2404.06023v2 [stat.ML] 24 Apr 2024

.
.

arxiv

Prelimit Coupling and Steady-State Convergence of
Constant-stepsize Nonsmooth Contractive SA

Yixuan Zhang,* Dongyan (Lucy) Huo,! Yudong Chen,” Qiaomin Xie,*

Department of Industrial and Systems Engineering, University of Wisconsin-Madison
§School of Operations Research and Information Engineering, Cornell University
TDepartment of Computer Sciences, University of Wisconsin-Madison

Abstract

Motivated by Q-learning, we study nonsmooth contractive stochastic approximation (SA) with constant
stepsize. We focus on two important classes of dynamics: 1) nonsmooth contractive SA with additive noise,
and 2) synchronous and asynchronous Q-learning, which features both additive and multiplicative noise.
For both dynamics, we establish weak convergence of the iterates to a stationary limit distribution in
Wasserstein distance. Furthermore, we propose a prelimit coupling technique for establishing steady-state
convergence and characterize the limit of the stationary distribution as the stepsize goes to zero. Using
this result, we derive that the asymptotic bias of nonsmooth SA is proportional to the square root of the
stepsize, which stands in sharp contrast to smooth SA. This bias characterization allows for the use of
Richardson-Romberg extrapolation for bias reduction in nonsmooth SA.

1 Introduction

Stochastic Approximation (SA) is a fundamental algorithmic paradigm for solving fixed-point problems
iteratively based on noisy observations. SA procedures have been widely used in many application domains,
including reinforcement learning (RL), stochastic control and optimization [Berl9, SB18, KY03, MB11]. A
typical SA algorithm is of the form

0, = 0, + a(H(O w,) — 61, (1)

where {w; };>0 represent the noise sequence and o > 0 is a constant stepsize. The SA procedure (1) aims to
approximately find the solution #* to the fixed-point equation H(6*) = 6*, where H(-) := E,[H(-, w)] is the
expectation of the operator ﬁ(, w) with respect to the noise. Equation (1) covers many popular algorithms,
such as the prevalent stochastic gradient descent (SGD) algorithm for minimizing an objective function
[Lan20], and variants of TD-learning algorithms for policy evaluation in RL [SB18].

In this work, we focus on nonsmooth contractive SA, where the operator ﬁ(, w) may be nondifferentiable
(in its first argument) and H(+) is a contractive mapping with respect to a norm || - ||.. One prominent example
of nonsmooth contractive SA is the celebrated Q-learning algorithm for optimal control in RL [WD92], where
H corresponds to the noisy optimal Bellman operator involving a max function. Other common nonsmooth
mappings include the largest eigenvalue of a matrix, ¢;-norm regularized functions, and their composition
with smooth functions [Sagl3, Sha03]. It is of fundamental interest to gain a complete understanding of the

evolution and long-run behavior of the iterates {9 )}t>0 generated by nonsmooth contractive SA.

Under suitable conditions on the operator H and the noise sequence {w; }¢>0, the SA iterates {9 )}t>0 form
a time-homogeneous Markov chain and quickly converge to some limit random variable (@) [DDB20, YBVE21].
Recent work has developed a suite of results for smooth SA [DDB20, HCX23b, DJMS21], including the
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geometric convergence of the chain, finite-time bounds on the higher moments, as well as properties of the
limit 6(®). Tt has been observed that often E[9(®)] # 6*, due to the use of constant stepsize. The difference
E[G(O‘)] — 0* is referred to as the asymptotic bias. In particular, for SA with differentiable dynamic, the work
[DDB20, HCX23b] makes use of Taylor expansion of H to establish that the asymptotic bias is proportional
to the stepsize « (up to a higher order term), i.e.,

E[0¥)] — 6* = ca + o(a), (2)

where ¢ is some vector independent of o and o(«) denotes a term that decays faster than «. Such a fine-grained
characterization of SA iterates gives rise to variance and bias reduction techniques that lead to improved
estimation of the target solution 6*, as well as efficient statistical inference procedures [DDB20, HCX23b,
HCX23a).

For nonsmooth SA, far little is known. Existing analysis based on the linearization / Taylor expansion of
H is no longer applicable. Hence, distributional convergence and bias characterization results like (2) have
not been established for nonsmooth SA procedures like Q learning. In fact, it is not even clear whether
equation (2) remains valid for nonsmooth SA, and if not, what is the correct characterization.

Our Contributions: To investigate the above questions, we consider two important classes of nonsmooth
contractive SA algorithms:

1. Nonsmooth SA with additive noise, where H (6, w) = T (#) 4+ w. Our results cover operators T that are
g o F' decomposable, which is a rich class of smooth and nonsmooth functions [Sha03]. See Section 2 for
the formal description of the model.

2. A general form of Q-learning dynamics, which are nonsmooth SA with both additive and multiplicative
noise. The model covers both synchronous Q-learning and asynchronous Q-learning as special cases. See
Section 3 for the formal description of the model.

The first main result of the paper establishes the weak convergence of the Markov chain {an)}tzo
to a unique stationary distribution in Wy — the Wasserstein distance of order 2 with respect to the
contraction norm || - || — for both the additive noise setting and Q-learning. Moreover, we characterize
the geometric convergence rate. As a by-product of our analysis, we derive finite-time upper bounds on
IE||9t(a) — 0%||?", the 2n-th moments of the estimation errors, generalizing the mean-square error (MSE)

bound (i.e. IE||0t(o‘) — 0% < ...) in [CMSS20, CMSS23] to higher moments and the smooth SA results
in [DDB20, SY19] to nonsmooth SA.

We next turn to the characterization of the stationary distribution of {Ht(a)}tzo. As existing techniques,
which are based on linearizing 7—7(9, w) as § — 0*, are not applicable for nonsmooth SA, we take an alternative
approach by studying the limiting behavior of the properly rescaled iterates as the constant stepsize «

approaches 0. Since the MSE of Ot(a) is of order O(a) [CMSS20], the proper choice of scaling is by /a, the

() _p=
diffusion scaling. In particular, we consider the centered and \/a-scaled iterates Yt(a) =4 \/59 so that the

MSE of Yt(o‘) is O(1). The weak convergence of Gt(a) to a limit #(*) implies that Yt(a) converges weakly to
the limit V(@) := 9<‘*\>/§0* as t — co. Therefore, to understand the stationary distribution 6(® and its scaled

version Y(®), we are interested in characterizing steady-state convergence, i.e., the convergence of Y(® as
a — 0 and the limit YV (if exists). This limit is illustrated by the red solid path in Fig. 1.

As we argue in Section 1.1, existing approaches to steady-state convergence face severe challenges in the
nonsmooth SA setting. In this work, we develop a new prelimit coupling technique, which allows us to establish
the weak convergence of Y(® in W, to a unique limiting random variable Y as o — 0. Importantly, our
technique can handle both additive noise and multiplicative noise, and provide an explicit rate of convergence.
An overview of our technique is provided in Section 1.2. We remark that our technique can be potentially
applied to the study of steady-state convergence in other stochastic dynamical systems and hence may be of
its own interest.

Since convergence in Ws implies convergence of the first two moments of Y(®) we obtain the following
characterization of the asymptotic bias of the SA iterates:

E[6)] - 6" = E[Y] - Va + o(Va). (3)
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Figure 1: Steady-state convergence.

We further provide a fine-grained characterization of the expectation E[Y], which appears above in (3), and
relate it to the structure of the SA update (1). Our results show that E[Y] # 0 precisely when the operator
H is truly nonsmooth, in which case the asymptotic bias is of order \/a. This result stands in sharp contrast
to the a-order bias of smooth SA in equation (2).

Finally, we explore the implications of the above results for iterate averaging and extrapolation. In
particular, we consider applying Polyak-Ruppert (PR) tail averaging [Rup88, PJ92, JKK*18] and Richardson-
Romberg (RR) extrapolation [Hil87] to the iterates generated by contractive SA algorithms. We investigate
the resulting estimation errors and biases in the presence of nonsmoothness. In particular, thanks to the
bias characterization in (3), we can employ the RR extrapolation technique to eliminate the leading term
E[Y] - y/a and reduce the asymptotic bias to a higher order of \/a.

1.1 Challenges of Applying Existing Techniques to Nonsmooth SA

Steady-state convergence, i.e., showing Y(® — Y in Figure 1, is a problem of fundamental interest in
stochastic dynamical systems, such as queueing networks [GZ06]. One well-known approach to proving
steady-state convergence in queueing networks is via justifying the interchange of limits, i.e., equivalence
of the solid and dashed paths in Figure 1 [GZ06, Gurl4, YY16, YY18]. Doing so is well recognized to be
technically challenging, often requiring sophisticated “hydro-dynamic limits” methodology [Bra98] as well as
a well-defined stochastic differential equation (SDE) Y; with a stationary distribution. In our setting, it is
unclear whether nonsmooth SA is associated with such an SDE, let alone the validity of interchanging the
limits.

An alternative approach to the steady-state convergence is based on the Basic Adjoint Relationship (BAR)
for the generator of the stochastic process. By using BAR with an exponential test function, one may be able
to prove convergence of the moment generating function and in turn weak convergence of the corresponding
random variables [BDM17, BDM24, CMM22]. In our setting, however, the BAR of moment generating
functions does not always lead to a straightforward solution. In fact, even for smooth SA dynamics with only
additive noise (i.e., H(0 w) = H(8) + w), steady-state convergence is proved in the work [CMM22] only when
the limit random variable Y is Gaussian and under the assumption that the following equation from BAR
has a unique solution in Y:

E[((pT Var(w)p — 2i<pTV’H(0*)Y)ei“"TY] =0, VeeR?e (4)

Verifying this assumption is challenging in general; in [CMM22] this is done only when d = 1 or under some
restricted conditions when d > 2. This difficulty is only exacerbated in the broader nonsmooth contractive
SA setting, which covers the smooth SA setting considered in [CMM22].

The y/a-scaling in our problem suggests a potential connection to the Langevin diffusion SDE and
the literature on the Unadjusted Langevin Algorithm (ULA) [DM17, DM19]. ULA corresponds to the
Euler-Maruyama discretization of the Langevin diffusion and is given by

Y =Y —avuy™) + Vow,,

where U : R? — R is a potential function and {w;}+>0 are 1.1.d. Gaussian noise. However, by comparing ULA



with the SA update (1) scaled by \/«, one sees that the latter reduces to ULA only when the noise is additive
and Gaussian and H is a gradient field and positive homogeneous at 6*.
We complement the above discussion with a simple example of nonsmooth contractive SA:

1
o0 = 08 + o= 5101 = b= 0% +wy), (5)

where w; K" N(0,1) and b € R. The above dynamic is a special case of (1) with H (6, w) = —|6]/2 — b+ w,
which is nondifferentiable at & = 0. Despite its apparent simplicity, this example already demonstrates some
of the complexity in understanding the steady-state behavior of nonsmooth SA. For example, it is unclear
how to follow the BAR approach to obtain a functional equation like (4) for the limit Y. The derivation of (4)
in [CMM22] relies on the continuous differentiability of the contraction operator ﬁ(@, w).! Also, incidentally,
when b = 0, the dynamic (5) becomes an ULA update. The results in [DM17, DM19] on ULA suggest that
the limit Y is not Gaussian as its density function e”(®) involves a non-quadratic U. This contrasts to smooth
SA, for which the BAR approach shows that Y is Gaussian [CMM22]. As we soon see, the techniques in this
paper bypass the need of working directly with and imposing assumptions on equations like (4).

1.2 Prelimit Coupling Technique

To overcome the challenges discussed in the previous subsection, we develop a prelimit coupling technique that
can be used to establish the desired steady-state convergence without restrictive assumptions. We establish
this result by proving convergence in Wasserstein distance Ws, i.e.,

lim Wa(L(Y), £(Y)) =0

for a random variable Y, where £(Y') denotes the distribution of Y. Our approach applies coupling arguments

)

to the prelimit random variables Y;(a with a > 0,¢ < oo and consists of three steps.

Step 1: Gaussian Noise and Rational Stepsize First, we assume that the noise sequence {w;}¢>o is
i.i.d. Gaussian. Consider two stepsizes @ and o’ = a/k, where k € NT. We have the corresponding scaled

iterates Yt(a) and Yt(a,) generated by equation (1). The main idea is to couple these two sequences in such a
way that one step of Yt(a) corresponds to k steps of Y;(a ).

(@) 1 (a) -~ (a) o Wet + T Whit k=1
Vi =(0-a)Y, +¢&[H(x/&Yt + 6, N ) 9],

v = (1= ) V(YY) 0% w) - 0.

Note that (wgt + -+ + Wrtrk—1)/ Vk and wy are identically distributed under the Gaussian noise assumption.
Under this coupling, we establish convergence of the squared distance IE||Y;(O‘) —Yk(f ) ||? under some appropriate
norm || - [|o. Sending ¢ to infinity gives W (L(Y (@), E(Y(O‘/))) € o(1). Generalizing this argument to rational
stepsizes o and o', we conclude that (Y(O‘))aﬁo’ae(@ is a Cauchy sequence with respect to Ws. Consequently,
there exists a limit Y such that

lim W (ﬁ(Y(”‘)),E(Y)> —0.

a—0,aeQt

Step 2: General Stepsize Still assuming Gaussian noise, we prove that E(Y(O‘)) is continuous in « with

respect to Wa. To this end, we consider two real-valued stepsizes « and o and couple the sequences Yt(a)

and Yt(al), this time by letting them share the same noise:
Y =(1- )V + Va (ﬁ(\/ay;“) + 0% wy) — 9*) :

Y = (1 - o)) + Vol (ﬁ(@Yt(a” 407 wy) — 0*) .

Mn particular, for deriving the limit of the T term in [CMM22, Page 15].



We again control the squared distance E||Yt(°‘) - Yt(O‘,)HE, and then set t — oo followed by o' — «, thus
establishing the continuity property limg:_, o, Wa (E(Y(a)), L(Y (= ))) = 0. Since Q7 is dense in RT, together
with the result from step 1, we obtain

lim Wi (c(y<a>),c(y)) ~0.

a—0
Step 3: General Noise In this step, we relax the Gaussian noise assumption. Suppose the sequence Y/ (@)

is driven by some general noise wj, and let Y;(a) be driven by Gaussian noise w; with matching first two
moments. Setting k = |a~1/2], we use a multivariate Berry-Esseen bound in Wasserstein distance [Bon20] to
show that there exists a coupling between w; and w; such that

2wl Ly LS 1
=W (E(\/Etz_;wt),ﬁ(ﬁ;wt)) e o(ﬂ),
Under this noise coupling, we bound E||Y7,® — Y2, which in turn bounds W, (L(Y@), £((Y")()),

thereby establishing that Y’ (@) and V(@ have the same distributional limit as o — 0.
Following the above three-step procedure, the majority of the technical work goes into obtaining tight

1 « R
EHﬁ ;wt— ﬁ;wé

estimates for squared distances of the form E|[Y;® — Ytsa ))|2, with potentially mismatched stepsizes (o, o)
and time indices (¢,t’). Doing so under the nonsmooth SA dynamics requires carefully analyzing the multi-step
dynamics and leveraging the contractive property via a generalized Moreau envelope argument.

1.3 Notations

We use B%(0, ¢) to denote an open ball centering at  with radius ¢ > 0 with respect to fo-norm. A function
is C* if it is k times continuously differentiable. An operator 7 : R? — R? is said to be y-contractive w.r.t.
the norm || - || if for some v € (0, 1),

I7(0) = T(O)lle <0 =0, V0,6 € R (6)

A function h is called L-smooth w.r.t. some norm || - || if [|[Vh(z) — Vh(y)|l« < L||x —yl|, Vz,y, where || - || is
the dual norm of | - .

Let P2(R?) denote the space of square-integrable distributions on R?. For a random vector 6, let £(6)
denote the distribution of 6 and Var(f) its covariance matrix. The Wasserstein 2-distance between two
distributions g and v in Py(R?) is defined as

Walo) = _int ([ - ol? df(uw)f — e { (& flo-012)" 20 = e @) =},

EEI(p,v)

where TI(p, v) is the set of joint distributions in Pe(R? x R?) with marginal distributions p and v.

For a finite set S, we use A(S) to denote the probability simplex over S. Given m € A(S), we denote by
Multi (7, n) the multinomial distribution with event probabilities 7 and number of trials n.

For two real valued functions f(z),g(z) : Rt — R, we write f(z) € o(g(x)) if lim,_0 % =0, and we
write f(xz) € O(g(z)) if there exist xo, M > 0 such that |f(x)] < Mg(x),Vz < z9. We say that f(x) is

superpolynomial if f(z) € o(z"),Vn € N*.

Paper organization.

The remainder of the paper is organized as follows. In Section 2 we present the model and the main results
for SA with additive noise. In Section 3 we extend these results to Q-learning. In Section 4 we explore
the implications of our results for Polyak-Ruppert averaging and Richardson-Romberg extrapolation. We
outline the proofs of our main results in Section 5. We provide numerical experiments that corroborate our
theoretical results in Section 6. We discuss additional related work in Section 7.



2 Nonsmooth Stochastic Approximation with Additive Noise

In this section, we consider contractive nonsmooth stochastic approximation with additive noise.

2.1 Model Setup

We consider the following stochastic approximation iteration with additive noise:
05 = 0, + a(T(O") - 07 +wy), (7)

where 7 : RY — R? is an operator, o > 0 is a constant stepsize and {w¢}>0 is a sequence of i.i.d zero-mean
noise.

Stochastic approximation subsumes many important iterative algorithms. For example, if T(0) =
—VU(6) + 6 for some function U : R? — R that is twice continuously differentiable, L-smooth and o-strongly
convex, then the update (7) corresponds to Stochastic Gradient Descent (SGD) for minimizing U [Lan20]. If
T(0) = A0 + b, where A € R?¥*9 is a Hurwitz matrix, then (7) becomes Linear SA, which in turn covers the
TD-learning algorithm in reinforcement learning [HCX23b, SY19]. In both examples, the operator T is at
least Cl-smooth and contractive in || - |2 (or its weighted version).

In this work, we consider a more general class of SA algorithms with a potentially nonsmooth operator 7.
We only assume that 7 is contractive with respect to an arbitrary norm.

Assumption 1 (Contractive 7). The operator T : R? — R? is y-contractive for some v € (0, 1) with respect
to some norm || - ||c-

By Banach fixed point theorem, the fixed point equation 7(f) = @ has a unique solution §* € R9.
We consider the following moment assumption for the additive noise wy, indexed by n > 1.

Assumption 2 (n). The random variables {w;}i>0 have finite (2n)-th moments.

Such moment assumptions, for example with n = 1 or 2, are standard in prior work on the analysis of
SGD and SA[DDB20, KY03, SY19]. In general, under Assumption 2(n) we can control the 2n-th moment of

the SA iterates {Qt(a)}tzo.

2.2 Moments Bounds and Convergence to Stationary Distribution

We first derive finite-time upper bounds on IE||9§O‘) — 0*||?, the 2n-th moments of the estimation errors,
generalizing the results in [CMSS20, CMSS23] to higher moments and those in [DDB20] to nonsmooth SA.

Proposition 1 (Moment Bounds). For each integer n > 1, under Assumption 1 and Assumption 2(n), there
exists & > 0 such that for any o < &, there exists t , > 0 and

E[J|6) — 0%(2"] < ¢, B[]0,

ta,n

— 021 — (1 = )T et VE> b, (8)
where ¢, and ¢, are constants that are independent with « and t. Moreover, t,1 = 0.

In subsequent analysis, we mostly use Assumption 2(n) and Proposition 1 with n € {1,2}. In particular,
Proposition 1 with n =1 provides a finite-time mean-square error (MSE) bound. Using this bound, we can

establish our first main theorem, which proves the weak convergence of the stochastic process {Ot(a)}tzo to a
unique stationary distribution in Ws; moreover, we characterize its geometric convergence rate.

Theorem 1 (Distributional Convergence). Under Assumption 1 and Assumption 2(1), there exists & > 0
such that for any stepsize a < &' and any initial distribution of Héa), the sequence {Gt(a)}tzo converges
geometrically in Wy to a random variable 0(%) with

W2(L6), L(0)) < c-(1—a(l—7), VE>0,

where c is a constant that is independent of o and t. Moreover, E[||[0(*) — 6*||3] € O().



A key step in proving Proposition 1 and Theorem 1 is to construct a proper smooth Lyapunov function
for the nonsmooth dynamics. Previous works on higher moments bounds and convergence in W5 focus
on linear SA and smooth SGD [DDB20, HCX23b]. These dynamics are smooth and contractive in the ¢5
norm || - || = || - ||2, the square of which can be used as a smooth Lyapunov function. However, for general
contractive SA, the norm || - || may be nondifferentiable, e.g., || - ||co. To handle this general setting, we make
use of the generalized Moreau envelope of || - ||, a technique that has been used in [CMSS20, CMSS23] to
study the MSE (i.e., n = 1) of contractive SA. To further establish the weak convergence result in Theorem 1,
we develop a careful coupling argument using the Moreau envelope, going beyond the ¢5 norm based anaysis
in [HCX23b, DDB20]. The proofs of Proposition 1 and Theorem 1 are outlined in Section 5 and given in full
in Appendices A and B.

2.3 Steady-State Convergence and Bias Characterization

Sometimes we restrict to a more specific but still quite general class of SA dynamics. In particular, we
consider operators T that are defined by the so-called g o F' decomposable functions, a class of nonsmooth
functions first introduced in the work [Sha03]. We extend the definition in [Sha03] to multi-dimensional
functions.

Definition 1. We say that the function f : R? — R? is g o F' decomposable at  if it admits the following
local representation

£(0) = F(0) +g(F(0~0)), VoeB 0,

for some mappings g : R™ — R and F : B4(0,¢) — R™ that satisfy: (i) g is positively homogeneous® of
degree 1 and continuous; (ii) F is differentiable at B(0,¢€), VF is continuous at 0 and F(0) = 0.

The g o F' decomposable function class is a rich class that contains max-functions, largest eigenvalue
functions, and ¢;-norm regularized functions, as well as their composition with smooth functions. See [Sha03,
Sag13] for other special cases of g o F' decomposable functions and their connection to other nonsmooth
classes [Mif77, Wri93, LOS00, Lew02, DL14, DDJ23]. Note that the requirement of VF(-) continuous at 0 is
used for the steady-state convergence result.

With Definition 1, we consider potentially nonsmooth SA updates (7) with an operator 7 satisfying the
following assumption.

Assumption 3 (Nonsmooth Class). The operator T is go F decomposable at its fized point 0*. Explicitly,
there exists € > 0 such that
T(0)=0"+g(F(0—0%)), Y0 B 6"

for some mappings g : R™ — R and F : BY(0,¢) — R™ satisfying the requirements in Definition 1.

Under Assumption 3, the operator 7 is at least locally C° at §*. By setting m = d and g as the identity
mapping, this assumption covers all locally C' and contractive T, including SGD and Linear SA discussed
earlier. In addition, this model covers operators 7 that are not differentiable at 6*, such as the example
in (5) with b = 0 (corresponding to g(6) = —‘%l and F(6) = 6), as well as the optimal Bellman operator that
defines the Q learning algorithms (see Section 3).

() _p=
Define the centered and rescaled iterate Yt(a) = %

_ 09"
="/

. Theorem 1 implies that Yt(a) converges weakly to
a steady-state random variable Y (@) as t — oo. Focusing on SA satisfying the go F' decomposability

Assumption 3, our next theorem establishes steady-state convergence, that is, the convergence of {Y(D‘)}ae(oﬁf)
as a — 0.

Theorem 2 (Steady-State Convergence). Suppose that Assumption 1, Assumption 2(2) and Assumption 3
hold. There exists a unique random variable Y, depending only on T and Var(wp), such that

lim Wy (/J(Y“”),L(Y)) ~0.

Consequently, we have
E[9¥)] = 0* + VaE[Y] + o(Va). (9)

2A function g : R™ — R9 is homogeneous of degree 1 if g(cx) = cg(x) for all ¢ > 0 and z € R™




Among other consequences, Theorem 2 implies that the steady-state bias, ]E[H(O‘)] — 0%, is generally on the
order of O(y/a) for small stepsizes «. This result stands in sharp contrast to existing work on smooth SA,
which has an order-wise smaller bias linear in . This /a-bias property, which arises precisely due to the
nonsmoothness of the SA dynamic, is further characterized in our next theorem. We highlight that Theorem
2 is a universality result: the limit Y depends on the (zero-mean) noise {w;}+>o only through its variance
and is otherwise independent of the noise distribution.

Note that Theorem 2 applies to any contractive SA within the g o F' decomposable class. In this generality,
the convergence result in the theorem is asymptotic. The convergence rate and the specific order of the
o(y/a) term depend on how fast VF(6) converges to VF(0); see equation (45) in our proof. It is possible to
obtain explicit, nonasymptotic bounds on the convergence rate for specific SA dynamics and T operators.
For example, in the next section, we establish an O(ai) convergence rate for Q-learning.

The work [CMMZ22] also provides a steady-state convergence result but requires a strong uniqueness
assumption, which is difficult to verify in most cases. Our results are established using a different technique,
by directly proving the weak convergence of Y(® in W, using prelimit coupling. We outline the proof of
Theorem 2 in Section 5.2, deferring the complete proof to Appendix C.

The following theorem provides a more fine-grained characterization of the expectation of the limit Y,
which appears in the expression (9) for the steady-state bias.

Theorem 3 (Bias Characterization). Under the same setting as in Theorem 2, we have
1. E[Y] =0 if g is continuously differentiable at 0 or VF(0) = 0.

2. E[Y] # 0 if Var(wg) is positive definite and there exists i € [d] such that the subdifferential or
supdifferential of h;(0) := ¢g;(VF(0)0) at 0 is not a singleton.

Roughly speaking, the premise in Part (2) of the theorem implies that 7 is not differentiable at 6*
(otherwise its sub/supdifferential would be a singleton consisting of its gradient). In this case, provided
that the noise wq is non-degenerate, we have E[Y] # 0. Hence, equation (9) implies that the bias is on the
order of O(y/a). We conjecture that this result holds under more general settings of nonsmooth 7 where its
sub/supdifferential may not exist. This \/a order of the bias has important implications for bias reduction
via the Richardson-Romberg extrapolation, which we discuss in Section 4.

Part (1) of Theorem 3, on the other hand, implies that for any smooth SA where T is continuously
differentiable at 6*, the asymptotic bias is order-wise smaller than /c. This result is consistent with those in
[DDB20, HCX23b], which show that the asymptotic biases of SGD and Linear SA with i.i.d. noise are of
order O(«a) and 0, respectively.

3 Q-learning: Nonsmooth Stochastic Approximation with Multi-
plicative Noise

In this section, we extend our results to Q-learning algorithms, which are nonsmooth SA procedures with
multiplicative noise.

3.1 Model Setup

Consider a discounted Markov decision process (MDP) defined by the tuple (S, A, P,r,v), where S and A are
respectively the (finite) state and action spaces, P : S X A — A(S) is the transition kernel, 7 : S x 4 — R
is the stochastic reward function, and v € (0,1) is the discount factor. Given a policy 7 : § — A(A),
the Q-function ¢™ : § x A — R is defined as ¢"(s,a) = EW[Z;’;O Yere(sk, ax) | so = s,a0 = a], where
ag, ~ w(-|sk), Sk+1 ~ P(-|sk,ax) and ry is an independent copy of 7. The goal is to find an optimal policy 7*
that maximizes the Q-function. Below we often view P as an |S||.A|-by-|.A| matrix, r as a random vector in
RISIMI and ¢™ as a vector in RISIIAI

Q-learning [WD92] is a popular class of reinforcement learning methods that approximate the optimal
Q-function ¢* = ¢™ , from which one can recover the optimal policy as 7*(s) € arg max,c 4 ¢*(s,a), Vs € S.



We consider a general form of Q-learning that iteratively generates a sequence of Q-function estimates,
{@ : § x A — R};>0, according to the following recursion:

qt(i)l - t(a) +aD; (7Ptf(q§a)) — q,@ + Tt), (10)
where the function f : RISIAI — RIS is given by
fs(q) = maxq(s,a), Vs€S,

and {(Dy, P;,7¢)}i>0 are 1.i.d. random matrices/vectors satisfying: (i) D = E[Dy] is a |S||Al-by-|S||A|
diagonal matrix with D;; € (0,1],Vi € S x A; (ii) E[Py] = P; (iii) {r¢}+>0 are independent copies of r. Here
Dy, P, and 7y correspond to the empirical state-action distribution, empirical transition and empirical reward
function, respectively, observed at the t-th iteration.

We discuss two important special cases of the above model.

e Synchronous Q-learning [Wail9]: At each time step ¢ and for each state-action pair (s,a), we observe a
reward (s, a) 4 r(s,a) and a next state z,(s, a) drawn from the transition kernel P(:|s, a). The Q-function
estimates are updated as

a1 (s.0) = 4" (5,0) + oy max g (w:(s,0), a') = g (5,0) + 7o(s5,0)), W(s,0) € S x A
Synchronous Q-learning corresponds to the update rule (10) where D; = I and P; is a binary random
matrix whose (s, a)-th row is independently distributed as Multi (P (+|s,a), 1).

e Asynchronous Q-learning [CMZ23]: At each time step ¢, we observe a state-action pair (s, a) ~ £,
where the distribution k, € A(S x A) can be the stationary state-action distribution of some behavior

policy. Conditioned on (s, a;), we observe the reward r¢(s¢, a;) 4 r(s¢,a;) and the next state s;,; drawn
according to P(:|s;,at). The Q-function estimates are updated as

()

qwgi)l(st’ ar) = q; (s, at) + 04(7 gl}eaﬁqga)(sﬁhal) - Qt(a) (81, ar) + re(se, at)),

¢ (s,a) = ¢ (s,a), V(s,a) # (s1, ).

Asynchronous Q-learning corresponds to the update rule (10) with diag(D;) ~ Multi (kp, 1) and the same P;

before. Note that only the (s, a;) entry of qt(a) is updated at iteration ¢, with D, acting as the corresponding

mask matrix.

With other choices of (Dy, P, r:), the update rule (10) can capture other forms of Q-learning with different
sampling models. N
The Q-learning update (10) can be cast as contractive SA. To this end, define a random operator H by

7,:l(q’ {DOv-F)(]vTO}) = 'Y-DO-F)O]C((]) + (I — D())q + _DO’I'O7 VQ c R‘S||A|
Denote by H : RISIMI — RISIMAI the expected operator, where
H(q) = E{DO,POJ'O} [ﬁ(lL {D()? P07 TO})] = ’YDPf(q) =+ (I - D)q + va

with 7 := E[rg]. It can be verified that H is a yp-contractive operator with respect to the infinity norm || - ||,
where 790 = 1 — (1 — y) min;esx4 Di; € (0,1) [CMZ23, Proposition 3.3]. Moreover, the optimal Q-function
g* is the unique solution to the fixed point equation H(¢*) = ¢*, which can be seen to be equivalent to the

optimal Bellman equation. To be consistent with the additive noise setting, below we use || - || to denote
[l oo
With the above notations, the Q-learning update (10) can rewritten as a contractive SA iteration:
g = +a(H(q§Q);{Dt7Ptmt}) —qt(o‘)) (11)

Note that the iteration (11) is nonsmooth due to the max operation in the function f in (10); moreover, it
involves multiplicative noise due to multiplication with the random matrices D; and P;, which are viewed as
noisy versions of D and P.

For the noise we consider the following moment assumption, indexed by an integer n > 1:



Assumption 4 (n). The random variables {(Dy, Py, 7¢) }i>0 have finite (2n)-th moments.

Below we analyze Q-learning. Our results parallel those in the additive noise setting, but the analysis is
significantly more challenging because of the multiplicative noise.

3.2 Moments Bounds and Convergence to Stationary Distribution
We first derive finite-time upper bounds on IE[Hqta) — q*]|?>"], the 2n-th moments of the estimation errors.

Proposition 2 (Moment Bounds). For each integer n > 1, under Assumption 4(n), there exists a, > 0
such that for any o < au,, there exists to,, > 0 such that

Elllgt® — ¢*12"] < eaElllgt™, — ¢*I2")(1 — a(l — /A0))ton + cha™, t 2> o, (12)

ta,vz
where ¢, and c,, are constants that are independent of o and t. Moreover, to1 = 0.

Similarly to the additive noise setting, we mostly use Proposition 2 with n € {1,2} for the subsequent
analysis. In particular, using Proposition 2 with n = 1, we can establish the weak convergence in W5 of
the stochastic process {qt(a)}tzo to a unique stationary distribution, and further characterize its geometric
convergence rate. This is done in the following theorem.

Theorem 4 (Distributional Convergence). Under Assumption 4(1), there exists &g > 0 such that for Vo < &

and all initial distribution of q(()a), the sequence {qt(a)}tzo converges geometrically fast in Wo to a random
variable ¢\ with

W2 (L(g(™), L(¢')) <c- (1 —a(l —A0))', V>0,

where c is a constant independent of o and t. Moreover, E[||¢'® — ¢*||3] € O(a).

The proofs of Proposition 2 and Theorem 4 use the generalized Moreau envelop of the contraction
norm || - ||, similarly to those of Proposition 1 and Theorem 1 for the additive noise setting. However, the
multiplicative noise makes the analysis more involved. We discuss the key difference in Section 5.1. The
complete proofs of Proposition 2 and Theorem 4 can be found in Appendix E and Appendix F, respectively.

3.3 Steady-State Convergence and Bias Characterization

Consider the centered /rescaled iterate Yt(a) = (q,ﬁ“) —¢*)/+/a. Theorem 4 implies that the sequence {Y;(a)}tzo
converges weakly to a steady-state random variable Y (%) = (¢(®) — ¢*)/\/a. In the following theorem, we
establish the steady-state convergence for {Y(®} as a — 0.

Theorem 5 (Steady-State Convergence). Suppose Assumption 4(2) holds. There exists a unique random
variable Y such that

i (@) —

Tim W (L(Y)), £(Y)) = 0.

Furthermore, we have W (L(Y(®)), L(Y)) € O(at), which implies that

El¢®] = ¢* + VaE[Y] + O(af). (13)

A few remarks are in order. Similar to the additive noise setting, Theorem 5 indicates that the steady-state
bias of Q-learning, E[¢(*] — ¢*, is in general of order O(y/a) for small stepsize o.. Again, this distinctive
\/a-bias result is due to the nonsmooth nature of the Q-learning dynamic; cf. function f in equation (10).
Our next theorem provides a more precise characterization on the bias.

The proof of Theorem 5 also uses our prelimit coupling technique, which can handle the multiplicative
noise. On the contrary, the work [CMM22] only considers the additive noise setting and it is unclear how to
generalize their analysis to the multiplicative noise case. Moreover, as a byproduct of our prelimit coupling,
for the explicit Q-learning dynamic, we can obtain an O(a%) convergence rate of Y(® to the limit Y. The
proof of Theorem 5 is provided in Appendix G.
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To discuss further properties of the limit Y, we need some definitions. We say that a state s’ € S is
rooted if
P(s'|s,a) =0, V(s,a) €S x A.

Intuitively, a state s’ is rooted if it is not accessible from any other state in the MDP. Using the optimal
Q-function ¢*, we define A*(s) := arg max,c 4 ¢*(s, a) as the optimal action set for each state s € S. Note
that the action distribution 7*(-|s) of the optimal policy is supported on the set A*(s) for each s € S. We
say that a state s € S is tied if |A*(s)| > 1, i.e., there is a tie among multiple optimal actions for s.

We classify all MDPs into two types:

e Type A: There exists at least one state that is tied and not rooted.
e Type B (i.e., not Type A): There is no tied state, or all tied states are rooted.

For each type of MDPs, we provide a more fine-grained characterization for the expectation of the limit
Y in the following theorem. Recall that E[Y] determines the order of the steady-state bias by equation (13).

Theorem 6 (Bias Characterization). Under the same setting as Theorem 5, we have
1. E[Y] # 0 if the underlying MDP is in Type A and Var(ﬁ(q*, {Dy, Po,70})) is positive definite.
2. E[Y] = 0 if the underlying MDP is in Type B.
3. If the underlying MDP is in Type B and Assumption /(n) holds for n > 2, then E[¢'®)] = ¢* + O(a™).

Note that for a Type-A MDP, the optimal policy is not unique due to the existence of multiple optimal
actions for at least one state. In this case, Part (1) of the theorem implies E[Y] # 0. Consequently,
the asymptotic bias E[¢(*] — ¢* of Q-learning is of /o order. As we will see in Section 4, the precise
characterization of order-/a bias allows one to use the Richardson-Romberg extrapolation for bias reduction.

Parts (2) and (3) of the theorem imply that for Type-B MDPs (i.e., those with a unique optimal policy),
the asymptotic bias can be controlled by the n-th order of the stepsize, as long as the noise has finite 2n-th
moment. For Q-learning, the random matrices {D;, P, }+>0 are bounded and thus all their moments are finite.
If the rewards {r,};>0 also have finite arbitrary moments (e.g., they are Gaussian distributed or bounded),
then the asymptotic bias is O(a™) for any n > 1, that is, the bias decays superpolynoimally with respect to
the stepsize.

4 Polyak-Ruppert Averaging and Richardson-Romberg Extrapola-
tion

In this section, we study the implications of our theoretical results for iterate averaging and extrapolation. In
particular, we consider applying Polyak-Ruppert (PR) tail averaging [Rup88, PJ92, JKK*18] and Richardson-
Romberg (RR) extrapolation [Hil87] to the iterates generated by contractive SA algorithms, and investigate
the resulting estimation errors and biases in the presence of nonsmoothness.

To this end, we will first state two general results for PR averaging and RR extrapolation, respectively.
We remark that these general results cover settings broader than those considered in this paper and may be
of independent interest. We then apply these results to the contractive SA and Q-learning procedures studied
in Section 2 and Section 3.

Let {Gt(a)}tzo be a sequence of (raw) iterates in R? generated by an SA procedure of the form

0% = 0 + a(H(O!, w,) — 6 (14)

with a constant stepsize o > 0. We assume that the noise sequence {w;};>¢ is a uniformly ergodic Markov
chain defined on a general state space VW with transition kernel p and stationary distribution uyy, and let 7,
denote its a-mixing time, i.e., 7, := min{t > 0 : max,ex ||p'(x, ) — px|Tv < a}, where || - ||rv denotes the
total variation norm. Note that a sequence of i.i.d. noise {w;};>¢ is a uniformly ergodic Markov chain with
7o = 1 for all a > 0.

We introduce two conditions on the raw SA iterates {Ht(a)}tzo, which allow us to quantify the performance
of PR averaging and RR extrapolation with respect to a target vector 6*.
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Condition 1 (Distributional convergence). There exist constants Co, Cy,a > 0 satisfying 0 <1 —aC; < 1
such that for some random variable 6 it holds that

W2(L0), £(0)) < Cy - (1 — aCh)t, Yt > 14 and Vo < a.
Condition 2 (Asymptotic bias and variance). There exist constants > 0 and § > 0 such that
E[0] = 0* + o’ B + o(a”19), (15)
where B € R? is a vector independent of t and a. Moreover, E[||0(®) — 6*|13] € O(aty).
Note that as the stepsize a gets larger, we have a faster geometric convergence in Condition 1 but a greater
bias in Condition 2. We later verify these conditions under our contractive SA and Q-learning settings.

4.1 Polyak-Ruppert Tail Averaging

Polyak-Ruppert (PR) averaging procedure [Rup88, PJ92, JKKT18] is a popular procedure for reducing the
variance of the SA iterates and accelerating the convergence. Specifically, given a burn-in period kg > 0, we
compute the tail-averaged iterates as:

k—1

g 1 ()

Oko i = — tzk: 0;”, fork>ko+1
=Ko

The following proposition provides non-asymptotic bounds for the first two moments of the tailed-averaged
iterate é,(c‘:)k

Proposition 3. Under Conditions 1 and 2, we have for all kg > 0%1 log (#) and k > ko + 74

0, * 1 Cik
B[Blok] — 6" =B+ o(a®**) + O exp (= 55)),

exp (= ac;lkon + O(k iak())'
(17)

(16)

E[ (Brok = 07) (Broe — %) '] = 0" BBT + 0(a®+%) + O(

o (k — ko)®

The proof is provided in Section I, generalizing the arguments from [HCX23b] on Linear SA. As a typical
application of the above result, let us set the burn-in parameter as kg = k/2 and consider the second moment
bound in Equation (17). The first two terms on the right-hand side of (17) correspond to the squared
asymptotic bias, which is the same as the bias of the raw iterates in Condition 2 and cannot be reduced
by averaging. The third term captures the optimization error, which decays geometrically in k due to the
geometric distributional convergence in Conditions 1. The last right hand side term of (17) corresponds to
the variance of averaged iterate /s 5, which decays at a rate O(1/k) due to averaging over k/2 raw iterates
that are geometrically mixed.

4.2 Richardson-Romberg Extrapolation

With the fine-grained characterization of the asymptotic bias in Condition 2, one can use the RR extrapolation
technique [Hil87] to reduce the bias to a higher order term of the stepsize a. In particular, we consider
first-order RR extrapolation, where we run two SA recursions (14) in parallel under two different stepsizes «
and 2a, under the same sequence of noise {w; }+>0. The resulting tail-averaged iterates élgj?k and él(j)ak) are
defined as before. The RR extrapolated iterates are then computed as follows as a linear combination of the

two averaged iterates:

ko,k 28 — 1 ko,k 28 — 1 ko,k *

- 28 _ 1
0(“) — 0(0‘) 9(20“) (18)

The coefficients of the above linear combination are chosen such that we cancel out the dominating terms o
and (2a)? in the biases.
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Proposition 4. Under Conditions 1 and 2, the RR extrapolated iterates defined in (18) satisfy the following
bounds for all kg > %Cl log (ﬁ) and k > ko + 74

E[6\")] — 0" € o(a’*%) + O aClko))’

1
(a(k:— ko) e (-

~ 5 alt 26 Ta
E[(e—r, — 0%) (Gr_iy — 0°)T] € 0(a28+2) + O(W exp (- CQkO)) + O(@;ﬁm) (20)

(19)

The proof is provided in Section J. Again focusing on the second moment bound (20) with kg = k/2,
we see that the squared bias is reduced to o(a??*2%), whereas we retain the geometric convergence of the
optimization error (second right hand side term) and the 1/k rate of the variance (third right hand side term).

4.3 Applications to Contractive SA with Additive Noise and Q-Learning

First consider the contractive SA dynamic (7) with additive noise from Section 2. By Theorem 1, Condition
1 holds with C; =1 — /7 and 7, = 1, By Theorem 2, Condition 2 holds with 7, =1, B=E[Y],3 = 1 and
d = 0. Hence, Proposition 4 with ko = k/2 implies the following MSE bound:

_ iz 1 a(l — 7)k 1
B[z — 0*[|" € o) + O 5 exp (- = Y2)) + 0(3):
Similarly, for the Q-learning dynamic (10) in Section 3, Condition 1 holds with C; =1 — /70 and 7, = 1
by Theorem 4; Condition 2 holds with 7, =1, B =E[Y],3 = £ and § = 1/4 by Theorem 5. Consequently, we
have the following MSE bound:

~ o(l - k

E||dr2 — 67| € o(a®?) + O(#exp (- %)) + 0(%)
In both cases, the asymptotic bias of the raw iterate is on the order of \/aE[Y], which is reduced to o(y/)
or o(a®/*) by RR extrapolation. We emphasize that the order of the bias here is different from the O(a)
bias typically seen in smooth SGD/SA dynamics [DDB20, HCX23b]. Knowledge of the correct bias order,
as provided by our theoretical results, is crucial for the RR extrapolation to be effective. We note that if
E[Y] = 0, the bias of the raw iterate is already o(y/), in which case the above RR extrapolation scheme may
not lead to further improvement but it does not hurt the performance either (up to constants). In Section 6,

we provide numerical experiments demonstrating bias reduction by RR extrapolation.

5 Proof Outline

In this section, we outline the proofs of our main theoretical results. We focus on the additive noise setting and
discuss how to generalize to the Q-learning setting with multiplicative noise. Without additional explanation,
we default iterates are in R<.

Recall that 7 is contractive w.r.t. the norm || - [[. As ¢(-) = 1| - ||? is not necessarily differentiable,
our analysis makes use of its generalized Moreau envelope [CMSS23, CMSS20], which can be thought of
as a smooth surrogate of ¢. In particular, let h(-) = %[ - ||3, which is 1-smooth with respect to [| - ||2.

Because all norms on R¢ are equivalent [Fol99], there exist two positive constants l.s and u.s such that
les|l - ll2 <1l - |le < tes]| - [|2- The generalized Moreau envelope M,, : R? — R of ¢ with respect to h is defined
as

My(x) = inf, {¢(u) + %h(x - u)}, Yz € RY. (21)

The basic properties of M, are summarized below. The proof can be found in [CMSS23, Proposition 1] and
[CMSS20, Lemma A.1].

Proposition 5. M, has the following properties: (1) M, is convex and %—smooth with respect to || - ||2; (2)

there exists a norm || - ||m such that M, (z) = $||z||2,; (3) it holds that Lep | - |m < ||+ le < weml| - [lm. where

lem = (L4 012)? and em = (L+1u2)7: (4) (VMy(2),9) < |allml|ylln, Yo,y € RY.

In this section, we omit the subscript in Gt(a) when the dependence on the stepsize « is clear.
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5.1 Proof Outline for Proposition 1 (Moment Bounds) and Theorem 1 (Distri-
butional Convergence)

Moment Bounds. To bound the (2n)-th moment E||9§a) — 0%||?", we use the generalized Moreau envelope
M,, as a Lyapunov function and generalize the arguments in [CMSS20, CMSS23] to higher moments by
induction on n. In particular, using the contractive property of 7 and the properties of M,,, we can obtain

My(Or1 = 0%) < (1= a(l = 7)) My(0r = 07) + o VM, (0, = 07),we) + 0 [[we|2/nlZ,

T T Ts

(22)

Taking the n-th moment of both sides gives E[M (011 —0*)] < E[(T1 + T +T3)"]. Expanding the right hand
side and noting that w is zero mean, we derive E[nT7* ' Ty] = 0 and E[T}] < (1-a(l-7) E[Mp (0, —0%)].
A careful calculation using the induction hypothesis shows that the cross terms satisfy E[(Z) (";a) TeTYTS) €
O(a™*1). Combining these bounds gives

E[M](6; — 6%)] < E[M?(6;, — 0%))(1 — a(l — V7)) """ + cna”, Yt > tan, (23)

from which the desired moment bounds follow in light of part (c¢) of Proposition 5.

Distributional Convergence. Similarly to [DDB20, HCX23b, ZX24], the key step in proving Theorem 1
is establishing the convergence of W3 (L(HEO‘)), E(Q’ga))) for two iterate sequences {Gt(a)}tzo and {9/1(5&)}#,20
with different initialization. Coupling these two sequences by sharing the noise sequence {w;}¢>0, we further
reduce the problem to bounding EH&&O‘) - 9’§a) |2 and, in turn, to bounding E[M,, (Ht(a) - 9’,(50‘))]. The latter
can be done using an argument similar to equation (22).

Proof for Q-learning: Due to multiplicative noise, the error term w; depends on the iterate q,@ itself.
A more involved analysis using the structure of Q-learning allows us to control resulting additional error
terms, thereby proving Proposition 2 and Theorem 4.

5.2 Proof Outline for Theorem 2 (Steady State Convergence)

The proof consists of three steps and employs coupling arguments applied to the prelimit rescaled random
variables Y;/(o‘) = (9150‘) —6*)//a with a > 0 and t < 0.

5.2.1 Step 1: Gaussian Noise and Rational Stepsize

In this step, we assume that the noise w; is Gaussian. We prove that {L(Y(O‘))}QGQ+ form a Cauchy sequence
with respect to W5, thus converging to a unique limit £(Y"), i.e., lim,_o qeq+ W (ﬁ(Y(O‘)), E(Y)) =0.
To this end, we first consider two stepsizes o and a/k, where k € NT and study the rescaled iterates Yt(a)

and }Q(a/ k) generated by equation (7). As discussed in Section 1.2, we couple these two sequences such that

Y;(a/k

one step of Yt(a) corresponds to k steps of ). We take the generalized Moreau envelope of the difference

sequence, {Yt(a) - Yk(f‘/k)}tzo, with the goal of showing that

E[M, (Y1) — Y < (1 - a(l — @) E[M, (Y = ¥ + O(arr+h), (24)

where 7 is a constant. The proof of Equation (24) makes use of the g o F' decomposibility of the operator T
and is the most critical sub-step in Step 1. Consequently, we have

. ()  y (a/k) r
Jim E[M, (¥, ¥/ € O(a™).
Combining with the distributional convergence result in Theorem 1, we obtain that

Wa (LY (@), £(Y(@/R)))
< lim [Wa(£(Y @), £07*) + Wa (L), L0GM) + Wa (L0, £0v(@/9))
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- @ _ylo/® (@ (a/h) 0
< — < — .
_tli>rrolo \/E[HYt II12] hm \/2u (Y3 Y, )] €O(a?)

Next we consider stepsizes @ > 0 and «/k with k = p/q € Q*, where p,q € NT and p > ¢. By triangle
equality for the Wy metric, we have

Wa (LY @), L(Y@/R)) < Wy (LY /;(y(a/q ) + Wa (LY (/D) £(y Pe/D))
<0(@?)+0(a?)eO0(a?). (25)

Therefore, for any rational sub-sequence {a;}2, with a; — 0, {E(Y(O‘J))}OOO is a Cauchy sequence with
respect to Ws. Consequently, a limit £(Y") exists. Since two rational sub-sequences can be merged into one
rational sub-sequence by staggered placement, the limit is unique.

5.2.2 Step 2: General Stepsize

Still assuming Gaussian noise, we generalize the result in Step 1 to general stepsize. To this end, we prove that
Y (@) is continuous in a with respect to Wa. More specifically, we consider two real-valued stepsizes o and o/,

and couple the corresponding two sequences Yt(a) and V(@) by letting them share the same noise {w;};>0, as
detailed in Section 1.2. We then obtain the following equation by applying the generalized Moreau envelope

on the difference sequence {Y;(a) — K(a/)}tzoi

E[M, (Y] = vED)] < (1 - 0() E[M, (v = ¥, *N)] + O(|ja - o)),

which implies that
lim E[M, (V" = Y/*)] = O(ja = a/])).

t—o00

Following similar arguments as in Step 1, we have lim,/_,, Wo (E(Y(O‘)), E(Y(a/))) = 0, thereby concluding
that V(@) is continuous in a with respect to Ws. Since the real numbers have the rational numbers as a dense
subset, we obtain the desired convergence result lim,_,o Wa (L(Y (@), L(Y)) = 0.

To obtain an explicit convergence rate to the above limit, we observe that

Wa (LY ™), L(Y)) < Wa (LY ™), LY @/R)) + Wo(L(Y©/R), £(Y)),  VkeNT.
Sending k& — oo on both sides and applying the bound (25), we obtain the desired rate:
Wa (LY (@), L(Y)) € O(a"/?).

5.2.3 Step 3: General Noise

Steps 1 and 2 above complete the proof of Theorem 2 for Gaussian noise. In this step, we consider general

a)

noise. To this end, we consider two sequences Yy (@) and Yt( , where Y/ (@) is driven by some general noise

wy, and Yt(a) is driven by Gaussian noise w; whose first two moments match those of wj. The crucial idea in
this step is to use a multivariate Berry-Esseen bound in Wasserstein distance [Bon20], which allows us to
show that there exists a coupling between wg and w; such that for k = [a~1/?],

SN fz“’t =3 (e e 2m)-£( o)) <o)

Under this noise coupling, we apply the generalized Moreau envelope on the difference sequence, {Y,;
Yét(a)}tzo, to obtain that

E[M, (Y5, — V1] < (1= (1= yAar) E[M, (Y5 - Y] + O(a).

Here, the O(«a) term comes from the Berry-Esseen bound [Bon20]. It follows that for some constant ry, we
have )
lim E[M, (V7 = ¥,()] € 0(a?).
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Following the same line of arguments in Step 1, we conclude that W (L£(Y(®)), E(Y/(a))) € O(at). Combining
with the convergence rate result from Step 2 on Y(®) with Gaussian noise, we obtain

Wa(L(Y"), L(Y)) < Wa (LY ™), LY @) + W (LY (@), £(V))

< O(ai) + 0(a?) € O(™F).

This establishes that Y'®) with general noise converges in W5 at a rate O(a#
proof of Theorem 2.

Proof for Q-learning: To prove Theorem 5, we need to couple the multiplicative noise for two sequences

), which completes the

Yt(a) and Yt(a/) in a similar manner as the additive noise case, with potentially mismatched stepsizes («, a')
and time indices (¢,t'). Importantly, in Step 3, in order to use the multivariate Berry-Esseen bound, we need
to judiciously couple the general noisy sequence {(D;, P/, r})} with a carefully chosen Gaussian-distributed
noisy sequence {(Dy, P;,7¢)} with matching joint covariance. Moreover, to obtain tight estimates for the

squared distance of the form E||Yt(a) — Y;Sal) |2, we need to isolate the expected operator H from the noisy
update (11). Doing so leads to more error terms that need to be carefully controlled.

5.3 Proof Outline for Theorem 3 (Bias Characterization)

Theorem 1 implies that the stochastic process {Yt(a)}tzo converges weakly in W5 to a random variable Y ()
corresponding to its stationary distribution. At stationarity we have the following equation in distribution:

Y@ L (1—a)Y® + /a(T(HaY® +6%) — T(6%) + w). (26)
Taking the expectation on both sides of the above equation yields

_ b
CVa

Recall that the operator T is g o F' decomposable in a local neighborhood B%(6*,¢) of §*. We decompose the
right-hand side of the above equation into two parts:

E[Y ()] E[T(VaY ™ +6%) — T(6%)].

1

E[Y (] =—=E[(T(vaY® +6%) = T(0")2atY ¢ 5(0,)] (1)
+ %E[(T(\/&Y“’) +6°) = T(0")L(a1Y (@ € BY(0,¢))]. (T»)

For the term T3, we make use of the contraction property of 7 and a concentration inequality to show
that lim,_,o T7 = 0. To analyze the term T5, we consider two cases.

Case 1: If g is smooth, then 7 is smooth on B%(6*,¢). By Taylor expansion of 7 and an argument
similar to the proof of lim,_,0 71 = 0, we have lim,_,0 T = VT (0*)E[Y]. Therefore, by letting o — 0, we
obtain that

E[Y] = VT(0")E[Y].

By smoothness and contraction properties of T, we can argue that E[Y] = 0.
Case 2: If g is nonsmooth, then by Taylor expansion of F' and continuity of g, we have

E[Y] =E[g(VF(0)Y)].

We further consider two sub cases.
(a) If VF(0) = 0, we have E[Y] = E[g(0)] = 0.
(b) If VF(0) # 0, we define h(Y) := g(VF(0)Y). If the subdifferential of h;(-) at 0 is not singleton, there
exist z1, 2o € R? such that
M) =m)-m0)>zY, j=1.2

Below we argue by contradiction that E[Y] # 0.
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Suppose that E[Y] = 0, in which case E[h(Y)] = 0. Therefore, we have E[h;(Y) — 2] Y] =0, j=1,2.
Because hy(Y) — 2] Y is always non-negative, we must have h1(Y) — 2]'Y = 0 almost surely for j = 1,2.
Therefore, we have z{ Y = 2] Y almost surely. Letting ( = 2; — 22, we have ('Y = 0 almost surely, which
implies E[(¢TY)?] = 0.

By equation (26), we obtain

E[(CTY )] =(1 - a)E[((TY )] +2va(l - )E[¢TY ) (T(T(VaY @ +0%) - ("))
+ B[ ((T(T(/aY® +6%) = T(0%) +w))?]
Taking o — 0 to both sides of the above equation, we can finally obtain
E[(C"Y)?] 2 E[(¢"w)*] = ¢" Var(w)( > 0,

which contradicts with the equality E[(¢(TY)?] = 0 etablished above. We conclude that E[Y] # 0.

Proof for Q-learning: In Theorem 6 we distinguish two types of MDP. When the MDP is Type A, the
analysis is similar to Case 2(b) above. When MDP is Type B, the dynamic of Q-learning is locally linear
around 6*. Therefore, the Ty term above is almost proportional to E[Y (®)]. For T}, since the noise has finite
(2n)-th moment, we can prove T € O(a”~2), which implies the desired bounds E[Y(®)] € O(a""2) and
El¢] = ¢" + O(a™).

6 Numerical Experiments

In this section, we provide numerical experiments for SA with additive noise and Q-learning.

For SA with additive noise, we consider the example in Section 1.1 with b = 0. We run the update (7)
initialized at 9(()“) = 1, with stepsize a € {0.05,0.1,0.2,0.4}.% In Fig. 2(a), we plot the ¢; error || — 6*||; for
the tail-averaged (TA) iterates 9_(()?;3 , and the RR extrapolated iterates é(()ak) with 8 = % Theorems 2 and 3
show that the asymptotic bias of the TA iterates is ©(y/a), which can be reduced by RR extrapolation o(y/«).
This bias reduction effect can be observed in Fig 2(a) by comparing the final errors for TA and RR iterates.

For Q-learning, we randomly generate an MDP with 3 states and 2 actions. The expected reward function
7 is sampled uniformly from [0, 1]!SII] and the rows of the transition kernel P are sampled from Dirichlet(1),
where 1 is the all-one vector. This random MDP is almost surely in Type B. We then generate Type A MDP
by having the first two actions of the first state share the same transition and expected reward. The observed
rewards are Gaussian: 7, ~ N(7,0.3I). We run Synchronous Q-learning initialized at qoa) = 1 with stepsize
a € {0.02,0.04,0.08,0.16}. Theorem 5 and 6 show that for Type A MDP, the bias for TA is y/a and can be
order-wise reduced by RR extrapolation. This prediction is consistent with Fig 2(b). By Theorem 6 and
the discussion in Section 4.3, for Type B MDP the bias is already small and of order O(a%), for which RR
extrapolation may not lead to obvious improvement. This is consistent with the result in Fig 2(c).

7 Additional Related Work

In this section, we discuss the existing results that are most relevant to our work.

7.1 Results on SA and SGD

The study of SA and SGD traces its origins to the seminal work by Robbins and Monro [RM51]. Classical works
focus on diminishing stepsize regime [RM51, Blu54] and have established almost sure asymptotic convergence
for SA and SGD algorithms. Subsequent works [Rup88, Pol90] propose the iterate averaging technique, now
known as Polyak-Ruppert (PR) averaging, to accelerate convergence. The asymptotic convergence theory of SA
and SGD is well-developed and extensively addressed in many exemplary textbooks [KY03, BMP12, WR22].

3The code can be found in https://colab.research.google.com/drive/1b2RVEhC5gMmtxgL7S0dekp-25UM2q2hV7usp=
sharing.
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(a) Example in Section 1.1 with b= 0. (b) MDP in Type A. (¢) MDP in Type B.

Figure 2: The errors of tail-averaged (TA) and RR extrapolated iterates with different stepsizes «. In the
legends, « = x RR means RR extrapolation with two stepsizes x and 2z.

Some recent works [CZDT22, CBD22] study the non-asymptotic convergence with diminishing stepsize. The
recent work [CMZ23] establishes the high probability bound on the estimation error of contractive SA with
diminishing stepsize.

Recently, the study of constant stepsizes in SA and SGD has gained popularity. Many works in this
line assume i.i.d. data. When using constant stepsize, one loses the almost sure convergence guarantee
in the diminishing stepsize sequence regime, and at best can achieve distributional convergence, as shown
in [DDB20, YBVE21, CMM22, HCX23b, ZX24]. Furthermore, a recurrent observation in the literature is the
presence of asymptotic bias when using constant stepsize in SA, i.e., E[#(*)] # 6*. When the SA update is
locally smooth, the asymptotic bias has been demonstrated to be of ©(«a) order in [DDB20, HCX23b, ZX24].
The work [YBVE21] considers nonsmooth SA but only provides an upper bound for the asymptotic bias, i.e.
|E[(*)] —0*| < c¢y/a. Many papers provide non-asymptotic MSE upper bounds. The work in [L.S18, MLW*20]
studies linear SA under i.i.d. data and provides an upper bound on the MSE. There are also works that
analyze the MSE with Markovian data, such as [SY19, MPWB21, DMN*21, DMNS22]. The work in
[CMSS23, CMSS20] introduce the generalized Moreau envelope (GME) to analyze the MSE of general
contractive SA. In our work, we make use of the GME, but we extend this technique to analyze different and
more general problems, specifically, generalizing to obtain upper bounds for any 2n-th moment, proving weak
convergence of SA iterates and proving steady-state convergence as stepsize a diminishes to 0.

7.2 Applications in Reinforcement Learning

Many widely employed iterative algorithms in reinforcement learning (RL) can be reformulated as SA problems
[SB18, Ber19]. Among those, the two most well-known algorithms are the temporal-difference (TD) learning
for policy evaluation [Sut88, DS94| and Q-learning for optimal policy learning[WD92]. The TD algorithms
when incorporating linear function approximation can be cast into the framework of linear SA. Q-learning is
a nonsmooth and nonlinear contractive SA, and has also been studied extensively in both classical works
[Tsi94, Sze97, EDMBO03] and recent works [CZD'22, CMSS23]. The work [ZX24] studies the stationary
distribution of asynchronous Q-learning with Markovian data and characterizes the asymptotic bias under
the assumption that MDP has no tied state.

7.3 Nonsmooth Function Class

Nonsmooth functions have been studied in many works, such as semi-smoothness in [Mif77], identifiable
surfaces in [Wri93], UV-structures in [LOS00, MS05], partly smoothness in [Lew02], g o F decomposition
in [Sha03, Sagl3] and minimal identifiable sets in [DL14, DDJ23]. In our work, we adopt the definition in
[Sha03] and extend it to a multidimensional function space to define the nonsmooth SA.
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7.4 Results on Steady-State Convergence

The steady-state convergence is commonly studied in the realm of stochastic processes, with one well-known
application being the steady-state convergence in queueing networks. As discussed, the classical method is
through justifying the interchange of limits, as seen in [GZ06, Gurl4, YY16, YY18]. An alternative approach
is through the basic adjoint relationship (BAR) approach, which studies the generator of the Markov process,
ie, E[Gf(Y(®)] =0 as a — 0 [BDM17, BDM24, CMM22]. Another line of work related to steady-state
convergence focuses on the unadjusted Langevin algorithm (ULA) [DM17, DM19]. These works take an
approach similar to the justification of limit interchange in queueing networks, in which they first demonstrate
the convergence of ULA to the corresponding stochastic differential equation (SDE), and then relate the
convergence to the stationary distribution of the SDE.

8 Conclusion

In this work, we studied nonsmooth contractive SA with a constant stepsize. We developed prelimit coupling
techniques for establishing steady-state convergence and characterizing the asymptotic bias, highlighting
the impact of nonsmoothness on steady-state behavior. Our coupling techniques also bear potential for
other nonsmooth dynamical systems such as piecewise smooth diffusion, stochastic differential equations and
their discretization. Of immediate interest are to obtain more refined characterization of the steady-state
distribution Y(® and its limit Y, such as higher moment results and other functionals of the distribution
and obtain non-asymptotic results as a function of a and the level of nonsmoothness. Generalizing our
results to general noise settings is another interesting future direction. For additive martingale difference
noise, we believe the current analysis can be combined with an appropriate martingale Berry-Esseen Central
Limit Theorem to establish similar distributional and steady-state convergence results. For more general
multiplicative Markovian noise, however, establishing such results would require a better understanding of
Markovian nonlinear SA and new coupling arguments.
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A Proof of Proposition 1

Proposition 1 follows from combining the following lemma and the property (3) in Proposition 5.

Lemma 1. For each integer n > 1, under Assumption 1 and Assumption 2(n), there exists n, & such that
for any a < @, there exist to ,, such that

E(M? (6 — 0°)] < EM2 (61, — 09)](1 — a1 — )t + coa”

holds for allt > tq ,,, where My (-) is defined in (21) and {c,}n>0 are universal constants that are independent
with a and t. Moreover, to1 = 0.

A.1 Proof of Lemma 1

We use induction on n to prove Lemma 1
Base Case: n = 1.
By subtracting 8* from both side of equation (7), we obtain

Or1— 0" =0, — 0" + (T (0:) — 0 + we) = (1 — a)(0r — 07) + (T (6:) — T(0%) +wy), (27)

where the second equality holds because 7 (6*) = 0*.
Applying the generalized Moreau envelope M, (-) defined in equation (21) to both sides of equation (27)
and by property (1) in Proposition 5, we obtain

My (841 — 67) <(1— )2 M, (6, — 0")

+ (1 =)V M, (0; — 07), T (0:) — T(07) + wy) (28)
+ %HT(@) —T(6%) + w3 (29)

The term in (28) can be bounded as follows:

(28) = (1 — a)ar (VM (6, — 6°), T(6) — T(6)) + (VM (6, — 6, )
)
2 (1= ) (16, — Ol T(O) — Tl + (VM (61 — 67, w1))
QU 180 — 0 + (1 — @)V M, (0, — 0%), )

lcm

(E) 2a(1 — a)Yuem

My(0; —6") 4+ (1 — a)a(VM, (6, — 6%),w,),

lcm

where (i) holds because of property (4) of Proposition 5, (ii) holds because of property (3) of Proposition 5
and ~y-contraction of 7(+), and (iii) holds because of property (2) of Proposition 5.
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The term in (29) can be bounded as follows:

2
* a *
(29) <52 1700 = T(0") + il < 2 (1700 = T + )

20222 a?||lwy|?
< LM AL (6, — 0* —_——c
- nig nl )+ ULEN

Combining the above bounds, we obtain

1— em 2yu?
M, (011 — 6%) g(l —oa( - LZ N Wemy | o W;m))M (6, — %)

lCm ’r)lcs
O[2 w 2
+ (1= a)a(V My (0, — ), wy) + 7|7|z2t”

Recall that 7= = 11177’;;22 by property (3) in Proposition 5. We can always choose a sufficient small 7 > 0

f’ which implies —2a/(1 — (1_?3%) < —2a(1—(1- )\ﬁ) < —2a(1-,/¥). Furthermore,

there always exists @ > 0 such that @ < 1 and (1 —2a(1 — ) + (1 +2 Cm)) <l-a(l-y7) <1
when a < @. Therefore, for Voo < & and ¢ > 0, we obtain

such that Je= <

a2 ||wy||?
My (0p41 — 0%) < (1 — (1 — /7)) My(6y — 6%) + (1 — a)a(V M, (6 — 6%),wy) + allwnlle

30
Mz 30
Taking expectation on both sides of equation (30), we obtain
. . ey
EIMy(6r41 = 07)] < (1= all = ) EIMy (6: = 0] +

: a’e

< (1= a(l = 7)) E[M, (6 - 0) Z L-a(l= 7)) —5"

77 cs

< (1—a(l = 7)) BIM, (60— 0)] + Wium

where ¢,, = E[||w;||?] and the first inequality holds because w; is zero mean and independent with 6, — 6*.
Therefore, we complete the proof for the base case.

Induction Step: Given positive integer k > 2, assume Lemma 1 holds for all n <k — 1. When n =k,
take k-th moment to both side of equation (30) and we obtain

(M (0 —0)) < E[( (1= a1 = v3) My(0: = 0%) + (1 = @)V 0, — ), ) + Ll )]

iz,
T

—E| Y O] +E) > ()T (31)

a
a+b=k a+b+c=k,c>1

Sl Sz
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We next analyze S; and S3. For S; we have

S1=(—a(l— ) EMEG -] +E] Y ()51

at+b=k,b>2
<(-a(l- y3) EMEG, -0 +E[ > (5) (57 )a Mg (68, = 6°) 180 — 6 5 w1, |
a+b=k,b>2,b is even
at+2 «
+ > dEBRIQ() el B[ 6 - 0]
a+b=k,b>3,b is odd
a+t %
S —a(t =) EIM@— 01+ > a"E[25(0) () willy] E[MT (6, 67)]
a+b=k,b>2,b is even constant depends on k EO(a“Jr%);,'aqL%Skfl
at bttt " at+251 "
+ > B[22 (Y (M) well%] | E[My T (6, —6%)] E[MyTE (6, —6%)]
a+b=k,b>3,b is odd constant depends on k eO(a“‘F%),‘jaﬁ-%gk—l GO(Q‘H%)

i

< (1—a(l— 7)) E[MF0, — 07)] + O(a**h) < (1 — a(l — 7)) E[MF (0, — 0%)] + O(aF ),

—~
=

where (i) holds by induction hypothesis and taking ¢ to be sufficiently large. For Sy we have

c oy lwel 2 lwe 2, 5 .
S2< ), ot E[(i)(kba)W}E[Mgh(@t —6%)]
a+b+c=k,c>1

c —ay llwel|Z]|weI7, a+} "
D S i (G R e B LT )

a+b+c=k,c>1,b is even

+5y.. b
constant depends on k €0(a"T2), a+5<k—1

2c b ot btl . ap b=l .
+ > ab”cE[(’;)(’“b“)”wt”;cl”gift”m} E[M; " * (0, - 0")] E[My" (0, - 07)].
b—1

b1
constant depends on k €0t T ) rat HE <k—1 €0t 2)

a+b+c=k,c>1,b is odd

By induction hypothesis and taking ¢ to be sufficiently large, we conclude that Sy € O(a®*1).
Combining the bound of S;, Sz with equation (31), we obtain

E[M, (041 — 6%)] < (1 = a(l — 7)) E[My (8, — 6%)] + O(a**1).
Therefore, for Vo < &, there exist ¢, > 0 such that
E[M, (0; — )] <E[M} (0, , —0)](1 — a(l — /7)) " + e

holds for V¢ > t, r, where c; are universal constants that are independent with o and t.

B Proof of Theorem 1

We prove the three properties stated in Theorem 1 in the next three subsections, respectively.

B.1 Unique Limit Distribution
We consider a pair of coupled , {QE]}QO and {Giz]}tzo, defined as
ol =0+ o (T — 0 + )

0 =07 o (TOF) — 0 + ).
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Here {OP] }i>0 and {9?]}7520 are two iterates coupled by sharing {w;};>0. We assume that the initial iterates

9([31] and 9([)2] may depend on each other.
Taking the difference of the two equations in (32), we obtain

o — 08 = (1= a)o" = o) + o (T - T(6))

Applying the generalized Moreau envelope M, (-) defined in equation (21) to both side of above equation and
by property (1) in Proposition 5, we obtain

M08, — 0 <(1 — a)* M, (6" — 0F) + (1 — a) (WM, (01" — 0P, T(0[") — T (o))

2
«
+ 5T ) = T3
n
Taking expectation to both side of above equation, we obtain
2
EIM, (01}, — 65))] < (1 - aE[M, (6" — 6]

2
+a(l - a)E[(VM, 6/ — 6, T(6!") — T(07))] + %EHT(@E”) ~ T3

T

T>
When o < 1, we obtain

(1)
Ty < a(l — B[/ — 02 [ | T(01) — T(61)]1]

(i) (1 — a
& =D pgl gl el — 7o)

a(l —a)y
< 0= gyl g2, 10" — o).
(iii) 2¢0(1 — & Uem, (iv)
< 2l Oemgyyy, o) g) < 20y TEIM, (0 — 67

where (i) holds because of the property (4) of Proposition 5, (ii) and (iii) holds because of the property (2)

Lnu?,
14+ni2,

and (3) of Proposition 5 and (iv) holds because <= = by property (3) in Proposition 5 and we can

always choose a sufficient small 7 > 0 such that 1;;—:: < %
By ~-contraction of 7(+), we obtain
a?y? 1 2 QQVQUzm 1 2
Ty < o Bl = 072 < = ey (6 - 67)

Combining the bound for 77 and T3, there exists @’ < @ such that
2
E[M, (01, — 05),)] < (1 - 20(1 - 3) + O(a®)E[M, (0" - 0]
< (1—a(1 = yA)E[M, (6] - 0],

for Ya < @'. Therefore, we have

v e (). () <o 2 .

< 202, B [, 01 - 0)] < 22, E [, 00" — 0] (1 = a1 = )",

which implies W2 (ﬁ (0&1]) L (9£2])> decays geometrically. Note that equation (33) always holds for any
joint distribution of initial iterates (0([)1], 9([)2]). Then, we use 9[_2]1 to denote a random variable that satisfies

9[72]1 4 0([)1} where < denotes equality in distribution and 0[3]1 is independent of {z;}+>0. Finally, we set (9([)2] as

o5 = (1 - )62 + o (TOP) +ws). (34)
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Given that 9[72]1 4 0([)1] and 9[3]1 is independent with {w;};>_1, we can prove F)P} 4 0511 for all ¢ > 0 by

comparing the dynamic of (th)tzo and (th)tzo as given in equations (32) and (34).

We thus have
(2 (0) 2 (01)) -3 (2 o) 2 o)
< 2u2,E | M, (05 - o) (1 — a1 = )",

where the second inequality follows from equation (33). It follows that

gzwngﬂw’ﬁwﬂg)ggﬁmEP%WFHﬁﬂfiuau¢@f<al

t=0

Consequently, {ﬁ(&t[l] )}i>0 forms a Cauchy sequence with respect to the metric Ws. Since the space Py (R?)
endowed with W5 is a Polish space, every Cauchy sequence converges [Vil09, Theorem 6.18]. Furthermore,
convergence in Wasserstein 2-distance also implies weak convergence [Vil09, Theorem 6.9]. Therefore, we

conclude that the sequence {,C(@F])}tzo converges weakly to a limit distribution i € Pa(R9).
Next, we show that 1 is independent of the initial iterate distribution of 9[[)1]. Suppose there exists another
sequence {511]},520 with a different initial distribution that converges to a limit iz. By triangle inequality, we

have
Wa(in, 7)) < Wa (7, £ (611)) + w2 (£ (687) £ (817)) + wa (£ (0) ) = 0.
Note that the last step holds since Wy (ﬁ (F)tm) L (él”)) 2% 0 by equation (58). We thus have Wy (@i, 1) =
0, which implies the uniqueness of the limit .
Finally, the following lemma bounds the second moment of the limit random vector §(®).
Lemma 2. Under Assumption 2(1), when a < &', we obtain

E[[|6 —6*5] € O(a) and E[[8]3] € O(1).

Proof for Lemma 2. We have shown that the sequence {f;};>¢ converges weakly to 6(®) in Py(R%). Tt is well
known that weak convergence in P2(R9) is equivalent to convergence in distribution and the convergence of
the first two moments. As a result, we have

E[[16©) — 6*)2] = lim E[)6, - 0"]12] . (35)

Taking t — oo on both sides of equation (8) in Proposition 1 with n =1 and combining with equation (35)
yields
« * 1 « *
[0 — 07|3] < ZTE[H@( = 07|2] € O(a).
Therefore, we have
E[[|6[|3] < 2B(][6) — 67(|3) +2[|67(3 € O(1).

B.2 Invariance

Moreover, we will show that the unique limit distribution j is also a stationary distribution for the Markov
chain {6, }:>0, as stated in the following lemma.

Lemma 3. Let {0;}1>0 and {0;}1>0 be two trajectories of iterates in equation (32), where L (68y) = i and
L(0}) € Po(RISIAN s arbitrary. we have

W3 (L (61),£(67)) < pW3 (L (60) , £(67)) »
where the quantity p := 1;2?”
L(60)) = L(6:), then

(1 —a(l — /7)) is independent of L(0y). In particular, for anyt >0, if we set

W3 (L (61), L(Or1)) < pW3 (i, L(6y)) -
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Proof of Lemma 3. We couple the two processes {6; };>0 and {6} };>0 such that
W3 (L (60) . £(0)) = E [[l60 — 05]12]
Since W5 is defined by infimum over all couplings, we have

W3 (L (61),L(67)) <E[[|61 —0}2]
< 2u2,, B [M, (61 — 6})]
< 2u,, (1 — a1 = 7)E[M, (6 — 65)]

U2

< Zem (1 _ Oé(l _ ﬁ))E [HGO — 96”%] = pW22 (E (00) 5 E(GE))) )

- ]2
lcm

where p = 42 (1 - a(1 - /7). O
By triangle inequality, we obtain
Wa (L(61), 1) < Wa(L(61), L (Os1)) + Wa (L (0r41) , 1)
< VW2 (1, £(01)) + Wa (£ (0e41)  5) =50, 2

where the second inequality holds by Lemma 3 and last step comes from the weak convergence result.
Therefore, we have proved that {6, },>¢ converges to a unique stationary distribution f.

B.3 Convergence rate

Consider the coupled processes defined as equation (32). Suppose that the initial iterate 9([3] follows the
stationary distribution g, thus E(HF]) = @ for all ¢ > 0. By equation (33), we have for all t > 0 :

wi (L), ) = w3 (L), £o)
< 22, E [ M, (08 — 0] (1 - a1 = )"
< 2u2,E My (05— 0)] (1 - a(1 = )"
Lemma 2 states that the second moment of #(*) is bounded by a constant. Combining this bound with above

equation, we obtain the desired bound W (L(6;), ) < ¢+ (1 — (1 — /7))*, where ¢ is a universal constant
that is independent with o and t.

C Proof of Theorem 2

In this section, we prove Theorem 2, which establishes steady-state convergence under the additive noise
setting. We follow the three-step strategy outlined in Section 1.2.
We start by using equation (7) to obtain the following dynamic for Y;:

Yirr = (1 - a)Y; +Va (T(VaY; +6%) = T(0°) +w,) (37)

C.1 Step 1: Gaussian Noise and Rational Stepsize
We consider a pair of coupled {Y;};>0 and {Y/};>0, defined as

/ 4+ .+ /
Vit = (1— )Y + va(T(VaY; +0%) = T(0%) + = ﬁ“”“*’“l),

V= (= ¥ [ (7( [y +07) - 700+,
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where {w}};>¢ are i.i.d noise with normal distribution, zero mean and the same variance as {w;};>o and

!
gt +

. . . . . e Wb W
k > 1 is an integer. Because {w}};>o are i.i.d noise with normal distribution, % has the same

distribution as wj. Direct calculation gives

Yipr = (1 - E th \/> < 1 - =) - 1) (’T(ﬁyk’t%_l_j i 9*) —T(0%) er;ct%_l_j)
N

+Vak <T<\/§Yk’t + 6)*) T )> + fw’“ '\;%w;“”k‘l.

Combining equations (38) and (39), we obtain
Yig1 — Yk,t+k =(1—a)(Y; — Yi)

+ (1 —a— (1 _ %)k)yk’t +Va (T(VaY; +0%) = T(VaYy, + %))

v ((r(var o) 7o) VB (7( [ o) 700 )

+ \/szl (1-a- %)j) <T<\/§Yk/t+k1j +07) = T(O7) + “’;@H“j)
\F > ( \/7th + 6" ) T(\/fyk/wk—l—j + 9*))

=(1-a)(Y; = Y},) + A,

where A collects all but the first term on the RHS. Applying the generalized Moreau envelope M, (-) defined
in equation (21) to both sides of above equation and by property (1) in Proposition 5, we obtain

My(Yerr = Yippp) < (1= a)?My(Ye = Yi) + (1= @) (VM (Y, = Y)), >+%I\AII§~ (40)

T ——
T

The following lemmas, proved in Sections C.1.1 and C.1.2 to follow, control the 77 and 75 terms above.
Lemma 4. Under the setting of Theorem 2, we have

200yUem

B[] < E[M, (Y; = Yy,)] + o(a).

lcm

Lemma 5. Under the setting of Theorem 2, we have

522
< A]E[Mn(Yt —Y/)] + o(a).

E[T3] 2.

Plugging the above bounds for T7 and 75 into equation (40), we obtain

B, (i~ Vi) < (1~ 2000 = C=20%2) 4 0(a?) ) BIM (Y ~ 4] + ofa).

cm

By the similar argument as in the proof of Lemma 1, we can always choose proper 7, @ such that for
Va < @, there exist t, such that for all ¢t > t,, we obtain

E[My(Yir = Vi)l < (1= a(l = 7)) E[My (Y: — Y,)] + o()
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which implies
lim E[M, (Y; — Y},)] € o(1).

t—o0

By triangle inequality, we have

Wa(£(Y@), £(v /D)) < lim {Wa(L(Y@), £Y)) + Wa(L£(Y), £(K,)) + Wa(£(V,), £V /M) }

2 lim Wa(£(Y:), £(Y],)

(i) . (iii) .
< Jim RV — 2] < Jim /202, BM (Y - Y},)] € o(1),

(&

where (i) follows from Theorem 1, (ii) holds by the definition of W5 distance, and (iii) is true by Proposition 5.
Therefore, we have that for all k € Nt and o > 0,

Wa (L(Y™), £(Y(@/R))) € o(1). (41)
When k€ QT,k>1and a >0, let k = % We have

Wo (g(y(a)),ﬁ(y(a/k))) < Wy (ﬁ(Y(a))’ £(y(a/p))) + Wy (/;(y(a/p))’ £(Y(Oé/k)))

INs

o(1) 4+ o(1) € 0(1),

where (i) holds because £ =

Then, for any rational sub-sequence {a;}%2,, a; — 0, {E(Y(O‘f))};’io is a Cauchy sequence with respect
to Wy, therefore has a limit. Assume we have two different rational sub-sequence {a;}%2, and {8;}3%,
such that the limits of {E(Y(O‘i))};?‘;o and {E(Y(ﬁj))};";o are different with respect to Wa. Let £(Y) be

the limit of {L£(Y (@) 720 and L(Y) be the limit of {£(Y ) 520 Then, there exists € > 0, such that
Wo (E(Y),E(Y)) > €. Let yo; = v, 72541 = fBj. Then, {7;}32, forms a rational sequence and y — 0. Then,
we obtain

Q |rie

and % < a.

lim Wa (L(Y020)), £(Y (2+0))) = lim Wa (L(Y(9)), £(Y5)))

= lim {Wa(£(7), £07)) + Wa (L), L)) 4+ Wa (£(y9), £(V)) |

> Wa(L(Y),L(Y)) > e,

which contradicts with the fact that {E(Y(Vj))}é?';o is a Cauchy sequence with respect to W5. Therefore, for
any rational sub-sequence {a;}52,, o — 0, {E(Y(ai))}j‘?io converge to a unique limit with respect to Wh.
That is, there exists a unique random variable Y such that

lim  Wa(L(Y™),L(Y)) =0.

a—0,aeQt

This completes the first step of the proof of Theorem 2.

C.1.1 Proof of Lemma 4 on T}

By property (4) in Proposition 5 and {wj,,_1_; }?;5 being i.i.d. zero mean noise and independent with Y;
and Y)/,, we obtain

E[T3] <E[IY: = Yl (1 = @ = (1 = )Yy ] (T11)
FE[Y, — YillmlVa (T(VaY; +0%) = T(VaY{, +6%) 1] (T2)
+E[Y = Yyl Va ( (T(VaYi, +6) = T(6")) - x/E(ﬂ\/ngt +0) = TO)) ] (Ti3)
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(67

k—1
(Y = Yilaly 30— 0= ) (T PHesss + 09 =0 ) I (Ti)
=0

k—1
Y = Yillaly [ 3 (70 5040 = T/ T ¥hersry 46 ol (T)
=0

Below, we bound the terms 777 ~ Ti5 separately.

The T7; Term: We begin with

(0%
Thw=N-a-(1- E)’“I]E[I\Yt = Vil 15l ]-

Note that f(z) = (1 — £)” increases monotonically when x > «. Therefore, when oo < 1, we obtain

l-a—(1- %)’w < lim (1— %)k —1+a=exp(-a)—1+acO(?). (42)

k—o0

By Cauchy—Schwarz inequality, we obtain

E[[Ye = Yielml[Yiellm] < BVl lYie ] + BUYEe [V lln] )
43

()
< EIVIEIEY 2] + B[V )2] € o),

where (i) holds by the following Corollary 1(1) and choosing a sufficiently large ¢ (note that Corollary 1 is
parameterized by an integer n > 1). Therefore, we conclude that T1; € O(a?).

Corollary 1 (n). For integer n > 1, under Assumption 2(n), there exists & such that for any o < @, there
exists to n > 0 and

E[| ;" ]2%) < caB[IY [27)(1 = (1 — A ten 4 el VE> tam,

where || - || is an arbitrary norm and {cy}n>1 and {c},}n>1 are universal constants that are independent with
a and t. Moreover, to,1 = 0.

Proof of Corollary 1. By the equivalence of all norms on R?, we can obtain the Corollary 1(n) by dividing
a™ to both sides of equation (8) in Proposition 1(n). O

The 715 Term: Turning to T2, we have

Ja

T12§l %

E[llY: = Vi llml T (VaYe +07) = T(VaYy, +07)|c] <

cm lcm

E[M, (Y; — Yiy)]-

The T3 Term: For 113, by Cauchy—Schwarz inequality, we obtain

Tha < @/EH&@ ~ VLl (TG + 0 70— VE (T [3vi 400 - 709) ) 1)

Note that E[||Y; — Y7,[12,] < 2E[||Y:]|2,] + 2E[||Y7,]12,] € O(1). For the second expectation term on above RHS,
we have

e[|[(T(vav + 69 - T - ﬁ(T(\/f v, +0)=70))]] *9
O lo(ptvario) - Vag(F (57 [ 1(atvi, € B%0.0) 1)

S 1ty ¢ BUO,O)|.  (46)

m

+E [HT(\/aY,;t +07) — T(07) - VE(T(\/fYk’t +07) = T(0"))
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where (i) holds because of Assumption 3.
By Taylor expansion, when a < 1, there always exist random variable A1, Ay € [0,1]™ such that

(45) = E[lg(F(vVa¥y})) — (\fl['”(\/>1/;cf))ll2 (a1, € BY(0,¢€))]
= aE[[|g(VF (A1, VaY{)Yiy) — 9(VF (A2, \/fYk/t)Ylét)”%nl(aiYk/t € BY(0,¢))]

Y/, Y, 1
= K[| <Q(VF(>\1,fth)”Y, B ) = 9(VE(A2, )+ th)HYf”H )) 7 YR 131 (a7 Yy, € BY(0,€))]
kt kt

Y/, [ Y/ 1
fa E[” ( (VF(Alafth) ”Y/ ” ) g(VF()\g, th) ”th”Q)) ||3n]l(a4ch/t € Bd(O,E))] E[HYIétH%]a
kt kt ————
Tya: €0(1)

where we use VF(\;, /aY},) to denote the vector that [VF (A, /aY/,)]; = VF;(\ij/aY),) for i =1,2 and
j € [n].

For Veg > 0, by continuity of g(-), 369 > 0, such that ||g(8) — g(VF(0))|l2 < o when || — VF(0)|]2 < do.
By the continuity of VF(-) at 0, 36; > 0, such that |[VF(0) — VF(0)||2 < dp when ||0|| < é;. Therefore, we
obtain ||g(VF(0)) — g(VF(0))|l2 < eg when [|6]| < §;. Given aiYk’t € B%(0,¢), we can always let o small
enough such that [|\/aY},[la < 61, ||\/FYill2 < 01. Therefore, the variables within the term Ty3; are always
bounded, which implies lim,_,g 7131 = 0. Therefore, we have

Elllg(F(VaYy,)) — \/EQ(F(\/ngIt)”?n]l(aiYk/t € BY(0,¢))] € o).

For the term in (46), by Cauchy—Schwarz inequality and Markov inequality, we obtain

2yau?
2,

(46) < DR[|V 7 L@t Y, ¢ B0, €))]

Q’YOLUC'HL 27061'1’27”

€
VENYE R PAYEE > — E[[[Y{, %]

e
~—

where the last step follows from E[||Y/,||4,] = O(1) and E[||Y},]|3]/e* = O(1). Combining all the analysis
together, we obtain that (44) € o(a), which in turn implies 715 € o(«).

The T14 Term: For T14, we have

To = E[JY; - Ymnmn\f Z 1= =299 (TS ¥y +0) = T0))
gz 1 = Yl [0 = 0= ) (T § sy +0) =T ) 1

Zv?‘
,_.

<o O‘;ju = (1= DYENY: = Vil Va1 (47)
< kf%— 29 (VEIYEENY 12+ \ B 2B - 112])
“em = k kt+k—1-j kt kt+k—1—jllc
S ' 0
<Y =P om=0(am1t (1-3)") €0,

o

Jj=

where (i) holds by equation (42).
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The T15 Term: Finally, we turn to Ti5:

k—1
! « (¢ ! * a / *
— Bl - Yl T X (TO 5+ = T 5 ¥essmy +09) ]
j=0

k—1
ary
< L SR — Vbl Vg1 — il
cm JZO

By equation (38), we obtain

Yierh-1-5 = Yielle

k— 1]
— &7 * *
== =0V [ 3 0 (T im0 TO) i) e

Therefore, we obtain

k—1

ay O 1

Tis <o Y (Y = ¥l (1= )77 = DY) (T151)
cm j—O

k— 1 ]
v — « / * *
0 ZEHYt Vil D (T s 409 - TO)) 1 (T

k—1—j

ory « «
Z]E I1Ye — Yk"”m”\/; Z (1*E)l lw;ct+k-—1—j—l||c]~ (Tis3)
j =1

We analyze three terms 1151, 1152, T153 separately. Note that

k—1 k—1 .
avyu « o (4)
Tisy < S BV = Vil [ Vil (1= (1= 2717 <0(1) - £ 37((1= )17 = 1) € 0(a?),
cm co() j=0 j=0

where (i) holds by equation (42). For Ty52, we have

k—1k—1—j
(0% (6% * %
Tia < 550 S0 BV~ Vil 50— D7 (70 5 ¥ssa 460 = 70)) 1

j: =1
a'y k—1k—1— Ja
S Z E llEth YkIthHYkIkal*j*lHC}
cm =0 =1
o k—1k—1— ]O(
<7 > = EINRIENY eI+ SEOVEIR BN 2D
=0 1=1
™ €0(1)
ag k—1k—1—j a?
<01+ (1—E)l1<0() 2 k€ 0(a).
7j=0 I=1
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Lastly, we have

k—1—j

k—1
i oy @ XN
Tiss = 17— > ElY: = Vil Elly /= D2 (0= )" whesnajille]
M =0 =1

(ii) % k—1 k—1—j
o) — E[| Z wkt+k 1—j— ill2]
k2
j=0 =1
Oé% k—1 k—1—j
<0@1) — E[| Z 1_* Wi —j— 3]
k2 £ —
7=0 =1
3 k=1 |k—1—j 3 k—1
az (iii) az 3
<O01) > - <00 S5y Vik—1-j€0(d),
k2 “ k2 “
3=0 =1 j=0
where (i) holds because Y; and Y, are independent with wgﬂ_k_l_j_l forj=0,...,k—landl=1,..

(ii) follows as E[||Y; — Y}, ||m] € O(1), and (iii) holds because Z;:é VE—T1—j e 0k?).
Putting the bounds of Ti51, T152 and Ti53 together, we obtain Ty € (’)(a%).
Finally, combining our bounds for T7; ~ T}5, we have

E[T] < 2ayUem

E[My(Y: = Yi)] + o(),

lcm

thereby completing the proof of Lemma 4.

C.1.2 Proof of Lemma 5 on 715

By Cauchy Schwarz inequality, we obtain
B{T) <5-BI(1 - = (1 - DYl
+ S BlIVa (T(VaY; +7) - T(vavi, + ) I3
E[lva (Twm #0%) = T0%) ~ Vi (T 3+ 0) =0 ) ) 1]

5

o

+oE |\f Zl— =290 (T Py + 09 - TO) + b, ) 1B
|\f ( (VL4 0) - T ¥, +09) 1)

Below, we bound T5; ~ Ts5 separately.

The T5; Term: We begin with T5;:

T < o (1-a= (1= DF) BIVLIE < o (1-a— (1)) - 00) € 0(a),

where (i) holds by equation (42).

The T55 Term: For T5y, we have

5
T < 5o B (IT(VaY:+0%) = T(VaY(, +07) ]

5a2u
< l—;’”E[Mnm - Vi)
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The Tp; Term: Using the bound (44) € o(a) and the equivalence of all norms in R?, we obtain that
Tos € 0(0&2).

The T34 Term: By Cauchy—Schwarz inequality, we obtain

Ty < ||\f Zl— @ (ﬂ\/fy,;m1j+9*>—”r<0*>)||31
\le— g ]

57 a? 5a
< B Y1 — (1= 2902+ ZEH (1= (= 2Pk o 3]
Jj=0 g =0
57 o2kl
S0, ZEH (1—(1- ))th+k 1— J” ZEH 1—(1- ))wkt+k 1— j”]
Do) + o). 23 P < 0@ s )€ 0@?)
< kz_:o k;} a?),

where (i) holds because 25;3 E[|(1 = (1 = $))) Y s_1,l2]€ O(k), and (ii) holds by equation (42).

The Tb5 Term: For Tbs, we have

T < OB ||f ( (240 = T B+ 0 ) 1B

o2kl
<o ZEHYM Yipro1- ]||]€0( %),
7=0
where the last step holds because Z?;é E[[Yy, — Vi1 jl21€ Ok).
Combining pieces, we conclude that
5a%u

cm’Y
S EIM, (Y, — )]+ ofo),

A

15

which completes the proof of Lemma 5

C.2 Step 2: General Stepsize

In this subsection, we aim to prove that there exists an g such that £(Y(®) is continuous in o when
a € (0,ap) with respect to Wa. Let us consider two stepsizes « > 0 and «’ > 0. For simplicity, we will let
{Y:}1>0 and {Y{ }:>0 denote the sequence associated with stepsize « and o, respectively. We couple the two
sequences {Y; };>0 and {Y} };>0 by letting them share the same noise {w; };>o :

Yipr = (1 - a)Y; + Va(T(/aY, +0%) = T(07) + ),
Y/ = (1 - )Y +Va/ (T(Va'Y] +0%) = T(0%) +wj).
Then, we obtain
Vit — Y/ = (1= a)(Y = V) + Va(T(Va'Y +67) - T(Va'Y{ +67))
+Va(T(VaY; +6%) = T(Va'Y; +6%))

+ (Va — Va)(T(ValY, + %) = T(0%)) + (Va — Vo',
— (- a)(¥; - Y)) + A
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Applying the generalized Moreau envelope M, (-) defined in equation (21) to both side of above equation
and by property (1) in Proposition 5, we obtain

E[M, (Y1 = Vi) < (1= @)’E[M,(Y; = Y))] + (1 — a) E(VM(Y; — /), A) + (1/(20))E|| AJ|3 -

T1 T2

Below we separately bound the 77 and T, terms.

Bounding the T3 Term: By property (4) in Proposition 5 and wj being i.i.d zero mean noise and
independent with Y; and Y/, we obtain

Ty <VaE(|[Y: = Y [ml T(Va'Y: +6%) = T(Va'Y/ +6%)|m] (Th1)
+ VaE[|[Y; = Y/l T(VaY, + 6%) = T(Va'Y; +6%) ] (Tha)
+ (Va = VaE[|Y, = Y/l T (VY] +67) = T(67)||m]. (Ths)

Let 0 = |a — a/| < min((-L

i Da, a) Below, we bound Ty ~ T3 separately, beginning with T}1:

T < Z\/aE[IIYt ~ Yl T(VY; +6%) = T(Va'Y] + 6]

2Va ucm’VE

lC7fL

’L
<

(M, (Y; — Y))] < 2Vaa/ \AEIM,(Y; — Y{)] < 2097 E[M,(Y; — Y{)],

where (i) holds because we can always choose a proper 7 such that 7<= \% We next have

lem

(@] o — \/aucm
Ty < YOWO o VOlltenY gy vy 1y

lcm

60(\/a|f*‘/&|> Eo(ffff> O(minszx’);»

where we use E[||Y; — Y/||m||Yillm]€ O(1). Similarly, we have

\/>|\/a - f‘ucm’y]E

cm

60(\/&|\f—\/a|>60<\/676)§> eo(mm\/&é),

T [”Y;t _YtIHmHYtIHm]

min(a, o'): in(o, a’)?
where the last inequality holds because § < min(( \% Da, 1a).
Bounding the 75 Term: We next have
7, < CB|(TW@Yi +0) - V@Y, + )3 (Ts1)
+ ZUB|(T(VaYi+ 0) - T/aY, +07) (T22)
“—mEn( TWarY{ +0%) ~ T(0") ()
+ “;mramw;n%}. (T2)
Below, we bound T5; ~ Ts, separately. We begin with
daa/v2u? 602202

T < l2 SE|(T(VaY, +6%) = T(Va'Y] +69)[2 < 2 SER[M, (Ve = Y/)] < TmE[Mn(Yt Y/,
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where the last inequality holds because § < min((% - Da, %a). The next three terms satisfy

Ths eo(a(\ﬁ—\/(?)?) €0 ((ﬁiyﬁ’)?) co (Hm)

, 5 a's? ad?
ngEO(a(\f—\/a’)>€O — e O — ).
min(a, o) min(a, o)
52
T —_ .
2 €0 <min(a,a’))
Combining the above bounds for T} and 75 and using the fact that there exist an aq such that 0 <

(1 —2(1 — y¥)ag + (’)(oz%)) < 1, we see that for any a < ag, there exist t, such that for any ¢t > t,, we
obtain

B (i = i) (1= 20 =)+ O(®) B, = ¥)))+ 0 (20}

Then, we obtain

lim E[M,(Y; — /)] € O <mm(5> .

t—o0 a, o/)
Hence,
Wa (£(v @), £(v@)) < lim Wy (£(V), £(Y)) + Wa (£(Y), £07)) + Wa (£(¥), £(r))
Vs

min(a, o)z

< Jim B[V — V[ < Jim \/2u2, M, (Y, - Y})] <

)

where c is a universal constant that is independent with «, a/.
Then, given a > 0, for Ve > 0, we can choose a sufficient small §. such that

L(sflge and 0<§6<min<(1_1>a71a>.
(a—6.)2 NG )

Then, when o is selected with |a — o/| < §., we obtain
Wy (L(Y @), £(Y())) <e.

Therefore, we complete the proof of continuity of £(Y(®)) with respect to Ws.
Recall that
lim Wy (LY (@), L(Y)) =0.
pim W (LYT), LY))
Thus, for Ve > 0, there exist § > 0, such that for all rational o < &, W (L(Y(®)), L(Y)) < £.
Given arbitrary real number r such that 0 < r < &, there exist ¢(r) € Q such that |r — g(r)| <
Wo(L£(Y™), £(Y@))) < £ by Section C.2. Then,

[

5 and

Wa (LY, L(Y)) < Wa (LY, L(YUTD)) 4 Wy (LY 90D), L(Y)) <,

where the second inequality holds because ¢(r) < g + % = J. We conclude that there exist a unique limit
L(Y) such that

lim Wo (L(Y(™), £(Y)) = 0.

a—0

This completes the second step of the proof of Theorem 2.
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C.3 Step 2.5: Convergence Rate under Gaussian Noise

By triangle inequality, we obtain the desired convergence rate:
Wa (L), £(V)) < Wa (LX), £0r@/D)) + W (L(v©/M), £(v))
< o(1) + Wa (LY /), £(v)) (48)

< lim o(1) + Wy (.c(y<a/k>),c(Y)) € o(1).

k—o0

C.4 Step 3: General Noise

By Section C.1, C.2 and C.3, we prove that under the noise with Gaussian distribution, there exist a unique
random variable Y such that Y(® converge to Y with respect to Ws. In this subsection, we aim to prove
that under general i.i.d zero mean noise with the same variance, the convergence result still holds and the
limit is still Y.

Fix the stepsize a > 0. We consider two sequences {Yt(a)}tzo and {Yt’(u)}tzo, where {Yt(a)}tzo is associated
with general noise {w;};>0, and {Y/ (o‘)}tzo is associated with Gaussian distributed noise {wj}};>o9. When the
context is clear, we drop the supperscript () for the ease of exposition. We will couple {Y;}¢>0 and {Y} }+>0

as follows:

Yipr = (1 — @)Y+ Va (T(VaY, +0%) = T(0°) + w),

Y/ =1 - )Y + Vo (T(VaY, +6") = T(0") +wy)
where w;, w} have zero mean and the same variance. Here w; and wj} are not necessarily independent of each
other, and we assume that w; has finite fourth moment. The specific coupling between {w;};>0 and {w; }1>0

will be specified later.
1
Let k = [~ 2 |. Direct calculation gives

Ynt-{-n :(1 - O‘)K wt + \/&H(T(\/&Ymg + 9*) - T(e*))

VY (T(VaYuin +07) = T(VaYe +0)

(49)

VS (1= @l = 1) (T(VaYusnss +67) = TO) + vVa > (1 - af  wain.

j=1 Jj=1
and

Yf;t-{-n =(1 — @)Y}, + Var(T (VaY,, +6%) = T(6))
+ \/az (T(\/anf’,t-‘rﬁ—j +0%) = T(VaY,, + 9*))
+Va) (1= ' =) (T(VaYy ey +07) = TO)) +vVad (1 —a) w, ;.

j=1 j=1
Taking the difference of the last two equations, we get

Yitin — Y;«CHK =(1—a)"(Yat — Y;;t) + \/a“(T(\/aYnt +6%) - T(\/ayrit +0%))

+Va Z (T(VaYurin—j +0%) = T(VaYt +0%) = T(VaYyy o +0°) + T(VaY], +6%))

j=1
FVaY (1= P = 1) (T(VaYarnm +0%) = T(VaVy sy +6%)
j=1
N \/aZ(wntJrn—j B w’l“*“*j) + \/52((1 —a) 7 - D(Wetgr—j — w:{tJrli*j)
j=1 j=1

== ) (Vi = Yi,) + A,
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where we collect in A all but the first term on the RHS. Applying the generalized Moreau envelope M, (-)
defined in equation (21) to both side of above equation and by property (1) in Proposition 5, we obtain

1
E[M (Yirin = Yipn)] < (1= @) E[M (Vg = Vi)l + (1= )" E(VM (Yo — V), A) +5-E| All3.
N ~~——

T1 T>

(50)

The following lemmas, proved in Sections C.4.1 and C.4.2 to follow, control the 77 and 75 terms above.

Lemma 6. Under the setting of Theorem 2, we have
E[T}] < 20k /AE[M, (Y — Y1) + O(a?k?).

Lemma 7. Under the setting of Theorem 2 and some proper couplings between {w;}i>0 and {w;}i>0, we
have
10a2k2y2u?

E[T3] < SEE[My (Yir — Vi)l + O(a).

- 2
lcs

Plugging the above bounds for 77 and 7% into equation (50), there exist an «yg such that for any a < ay,
there exist ¢, such that for any t > ¢, we obtain

10a?K2y2u2,,
T EIM, (Y — V)] + O(a)

< (1= (1= y7)ar) E[M, (Y, — Y1) + O(a).

E[My (Vtin = Yigen)) < (1= )" +2aky/5 +

Therefore, we obtain )
lim E[M, (Y. —Y,.,)] € O(a?).

t—o0

By triangle inequality, we have

W (L(Y(®), £(v"™)) < Jim W (L(Y (), £(Yar)) + Wa (L(YVt), L(VL0)) + Wa (£YL), LY"™y)

< lim VE[[Ya = Y12 < lim /202, E[M (Ve - V)] € O(a?).
—00

Therefore, by equation (48), we obtain

Wy (L(Y@), (V) < W (L), L)) + Wa (L"), L(Y)) € o(1),

which implies
lim W (L(Y©), L(Y)) = 0.

This completes the last step of the proof of Theorem 2. We have proved Theorem 2.

C.4.1 Proof of Lemma 6 on T}

By property (4) in Proposition 5 and wy4x—; and wy, . j being zero mean noise and independent with Y

and Y,, we obtain

Ty <E[[[Vie = Yiillw[Var(T (VaYe +0%) = T (VoY +07))|m] (Th1)
+ E[[|Yier — Vgl H\fz (VaYirpn—j +07) = T(VaYur +07)) [lm] (Th2)
E[|Yee — tllmH\fZ Vipwoy +07) = T(VaYy, +0%)) ] (Ths)

E[llYe: - YétllmH\/aZ((l —a) T = 1) (T(VaYtsn—j +07) = T(VaYy i +07)) lm]- - (Tha)
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Below, we bound terms 777 ~ T4 separately.

< li«E[Mn(Ym =Y < 2arAE[M,(Yee — Vi),

where the last inequality holds because we can always choose a proper n such that 76”" < =

S

a K
Tiz < 70 Y ElYat = Yol Vit nmg = Yae o]
cm j:]-

By equation (49), we obtain

1Yittr—j = Yicelle
K
:H((l — )" — 1) Y + \/EZ(I — )T (T (VaYsr—jot + 0%) = T(07) + Wt n—j—1) HC
=1

Therefore, we obtain

’y K—1
Ths < ZE Vet = Vgl [l (1 = )™ = 1)¥oet ]

(,nL ;
=1

1 Bl = Vil Va Z (T(VaYatnmjot +0) = T(0)) |

ay
+ 7 D B[V — tIImHWZ (1= @) Mt nmyoill:
cm]zl

Observe that

=

AYUem

Ti91 < E[||Yi: — Yét”m”Ynt”m Z (1—a)" J)

l
cm j:1

<OM)-a) (1-(1-a)f ) <01)-(ar—1+ (1 —a)F)
j=1
< 0(1) - (s~ 1+(1- 22y € 0(a??),
where (i) holds by equation (43). We also have

K K—J

Tia < 7 3D B = Vil V(= ) T (Tt +67) = T()) |1
j 11l=1

K

—j
<7 ZZ ) T El[Yt — Yyl | Vel
0?42 S J -
S ZZ ].—OZ \/E ||Yﬁt||2] [HYI{tJrH Jj— l|| +\/E | t” ] [”YKt“rH*jleg])
j=11=1
) 5 )
<0 QQZZ l—ozl L<0()-a?k? € 0(a?k?),
j=11=1
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where (i) follows as E[|Y/]|2,] € O(1) and E[||Y/||2,] € O(1) for all ¢ > 0. Lastly, for term Tja3, we have

M o\
Tho3 = ] Z]E[”Ynt — YilmlE ||\/>Z (1 =)' wrn—jille]

11)

K —j
ot ZE Z 1—a R i—tll2]

K—

ab Z n E[Y (1 — o) wery i3]

=1

<.

K= ]

SO(l)ugZ a)2-2 < 01 Z\/i(m) a%m%,

j=1 z=1 j=1

where (i) holds because Y,,; and Y, are independent with wy4,—j—, (i) follows as E[||Yi.: — Y./, |lm] € O(1),
and (iii) holds because Zj:l Vi —j€ O(k?).

Combining the bound of Tj21, 7122 and Ti23 together, we obtain 115 € O(a%n%). Similarly, we have
Tis € O(Oé%:‘i%). For T4, we have

K

« i
I > (1= = DE[|Yie = Vil Yoetsng = Yiesn—jlle]
27 ]:1

az 1—( <o) -(1—ak—(1-a)) cO(®k?),

Ty <

where in (i) we use E[|Yir — Y., [l [[Yit4n—j — Yiepnejllc]€ O(1).
Combining the bound for T1; ~ T4 together, we obtain

Ty < 20k\AE[M,(Ye — Y,,)] + O

thereby completing the proof of Lemma 6.

3 3
2 K2

),

K

C.4.2 Proof of Lemma 7 on T5

Ty <5ar’E[[|T(VaYe + 6%) — T(VaY,, +6%)||3] (T21)

+ SaE| Z (VaYutrpn—j +0%) = T(VaYu +07) = T(VaYy o +0) + T(VaY, +6%)) 3]

(T22)

+5aR[| Y (1= )™ = 1) (T(Va¥arin—j +0°) = T(VaYy . +609) [13] (T»3)
j=1

+50R[| Y (wrrsn—j — Wy ;)13] (To4)
j=1

+5aR[| Y (1= )™ = D) (werrn—j — Wy ;)I3]- (Tos)
j=1

Below, we bound T51 ~ Tss separately. For Th;:

502 K2~2 1002 Kk2~y2u?
Tar < =Bl = Vi) € = 2By (Ve = V)
cs
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Next, for Too, we have

Tys < 5ak » B[ (T(VaYrin—j +07) = T(VaYie +0%) = T(VaYyp oy +07) + T(VaY/, +67)) ||3]

j=1
1002 kY2 &
S D EllYtrn—y = Yl 2] + E[[Vieimy — Yiel2]) € O(0s).

Ccs

j=1

Continuing, we have

Tos < 5ar Yy E[I((1— o)™ = 1) (T(VaYrrn—j +0°) = T(VQY iy +607)) |13]

j=1

100292k & .
< =5 DUEN( = )™ = 1) (Yaernms = Yogw ) I

cs ]:1

< O(a®k) - Z((l — o)’ —1) € O(a®K?).

j=1

Lastly, we have
1 « 1
Ty = barE[|| —= Z Wrt+r—j = /= Z w;t—i—a—j)”%]'
Ve =t

We restate Theorem 1 in [Bon20] in the following lemma.

Lemma 8 (Theorem 1 in [Bon20]). Let X1, ..., X, be n i.i.d random variables taking values in R? with zero
mean and identity variance matriz. Let v be the d-dimensional standard Gaussian measure and X,..., X} ben
i.i.d random variables distributed as v. Assume that E[|| X1]|3] < co. Let S, = % and S, = %

Then, we have

Wa,2(L(Sn), £(S,)) = W22 (L£(Sn), v) € O(—=),

1
Vn
where Wa o denotes the Wasserstein distances of order 2 with {2-norm.

We can always choose a coupling between w; and w; such that

E[Hﬁ ; Wntr—i = 7= ; Wiy yr—i)llz = Wz,z(ﬁ(ﬁ ; Wt tr—j), ﬁ(ﬁ ; Wit rej))-

Let C = E[w;wT]. Because C is positive semidefinite, by [HJ12, Theorem 7.2.6], there always exists a
symmetric matrix C% such that C = C3C'%. Then, by Lemma 8, we obtain

1< 1 O
Toy = 5omW22’2(£(ﬁ ;wnwnﬁ')»ﬁ(ﬁ ;w;tJm—j))
1 < 1<
= 5ak - inf E[Hﬁ Z Wrttr—7 — 7R Z w;t+n—j)”%
j=1 J=1
J N 1 o1
. 1 1 2
= Sak - inf E[nﬁ;c% - ﬁ;m)@)\\z

1 1 & 1 <&
<5akl|Cz|)5-inf [E]|—= Y X, —— > X3
13 [|\/E; ; fg Pl
= bak||CF|3W3,(L(S.), L(SL)) € O(a).
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where all the infimums are took by considering all the joint distributions with the same marginal distribution.

Tys = 5y _E[I((1~ @)™ = 1)(warrn—j — Wiy s3]
j=1

K K

<0()- Y (1-a) ' =12 <0(a)- Y (1—a)™' = 1) € O(a®s?).

Jj=1 Jj=1
Recall that x = a2 |, we obtain

1002 K2y2u?

T; < cmE[Mn(Ynt - Y;«Ct)] +O(a),

- 2
lcs

thereby completing the proof of Lemma 7

D Proof of Theorem 3
By equation (37) and Theorem 1, we obtain the following equation in distribution:
v L (1 a)y® 4 va (T(Vay® + ) - T(") + ).

After taking expectation to both sides of the above equation, we obtain
1
E[Y @] =—E v 9%y — T(0
Y] = =BT (VaY® +7) = T(0")

= EE[(T(\/&Y“‘) +07) = T(67) 1ty ¢ B0, €))]

¥ (51)

+ %E[(T(\/&Y(a) +6%) = T(6*)L(a3Y® € BY(0,¢))].

T>

By Cauchy—Schwarz inequality, we obtain

ITh]le < %E[IIT(\/EY(Q) +0%) =T (O L(aTY @ ¢ B0, ¢))]

< = VEIT(WaY© +0) (02 Bled Y ¢ B0.0)

< /EIY @2y /Pat Y@ ¢ Bi(0,6))

€2
SWE[IIY(“)3]\/IP’(Y(“)||§2 =)
o VaE[ Y3 @
SYWEIY@IEN —z— € Ola?)

where (i) holds because the equivalence of all norms in R?, Fatou’s lemma [Durl9, Exercise 3.2.4] and
Corollary 1(1). Therefore, we obtain lim,_,o 77 = 0.

Below, we discuss two cases.

Case 1: If g(-) is smooth, because F(-) is also smooth, we conclude that 7(-) is smooth in B%(6*,¢€) by

R

N
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chain rule. Therefore, we obtain

Ty =%E[(T(\/5Y(a) +6%) = T(0")1(aiY® e BY0,¢))]
=E[VT (Aav/aY @ + )Y (@1 (aiY(® e BY0,¢))]
=E[(VT AavaY @ +6%) — VT(0")) Y D 1(aiY® € BY0,¢))]
To1
— VT (0"E[Y @D 1(aiY @ ¢ BY0,€)] +VT(6*)E[Y ).

Tao

By Cauchy—Schwarz inequality, we obtain
[ To1]le < E[[(VT (Aav/aY @ +6%) — VT (0)1L(atY @ € B0, ))|./[Y @]
< VEI(VTOavaY @ +6°) — V(%)L (at V(@) € B(0,)[2] /B[y )]2)

€o(1) €o(1)

€ o(1),

where (i) holds because T (+) is smooth in B%(6*,€).

ITo2lle < VTl \/ELY @ 2] /Bat Y@ ¢ Bi(0,0)) € O(ak).

€0@) €0(at)

Therefore, we obtain
lim Tgl = lim T22 =0.
a—0 a—0

Taking oo — 0 to both sides of equation (51), we obtain

E[Y] = VT (0")E[Y].

IfE[Y]#0,let y =E[Y],y #0. Let 4., = =1L, where ¢; < 1. Then, we have 3., € B%(0,¢). Therefore,

[yll2’
we obtain !
[T (e, +0%) =T O =[IVT (Agey +0%)Ye, [l
> VT (0 )Fer lle = (VT (AGe, +0%) = VT (0%))Ye, ||
> G le = (VT (Age, +67) = VT(O0) el Te, -

By the smoothness of 7(+) in BY(0*,€), we can always have an efficiently small ¢; such that
1T (@er +67) = TO)lle > VlIFex lles

which contradicts with the fact that 7(-) is a contraction.
Therefore, we know y = 0 and E[Y] = 0.
Case 2: If ¢(-) is not smooth, by equation (51), we obtain

B[Y] = lim %E[(Twy@ +60%) — TO) LY@ € BY0,0))

. F(yaY®) o 1o
:C{%E[Q(T)l(am )€ BY0,¢))]
= lim Elg(VF(AaY @)Y @) 1(aiY(® e BY(0,¢))]
= lim E[(g(VF(\WaY @)Y(©) — g(VFO)Y@))1(aiY ) € BY0,¢))]

+ lim Elg(VF(0)Y N1 (aiY(® e BY0,¢))].
a—r
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For the first term, we have

lim |[E[(g(VF(WaY @)y (@) g(VF()Y))1(ay® e B0, €))]]

lim [El(g(VEOWAY @)Ly _ (VR0 )10ty @ e BU(0,0)|Y ]|

= lim aY '@ — —_ atY'\ e ,€ @ ¢

amp 109 [y, 7 Y, ?

Y@ Y@ }

< lim | [E|g(VFOWaY @) 20y (VR0 ) 1(atv® e B0, )2 y/EIY @3

i TGP TGP VEIV©I
€0(1)

€o(1)

=0.

Therefore, we have .
E[Y] = lim E[g(VF(0)Y ()1 (a1Y® e BY(0,¢))].

a—0

lim E[g(VE(0)Y©)1(atY® ¢ B(0,6))]

y (@)

= lim E[g(VF(0) Y @ 21(atY @) ¢ BY0,€)]
a—0 ||Y(0‘)||2
0) )
- (@) ly(a) ¢ gd
Sozﬁﬁglg(VF(O)H)gg%E[llY [2L(2Y'* ¢ BY(0,€))]

i (a)]|2 1Y (@) d =
<, max g(VF(0)0) lim \E[Y @3] y/Pla}Y© ¢ B(0.0)) =0.

€o) €o(at)
Therefore, we obtain
E[Y] = lim Elg(VF(0)Y N1 (aiY® e B4(0,¢))
a—
+ lim E[g(VF(0)Y N 1(aiY® ¢ BY0,¢))]
a—
— L (a)
= lim Elg(VF(0)Y )]
By [Durl9, Exercise 3.2.5], we obtain
E[Y] =E[g(VF(0)Y)].

If VF(0) = 0, we obtain E[Y] = 0.

Now suppose that VF(0) # 0. Let h(Y) := g(VF(0)Y). If there exists ¢ € [d] such that the subdifferential
or supdifferential of h;(-) at 0 is not singleton. Without loss of generality, the subdifferential of hq(-) at 0 is
not singleton. Then, there exists z;, zo € R? such that

hl(Y) = hZ<Y) - hZ(O) Z ZJTK ] == 172.
If E[Y] =0, then E[A(Y)] = 0. Therefore, we have
Eh(Y)-2Y]=0, j=1,2

Because hi(Y) — z;er = 0 are always nonnegative for j = 1,2. We have hy(Y) — ijY = 0 almost surely
for j = 1,2. Therefore, we have 2] Y = 2I'Y almost surely. Let ( = z; — 2, and we obtain ¢(TY = 0 almost

surely, which implies
E[(¢"Y)%] = 0. (52)

By equation (37) and Theorem 1, we obtain the following equation in distribution.

Y = (1= )Ty 4+ vacT (T(VaY©@ +6%) = T(0%) +w).
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Taking second moment to both sides of the above equation, we obtain
E[(CTY )] =(1 - o)E[(CTY )] + 2/a(l — BTY @ - (T (T(Vay® +6%) - T(6"))]
+aB[(CT (T(Vay® +6%) = T(6) + w) 2]

By simultaneously subtracting (1 — a)?E[(¢TY(®))?] and dividing a to both sides of the above equation,
we obtain

2= WEI(GTY ) =2 BTy @ T (T(vaY ) 1 ) - T(0")

T

+E[CT (T(/aY© +0%) = T(6") + w))?

2(1 — Oé) « (e} * *
== ECY @ (T (T(VaY 4 7) - T(0"))
T>
+E[(CT (T(/ay® +6%) = 7(6%)))2) + E[((Tw)?].
Ty

T3

By equation (52) and Theorem 2, we obtain lim,_,o 77 = 0. By Cauchy—Schwarz inequality, we can bound
T5 and T3 as follows

ti 7 <t 2 BTy @ ) BT (T(VaY @)+ 6) — T6))

< lim (/E(CTY @)2] \/E[¢[2[Y@|2] = 0.

€o(1) €0o(1)

: < 2 (a) 2 — .
tim 74 < o E[IG21Y 2] = 0
€o(1)
Because Var(w) is positive definite, we obtain

Ty = ¢T Var(w)¢ > 0.

However, we have T, = 0 by letting o — 0, which contradicts with the fact that T, > 0. Therefore, we
have E[Y] # 0.

E Proof of Proposition 2

We first present the following lemma, whose proof is given at the end of this subsection

Lemma 9. Consider iterates {q }+>0 generated by equation (10). For integer n > 1, under assumption 4(n),
there exists 1), ap, such that for any o < o, there exist t, , such that

E[M] (g — ¢")] < E[M;(qu,,,, — ¢*)](1 — a1l = \/30))" " + cpa”

holds for all t > t, ,, where M,(x) is constructed by equation (21) and {c,},>1 are constants that are
independent with o and t. Moreover, to,1 = 0.

Then, by the property (3) in Proposition 5, we complete the proof of Proposition 2
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E.1 Proof of Lemma 9

We use the induction to give the proof of Lemma 9
Base Case: n = 1.
By subtracting ¢* to both side of equation (10), we obtain

1 — ¢ =1 —a)(q — q") +a(yDi P, f(q¢) + (I — Dy)gi + Dyry — q)

Q01— a)g—q*) + a(’T(qt) —T(q") +7(DeP; — DP) f(q:) + (D — Dy)gs + (Dyry — DF)) (53)

2 (1- )@ —a") +a(T(a) = T(a") + Acf (@) + Buai + G,
where (i) holds by yDP f(¢*) + Dr = Dg* and denoting

T(q) :==vDPf(q) + (I — D)qg, (54)

and (ii) holds by denoting A; = vD,P, —yDP, By = D — D; and Cy = Dyry — Dr, thereby {(A, Bi, Ct) }i>o0
are i.i.d. zero mean random variables and (Ay, B, C;) is independent with ¢;. By [CMZ23, Proposition 3.3],
we obtain that 7 (-) is a yg-contraction with respect to || - ||, where v9 =1 — (1 — ) min;esx .4 Di;-

Applying the generalized Moreau envelope M, (-) defined in equation (21) to both sides of equation (53)
and by property (1) in Proposition 5, we obtain

My(qii1 — ¢) <(1 = a)*My(q — ¢*) + (1 — )V My (g0 — ), T (@) — T(q") + A f (@) + Begr + Ci)

T

2
+ ;inwmqt) — T(q") + A f(qr) + Buar + Cill2.

T

For T} we have
h=(1-a)a (<VMn(Qt =q"),T(qt) — T(q")) +(VMy(q: — q7), Aef(qt) + Bigr + Cy))

< (I =a)a(llgr = ¢ lmlIT () = T(g)lm + (VMy(g: — %), At f(gr) + Bigr + Ct))

(i) (1 — o)
A= 0)0%0) ¥ lmllge — a* e + (1 — ) (V M, (g1 — 4°), Aef(e) + Bege + Co)

lC’HL

(2) 20(1 — O‘)'Youcm

M, (g —q") + (1 — a)a(VM,(q: — q"), Acf(q:) + Begr + C),

lcm

where (i) follows from property (4) of Proposition 5, (ii) follows from property (3) of Proposition 5 and
~o-contraction of 7T (-), and (iii) follows from property (2) of Proposition 5. For Ty we have

2
a
T < 2777”7—(%) — T(q") + Acf(a) + Bear + G2

2
< n% (17 (ae) = T2 + | Acf (ar) + Bigs + Cil|?)

2&2’)/02’&57” * CVQHAtf(qt) + tht + Ct”z
TMU(% —q")+ e :

Combining the bound for T3, T5, we obtain

* -« YoUcm 272u3m *
M,(gi41 —¢") < (1—2a(1—( l) 0 )+a2(1+7;7)12 ) ) My (g — q")
cm g

+ (1 = a)a(VM,(q: — %), A f(q) + Begs + Cy) + O(a2)||Atf(Qt) + Bigr + Ct||3~
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Recall that o= = 11121;5 by property (3) in Proposition 5. We can always choose a sufficient small
)

—2a(1 = (1 = a)y7) < —2a(1 — \/70).
Furthermore, there always exists g > 0 such that (1 —2a(1 — /o) + (1 + %)) <1-3a(l—y7) <1
when a < ag. Therefore, for Va < ag and ¢ > 0, we obtain

n > 0 such that “Cm < f’ which implies —2a(1 — (A=a)youem

lem

M (Qt+1 -q") < (1 - %0@(1 - \/>)) Mn(Qt —q¢")+ (1 - a)oz(VMn(qt —q%), A f(qr) + Brgs + Cy)

+ O(0?)|| A f(qr) + Beagr + Ci|2.

(55)

Taking expectation to equation (55), there exist ay < g such that for Vo < a1, we obtain
E[My(gi+1 — q")]
< (1 - ga(l - \/70)) E[M, (¢ — q")]
+ O()E[|Ae(f(q:) — (") + Bila: — ¢°) + Acf(q") + Beg™ + Ci||2]

%) (1 — goz(l —v7) + (9((12)) E[M,(q: — ¢")] + O(a?)
< (1 - a1 - VAo EMy (4 - ¢")] + O(a .
<(1—a(l = %) E[M,(g0 — q) +Z 1-a(l-m))" 0(a?)

<(1—a(l— 7)) T E[M,(q0 — ¢")] + o<a>,

where (i) holds because the second moment of (A, By, Cy) is finite and there exist o such that (ii) holds for
Va < oj.

Induction Step: Given positive integer k > 2, assume Proposition 2 holds for all n < &k — 1. When
n =k, we let

T, = <1 - ga(l - \/70)> My (g —q%)

Ty = (1= a)a(VMy(q — q"), Arf(qt) + Bigr + Cy)
Ts = O(a?)|| A f (ar) + Bae + Ce|2-

Take k-th moment to both sides of equation (55) and we obtain

Bl Y QOGRS
a+b+c=k,c>1

a

E[M,]f(fhﬂ —-¢")]<E [(Tl + Ty + T3)k} ) l Z (k) (k;a)TlaTQb
a+b=k

Sl 52
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For S; we have
3 k
$1<(1- 5ol = vA0)) EDM(a - g)]
+E| Y (0" M e~ a)llae — 1A (a0) + Buage + Gl

a
a+b=k,b>2

+E[ Y 0@)ME (g — q7) + O My (g — g7)]

a+b=Fk,b>2
k
3 . % a+£ «
<((1=Sa0 = VA + > 0@ )EME @ - +E[ > 0@)My - a)]
b=2 a+b=Fk,b>2
k
3 *
<((1=Falt = Vi)t + Y- 0" B (g — ")
b=2
att . at? .
Y B0 -+ Y E[0)M e - q)
a+b=k,b>2,b is even a+b=k,b>3,b is odd
3 *
<((1= St = v3)* +0(a?) B (g — 4°)]
at?l %
+ Y OEEME @)
a+b=k,b>2,b is even
€00t 8), atb<k—1
a4t * a+%52 *
+ > O(a”) E{Mf > (¢t —q )} E[Mn+ > (¢t —q )}
a+b=k,b>3,b is odd
€O ) rat L <1 €o(a T

21~ Batt - v + 0Bl @ 0" + O,

where (i) holds by induction and taking t to be sufficiently large and o < min(av, ..., aK_1)-
For S; we have

Sp<E[ Y 0@"*) My g — ¢ Auf @) + Buan + Cul[2]

a+b+c=k,c>1
at+t *
< Y OEMMEMia -+ Y 0@ EM g - q)
a+b+c=k,c>1 a+b+c=k,c>1,b is even
€O(aa+%),','a+%§k71
c +541 * a+25t *
+ > O(a’*?) E[M»? (¢ —q )} E[Mn *(w—q )]

a+b+c=k,c>1,b is odd
b+1 b—1
€02 ), rat L <k—1 €0t 7))

COEME (¢ - ¢°)] + Ok ),

where (i) holds by induction and taking t to be sufficiently large and o < min(ay, ..., aK—1).
Combining the bound of Sy, Sy with equation (56), we obtain

* 3 * *
E[Mrlf(%H -q")] < <1 - 504(1 - \/%)) E[Mf;(fh —q")]+ O(OZQ)E[MZIC(% —¢")]+ O0(a").
Therefore, there exist ag < min(ay,...,ag—1) and for Ya < oy, there exist ¢, j such that

E[My (a0 — 4")) < E[M (qr,,,. — 07)](1 = a(l = y/70)" " + cpa®
holds for V¢ > t, , where ¢ is a constant that is independent with « and ¢.
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F Proof of Theorem 4

F.1 Unique Limit Distribution

We consider a pair of coupled , {qtm}tzo and {q?]}tzo, defined as

Qt[+]1 (1 - a)q[ ] + a(’YDtPtf( [ ]) + (I - Dt)qil] + Dtﬁ),

(2] (2] [2] [2] (57)
G = (1 —a)g + Oé(’YDtPtf( )+ —Dy)g;™ + Dt"'t)

Here {qF]}tZO and {q,?]}tzo are two iterates coupled by sharing {(Dy, Py, 7¢)}i>0. We assume that the
initial iterates q([)l} and q([f} may depend on each other.
Taking difference to equation (57), we obtain

ath = afl = 1= )@l = o)+ a(vDePr ") - @) + (1= D@ - o).

Applying the generalized Moreau envelope M, (-) defined in equation (21) to both sides of above equation
and by property (1) in Proposition 5, we obtain

My (al, — ) < (1= )My (gl - ¢
+a(l—a) (VM (g — g, 7D P(f(a") = F(ad™) + (T = D) (@ — ¢i))

2
o 1 2 1 1
+ 5y DR @) = F@™) + U = Do = )
Taking expectations to both sides of above equation, we obtain

E(M(q}; — )] < (1 - a)?E[M (¢ — ¢™)] + a(1 — )E(VM (" — ™), T(q") — T(g™))]
T

2
+ %EllthPt(f(qt[”) — 1@ + (T = D)(gM — 2.

T2

For T we have

(i)
71 < a(l - QE[|¢) = ¢ [l T (@) = T(@) )]

i) (1 — o)
< = 7—Ella" = ¢ Il T(a") = T (@)
a(l —a)y
< =——LEllg" - 7 Imllg” - ¢
cm
(ii)) 200(1 — )vou (iv)
< 2ol aNotam gy 0 o) < 20 oL (6 — o]

where (i) holds because of the property (4) of Proposition 5, (ii) and (iii) holds because of the property (2)

11173;;22 by property (3) in Proposition 5 and we can

and (3) of Proposition 5 and (iv)

always choose a sufficient small > 0 such that “ < f

It is easy to verify that f(-) is a non- expansmn Wlth respect to ||||., by Cauchy-Schwarz inequality and
the equivalence of all norms on RIS/l we obtain

a2

Ty < - CEIWDPS(a)") = F@™)IE + 281 = Do) = @))€ OB, (@) — 4]
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Combining the bound for T and Ty, there exists @ < «a; such that

E[M (g}, — ¢f1)] < (1 —2a(1 — 7) + O(@*)E[M (¢} — )]
< (1—a(l— yA)EM(@" - ¢,

for Vo < @'. Therefore, we have

W2 (E <qt[1]) L <qt[2]>) <E [qu] - qt[z] j (58)

< 202, [M(af! - )] < 262, B [M(al! - )] (1 - a1 = 0"

Therefore, W3 (L' (qil]) , L (q?})) decays geometrically. Similarly to the argument in Section B.1, we see that

the sequence {ﬁ(Qt[l])}tzo converges weakly to a unique limit distribution fi € Po(RISIIA!) that is independent

of the initial iterate distribution of q([)l].

Finally, we establish the following lemma to bound the second moment of the limit random vector ¢(®).

Lemma 10. Under Assumption 4, when a < &, we obtain
Ell¢) — ¢35 € O(a) and  E[|q"V|[5] € O1).

Proof for Lemma 10. We have shown that the sequence {¢ }:>0 converges weakly to ¢\ in Py (R‘SH“‘”). It
is well known that weak convergence in Py (RIS 1) is equivalent to convergence in distribution and the
convergence of the first two moments. As a result, we have

Ela - q*I2] = Jim E [lle: - ")12]. (59)

Taking t — oo on both sides of equation (12) in Proposition 2 with n = 1 and combining with equation (59)
yields

* 1 *
E[llg - ¢"|3] < 5-Ellld — ¢"[12] € O(a).

cs

Since 2| ¢*[|3€ O(1), it follows that

Elllq“1I3] < 2E(/lg - g7[[3) + 2ll¢" (I3 € O(1).

F.2 Invariance

Moreover, we will show that the unique limit distribution j is also a stationary distribution for the Markov
chain {¢;}+>0, as stated in the following lemma.

Lemma 11. Let {q:}+>0 and {q;}1>0 be two trajectories of iterates in equation (57), where L (qo) = fi and
L(g}) € P2(RISIAD s arbitrary. we have

W3 (L (a1), L(a1)) < pW3 (£ (q0) , £(a0)) ,

where the quantity p := 1;;—7”(1 —a(l — /7)) is independent of L(qy). In particular, for any t > 0, if we set
L(q0) = L(q), then ,
W3 (L (q1), L(gi1)) < pW3 (1, L(qr)) -

Proof of Lemma 11. We prove this lemma by coupling the two processes {q; };>0 and {q; };>0 such that

W3 (£ (g0) . £(a0)) = E [llgo — ao/IZ] -

o1



Since W5 is defined by infimum over all couplings, we have
W3 (L (q1), £(d1)) <E [l = a112]
< 2ug, E [My(q1 — )]
< 2uZ,, (1 = a(l = v70))E [My(g0 — 4p)]

u?

< l§m (1= a(l = v3))E [llao — aollz] = pW3 (£ (a0) , £(g5))

where p = lg:: (1—a(l - ). O
By triangle inequality, we obtain
Wa (L(q1), ) < W2 (L(q1), £(qr41)) + Wa (£ (qi41) , 1)
< VW2 (1 £(a0) + Wa (£ (gr41) 1) =30,

where the second inequality holds by Lemma 11 and last step comes from the weak convergence result.
Therefore, we have proved that {¢:}+>0 converge to a unique stationary distribution f.

(60)

F.3 Convergence rate

Consider the coupled processes defined as equation (57). Suppose that the initial iterate q([)] follows the
stationary distribution f, thus £(gq [2]) = for all ¢ > 0. By equation (58), we have for all t > 0 :

Wi (L"), i) = w (<q”>, < ))
< 262, E [My (g - af)] (1 = a1 = 30))"
< 2u? E[ (gl — g )} (1—a(l — 30"

Lemma 10 states that the second moment of ¢(® is bounded by a constant. Combining this bound with
above equation, we obtain

W3 (L(g), ) < e (1= a(l = v0))",

where ¢ is a universal constant that is independent with « and ¢.

G Proof of Theorem 5

We can obtain the following dynamic for ¥; by equation (53)

Vier = (1= )i+ a(T(+ 42) = TC0)) + aef (it 22) + aBiYi + VaBig’ + VG (61)

where {(A¢, By, Ct) }1>0 are zero mean variables.
Define g(x) : RISIMI — RISI such that
gs(z) = aérﬁ)({s)x(s,a),
and h(z,y) = f(z +y) — f(y) — g(x). Therefore, g(z) is a non-expansion mapping with respect to || - || by
[CMZ23, Proposition 3.3]. We define To(q) := vDPg(q) + (I — D)q and it is easy to verify that To(-) is a
~o-contraction with respect to ||||.. By definition of g(z) and h(z,y), we can reformulate equation (61) as

*

Vi1 =(1 — a)Y; + aTo(Yy) + ayDPh(Y, %H
+ A (Y3, \F) + VoA f(q") + aAig(Yy) + aBY: + VaBg* + vaCy (62)
i) * *

)+ aAsh(Yy, &

Z(1-a)Y; +aTo(Vs) + a*yDPh(Y}, NG

\/> )

+adig(Vs) + aBiY; + VakEy,
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where (i) holds because we denote E; := A; f(¢*) + Big* + C}.
Furthermore, we have the following lemma to bound the second moment of h(Yz, %)

Lemma 12. Consider iterates {Y; }1>0 generated by equation (62) with stepsize o, under the same setting as
Proposition 2 with n = 2, we obtain

B (v, )12 € 0fa)

Proof of Lemma 12. By definition, for Vs € S, we obtain

q - q _ q o
= max ¢’(s,0) — max M — max s,a
 aed (Yt( o)+ N ) aeA( Va ) aeA*(s)Yt( )

= max (Yt(s a) + q\(sﬂa)) x| (Yt(s,a) + W) ;

where the last inequality holds because A*(s) = argmax,¢ 4 ¢*(s, a).
We can easily observe that hg (Y%, %) > 0. We define

ay o [ A= 4),
| maxeea ¢ (s, a) — max e g\ a-(s) ¢¥(5,a) if A £ A(s).

Then, we can observe that when ||Y;]|. < 2\(}, hs(Yy, f) 0.
Therefore, we can conclude that

*

q

* *

\/*) fs(\/*) gs(}ft)> {12l >A( )}
9s(Yi
9s(Yi

< (fs(1) - 1)1 {velle> 522} (63)
< (£s(Y0) = 95 (YD) Ly > 7oy

where A = minges A(s).
By Cauchy—Schwarz inequality, we obtain

B I D)1 < VETFTD g0l \/Pumnc >0

B

< VE[f(Ye)[I2 + SEllg(Yo)]¢ \/]P’(IIYiIc NG

Yo <\/IP<||Yt|C > 2%)) <o ( W) € 0(a),

where (i) holds because the non-expansion of f(-) and g(-) with respect to || - || and (ii) and (iii) hold because
of the following Corollary 2 with n = 2. O

Corollary 2. For integer n > 1, under Assumption /(n), there exists ay, > 0 such that for any o < oy,
there exist to,n > 0 such that

E[|V]2%] < ea Bl 271 — a1 — 7)) ten 4 ey, t> tam,

where || - || is an arbitrary norm and {cy,}n>1 and {c},}n>1 are universal constants that are independent with
a and t. Moreover, to,1 = 0.

Proof of Corollary 2. By the equivalence of all norms on R?, we can obtain the Corollary 2(n) by dividing
a™ to both sides of equation (12) in Proposition 2. O
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G.1 Step 1: Gaussian Noise and Rational Stepsize
We consider a pair of coupled {Y;};>0 and {Y{};>0, defined as

* A+ + A _ *
Y =<1—a>Yt+a7a<m>+avDPh<Y;,%)+a e 1h<n,%>
A+ 4+ A _ B.,+---+ B! _ E. .+ -+ E _
+a kt \/E kt+k 1g(n)+ kt \/E kt+k 1}/;§+\/a kt \/E kt+k 1, (64)

Vi == DY+ LTV + TADPh(Y], =) + LAY, 2) + T Ag(Y)) + LB + [T B
Vi \/%
where {(A}, B}, E})}+>0 are ii.d. noise with normal distribution, zero mean and the same variance as
{(A4, B, E})}4>0 and k > 1 is an integer. Therefore, (A“JFMJ\;?’“M”, B’“ﬁm;gkt“‘ﬂ E’“ﬁmj;gk“”“‘l) has
the same distribution as (A}, B}, E).
Therefore, we have

k *
o q
Vi =(1— kth E Z -t (%(Yk/t+k—j) + (vDP + A;ct-&-k—j)h(yklt—i-k—jv ﬁ))
=1 k
« k Q. o k .-
+ % Z(l - E)Jfl (Bl/ctJrkijk/tJrkfj + AZkajg(Yékaj)) 4/ % Z(l - E)jilEllcz%kfj
j=1 i=1

k
) o
=(1 = )Yy + O(a )th +aTo(Vy,) + % Z th+k g —To(Yye)

+ D= DT = DTV gy)

<
Il
—

=R

*

k
o q a o
(1- E)] I(VDP + A;ct+kfj)h(ylc/t+k—j7 —=)+ % Z(l - E)] 1A§ct+k—j9(ylclt+kfj)

\/@
k j=
(1- ]g)j 1Bkt+k Jth+k -3 \/ Z )" 1Ekt+k—j’

where (i) holds by equation (42).

+
|2
-M?r

<

Il
=
-

+

e
Mw

<.
Il
-
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Combining equation (64) and (65), we obtain

=

Yig1 — Yk/t—i-k =(1—-a)(Y; — Yk/t) + O(a2)yklt +a(To(Yz) — %(Yklt)) - %(Yklwk—j) - %(Yk/t)

a
k <
J

I
—

*

k
q Q (07 i1 q
+ ayDPh(Y,, ﬁ) - Z(l — )T ADPh(Yy . z)

<
Il
i
A

*

k
B « oG q
Yo \/E kt+k 1h(Yt, ﬁ) _ E E (1 — E)J 1A;€t+k7]’h(YkIt+k*j7 )

j=1 Vi

k
« o
TV Z(l -(1- E)] D Bhin—j
j=1
=(1—a)(¥; - i) + R,

where R collects all but the first terms on the right hand side.
Applying the generalized Moreau envelope M, (-) defined in equation (21) to both sides of the above
equation and by property (1) in Proposition 5, we obtain

1
My (Yier = Vi) < (1= @) My (Ve = Yi) + (1= o) (VM (Vi = Yiy), R) +o- | B3 (66)
UR
T1 T2
The following lemmas, proved in Sections G.1.1 and G.1.2 to follow, control the T3 and T5 terms above.

Lemma 13. Under the setting of Theorem 5, we have

200 Uem

E[Th] < E[M,(Y; — Y{,)] + O(a?).

lcm
Lemma 14. Under the setting of Theorem 5, we have

E[T3] < O(a?) - E[M,(Y; — Y{,)] + O(c?).

Plugging the above bounds for 77 and 75 into equation (66), we obtain

YoUcm

lcm

E[M,(Yit1 — Vi) < (1 —2a(1 -

)+ O(a?)EIM, (Y — Y{)] + O (a?)

By the similar argument as in the proof of Lemma 1, we can always choose proper 7, @ such that for
Va < @, there exist t, such that for all ¢ > t,, we obtain

E[M, (Y1 = Yipa)] < (1= a(l = v30)) E[M, (Y = Y{)] + O (a}),

which implies
. 1
lim E[M,(Y; - Y{,)] = O (a) .
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By triangle inequality, we have

Wa (L), Ly /) < Tim Wa (L), £(Y)) +Wa (£(V), £0V)) + Wa (L), £07/9))

—0 —0

. . 1
< lim (/E[|[Y; — Y7, ]3] < lim /202, E[M(Y, - V},)] € O(at).

Then, we can say for all k € NT and o > 0,
W (L(Y(")), c(y(a/k'))) -0 (ai) .
When k€ QT,k>1and a >0, let k = g. Therefore, we obtain

Wa (£(r @), £(v@/D)) < Wy (£(v @), £(r /D)) + Wy (£(v /), £(v /D))

1

)+o<z§> co(at).

(@)

§(9(04

=

where (i) holds because ¢ = £ and ¢ < a.

Then, by the same argument at the end of Section C.1, there exists a unique random variable Y such that

Q prie

lim W (E(Y(O‘)),L‘(Y)> -0,

a—0,aeQ+

thereby completing the proof of the first step of Theorem 5.

G.1.1 Proof of Lemma 13 on T}
By property (4) in Proposition 5, we obtain

k

(0%
E[Th] < aB[IIY: = Yie[m I To(Ye) — To(Yie) lm] + T ElY: = Yiiellml D ToWieiney) = To(¥i) ]
T11 J=1
Th2
q*
+ aVE[[|Y: = Yy [m | DPA(Yz, ﬁ)“m] + O(®)E[|Y: = Yiillml Yy llm]
T4
T1s
(0% k o -
+ EE[HYi — Yt llm|| Z((l - E)Jfl = DTo(Virrk—j)lIml]
j=1
T1s
ay b Q@ q*
+ B[V = Y [lm|[DPY (1 = =) " BV ihmjr =) llm] -
k 7j=1 k ’ \/%
T1e

Below, we bound 117 ~ T separately.

The T7; Term:

[0
Ty < 7 E[[[Y: = Yyl To(¥2) = To(¥i) I
a7
< TEY: = Y ll|Y: — YL
aYyoUe 20[70” cm
< — R - Yl = = EIM, (Y - V)]
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The T2 Term:
k

«
Tio < LE[IY: = Yirllm D TV i) = To(¥ie) ]
j=1

= Viillmllg (Ve n—) — 9V ]

k

avo

SIS BV = Vil ¥y — Yiele)
™m j=1

IN

By equation (62), we obtain

Y/c/t+k j - Yy, (1_*)1€ ijt Yiit

k
o a q*
+ % (1- E)l_l (%(YléH»kfjfi) + (YDP + Ay i) (YVir ke j—is 7@))
i=1 Vi
o a
+E (1- k)z 1( kit h—j— zg(Yk,H»kfjfi)+Bllct+k7j7iykit+k7j7i)
i=1
ko
\/Ez l 1Ekt+k j—i
Therefore, we have
Ty <0 EHY Yl = DR, = Y] (Th21)
12 =%l t = Lktllm k kt — 1kt 121
em 5
+ 2 ¥: - Ymnmnz DT (T kmj—) + (YDP + Ay DAV i ﬁ>)|| )
k
(Th22)
70 & — a.;
S B Vol S0~ S (A0 + By Yoy I
cm j:1 ;—
(Th23)
3
]“ E[|Y; — thHmHZ )" By ro—jille)- (T124)
cm

By Corollary 2 with n = 2 and the equivalence of all norms on RISII4l we obtain

k
vy, Qg
Tion < 2% D (1= (1= D) DEIY: = Yl ¥l

IN

k
o O\
iy 2= (=) ) VERIYIE, + 20120 El1¥7, 2
<

€0(1)

k
<O()-TX(1-(1-D)F) e
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where (i) holds by equation (42). Turning to the next two terms, we have

o k k—j *
Tiz2 < O(1)- 55 DY (1= D EIY: = Vil I To (g —0) + (PDP + Ay iy (Vi j@nc]
Jj=11:i=1 k
€0(1)
062 ko . 042
§0(1).7Z (1_E)Hg0(1)-p-k € 0(a?)

1:=1

<.
Il

Similarly, we have Ty23 € O(a?)

) at & < ay
Tiz3 < O(1) - 3 D CENY: = Yl E[ D (1 - ) kil
j=1 o i=1
a? & kﬁ a
<0(1) X! Z]E[H Z(l E)Z_lEllct+k7j7i”2]
j=1  i=l
od ko |k
S OB SN D[R C W
j=1 \ i=1
3k
a? 3
<0(1) k%Z\/k je0(a?),

where (i) holds because Y; and Y}, are independent with FEj, , i forj=1,....,kandi=1,...,k—j.
Combining the bounds for 7121, T122 and 1723 together, we obtain T4 € O(a2 ).

The Ti3 ~ Tig Terms: By Corollary 2 with n = 2, Lemma 12 and the equivalence of all norms on RIS/l

we obtain
Tys < O(a E[||h(Yt,f)H ) e ( )

k
(0%
Tis < EZ (1—( k)j DENY: = Yl I To (Vg5 ) 1]

where (i) holds by equation (42).

k
ay q
6 < T Z j IE [1Y: — Ylf/th”DPh(Yk/Hk—j’ im]

JE
<0 Z\/7 e(’) %

Therefore, we obtain the bound for E[T]:

2a70ucm

E[Ty] < E[M,(Y; — Y{,)] + O(a?),

lcm

thereby completing the proof of Lemma 13.
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G.1.2 Proof of Lemma 14 on T

By Cauchy-Schwarz inequality, we obtain

k
E[T:] < 9(1@[”0(@2)1@;@1 +Ella(T6(Ye) = T3]+ I D To(Veek—y) = To(¥il3]
T21 To2 =1
To3
b . , AL+ 4+ A B *
(I 20 = 2 = Doy 3]+ Ellla(yDP 4+ =, “)
j=1

T:
To, 25

k *
a QL q
+ EE :(1 - E)] Y(YDP + Ay )Y )

j=1 \/%

Tae
A4+ AL B.,+---+ B! _
+ Effla—t—— 7= g(1) + e Y ]
Ta7
k
B[S S = 5V A0V hy) + Blosr s Yy I3
k L kt+k—53 9\ kttk—j kt+k—j L kt+k—j)112
j=1
Tag
k
«a Q1N 2
JFE[H\/EZ(I* (1- E) )Ekt+k—j|2}>'
j=1

Tag
By Corollary 2(2), Lemma 12 and the equivalence of all norms on RISl we obtain

T51 €O (044) , T <O (012) E[Mn(yt — Yk{,t)]’ Toz € O (042) , Ty €O (012)
Tos € 0(a®), T <O (a?), Tor <O (a®), Tes<O(a?)

a . Q. 2 o k o (i)
(- <o FX(-a-pr) ) Co),

Jj=1 j=1

Ty <O

where (i) holds by equation (42). This completes the proof of Lemma 14.

G.2 Step 2: General Stepsize

In this subsection, we aim to prove that there exists an ag such that £(Y'*) is continuous when « € (0, ag)
with respect to W5. Here we use another coupling as follows:

Yo = (1- a)Ys + oy DiPf(Yi + =) + Va(l - D)(vaY: + ¢*) + VaDir, — Vag",

Va t
Yoy = (1= o )Y{ + 'y DIPL Y 4 J) 4 Valll = D(Va'Y] ") 4 Vel Dir] — Vg’
(6%

Then, we obtain

Yigr =Y/ =1 —a)(Y: = YY)
ey q , q ' r 4
+O¢(7Dtpt(f(yt+\/a)"‘(f_Dt)(Yt'f‘\/a)_’YDtPt(f(Y;s+\/a

" ’ / q
)= (1= D) + =)
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. q
\/a) f(}/t+\/a))

+ (@ = a\WDPF(Y] + <=) = (a = &) D}Y] + (Va = Vo)) Dj(r, = ¢°)
Vol

+ ayDyP{(f(Y: +

=(1—a)(Y, = Y/) + A.

Applying the generalized Moreau envelope M, (-) defined in equation (21) to both sides of above equation
and by property (1) in Proposition 5, we obtain

BIM, (Vi1 = ¥/)] < (1= 0 EIM, (Y, = Y{)] + (1= 0) B(VM, (Y, = Y1), 4) +5- EJAI5.

T1 T2

Below we separately bound the T7 and T, terms.

Bounding the 77 Term: By property (4) in Proposition 5 and equation (54), we obtain

q* q*
Ty <anE[|lY; = Y| T (Vs + —) — T(Y + —)||
1 SaVE[|lY: = Y | T (Y2 W) (Y, \/07)H ]

T11

+ 0 E[[Y; - ¥{ || DP(f (Y + j—*a) i j—;»nm

T2
*

q
Vao!

+lo = o' WE[Y: = Y/lm| P (Y] + —=)lm] + |0 = o/ [E[| Yy = Y/ || || DY || m]

T4
T13
+ Wa = VA [E[[Y; = Y || D(r = ¢")llm]
T1s

By Corollary 2 with n = 2, Lemma 12 and the equivalence of all norms on RIS/l we obtain

2Uem Yoo
Ty < R0, (Y, — V)] < 20 AE[M, (Y, — V)],

lcm

u < 1

where the last inequality holds because we can always choose a proper 7 such that 7o= < Nk

Let 6 = |a — a'| < §, we obtain

T12€O(

wjeo

1 1 ad ad
alﬁ - @') © (\/&\/a(\/&+ W)) €0 (min(a,o/)i ) '
Tis = O(1) - 6E[|[Y; — Y ||| PF(Y/ + 57)”0]
< . o q"
=)~ HGDNel + 00 B = ¥ | PF =)

< 0(1) - OE[[|Ye — Y{|lmI P(f (Y] +
)
<O00)+0(———— ) e O —— ).
©) (min(a,a’)%) (min(a,a’)f)
Tuco®, Tico(— ).
min(a, ')z
Bounding the 75 Term: By Cauchy-Schwarz inequality, we obtain

)+ (I—D)(Y; + %) —AD,P(f(Y] + jﬁ — (I - DY} + jﬁn%

T

q
Vao!

T, <5(a2EvD;P;<f<Yt +
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*

) !t q q* 2
+a’y EHDtPt(f(EﬂL\/a)—f(YtJr \/J))HQ
To2

2 2 ! Dl / q* 2 2 )12 672
+ 0"V E| Dy Py f (Y + \/J)HZ_'_(S E[||[ DY/ 3] +O(min(a,a’)>>'

To4
T2s

By Corollary 2 with n = 2, Lemma 12 and the equivalence of all norms on RIS/l we obtain

Tp < O (a?) -E[M,(Y; - Y))].

o1 1, a?9? _ad®
€0 (a2~ o) €0 aa(va+var) < mma,ay?)
62
Tz € O (HHII((J(,O/)) T €O (62) :

Combining the above analysis together, there exist an aqg such that 0 < (1 —2(1 — \/0)ao + O(ad)) < 1
and for any a < ag, there exist t, such that for any t > t,, we obtain

, 1 ad
E[M, (Y1 = Y{2)] < (1= 201 =13+ O(a?) ) BIM, (Y; - ¥{)] + O ( ) .
min(a, )2
Then, we obtain
0
lim E[M,(Y; - Y/)] € O( 3

t—o0 min(e, a’)2 "
Then,

Wa (£(v @), £(v)) < lim Wy (£(Y(), £(Y)) + W (£(Y), £07)) + Wa (£(07]), £ )
Vs

min(«, o)

)

< Jim VE[[Y; —¥/[[Z] < Jim \/2u2, E[M, (¥ - ¥7)] <

where c is a universal constant that is independent with «, a/.
Then, for Ve > 0, given o > 0, we can choose a sufficient small §. such that

VO ando<s <
(a0 —6c)1 2

Then, when o is selected with |a — o/| < §, we obtain
Ws (L), £()) <.

Therefore, we complete the proof of continuity of £(z%) w.r.t Wa. Then, by the same argument at the
end of Section C.2, we obtain lim,_,o Wa (/J(Y(O‘))7 E(Y)) = 0, thereby completing the second step of the
proof of Theorem 5.

G.3 Step 2.5: Convergence Rate under Gaussian Noise

By triangle inequality, we obtain

W (ﬁ(wa)),c(y))

IN

Wy (ﬁ(Y(“)),L(Y("/’“))) A (C(Y(a/’“)),ﬁ(Y))

IN

Olat) + W, (z(w/k)), E(Y)) (67)

);

NG

IN

lim O(a%) + Wy (,C(Y(a/k)),ﬂ(Y)) € 0(a

which gives the convergence rate.
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G.4 Step 3: General Noise

By Section G.1, G.2 and G.3, we prove that under the noise with normal distribution, there exists a unique
random variable Y such that Y(® converge to Y with respect to Ws. In this subsection, we aim to prove
that under general i.i.d zero mean noise with the same variance, the convergence result still holds and the
limit is still Y.

By equation (61), we consider the following coupling:

q q*
Vi = (1= a)Y+o(T(V+ 90) = T(50)) +adif(Yi+ T

q q q
Vi = (= @)Y +a (T + 22) = T(72)) +adif(4 + 72) +aBY] + Va],
where H] = Bjq* + C{ and {(A, By, Hy) }1>0 and {(4}, B}, H;) }+>0 have zero mean and the same variance.
Here (A¢, By, Hy) and (A}, B;, H;) are not necessary independent with each other, {(A}, B}, H;)}i1>0 are
normal distributed and we assume that {(A, By, H;) }+>0 have finite fourth moments.
Let k= |~ 2 |. We obtain

) + O[Bti/t + \/>Hta

B

*

Y,@t_;,_,.i —(1—04 ,@t+OLZ 1—01 Ymt—i—m—j"'qi)_T( g ))

+a Z(l —a) ! (Afct+l<,—j(f(y)<,t+/<,—j +
j=1

K

+ \/&Z(l - O‘)j71 (Aﬁt—i-n—jf(q*) + H,gt.i'_,.i_j) .

j=1
and

Vi =(1— )Y, + 0‘2 T(Yitgn - T L) -7 d

1( gt / q ’
+ a;(l - j (A/-it+n J(f(Ylit+H i + ﬁ) - f(\/*)) + BK,t—‘—H ant+n ])

+\/52(1_ - I(Afctntn if(a )+ Hyp g J)
j=1

Taking the difference of the last two equations, we get

* *

Ty Ty, + L

Vitsn = Yippe =(1 = )" (YVir = Vi) + k(T (Ve + )

Va Va
+az i ) Tt D T+ D r T+ D)
f$+n J \/a K \/a Kt+K—J \/a Kt \/a

) - T(YnltJrn J + L))

+ az<<1 — ) = (T Vg + ~ 7

Va
* *

+ OéZ(l - a)j_l (ANtJrH*j(f(Ym‘ﬂHi*j + %) - f( q )) + B/-ct+nijnt+ﬁfj)

B

* *

- Oéz (1—a) (A;um (Vi + ja) - f(jan + Bltin YVarrn— J)

-I-\FZ wttrn—i S (@) — Ay (@) + Hatrnj —Hy J)
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- \/&Z(l — (L= ) ™) (Aptsn—i F(0") + Hurpnj)
Jj=1

+ \/52(1 —(1—ay™) (A;anjf(q*) + Hl’{tJrlifj)
j=1
=(1—a)"(Ye —Y/,) + A

Applying the generalized Moreau envelope M, (-) defined in equation (21) to both sides of above equation
and by property (1) in Proposition 5, we obtain

1
E[M (Yirin = V)] < (1= @) E[M (Ve = Vi)l + (1= )" E(VM (Ve = V), A) 45— E| AJI3
1 N——"

Ty T>

(68)

The following lemmas, proved in Sections G.4.1 and G.4.2 to follow, control the T} and 75 terms above.

Lemma 15. Under the setting of Theorem 5, we have
Ty < 20k /A0E[M, (Vi — Y/,)] + O(a?k3).

Lemma 16. Under the setting of Theorem 5 and some proper couplings between {(As, By, Hy) }i>0 and
{(A}, B}, H}) }+>0, we have
Ty < O(a?k?) - E[My(Yer = Y,(y)] + O(a).

Plugging the above bounds for 77 and T% into equation (68), there exist an «g such that for any a < ay,
there exist ¢, such that for any t > ¢, we obtain

E[M,(Yerrn = Yy < (1= )" + 2aky7 + O(a?)) E[M, (Y — Y1) + O(a)
< (1= (1= v¥)ar) E[M, (Y — Yi,)] + O(a).
Therefore, we obtain
Jlim E[M, (Y. - Y),)] € O(a?).

By triangle inequality, we have

Wa (LX), £((Y)@)) < Jim Wa (LY ), £(Yea) ) + Wa (£(V0)s V) + Wa (L), L))

< lim VE[[Ver — Y[ < lim /202, E[M (Yo - Y)] € O(a¥).
—00 — 00

Therefore, by equation (67), we obtain
Wa (LY@, £0)) < Wz (L), L)) +Wa (L"), £(1)) € O(ah),

which implies
lim Wo(L(Y ™), L(Y)) = 0.
a—

This completes the proof of the last step of Theorem 5, thereby finishing the proof of Theorem 5.

G.4.1 Proof of Lemma 15 on T}

By property (4) in Proposition 5, we obtain the bound

Ty < Ty + T+ Tis,
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where

*

Tia =anB{[Vee = Yol T (Ve + 72) = T+ ) )
Ti =0 Yo — Vil ST (atncy + ) = T+ ) - TV 4 ) £ T +
< Ja Ja Ja
, - - q* , q*
Ti3 =aE[||Yit — Yigllmll Z((l —a)’ t— 1)(T(Ynt+n*j + \/a) T(Ynt+1€ it ﬁ))HM]

2l

Below, we bound T7; ~ Ti3 separately. By Corollary 2(2), Lemma 12 and the equivalence of all norms on

RISIMI we obtain

204'%’70ucm

T < E[M,(Ye: — Y,,)] < 2ak/Y0E[M, (Ve — Y1)

lCTIl

ﬁ

Similarly to the bound for T}5 in Section G.1, we obtain

);

Njw

Tio € O(Oé%,‘i
Ti3<0(ad (1-(1-a)f )] <O01-(1-a)—ax) ¢ O(a?k?),
j=1

where (i) holds by equation (42).
Combining the bound for T7; ~ T3 together, we obtain

T) < 20k /BE[M,) (Yo — Y.)] + O(a2k?),

thereby completing the proof of Lemma 15.

G.4.2 Proof of Lemma 16 on T

By Cauchy-Schwarz inequality, we obtain

q" s
T, < 8<0¢2"f2EHT(Ym§ + \/a) - T(Ymt + \/a)”%
"EY L4 Sy L4 LAY
+O‘E||j=17—(yﬁt+ﬂ—]+\/a) T(Ynt+\/a) T(Ymt+n—J+\/a)+T(Ymt+\/a)H2

*

+ 0B 31— @l T = DT Vevsnog + =) = TVl + )3

Va va
+o%E| Z(l =P (At g (Vs + =) = ST + B iVains ) I3
2 ’ ’ q" q / 2
+ K| Z (1= P (At ¥y + T2) = FC2) 4 Bt Vi ) I3

JFO‘EHZ witn—g (@) = Ay F(@*) + Hurpnj — Hiyy o) I3

+ aE|| Z(l — (1= o) ) (Aptpng F(@) + Hurny)ll3
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+aE| Y (1 (1 —a) ") (AL fl@) + H,ﬁtﬂj)I%) : (Tas)

j=1
By Corollary 2(2), Lemma 12 and equivalence of norms in RISIMI we obtain the following bounds:

T < O(a®w?) -E[My(Yer = V)], Tz € O(a®s?)

K

Tz < O(’k Z(l —(1—a)™1?) € 0(a®k?), To < O(a’k Z(l —a)? %) € O(a?k?)

j=1 j=1

K

Tps <O’k Y (1-a)¥ %) € 0(a®k?), Ty <O(a) (1-(1-a)")?) e 0(a’s?)

Jj=1 Jj=1

Tys <O(a) (1—(1—a)/™")?) € O(a’x?).
j=1
For Ths, we can mnotice that (A}, . ;f(q"), Hy, ;) is normal distributed. Then, similarly to the
analysis of Thy in Section C.4, we can find a coupling between {A;, By, H; }+>0 and {A}, B}, H{}+>0 such that
Tos € O(Oé)
Recall that x = a2 |, we obtain

T < O(a®w?) - E[My(Yee — V)] + O(a),
thereby completing the proof of Lemma 16.

H Proof of Theorem 6

By Theorem 4 and equation (62), we have the following equalities in distribution:

YO L (12 )Y@ 4 aTg (V@) + ayDPRY®, 4y 4 adgh(v®), L
(1-0) (V) (@), 22+ adah(r @), 4 o)

+ adog(Y ) + aByY' ™ 4+ /aEy,

where To(q) = vDPg(q) + (I — D)q.
Taking expectation to both sides of the above equation, we obtain

E[y )] = E[7,(Y @) + ~DPh(Y @, L
Y] = EIT( ) + 1 DPR(Y™), S

)l-

Rearranging terms, we obtain the equality

By ()] = B Pg(y®) + 1 Ph(y ™), L))

By Fatou’s lemma [Durl9, Exercise 3.2.4] and Lemma 12, we obtain

Ja

It is well known that weak convergence in Pq (R'SH“‘”) is equivalent to convergence in distribution and the
convergence of the first two moments. By [Durl9, Exercise 3.2.5] and the Lipschitz continuity of To(-), we
obtain

| B, j—’;)]nc < B[h(y®, j—;nu < VEmh(wx 2 )12 € O(va).

lim E[Y(¥)] = E[Y] and lim E[To(Y )] = E[To(Y)].

a—0
Therefore, we have
E[Y] =~yPE[g(Y)]. (70)

Below, we discuss the E[Y] in three cases.
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Case 1: If there exists a state s’ that is both tied and not rooted. Then, if E[Y] = 0, then because
9s(Y') = max,c 4+(s) Y (5,a), we obtain

E[gS(Y)] > ]E[Y(s’ a)] =0, Vae A*(S)a

which implies that E[g(Y)] > 0.
Because s’ is a non-rooted state, s, a such that P(s’|s,a) > 0. Therefore, by E[g(Y)] > 0 and equation
(70), we have
0=E[Y(s,a)] > vP(s'|s,a)E[gs (Y)].

Then, we have E[g,(Y)] = 0.

Let A*(s") = {a1,az,...,an}. Then, we have E[Y (s’,a;)] = 0 for all i € [N] and E[max;en) Y (s, a;)] = 0.
Therefore, we obtain Y (s',a;) = Y(s',a;) a.e. for all i # j € [N] by [Durl9, Exercises 1.4.1]. By Fatou’s
lemma, we have

2
E[Y (s, a;)?] < liminf E[Y @ (s, a;)°] = liminf lim E[Y,*)(s',a;) ] < +o0.

a—0 a=0 t—oo
Because (Y (s',a1) — Y (s',a2))? < 2Y(s',a1)? +2Y (s', a2)?, by dominated convergence theorem, we have
E[(Y(s',a1) — Y (s',a2))?] = 0.

By equation (69), Corollary 2(2), Lemma 12 and equivalence of norms in RISII| we obtain

E[(Y (s a1) = Y (s, a2))?]

=(1—a)’E[(Y (s a1) — Y (s,a2))?] + o(a) + aE[(Eo (s, a1) — Eo(s', az))?.
Rearranging terms, we obtain the equality

(2= B[V, a1) — YO, 03))2] = (1) + E[(Eo(s',a1) — Fo(s',a2))?]
Letting a go to 0, we obtain
DY (5, 01) — Y(s', 02))?] = Bl(Bo(s'sa1) — Fo(s', 02))?].

Recall that Eg = Ao f(q¢*) + Bog* + Co = vDoFPo f(q*) + Doro — Dog* Therefore, have Var(Ejy) is positive
definite, which implies E[(Y (s’,a1) =Y (s, a2))?] > 0 and contradicts with the fact E[(Y (s, a1) =Y (s',a2))?] =
0. Then, we can conclude that E[Y] # 0.

Case 2: If there is no tied state, by definition, g(-) will be a linear function. Recall that
E[Y®)] = vPE [g(v®) + h(y®, )] .
Y] =~vPE | g(Y') + h(Y', \/a)

For n > 2, by equation (63) in Lemma 12, Assumption 4(n) and the above equation, we obtain

E[Y @[ < [VPE[g(Y ][l + [+PERY @, L
IE[Y lle < [vPE[g(Y *)]lle + IV PE[A( " a

< Ag(EY @0 + [ ERE @, j*anuc

< ~||E[Y (@) . Ehy(a)i .
<AIEY]lle + v E[A( ’\/a]”

i A 2n
<B4+ (BIF) = o @) ™ - (B @12 520))

Nle
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We continue by bounding the second right hand term and obtain

(i) AN\ B
E[Y @1, < ~|E[Y@]]. PlY@|. > —
[EY e < ANEF]llc + O | { PO _2\/5)

E[JY ]2 ]4"a"
A2n

T; (“) _—
<AIEY ]|+ 0O ( ) < Y|EY @], + O (047) ,

where (i) and (ii) hold by Corollary 2 with n = 2 and Fatou’s lemma.
Therefore, we have

EY @] e O (az‘”z’l) :

which implies E[Y] = 0. Furthermore, recall that E[Y (®)] = W and we obtain

El¢'] = ¢* + O(a™).

Case 3: If tied states are always rooted states, the MDP other than all these tied and rooted states will
form a new MDP with no tied state. Then, for any state s and action @ in the new MDP, we have proved

that E[Y(®)(s,a)] € O (a
always in the new MDP by definition of rooted state. Therefore, for any state s that is tied and rooted and
action a, we obtain

). We notice that, for any state s that is tied and rooted, the next state s’ is

E[Y ) (s,a)] =7 P(ss,a) (E[gﬁ/(“))][s’] FERY®, L )”8/0

=72 Pl (sEy )i + B, L) € 0 (a52).
Then, we conclude that E[Y] = 0 and E[¢(¥] = ¢* + O(a™).

I Proof of Proposition 3

In this section, we provide the proof of the first and second moment bounds in Proposition 3. Firstly, we
provide the following lemma.

Lemma 17. For iterates OEO‘) that are generated by equation (14) and satisfy the Condition 1 and 2, there
exist two universal constants Coy and Cs such that

1. E[|0@]2] € O(1) and Var(8®)) € O(ar,).
2. |0 —E[0@] < Cy- (1 —aC1)%, Va<a andt> .
(@) ()T (@) ()T t _
3. ||E[6; 0, 1=K | <C3-(1—aCh)z, Ya<aandt> 1,.
Proof of Lemma 17. By Condition 1, we obtain

E[[|6)][3] < 2E(|6) — 6%||3) + 2]|6*[|3 € O(1),
N — N——
€0O(a) €0(1)
| Var(6)[|2 < E[|6) — 67(13] € O(aa).

By [Vil09, Theorem 4.1], there exists a coupling between 6, and 6(*) such that

W3(L(0), L(6))) = E[||6, — 0°)|2].
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By the above bounds and applying Jensen’s inequality twice, we obtain that
2 2 2
IEf8, — 0|13 < (E[net —0a])” < El6 03]

o Co
< 17]E[H9t — 02 < ZT(l —aCy)".

We thus have .
[E0:) — E[0“]||2 < E[|6; — 0|2] < Ca - (1 — aCh)*.
For the second moment, by [HCX23b, Equation A.28], we obtain

J 2 (e ffo-oe ]2 o

HIE [0,6]] - E [(9(“)9(&“} H <E Met — @

)

2 2 2 1/2
2
<E [ 6, — 0@ J 42 (E [ 6, — 6 J E [2 He@ 0| +2 ||9*||2]>
(71)
Meanwhile, we have
() o () ?
Met g } < 17(1 —aCy)t and E [He o) _ g J c Oary).
Substituting the above bounds into the right-hand side of inequality (71) yields
[E[06]] ~ B0 ]| <c5-(1-acn)t.
O

1.1 First Moment

B (B — 0" = (E[6] —0°) + - ’“z B o - 0]

To bound the sum on the right hand side, we use Lemma 17 to obtain

First, we have

IE[6:] —E[0]]|2 < Cy - (1 — aCh)*.

It follows that

Y E [ot - 9<°‘>} < Z HE [0,] — E[9)]

‘ 2

t=ko t=ko
<O (l—at)®—— 1 0 (1—ac)® 2
=2 ! 1—+v1—-aCy — 2 ! aCh
(@) Oéclkio 2 1 (JéOlko
< . _ <C.=. _
s G exp( 2 )(1—\/'7)04_0 o exp( 2 )’

where (i) follows from the inequality that (1 — u)™ < exp(—um) for 0 < u < 1.
Together with Condition 2 we have

0, 1 Chk
0010 gy 25,

thereby finishing the proof of Proposition 3 for the first moment.
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1.2 Second Moment

In this subsection, we follow the proof technique in [HCX23b, Section A.6.2] to bound the second moment of
the tail-averaged iterate. Here we use the same decomposition:

B[ =) (o =0) ]
g [@kmk S [00] 4B [60)] < 0 (B — B [0)] 4 B [60)] - 9*)1’]
=8| (s =2 o)) (B =2 [07]) | 42 | (s - o] (R [o] -0)']

+E {(E 0] — o) 1(9k0,k _E [9@})? +E [(]E o] —o7) (2]143 [o6] - 9*)T] .

For T5, we have
! ISE@ 0] (B - 0*)
L (Sl 007 (oo

-0ftggon () e o (452))

The term T3 is similar to T and obeys the same bound.
For Ty, we have

T4 = (OUBB + 0(04’8"'5))(@’63 + O(O[B-HS))T _ Q2BBBT + 0(042@_’_5).

For T3, we have

1 § )
g o ko)zﬂ‘?{(t_ko (6, — E[6¢ )])) <t§0 (6, — E[9¢ >])) }
k—1
- (]4} _lk_o)2 = E [(et - E[Q ]) (9,5 [Q(O‘)])T} (72)
k—1 k-1
T —1k0)2 g,;o P H]E [(6 — E[6°)]) (6 — E[p)]) | (73)
1 k=1 k—1 " .
T 2 l:tHIE [(60 —E[6©) (6, — E[6*))) 7] (74)

By Lemma 17, we have
£ (6 ~ El0)) (6 ~ B ']
—(E[6,6]] fE[W)e(a)T]) + (E[W)o(a) ] - Ejp@E[p( D
- (E IE[6 ] + B[R [67] — 2B[0E[6 ] )
=(E[0,60]] - E[p@p( ]) + Var (0()) — [at p@E[p ] - E[e)(a)]]E[(at - 0<a>)T]
cO ((1 —aCy) + om’a> .

69



Therefore, for the term in (72), we have

ki o ((1 —aCy)F + a7a>

t=ko

e(’)((k_lko)2 i (1—a01)3> +0<k0‘_7‘;€0>

t=ko

1 aCiko QTy )

ceO| ——————exp| — )
(a(k—k;o)2 p( 2 ) k— ko

We then restate the following claim, whose proof is almost the same as the proof of Claim 4 in [HCX23b].

1

Gy

Claim 1. Fort > %Cllog< ) and l > t + 1., we have

1
aTy

[~ @0 - =0 )] € O ((am) - (1 - a0 7).

Then, by [HCX23b, Claim 4], we have term (73) € (’)(kf"ko). Similarly, we have term (74)€ (’)(kf"ko).
Therefore, we have

OéClko Ta
T _ — .
1€O<a(k—ko)26Xp( 2 >+k—k0> (75)
By adding T} ~ Ty together, we obtain
_ _ p-1 Cik
_ p* _o5\'| 28T 2846 _am _ abiRo
E{(Gko,k 0 )(Hko,k 0 ) } a*? BB 4 o(« )+O<(kz—k0) exp( 5 ))

1 aClky Ta )
+o(ex - n
o (k — ko) p( 2 ) k — ko

1 aChk T
=a?BBT + o(a?8*? +O<ex Bt A EE— )
( ) o (k — ko)® p( 2 ) k— ko

J Proof of Proposition 4

We prove the first and second moment bounds in Proposition 4.

J.1 First Moment
By equation (16), we obtain

B
() . _ ) L 5ea) .
E[0,] - 6" =E {25 O — o 1%,4 —0

:2ﬁzi = [é’iz’)k - 9*} - 2ﬁ1— = {é,iif“,j B 9*}

28 1 aCik
— B B+6 _Giho
s (207 et 0 (e (-95)

_ 251_ 1 ((20063 +o(a”) + 0 <a(kl—/€o) P (_a01k0))>

o)+ s e (~CY ).
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J.2 Second Moment

Let uy := é,i'z)k —-E [0(‘")], Uy 1= 9,(;&,2 —-E [0(20‘)] and v :=
1

28 E [a(a)] _ 171]E [9(2(1)} — 9*.

28 —1 28

With these notations, ékmk —0* = %ul ug + v. We then have the following bound

T 281
[0 ) @) ]| <o 2 - ) (=) ]
<E 2 1 :
= HQﬂ—lul_ 25 1Y,

2

By equation (75), we have

1 aCik Ta
— ho

1 aCirk Ta
EHU2H§€O<M€XP<_ 21 O)+k—k0>
— R0

By Condition 2, we have ||v]|2 = o(a?#1+2?).
Combining these bounds together, we have

Similarly, we have

e (-

1 0401]{)0) QQB Ta )
« (k‘ — k‘o)

E[(Brr, = 07) (Brro —07) ] € 0(0?+2) + O 5 Ve
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