k]\{:} s€k«\S

=l€1

because } ;. W; = 1 with probability 1 (w.r.t. all s). Likewise, we can see that

zEsw—zEsH(z > B+ > EM)~ e

s€[ky] sES s€S jelk\{i} s€k\S

=l€2

Combining (154) and (155) with (153), we get

ees Esx] + €1 €1
Bi — = 156
|$|Z Edl4e |S|+e (156)

s€S 565
because ) gEsx] =3, s0:=0.
Next, we argue that the “perturbation terms” — €; and € in (154) and (155) — have small norms. To
this end, we begin by observing that
B, [W,x|| < (Bs[W2] - E, [[x]2])" - - Canchy-Schwarz
1/2
< (B.[vy]-E. [IxI]) " RUESTESE

It follows from the premise (50) and Lemma 7 that for any (s,7) € (S x [k] \ {¢}) U ([k«] \ S x {3}),

4 5
EsV;] <14+ ——)e =2
il s (14 )
Also, we can easily observe that
E, [HXHQ} [||X—9*H2} +63]?
cd 4 Af
=1+ Afa

All in all,

/2
|ez|s<|8|-<k—1>+<k*—S|>>~(1+¢$_5> o

4 1/2 52
S kk* . (1 -+ \/m) Gim, (157)

leall < (8] - (k= 1) + (ka — |S])) - (1 + A2 )1/2.(1+ 4 )1/26_31
! - * max \/ﬂ.é

52

4 1/2
< V2kkiApax - [ 1+ ) e 6. 158
< V2m -6 (158)
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Observe that |es] < 1/2 because § > max {\/%, 841/log(2v/2 - kk*)}. Combining the upper bounds (157)
and (158) with (156), we obtain

1 . [lex]]
DI e
B~ 151 2 H 81+ ]

seS

el
< <2l
|S] = lez]

2
< Ak, A - € 5T
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