
1048 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Self-Learning Multi-Mode Slicing Mechanism for
Dynamic Network Architectures

Haitham H. Esmat , Member, IEEE, and Beatriz Lorenzo , Senior Member, IEEE

Abstract— Dynamic network architectures that utilize com-
munication, computing, and storage resources at the wireless
edge are key to delivering emerging services in next-generation
networks (e.g., AR/VR, 3D video, intelligent cars, etc). Network
slicing can be significantly enhanced by including dynamically
available resources throughout the fog/edge/cloud continuum and
using mmWave/THz bands. However, network slicing of dynamic
multi-tier computing networks remains under-explored. In this
paper, we present a self-learning end-to-end network slicing
mechanism (SELF-E2E-NS) that facilitates collaboration between
the Infrastructure Provider (InP) and tenants to slice their
subscribers’ resources (i.e., radio, computing, and storage) as
fog resources. To adapt to the uncertain availability of resources
at the edge and minimize the risk of non-satisfying service level
agreements (SLAs), our slicing mechanism has two operational
modes. Operational mode 1 is for joint network slicing (JNS) in
which the InP infrastructure is augmented with fog resources and
jointly sliced to meet high throughput and delay tolerant require-
ments. Operational mode 2 is for independent network slicing
(INS) in which the InP infrastructure and fog resources are sliced
separately to achieve high throughput, low-latency, and high-
reliability requirements. Our schemes leverage mmWave/THz,
fog/edge/cloud computing, and caching to achieve new service
requirements. We design a DQ-E2E-JNS algorithm that uses
Deep Dueling network and a MAAC-E2E-INS algorithm based on
multi-agent actor-critic, which incorporate service-aware pricing
feedback and fog trading matching, respectively. These algo-
rithms find the optimal slice request admission and collaboration
policy that maximizes the long-term revenue of the InP and
tenants for each mode. The simulation results show that our novel
slicing mechanism can serve up to 4 times more requests and
effectively exploits different spectrum bands and fog resources
to improve revenue and performance.

Index Terms— Dynamic network architectures, network slic-
ing, multi-agent actor-critic, fog/edge/cloud, risk model.

I. INTRODUCTION

THE sixth-generation (6G) of wireless networks is
expected to rely on dynamic multi-tier network archi-

tectures that utilize resources at the wireless edge to
accommodate traffic demands from emerging services such
as virtual/augmented reality (VR/AR), smart driving and
eHealth. The incorporation of millimeter wave (mmWave)
communication has significantly improved the offloading
capability at the edge enabling low latency and high through-
put [1], [2], [3], [4]. On the other hand, network slicing

Manuscript received 25 August 2022; revised 27 April 2023;
accepted 13 August 2023; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor G. Joshi. Date of publication 24 August 2023; date
of current version 18 April 2024. This work was supported in part by the U.S.
National Science Foundation under Grant CNS-2008309. (Corresponding
author: Beatriz Lorenzo.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Massachusetts Amherst, Amherst, MA 01002 USA (e-mail:
habdelhafez@umass.edu; blorenzo@umass.edu).

Digital Object Identifier 10.1109/TNET.2023.3305975

(NS) [5], [6] creates logical networks customized to meet
the needs of different applications and enables multi-tenancy,
reducing operational and capital expenditures. However, slic-
ing the available communication and computing resources
throughout the fog/edge/cloud continuum brings additional
challenges that remain underexplored [7]. First, cooperation
between the InP and tenants is needed to cope with the
varying resource availability and service requirements. Second,
validating the service level agreement (SLA) and mitigat-
ing any service degradation is more challenging since slices
include different types of resources (e.g., mmWave/THz bands,
computing resources, caching) controlled by different entities.
Third, with the increasing service demand and unleashed
resources at the wireless edge, the number of slices run-
ning simultaneously in the network is expected to increase,
requiring agile NS mechanisms. To the best of our knowl-
edge, our NS mechanism is the first to address all of these
challenges.

Recently, some works study mmWave/THz applied to traf-
fic offloading and network slicing [8], [9], [10]. In [8],
a THz wireless multi-access edge computing system for
high-quality immersive VR video services is presented to min-
imize long-term energy consumption by jointly optimizing the
downlink transmission power and viewport rendering offload-
ing. In [9], the mmWave communications and non-orthogonal
multiple access NOMA are exploited for mobile edge comput-
ing networks to enhance the performance of task offloading.
In [10], a three-phase framework to price network infras-
tructure slices exploiting mmWave bands is proposed. Other
works have applied NS to edge/fog networks for computational
offloading. Xiao and Krunz [11] present an NS scheme for
fog computing networks to offload computational tasks using
energy harvested from the environment. Chen et al. [12] study
computation offloading policies for a mobile device based on
task queue state, energy queue state, and channel qualities
to choose between offloading to an edge or cloud server.
Sun et al. [13] suggest a hierarchical radio resource allocation
for NS in fog radio access networks to share the spectrum
between users and fog nodes. These works slice only one type
of resource, which results in sub-optimal performance when
applied to real scenarios [14].

Network slicing under traffic uncertainty has been stud-
ied in [15], and [16]. Feng et al. [15] examine the tradeoff
between revenue and delay in slice admissions under traffic
variations using Lyapunov optimization for a single operator
and traffic class. Chien et al. [16] propose an algorithm
to prevent the over-provisioning of computing and network
resources based on measured statistics of typical real-world 5G
services. Dynamic network slice reconfiguration and recovery
schemes are proposed in [17]. However, their application to
slice the wireless edge/fog will result in frequent slice recon-
figuration which brings management and control overhead.

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4880-3238
https://orcid.org/0000-0002-0721-0137

ESMAT AND LORENZO: SELF-LEARNING MULTI-MODE SLICING MECHANISM 1049

As service demands become increasingly diverse and the
number of slices grows, automated solutions for dynamic slice
admission and collaboration are needed. In [18], Bega et al.
exploit reinforcement learning (RL) schemes to cope with
dynamic slice requests by making decisions in a trial-and-
error learning approach. In [14], the authors present Deep
RL (DRL)-based algorithms to maximize the revenue of the
InP in slicing its fixed cellular infrastructure. Our preliminary
work [19] shows that augmenting the InP infrastructure with
fog user equipment (FUEs) resources can significantly increase
the revenue of the InP and tenants compared to existing
approaches.

In this paper, we contribute to the design of efficient network
slicing schemes for dynamic multi-tier network architectures:

• We develop a novel network slicing mechanism that facil-
itates collaboration between the Infrastructure Provider
(InP) and tenants (i.e., operators) to share their resources
(InP infrastructure and FUEs) and serve tenants’ requests
from different traffic classes. To exploit the dynamically
available FUEs’ resources efficiently, we proposed two
schemes: 1) An E2E joint network slicing (E2E-JNS)
scheme in which the InP augments its infrastructure with
temporarily available FUEs resources and jointly slices
the augmented infrastructure to meet high throughput
and delay-tolerant traffic requirements, and 2) an E2E
independent network slicing (E2E-INS) scheme in which
the InP slices its infrastructure and tenants collaborate to
create fog slices through sequential and fine control of
their FUEs’ available resources. By augmenting the InP
slices with fog slices, this scheme achieves low latency
and high-reliability requirements.

• To minimize the risk of non-satisfying the service
request in this dynamic multi-tier network, we design
a self-learning network slicing management (SELF-E2E-
NS) scheme that adapts its operation to the network
condition. It activates E2E-JNS scheme (mode 1) or
E2E-INS scheme (mode 2) previously described. Upon
receiving a request for a service class from each tenant,
the orchestrator activates the mode with the lowest risk of
non-satisfying the request based on the previous feedback
from InP (i.e., acceptance or rejection) and tenants (i.e.,
probability of satisfying the SLA). In this way, our
self-learning mechanism can deal with uncertain traffic
demands and network dynamics.

• To find the optimal slice request admission and collabo-
ration policy for each scheme, we present a DQ-E2E-JNS
algorithm with service-aware pricing feedback based on
Deep Dueling to find the InP’s optimal policy under
uncertainty of future slice requests and fog availability.
Then, we design a distributed MAAC-E2E-INS algorithm
based on a multi-agent actor-critic that incorporates a
fog trading matching mechanism to find tenants’ optimal
association policy to buy/sell FUEs and create fog slices.

• Extensive simulations are performed to illustrate the effi-
ciency of our NS scheme compared to other conventional
schemes in the context of anticipated 6G applications.
In fact, our SELF-E2E-NS scheme achieves 4.5 times
higher reward and serves twice more requests than other
existing approaches.

The rest of the paper is organized as follows. The system
model is introduced in Section II. Section III describes the
E2E-JNS scheme and the DQ-E2E-JNS algorithm. The E2E-

INS scheme is described in Section IV together with MAAC-
E2E-INS algorithm. Section V presents the self-learning
network slicing mechanism. Simulation results are examined
in Section VI, and Section VII concludes the paper.

II. SYSTEM MODEL

A. Network Slicing Model
We consider a network slicing model, as illustrated in

Fig. 1, in which each tenant x ∈ X requests slices from
the InP to serve their subscribers’ demands of class c ∈
C. We assume that tenants serve the following anticipated
6G traffic classes [20]: Mobile Broadband Machine Type
Communication (MBBMTC), i.e., class c = 1 services,
supporting high broadband data rates along with massive
connectivity; Mobile Broadband Reliable Low Latency Com-
munication (MBBRLLC), i.e., class c = 2 services, offering
high broadband data rates along with reliable, and low latency
communication; Reliable Low Latency Machine Type Com-
munication (RLLMTC), i.e., class c = 3 services, supporting
massive connectivity, reliability, and low latency; and Mobile
Broadband and Reliable Low Latency Machine Type Com-
munication (MBBRLLMTC), i.e., class c = 4 services,
supporting high data rates, reliability, low latency, and massive
connectivity.

The InP owns the physical network infrastructure that
supports communication services and edge/cloud computing.
We assume that the InP rents its resources to tenants by jointly
slicing its communication BI , computing GI , and storage VI

resources to serve different service classes. Each slice request
of class c is associated with a vector of resources of each
type θc ≜ [bc, gc, vc], ∀c ∈ C, where bc, gc, and vc are
the units of communication, computing, and storage resources
in a slice of class c, with

∑
c bc ≤ BI ,

∑
c gc ≤ GI , and∑

c vc ≤ VI . Besides, each slice of class c has a service
requirement in terms of throughput T c

min, delay τ c
max, and

reliability ρc
min [1], [2], [3], defined in the SLA by the

tuple {θc, T c
min, τ c

max, ρc
min}. The impact of these metrics on

different applications is elaborated in Section VI. Tenants pay
different prices depending on the traffic class. They can col-
laborate with the InP by sharing their subscribers’ resources,
whenever idle, as fog user equipment (FUE) resources and by
selling unused slices back to the InP. The FUE resource vector
θc

FUE ≜ [bc
FUE , gc

FUE , vc
FUE] represents the resources from

FUEs in a slice of class c.
To leverage the multi-access opportunities across the

fog/edge/cloud continuum enabled by the collaboration
between InP and tenants, we consider two slicing modes,
as shown in Fig. 1. Mode l = 1, in which the InP augments
its infrastructure with FUEs and jointly slices the augmented
infrastructure to meet high throughput and delay-tolerant
requests. The NS scheme activated in mode 1 is referred to
as E2E joint network slicing (E2E-JNS), while the scheme
activated in mode l = 2 is referred to as E2E independent NS
(E2E-INS). This scheme slices InP resources and fog resources
separately to track the availability of FUEs and meet high
throughput, high-reliability, and low-latency requirements.

We assume that slice request arrivals of class c follow
a Poisson distribution with rate λc and each request has a
lifetime that follows an exponential distribution with the mean
rate 1/µc. When a slice request arrives, the orchestrator has
no information about the available resources in the network
but has historical data about the responses of the InP to the

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

1050 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 1. Multi-mode network slicing model for dynamic network architectures.

previous slice requests (i.e., accept or reject) and the feedback
from tenants (i.e., if accepted requests met the SLA). Based on
the historical data, the orchestrator estimates the risk that the
tenant x slice request from class c satisfies the service under
scheme l when the network state is s,

riskc
x,l = −lnPr[ξc

x,l = 1|s] (1)
where ξc

x,l is the acceptance probability of the slice request.
The objective of the orchestrator is to select the slicing mode l
to forward each request to the scheme with the minimum risk
of non-satisfying the request. Our E2E slicing mechanism can
develop self-learning capabilities by learning from previous
experience and adjusting the slicing mode decision as the
network condition and traffic evolve. More implementation
details are provided in Section V.

B. Computing Model

We assume that no local computing is performed at end
UEs and their traffic cannot be split, as in many practical
scenarios [24]. Thus, each UE traffic is served by either an
FUE or an InP node. In the independent slicing scheme, the
computing decision is given by the slice type (i.e., InP slice or
fog slice). Therefore, we focus our next discussion on the joint
slicing scheme (i.e., augmented slices). The extension to obtain
the computing delay in the former case is straightforward.
We define a binary variable αc

j ∈ [0, 1], ∀j ∈ J c
A, to indicate

whether the traffic of UE j from class c given by Kc
j is

computed at an FUE (αc
j = 0) or at an InP node (αc

j = 1) in
the allocated slice. J c

A denotes the set of UEs in an augmented
slice of class c. We assume that InP nodes can compute
tasks from several UEs simultaneously while FUEs can only
compute one task at a time. The traffic of each UE j is
processed in the accepted slice as follows:

• If the InP’s decision is αc
j = 0, UE j directly offloads

its computing task of Kc
j bits to FUE e that will allocate

the required computing and storage resources to serve the
task. If αc

j = 1, the InP serves the UE j by InP node i.
• The computation results are transmitted back to each UE.

The delay in transferring the computation result back

to the UE is omitted since the size of the computation
outcome is much smaller than the size of the input
data [25].

• We model the queuing delay at the InP nodes using an
M/M/1 queuing model, in which each InP node i is
treated as a server. The packet arrivals of class c follow a
Poisson process with rate λc

i , and the service rate of class
c follows an exponential distribution with the rate 1/µc

i .
The time spent by each packet in the system is therefore
given by 1

µc
i−λc

i
.

Thus, the delay for UE j

(1− αc
j)

[
Kc

j

T c
j,e

+
gc

req,jK
c
j

gc
j,e

+
K̂c

j,e

vc
j,e

]

+ αc
j

[
Kc

j

T c
j,i

+
gc

req,jK
c
j

gc
j,i

+
K̂c

j,i

vc
j,i

+
1

µc
i − λc

i

]
≤ τ c

max, ∀j ∈ J c
A, c ∈ C, e ∈ E , i ∈ I (2)

where E is the set of FUEs and I is the set of InP nodes. If the
request is served at FUE e, i.e., (1−αc

j), the first term indicates
the transmission delay where Kc

j is the data size and T c
j,e is

the data rate of UE j from class c when transmitting to FUE
e, which is calculated in Section VI, the second term is the
computing delay at FUE e, where gc

req,j denotes the required
computing resources (CPU cycles per bit) of UE j, gc

j,e is the
computing resources (CPU cycles per second) allocated to UE
j from FUE e. The third term is the caching delay where K̂c

j,e
is the data size of the computation result of UE’s computing
task when served by FUE e and vc

j,e denotes the writing speed
in storage (bits per second) at FUE e. Similarly, if the request
is served at InP node i in a slice class c, i.e., αc

j , the delay
includes transmission, computing, caching, and queuing delay,
where T c

j,i is the data rate of UE j from class c to InP node
i, gc

j,i is the computing resources (CPU cycles per second)
allocated to UE j from InP node i, K̂c

j,i is the data size of the
computation result of UE j when served by InP node i, vc

j,i is
the writing speed (bits per second) in storage at node i, and
τ c
max is the maximum acceptable delay of UE from class c.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

ESMAT AND LORENZO: SELF-LEARNING MULTI-MODE SLICING MECHANISM 1051

TABLE I
NOTATION

Moreover, the computing and storage resources allocated to
all end UEs from InP node i should not exceed its capacity
(
∑

j∈J c
A

gc
j,i ≤ gc

i and
∑

j∈J c
A

vc
j,i ≤ vc

i). Similar constraints
can be derived for serving the user at FUE e (gc

j,e ≤ gc
FUE,e

and vc
j,e ≤ vc

FUE,e), where gc
i and gc

FUE,e are the available
computing resources at nodes i and e, respectively, and vc

i and
vc

FUE,e are the storage resources at nodes i and e, respectively.
The selection of the computing nodes for traffic offloading
should consider that fog nodes offer lower computing delay
but at a higher computing-unit cost than the InP resources.
We summarize the most important notations in Table I.

III. END-TO-END JOINT NETWORK SLICING (E2E-JNS)
We develop an E2E-JNS scheme in which the InP col-

laborates with tenants to augment its infrastructure with
available FUEs’ resources. We assume tenants incentivize
their subscribers to share their resources whenever idle as
FUEs [26]. Based on the tenants’ demands and network
condition, we derive the optimal long-term InP’s admission
and collaboration policy using DQ-E2E-JNS algorithm. Imple-
mentation details are given in Section V.

A. Tenants’ Slice Demand/Offer Optimization
We assume that the arrival rate of tenant x’s request from

class c ∈ C is λc
x,l = λc

xξc
x,l, where λc

x is the subscribers’
traffic arrival rate from class c and ξc

x,l is the probability that
the request is forwarded to this scheme (i.e., slicing mode
l = 1 is activated). Tenants request slices for a duration ∆.
However, there will be times when slices are not fully utilized.
These available resources can be temporarily sold back to the
InP to serve requests from other tenants that exceed current
resources −available in stock−of the InP. We denote by CA,x

the set of classes of augmented slices from tenant x currently
running in the network and by CDA,x = {C \ CA,x} the set of
classes of augmented slices requested/demanded by tenant x,
CDA,x∩CA,x = ∅, and CDA,x, CA,x ∈ C. Each tenant solves an
optimization problem to determine the number of slices Dc′

A,x

needed to meet the demand for each class c′ ∈ CDA,x and the
number of unused slices and FUEs’ offered back to the InP
denoted by Oc

A,x and F c
FUE,x, c ∈ CA,x, respectively. The

InP uses the latter resources to create new slices and serve

requests from other tenants. The price for a slice from class
c′, an offered slice from class c, and a FUE from class c is
rc′

DA
, rc

OA
, and rc

FUE , respectively. Therefore, the optimization
problem of tenant x is

Px(Dc′

A,x, Oc
A,x, F c

FUE) :
maximize

Dc′
A,x,Oc

A,x,F c
F UE∑

c∈CA,x

 ∑
j∈J c

A

ΓcU
c
j + Oc

A,xrc
OA

+ F c
FUE,xrc

FUE,x


−

∑
c′∈CDA,x,c′ ̸=c

Dc′

A,xrc′

DA

subject to

a) T c′

j (θc′

j) ≥ T c′

min, ∀j ∈ J c′

A , c′ ∈ CDA,x

b) τ c′

j (θc′

j) ≤ τ c′

max, ∀j ∈ J c′

A , c′ ∈ CDA,x

c) Dc′

A,xθc′≼
∑
j∈J c′

A

θc′

j , ∀c′ ∈ CDA,x

d)
∑
j∈J c′

A

θc′

j ≼ θc′ , ∀c′ ∈ CDA,x

e) Oc
A,x ≤ N c

A,x, ∀c ∈ CA,x

f) F c
FUE,x ≤ Ec

FUE,x, ∀c ∈ CA,x (3)
where the tenant aims to maximize the utility of its subscribers
U c

j , the number of FUEs F c
FUE,x, and unused slices offered

to the InP Oc
A,x for each class c ∈ CA,x while minimizing

the number of slices requested Dc′

A,x, c′ ∈ CDA,x. The utility

function of a UE j, ∀j ∈ J c
A is U c

j =
(

T c
j

T c
min

)βc

/
(

τc
j

τc
max

)ηc

,
where T c

j is the achievable rate for UE j, and T c
min is

the minimum throughput requirement for UEs of class c.
Similarly, τ c

j is the delay for UE j and τ c
max is the maximum

tolerated delay and Γc is a scaling factor. βc, ηc ∈ [0, 1] are
mapping parameters that indicate the importance of throughput
and delay for each class. Constraints (3.a) and (3.b) ensure that
each UE j in a slice of class c′ ∈ CDA,x achieves the service
requirements previously described and θc′

j = (bc′

j , gc′

j , vc′

j)
is the vector of resources allocated to UE j. Constraint (3.c)
ensures that the overall resources of each type for all slices of

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

1052 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

class c′ ∈ CDA,x from tenant x does not exceed the required
resources by all UEs in the set J c′

A . Constraint (3.d) ensures
that the total amount of resources allocated to all UEs in a slice
of class c′ ∈ CDA,x does not exceed the maximum amount of
resources in a slice of the same class. Constraint (3.e) ensures
that the unused slices Oc

A,x of class c ∈ CA,x in tenant x sold
back to the InP do not exceed the available unused slices N c

A,x
of the same class in tenant x. Finally, constraint (3.f) ensures
that the FUEs of class c in tenant x sold to InP F c

FUE,x do
not exceed its available FUEs Ec

FUE,x.
To solve problem (3), each tenant x calculates the utilities of

their users based on the available resources at the InP. Then,
they list the users in decreasing order of their utilities and
group the ones who can achieve the QoS constraints for each
class c′ ∈ CDA,x. The number of users in each group should
not exceed the maximum number of users J c′

A that can be
served per slice of class c′. Next, each tenant x requests from
the InP as many slices as groups of users has formed (i.e.,
Dc′

A,x slices) per class c′ ∈ CDA,x, where each slice serves
a group of users. The maximum number of slices needed to
serve Jc′

x = |J c′

x | subscribers is Dc′

max,x =
⌈
Jc′

x /|J c′

A |
⌉

. The

tenant finds the optimum Dc′

A,x ≤ Dc′

max,x for each class c′

that maximizes its overall reward. Moreover, each tenant x
has Oc

A,x unused slices of class c ∈ CA,x and F c
FUE,x, c ∈

CA,x available FUEs. Since selling them increases the tenant’s
revenue, we assume the tenant sells all available resources
to maximize its revenue. The complexity of this algorithm is
provided in the Appendix.

B. InP’s Optimal Admission and Collaboration Policy
We assume that there are two sets of tenants in the network.

The set of tenants that are running slices of class c denoted by
X c, and thus may offer them to the InP, i.e., seller tenant. The
set of tenants that demand slices of class c given by X c

D, i.e.,
buyer tenant. The InP’s optimal admission and collaboration
policy is the one that maximizes the InP’s revenue by accepting
D̂c

A,x′ slice requests from a buyer tenant x′ ∈ X c
D, Ôc

A,x

slice offers from a seller tenant x ∈ X c, and F̂ c
FUE,x FUEs

from tenant x ∈ X c and class c as a response to the
demands/offers received by each tenant as a solution to (3).
The InP augments its infrastructure with F̂ c

FUE,x FUEs and
serves the slice requests by slicing its augmented infrastruc-
ture. The vector of resources per augmented slice of class c is
θc

A ≜ [bc
A, gc

A, vc
A] where bc

A = bc +
∑

c F̂ c
FUE,x bc

FUE , gc
A =

gc+
∑

c F̂ c
FUE,xgc

FUE , vc
A = vc+

∑
cF̂

c
FUE,xvc

FUE . The price
for each augmented slice allocated to tenant x′ ∈ X c

D, unused
slice from tenant x ∈ X c, and FUE of class c is rc

DA
, rOA

c,
and rc

FUE,x, respectively. Therefore, the InP’s admission and
collaboration optimization problem is
PI(D̂c

A,x′ , Ô
c
A,x, F̂ c

FUE,x) :

maximize
D̂c

A,x′ ,Ô
c
A,x,F̂ c

F UE,x

∑
c∈C

 ∑
x′∈X c

D

D̂c
A,x′r

c
DA

−
∑

x∈X c

Ôc
A,xrc

OA

− F̂ c
FUE,xrc

FUE,x


subject to

a)
∑

x′∈X c
D

∑
c∈C

D̂c
A,x′θ

c ≼ θI +
∑

x∈X c

∑
c∈C

Ôc
A,xθc

b) D̂c
A,x′ ≤ Dc∗

A,x′ , ∀c ∈ C, ∀x′ ∈ X c
D

c) Ôc
A,x ≤ Oc∗

A,x, ∀c ∈ C, x ∈ X c

d) F̂ c
FUE,x ≤ F c∗

FUE,x, ∀c ∈ C, ∀x ∈ X c (4)
where constraint (4.a) ensures that the resources required to
serve D̂c

A,x′ slices from tenant x′ do not exceed the current
available InP resources θI and additional resources from Ôc

A,x
unused slices purchased to tenant x. The vector of resources
allocated to each slice of class c is θc = θc

A. The InP controller
assigns the resources to guarantee isolation. Constraint (4.b)
limits the slices D̂c

A,x′ allocated to tenant x′ not to exceed
the slices requested Dc∗

A,x′ . Constraint (4.c) means that the
unused slices Ôc

A,x of class c bought from tenant x should
not exceed the available unused slices Oc∗

A,x. Finally, constraint
(4.d) indicates that the FUEs from class c bought from tenant
x F̂ c

FUE,x should be less than the available FUEs F c∗
FUE,x.

Recall that Dc∗
A,x′ , Oc∗

A,x and F c∗
FUE,x are obtained by solving

(3).
Tenants incentivize their subscribers to share their resources,

whenever idle, as FUEs. To calculate the price rc
FUE,x of

an FUE of class c, we assume that its task arrivals follow
a Poisson distribution with an average arrival rate (λc

TX) and
are independent and identically distributed (i.i.d). Thus, the
probability of no task arrivals (available FUE) in ∆ slots is

P c
TX (∆) = e−λc

T X∆ (5)
We define the price of an FUE of class c as

rc
FUE,x = Λc∗P c

TX (∆) (6)
which is proportional to its availability and Λc is a fixed price
per unit of FUE’s resources. The overall price decreases with
∆ as the availability of the FUE decreases.

C. Modeling of InP’s Decision

We formulate the InP’s decision problem as a semi-Markov
decision process (S-MDP) in which decisions are made once
an event occurs (e.g., slice demand/offer arrival, FUE offer).
The S-MDP is defined by the decision epoch, network state
space, action space, transition probabilities, and reward.
1) Decision Epoch: the InP makes a decision upon receiving
a request/offer from tenants. Thus, the decision epoch is the
inter-arrival time between two consecutive decisions.
2) State Space: The state sl in slicing mode l = 1 indicates
the number of slices D̂c

A,x′ of tenant x′ ∈ X c
D being served

in the network, the number of unused augmented slices Ôc
A,x

of tenant x ∈ X c bought by the InP and the number of FUEs
F̂ c

FUE,x of tenant x ∈ X c bought by the InP,

sl ≜
[(

D̂1
A,1, Ô

1
A,2, F̂

1
FUE,2

)
, . . . ,

(
D̂c

A,x′ , Ô
c
A,x, F̂ c

FUE,x

)
,

. . . ,
(
D̂4

A,X , Ô4
A,1, F̂

4
FUE,1

)]
, for l = 1,

c = {1, 2, 3, 4} (7)
Taking the InP’s admission and collaboration constraints
into consideration, the network state space is Sl ≜ {sl :
(4.a) - (4.d)}. At the current state sl, four events can occur at
the InP: a slice request arrives, an unused slice offer arrives,
an FUE offer arrives to the InP, or otherwise.
3) Action Space: At state sl, the InP can take one of the
following actions to maximize its long-term reward: accept
the offered FUEs from tenant x (asl

= 3), accept the request
from tenant x′ (asl

= 2), accept the offered unused augmented

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

ESMAT AND LORENZO: SELF-LEARNING MULTI-MODE SLICING MECHANISM 1053

slices from tenant x (asl
= 1), or reject any of the above

(asl
= 0). Therefore, the action space is described as follows:

Al ≜ {asl
} = {0, 1, 2, 3} (8)

4) State Transition Probability: The slice requests from tenant
x′, the unused slice offers from tenant x, and the FUE offers
from tenant x for each class c arrive at the network (under
mode l = 1) following a Poisson process with mean rates
λc

x′,1, Ôc
A,xµc

x,1, and λ̃c
x,1, respectively, where, µc

x,1 is the rate
at which the tenant x offers to sell back previously bought
slices. Since the availability of fog resources is temporal and
for a time less than the slice duration, we assume that the
arrival and departure rates of slice requests and available
fog nodes are independent. Every request from tenant x′

and from class c has a lifetime that follows an exponential
distribution with a mean rate 1/µc

x′,1 and every FUE offer
from class c from tenant x has availability that follows an
exponential distribution with a mean rate 1/µ̃c

x,1. The next
event can occur with rate Ys that is described as Ys =∑X

x=1

∑C
c=1

(
λc

x,1 + Ôc
A,xµc

x,1 + λ̃c
x,1 + F̂ c

FUE,xµ̃c
x,1

)
[27].

Therefore, the probability of the arrival of a slice request,
an unused slice offer or an FUE offer is Ys/Y , where Y =
maxs∈S Y s. We assume that the occurrence rate of each event
is the same and the transition epoch can be generated by a
Poisson process with rate Y . The network transfers from state
s to state s′ (̸= s) with probability ps,s′ (t). Therefore, the
one-step transition probabilities can be written as follows

ps,s
′ (t) =

{
(Ys/Y) ps,s

′ (t) , s
′ ̸= s,

1− (Ys/Y) , otherwise,
(9)

The probabilities ps,s
′ (t), t ≤ 0 are

ps,s
′ (t) =

∞∑
n=0

e−Y t Y tn

n!
p
(n)

s,s
′ (t) , ∀sl, s

′

l ∈ Sl (10)

Note that to derive the transition probabilities, we need infor-
mation about the demand/offer arrivals and completion times,
which may not be available and vary in time. For this reason,
we develop DQ-E2E-INS algorithm in Section III-D to solve
the optimal policy for the InP without requiring information
about the environment.
5): The reward of the InP depends on the current state sl ∈ Sl

and the action taken asl
,

rl (sl, asl
) =



rc
DA

, if a slice request arrives,

asl
= 2, s′l ∈ Sl

−rc
OA

, if an unused slice offer

arrives, asl
= 1, s′l ∈ Sl

−rc
FUE,x, if a FUE offer arrives,

asl
= 3, s′l ∈ Sl

0, otherwise
(11)

At state sl ∈ Sl, if the slice demand/offered is accepted,
i.e., asl

= 2, the InP receives an immediate reward rc
DA

and the network moves to the next state s′l. If the unused
augmented slice offer is accepted, i.e., asl

= 1, the InP pays
rc
OA

, and the network moves to the next state s′l. If the FUE
offer is accepted, i.e., asl

= 3, the InP pays rc
FUE,x and

the network moves to the next state s′l. Finally, if the InP
declines the demand/offer, the reward is 0. According to our
S-MDP model, we can reformulate the InP’s admission and

collaboration problem to obtain an optimal policy πl
∗ that

maps the state space to the action space Sl→Al and maximizes
the long-term average reward of the InP,

max
πl

Rl (πl) = lim
T→∞

E
T∑

t=1

(
rl

(
st

l , πl

(
st

l

)))
/T, (12)

where rl (st
l , πl(st

l)) is the immediate reward at decision epoch
t under policy πl. Solving this problem entails high complexity
due to the network dynamics. To find the optimal policy and
deal with uncertain and dynamic demands, we adopt Deep
Q-learning algorithms in the sequel.

D. DQ-E2E-JNS Algorithm
We develop a DQ-E2E-JNS algorithm to solve the InP’s

admission and collaboration problem. The DQN is run in a
centralized cloud at the InP and uses historical information.
Through learning and building knowledge of the joint network
slicing mode, the optimal policy can be obtained. The InP
will forward the cloud the needed information to build the
system state st

l as in (7). Then, the agent chooses an action
at

l depending on the current policy. The algorithm uses the ϵ-
greedy policy in choosing the action to balance the exploitation
and exploration and improve the reward. Then, the algorithm
measures the output in terms of reward rt

l and moves to
the next state st+1

l . The agent’s experience which includes
the current state, action, reward, and next state are stored in
the replay memory. The experience samples are utilized to
train the value function Q (sl, al) and target value function
Q̂ (sl, al). As described in Algorithm 1, Q (sl, al) is trained
each step towards Q̂ (sl, al) by minimizing the loss function
at each iteration

Loss(w1, w2) = E(s,a,r,s′)[(
rt
l + Ψ max

at
l

Q̂
(
st

l , a
t
l ;w1

−, w2
−)

−Q
(
st

l , a
t
l ;w1, w2

))2]
, (13)

where w1 and w2 are the parameters of the primary Q-
network (value function Q (sl, al)) and w1

− and w2
− are the

parameters of the target Q-network (target value Q̂ (sl, al)).
To improve the convergence of our algorithm, we adopt

dueling which uses two streams of fully connected hidden
layers, i.e., the values of the states α1 (sl;w2) and the
advantage values of actions L (sl, al;w1) to simultaneously
train the learning process of the Q-learning algorithm [28].
They represent the importance of being in state sl and the
significance of executing action al in comparison with other
potential actions, respectively. Then, the value function is
calculated by combining the two values as follows

Q (sl, al;w1, w2) = α1 (sl;w2) + L (sl, al;w1)

− 1
|Al|

∑
a′l

L (sl, a
′
l;w1), (14)

where |Al| is the number of all available actions.

E. Outage
Occasionally, FUEs need their resources back to transmit

their traffic, interrupting the ongoing connection and affecting
the availability of resources in the augmented slices and fog
slices. Therefore, the probability of outage in the transmission

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

1054 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Algorithm 1 Dueling DQ-E2E-JNS Algorithm
1: Initialize: the discount factor value Ψ , experience reply

buffer H to capacity Cap, epsilon ϵ, and the learning rate
value Ωt.

2: Initialize: the primary network Q and target network Q̂
with random weights w1, w2, and w1

− = w1, w2
− = w2,

respectively.
3: For t = 1 to T do
4: Tenants receive UEs’ requests and find available unused

slices and FUEs.
5: Tenants calculate UE’s expected utilities and request

slices or offer unused slices or FUEs to InP as in (3).
6: With probability ϵ, select a random action at

l , otherwise
select action at

l = argmaxat
l
Q∗ (st

l , a
t
l ;w1, w2)

7: Observe rt
l and st+1

l based on executed action at
l .

8: Put (st
l , a

t
l , r

t
l , s

t+1
l) in H

9: Sample random minibatch of (sli , ali , rli , sli+1) from the
experience reply buffer.

10: Calculate Q (sli , ali ;w1, w2) as in (14)
11: Update w1, w2 by minimizing the loss as in (13)
12: Replace Q̂ with Q every U steps
13: EndFor

of UE j in an augmented slice or fog slice from class c due
to unavailability of FUEs is

pc
out,j = 1− Pr

[
T c

j

(
θc

j

)
≥ T c

min & τ c
j (θ

c
j) ≤ τ c

max

]
,

∀j ∈ J c
A, c ∈ C (15)

In a similar vein, the outage probability due to using
a certain radio spectrum band to serve UEs of class c is
calculated by using (15). We assume that the packet arrival
rate of each user j increases inversely proportional to the
probability of no-outage, λc

eq,j = λj/(1 − pc
out,j). Therefore,

if the transmission is unsuccessful, the users will retransmit
accordingly with a rate equal to λc

eq,j .

IV. END-TO-END INDEPENDENT NETWORK SLICING
(E2E-INS)

To utilize FUEs’ resources more efficiently and guarantee
strict delay requirements, we propose a second slicing mode
based on a new E2E independent network slicing scheme
(E2E-INS). This scheme combines fixed InP slices created
using InP’s resources and fog slices consisting of available
FUEs resources. The optimum slice allocation is solved in
two steps. First, we determine the InP’s optimal admission
and collaboration policy. Then we formulate the tenants’
optimization problem as a Markov game to buy/sell fog slices
and solve it using a multi-agent actor-critic algorithm that
incorporates matching for FUE trading. Implementation details
are provided in Section V.

A. InP’s Optimal Admission and Collaboration Policy
In this scheme, the InP’s optimal admission and collabo-

ration policy determines the optimal acceptance/rejection of
slice requests using only InP resources and the collaboration
with tenants to buy back temporarily unused slices from those
previously accepted. The remaining requests from each tenant
will be served by combining the InP slices with fog slices as
explained in Section IV-B. Let us denote by Dc∗

I,x′ and Oc∗
I,x

the optimal number of slices requested and offered to the InP
from class c by tenant x′ ∈ X c

D and x ∈ X c, respectively. They
are obtained by solving the tenant’s optimization problem in
(3) when the InP charges a price rc

DI
per accepted slice from

class c and pays a price rc
OI

for per unused slice from the
same class. In response to this demand and offer, the InP
accepts D̂c∗

I,x′ and Ôc∗
I,x slice requests from tenant x′ and

unused slice offers from tenant x, respectively, by solving
PI (D̂c∗

I,x′ , Ô
c∗
I,x, 0) in (4). Recall that the vector of resources

allocated per slice contains only InP’s resources, θc = θI .
Modeling the InP’s decision is straightforward and is omitted
in the interest of space. In fact, Algorithm 1 can solve the
admission and collaboration policy for the new state vector
sl ≜

[
{D̂c

I,1, Ô
c
I,2}, . . . , {D̂c

I,x′ , Ô
c
I,x}, . . . , {D̂c

I,X , Ôc
I,1}

]
,

where l = 2 and c ∈ C. The reward function rl (sl, asl
) equals

rc
DI

if an InP slice request arrives and action asl
= 2 is taken,

−rc
OI

if an unused InP slice offer arrives and action asl
= 1

is taken, or 0, otherwise and action asl
= 0.

B. Tenants’ Fog Slicing Optimization Problem

The remaining requests Dc∗
I,x′−D̂c∗

I,x′ from each tenant x′ ∈
X c

D will be served by using fog slices created from available
FUEs from any class c ∈ C and any tenant x ∈ X . Tenants
serve their remaining slice requests first by utilizing their own
FUEs, and if there are remaining FUEs available, they will
sell them to other tenants. Therefore, a tenant becomes a fog
slice seller tenant xf ∈ Xf if it has available FUEs or a
fog slice buyer tenant x′

f ∈ XDf
if it has remaining slice

requests. For simplicity, we refer to these tenants as sellers
and buyers, respectively. The FUEs’ resources will be used to
create fog slices of any class c, independently of their initial
class as subscribers, for as long as their resources are sufficient
to serve that class. To this end, we formulate the matching
problem between buyers and sellers, which is solved every
time there is a new demand. A buyer x′

f is matched to a
seller xf , indicated as δx′f ,xf

= 1, if it is the one that can
serve the highest number of requests. Otherwise, δx′f ,xf

= 0.
At the same time, each seller is matched to the buyer that
results in the highest reward. The seller slices its available
FUEs’ resources as fog slices to serve different classes from
the buyer tenant, so the buyer will request a number of fog
slices Dc

x′f ,xf
to satisfy the requirements from its UEs of class

c ∈ C. The price per fog slice of class c is rc
Df

. We assume
that each buyer is matched to at most one seller, and each
seller can serve at most one buyer at a time. Therefore, the
optimization problem for buyer x′

f ∈ XDf
is formulated as

maximize
δx′

f
,xf

,Dc′
x′

f
,xf

∑
xf∈Xf

δx′f ,xf

∑
c

∑
j∈J c

f

ΓcU
c
j −

∑
c′∈CD,x′

f

Dc′

x′f ,xf
rc′

f


−

∑
c′∈CD,x′

f

[
D̂c′∗

I,x′f
rc′

DI

]
+

∑
c∈Cx′

f

[
Ô

c∗
I,x′f

rc
OI

]
subject to

a) T c′

j (θc′

f,j) ≥ T c′

min, ∀j ∈ J c
f or J c

I , ∀c′ ∈ CD,x′f

b) τ c′

j (θc′

f,j) ≤ τ c′

max, ∀j ∈ J c
f or J c

I , ∀c′ ∈ CD,x′f

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

ESMAT AND LORENZO: SELF-LEARNING MULTI-MODE SLICING MECHANISM 1055

c)
∑

c′∈CD,x′
f

(Dc′∗
I,x′ − D̂c′∗

I,x′)θ
c′ ≽

∑
c′∈Cxf

Dc′

x′f ,xf
θc′

f

d)
∑

xf∈Xf

δx′f ,xf
≤ 1 (16)

where U c
j is the utility function of UE j from class c subscribed

to the buyer tenant and served by a fog slice in the set J c
f .

U c
j is defined as in Section III-A. D̂c′∗

I,x′f
and Ôc∗

I,x′f
are the

optimal number of InP slices of class c′ allocated to tenant x′
f

and unused InP slices of class c that the same tenant sold back
to the InP, respectively. Constraints (16.a) and (16.b) ensure
that UE j achieves the QoS requirement when served by a fog
slice from class c′ with θc′

f = (bc′

f , gc′

f , vc′

f) FUEs’ resources.
Constraint (16.c) guarantees that the overall amount of fog
resources in Dc′

x′f ,xf
fog slices requested from tenant xf do

not exceed its remaining resources. Finally, constraint (16.d)
indicates that a given buyer x′

f can only be served by one
seller xf .

Once the seller xf ∈ Xf receives the requests from multiple
buyers, the seller will maximize its reward as

maximize
δ̂xf ,x′

f
,Ôc′

xf ,x′
f

∑
x′f∈XDf

∑
c′∈Cxf

δ̂xf ,x′f
Ôc′

xf ,x′f
rc′

f

−
∑

c∈CD,xf

[
D̂c∗

I,xf
rc
DI

]
+

∑
c′∈Cxf

[
Ô

c′∗
I,xf

rc′

OI

]
subject to

a)
∑

x′f∈XDf

∑
c′∈Cxf

Ôc′

xf ,x′f
θc′

f

≼
∑

c′∈Cxf

Ec′

FUE,xf
θc′

FUE

b) Ôc′

xf ,x′f
≤ Dc′

x′f ,xf
, ∀c′ ∈ Cxf

c)
∑

x′f∈XDf

δ̂xf ,x′f
≤ 1 (17)

where the first term is the revenue obtained by selling Ôc′

xf ,x′f
fog slices to buyer x′

f , the second one is the cost of buying
D̂c∗

I,xf
slices from the InP at a price rc

DI
, and the third one

is the revenue obtained by selling back Ôc′∗

I,xf
unused slices

to the InP at price rc′

OI
. Constraint (17.a) ensures that the fog

resources θc′

f allocated to Ôc′

xf ,x′f
fog slices for each class c

do not exceed the current available FUEs’ resources Ec′

FUE,xf

in tenant xf , where θc′

FUE is the vector of FUEs’ resources.
Constraint (17.b) states that the fog slices sold Ôc′

xf ,x′f
should

not exceed the fog slices requested Dc′

x′f ,xf
per class c′. Finally,

in constraint (17.c), δ̂xf ,x′f
equals 1 if seller xf serves buyer

x′
f , or 0, otherwise, and seller xf can serve only one buyer

tenant. Solving the buyers’ and sellers’ pairing optimization
problems is challenging because of the uncertainty of other
sellers’ policies and buyers’ service demands. To overcome
this non-stationary environment and the multi-agent credit
assignment problem [29], a cooperative Multi-Agent Actor-
Critic (MAAC) framework is implemented in which each
seller learns its best policy based on centralized-training
and distributed-execution design. Our algorithm implements
a multi-agent dueling DQ network-based scheme combined

with distributed coordinated learning to effectively learn the
optimum FUE’s trading policy. By distributed coordinated
learning and dueling network, the learning scheme can rapidly
converge to the optimum policy.

The price rc
f that buyer x′

f pays to seller xf per fog slice
of class c is proportional to the urgency of the service and
the availability of FUEs’ resources in the fog slice. The ratio(

τc
r

∆

)
between the remaining time slots τ c

r from class c to
complete the service and the duration of the slice ∆ given in
the number of time slots represent the urgency of the slice
request. The probability of no task arrivals P c

TX for any FUE
during the duration of the urgent slice request ζ is obtained
by (5). Thus, the price for a fog slice from class c is obtained
as

rc
f = uc

(
τ c
r

∆

)
P c

TX (ζ) (18)

where uc is the nominal price of a fog slice from class c. This
pricing function gives more priority to slice requests with less
remaining slots to complete the transmission. For instance, the
price of an MBBMTC, MBBRLLC or MBBRLLMTC slice
request gradually decreases until the request is accepted or
expires, i.e., τ c

r = 0. However, the price of an RLLMTC
slice request with the lowest delay requirement has the highest
priority, i.e., τ c

r = 1.

C. Modeling Multi-Agent Environment

We model the multi-agent environment using a partially
observable Markov game in which each agent xf ∈ Xf corre-
sponds to a seller interacting with the environment. In a multi-
agent environment, agents update their policies independently
and simultaneously, making the environment non-stationary.
The framework of Markov games admits multiple adaptive
agents, i.e., Xf = |Xf |, with competing goals. We define
the Markov decision game for fog slice trading by the tuple
(S, A, r1, . . . , rXf

, pl,Ψ), where S is the state space, A
is the action space, rxf

is the reward function of agent
xf and p is the transition probability p = Pr{sxf

(t +
1)|sxf

(t) , a1, . . . , aXf
)} from the current state sxf

(t) ∈ S
to the next state sxf

(t + 1) ∈ S when all agents take
actions {axf

∈ A, xf ∈ Xf} simultaneously, and Ψ is the
discount factor, Ψ ∈ [0, 1). All agents take their actions
(select a buyer) according to a policy πxf

that takes into
consideration the actions of other agents. Based on the optimal
policies, each seller finds the best buyer to offer its resources.
Since sellers know the availability of their FUEs, we assume
they are the agents in this trading game. From now on,
we use interchangeably the terms “agent” and “seller” unless
otherwise stated.

a) State space: The state sxf
of the fog slice trading

environment has two components: the number of fog slices
Ôc′

xf ,x′f
of buyer x′

f from class c being served/run in the
network by seller xf and the number of remaining available
FUEs Ec′

FUE,xf
of seller xf from class c,

sxf
≜ [Ô1

xf ,x′f
, E1

FUE,xf
, . . . ,

Ôc′

xf ,x′f
, Ec′

FUE,xf
, . . . , ÔC

xf ,x′f
, EC

FUE,xf
] (19)

The state space under each seller’s resource constraints is S ≜{
s : ∀sxf

∈ s, (17.a)− (17.c)
}

, where s is vector of states of
all agents, s ≜ [s1, . . . , sxf

, . . . , sXf
], ∀xf ∈ Xf .

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

1056 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

b) Action space: At the network state sxf
, the action

of seller xf is to choose which buyer x′
f ∈ XDf

to offer
the fog slices, axf

= x′
f , or axf

= 0 if the seller
refuses to choose any buyer. Therefore, the action space
of seller xf is A =

{
a : ∀axf

∈
{
XDf

∪
}}

, and a ≜
[a1, . . . , axf

, . . . , aXf
], ∀xf ∈ Xf .

c) Reward: Seller xf receives an immediate reward
r
(
sxf

, axf
, a−xf

)
after executing action axf

while other
sellers executed action a−xf

at network state sxf
∈S and the

next state is s′
xf
∈S ,

rxf

(
sxf

, axf
, a−xf

)
=


∑C

c′=1 Ôc′

xf ,x′f
+ cte, if axf

= x′
f and x′

f selected xf

−ℏ if axf
= x′

f and x′
f does not

select xf

0, if axf
= 0

(20)
where the constant cte =
−
∑

c∈CD,xf

[
D̂c∗

I,xf
rc
DI

]
+
∑

c′∈Cxf

[
Ô

c′∗
I,xf

rc′

OI

]
and

ℏ is a punishment for the agents to discourage them from
offering the resources to the same buyer at the same time so
FUEs’ resources can be utilized efficiently, axf

is the action
of seller xf and a−xf

are the actions of other sellers except
xf .

The goal of each agent is to learn a policy πxf
which

maximizes the expected cumulative discounted reward

Rxf
(πxf

) = E

[
T∑

t=0

Ψ trxf
(t)

]
. (21)

D. Multi-Agent Actor-Critic for Fog Slice Allocation

We adopt a Multi-Agent Actor-Critic (MAAC) framework
to find the optimal policy for each seller by considering the
action policies of other sellers and utilizing cooperation among
agents to enhance the performance. It is worth mentioning that
collaboration occurs during centralized training, but agents
execute their decisions distributively. To this end, the AC
framework divides the agent into two parts: the actor that is
responsible for selecting the action and the critic that criticizes
the actor for reaching the best decision. The MAAC framework
is an extension of AC. The MAAC framework for pairing
buyers and sellers is shown in Fig. 2. Each seller is supported
by an autonomous agent xf . The actor is responsible for
selecting a proper action based on the observed state. Then
the critic evaluates the quality of the chosen action depending
on the extra information on the actions and states of the other
sellers. Thus, to facilitate the training process, we allow the
policies to exploit this information while training. We assume
that the tenant has the necessary cloud computing resources
to implement the centralized training process. Agent xf in the
decentralized execution process downloads the trained weight
of the actor from the cloud and loads it into its own actor xf .
The actor xf chooses action (buyer) axf

based on the observed
state sxf

and receives a reward rxf
. Each agent uploads to

the cloud the historical information, including (sxf
, axf

, rxf
)

collected during the execution process for the next training
process.

Using the framework of MAAC, the environment becomes
stationary as we know the actions executed by other sellers
even though their policies change in time [29]. Once the

actions are known, the transition probability can be deter-
mined Pr(sxf

(t + 1) | sxf
(t) , a1, . . . , aXf

, π1, . . . , πXf
) =

Pr(sxf
(t+1) | sxf

(t) , a1, . . . , aXf
). Let π = {π1, . . . , πXf

}
be the set of sellers’ strategies. The critic of agent xf takes
the actions and states of the other agents to evaluate the action
of its own agent using the centralized action-value function
Qπ

xf
(s, a) = Es′,rxf

∼E

[
rxf

+ ΨEa′∼πQπ
xf

(s′, a′)
]
, where

s and a include the states and actions of all agents, respec-
tively.

Let us extend the previous framework to deterministic
policies. If we consider Xf deterministic policies (actor) with
µ = {µ1, . . . , µN} the set of all policies, we can optimize the
function approximator of the centralized action-value function
Qxf

of agent xf parameterized by ΩQ
xf

by minimizing

Loss
(
ΩQ

xf

)
= Es,a,rxf

,s′ [
(
Qxf

(
s, a|ΩQ

xf

)
−
(
rxf

+ ΨQxf

(
s′, µ(s′)|ΩQ

xf

)))2

], (22)

Considering the deterministic policy µxf
parameterized by

Ωµ
xf

using the deterministic policy gradient scheme, we can
calculate the gradient of the expected return for agent xf

∇Ωµ
xf

E
[
Rxf

]
= Es,a∼H

[
∇axf

Qxf

(
s, a|ΩQ

xf

)
|axf

=µxf
(sxf

)

]
×∇Ωµ

xf
µxf

(
sxf

∣∣∣ Ωµ
xf

)
(23)

where H is the replay buffer that contains the tuples
(s, a, r, s′) recording experiences of all agents. At each time
the critic and actor are updated by sampling a minibatch
uniformly from the buffer.

The mapping between the state and action space of the
actor and the action-value function of the critic needs to
be approximated by function approximators. To approximate
the mapping in large state and action spaces, we incorporate
deep learning into MAAC. Let µ = {µ1, . . . , µN} and Q =
{Q1, . . . , QN} denote the set of actor networks and critic
networks of all agents, respectively, with their corresponding
weights Ωµ = {Ωµ

1 , . . . ,Ωµ
N} and ΩQ =

{
ΩQ

1 , . . . ,ΩQ
N

}
.

Both actor and critic networks are fully connected networks.
The input of the actor network is the state observed by the
agent, while the output is the chosen action. In the critic
network, first we enter the states of all agents s, following
a fully connected layer. Then the actions of all agents a
go through several fully connected layers until the output
Qπ

xf
(s, a) is obtained. The MAAC-E2E-INS algorithm is

described in Algorithm 2 and centralized training for the
MAAC architecture is shown in Fig. 2. The MAAC framework
utilizes historical data to train the deep neural networks of the
actor and critic and returns the weights of actor network Ωµ

as described in the execution process in Algorithm 2. The
computational complexity is derived in the Appendix.

V. SLICE MANAGEMENT SYSTEM (SELF-E2E-NS)
The orchestrator has no information about the available

resources in the network and thus it builds a belief in InP
resource availability. This belief is used to decide which slicing
mode l to activate to serve the slice requests from each class
c. The orchestrator will activate the mode with the lowest risk
of non-satisfying the service based on previous decisions in
which the belief of available InP resources was the same.
The algorithm is described in Algorithm 3, and the belief

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

ESMAT AND LORENZO: SELF-LEARNING MULTI-MODE SLICING MECHANISM 1057

Fig. 2. Multi-agent actor-critic architecture (N = Xf , m = xf).

Algorithm 2 MAAC-E2E-INS
1: Input: Critic and actor network structures.
2: Output: Ωµ of actor network.
3: Training:
4: Initialize randomly Q and µ with ΩQ and Ωµ .
5: Seller receives initial states s0 = {s0

1, . . . , s
0
Xf

}
6: For t = 1 to T do
7: Sellers choose actions at = {at

1,, a
t
Xf

} based on
current policy where at

xf
= µxf

(st
xf
).

8: Sellers execute actions at, receive rewards rt =
{rt

1,, r
t
Xf

} and observe new states st+1.
9: Save (st, at, rt, st+1) in H

10: Sample random minibatch of (s, a, r, s′) from the expe-
rience reply buffer.

11: Update critic by minimizing (22).
12: Update the actor policy based on (23).
13: End For
14: Input: Actor network structure, Ωµ′ .
15: Execution:
16: Load Ωµ′ to the actor network.
17: Sellers receive initial observation states s0 =

{s0
1, . . . , s

0
Xf

}
18: For t = 1 to T do
19: Sellers choose actions at = {at

xf
= µ′

xf
(st

xf
), xf ∈ Xf}

according to current policy.
20: Sellers execute actions at and observe new states st+1.
21: End For

calculation is detailed in the Appendix. The probability of
satisfying the service ξc

x,l for a tenant x requesting a slice
from class c ∈ C, c = {1, 2, 3, 4} using mode l is

ξc
x,1 = pc

x,1FBc
x,1 =

D̂c∗
A,x

Dc∗
A,x

1−
∑

j∈J c
A

pc
out,j

 (24)

ξc
x,2 = pc

x,2FBc
x,2 =

D̂c∗
I,x + Ôc

xf ,x′f

Dc∗
I,x

1−
∑

j∈{J c
I ∪J c

f }

pc
out,j


(25)

where px
c,1 and px

c,2 are the acceptance probabilities and FBc
x,1

and FBc
x,2 are the feedback from the tenants about the service

Algorithm 3 SELF-E2E-NS
1: At time t, orchestrator receives Dc∗ slice requests from

class c.
2: Obtain the belief of state of available InP resources sIl

per
mode l; pbelief (sIl

(t)) = {y∗
l } = argmaxyl

{pbelief (yl)}.
3: For t′ = auxt : t − 1
4: For c = 1 : 4
5: If pbelief (t′) = y∗

l and Dc(t′) = Dc∗

6: If riskc
l=1(t

′) < riskc
l=2(t

′)
7: Activate mode l = 1.
8: Else If
9: Activate mode l = 2.

10: End If
11: End If
12: End For
13: End For
14: Once the slice is served update history sample at t with

the riskc
l (t) and pbelief (t) = sIl

(t).

satisfaction using mode 1 and 2, respectively. px
c,1 is obtained

as the ratio between the accepted requests D̂c∗
A,x by InP and

the number of slice requests Dc∗
A,x by tenant x. px

c,2 is the
ratio between the accepted requests by InP D̂c∗

I,x and tenant
x′

f Ôc
x′f ,xf

and the number of slice requests Dc∗
I,x by tenant

x. The feedback FBc
x,1 and FBc

x,2 received from the tenants
is defined as the probability of no outage in the transmission
for each user j ∈ J c

A and j ∈ {J c
I ∪ J c

f }, respectively. The
outage compromises satisfying the SLA.

The objective of the orchestrator is to select the slicing
mode l that minimizes the risk of not serving the request and
achieving the SLA requirement, as defined in (1), for each
request of class c from tenant x as follows

minimize
Zc

x,l

∑
x

∑
c

Zc
x,lrisk

c
x,l

subject to
∑

l

Zc
x,l ≤ 1 (26)

where Zc
x,l is binary indicator (Zc

x,l∈ (0, 1)) in which Zc
x,l =

1 means that the global orchestrator selects the scheme l (i.e.,
= 1 for E2E-JNS or l = 2 for E2E-INS) to serve the slice
request from class c requested by tenant x, otherwise 0. The
risk is low when the probability of non-satisfying the service
is high, and vice versa. The constraint indicates that a slice
request cannot be sent to both schemes simultaneously.

Once the operational mode l is activated, the slice request
is forwarded to the corresponding scheme. The InP accepts or
rejects the requests based on its admission and collaboration
policy πl. We have two cases:

- Request forwarded to E2E-JNS scheme (l = 1): If
D̂c∗

A,x slice requests of tenant x are accepted in the E2E-JNS
scheme, tenant x cooperates with the InP by sharing F c∗

FUE,x
subscribers resources (FUEs) and Oc∗

A,x unused slices. The
InP’s policy π1 takes into account the unused slices sold back
by tenants to serve more requests. The local controller at the
tenant has information about the location and availability of
the FUEs and shares that information with the global con-
troller (InP controller) to create augmented slices. The global
controller has information about the InP available resources.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

1058 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

TABLE II
REQUIRED RESOURCES FOR EACH SLICE PER CLASS

TABLE III
REWARD AND PRIORITY WEIGHT PER CLASS AND EACH SLICE RESOURCE

TABLE IV
COST PER RESOURCE UNIT

- Request forwarded to E2E-INS scheme (l = 2): If D̂c∗
I,x

slice requests of tenant x are accepted in the E2E-INS scheme,
tenant x cooperates with the InP to serve the remaining
demand Dc∗

I,x − D̂c∗
I,x by using fog slices that contain its

own and other tenants’ FUEs. The local controller at the
tenant informs the global controller (InP controller) to create
fog slices in which FUEs act as relays and forward the
transmission to the nodes in the InP slices to complete the
transmission. We assume that the local controller has access
to cloud computing resources to train the MAAC-E2E-INS
algorithm.

By relying on feedback from tenants and InP, the orches-
trator learns to activate the slicing mode with the highest
probability of satisfying the request. Once the slice is served,
the belief is updated with the current state information from
the InP, and the risk is obtained and stored for future decisions.

VI. SIMULATION RESULTS

A. Simulation Setup
We conduct extensive simulations to illustrate the perfor-

mance of our approaches and compare them with existing
schemes. The simulations are implemented using TensorFlow.
Unless otherwise stated, the simulation parameters are given
in Tables II-V. We assume that there are four tenants in the
network. The number of users of each class requiring service
from each tenant is obtained by drawing a random sample from
a Poisson distribution with an average number of users given
in Table V. The users’ locations are also chosen randomly.
We consider a smart city application using the mmWave band
as an example of MBBRLLC traffic, teleoperated driving using
the microwave band as an example of RLLMTC, remote
pervasive monitoring using the mmWave band as an example
of MBBMTC and immersive VR video transmission using
the THz band as an example of MBBRLLMTC. The channel
model of each band is given in Table V. The reward obtained
from a slice request of class c is selected based the required
reliability, which results into a different amount of resources,
and the availability of the slice resources in each type of slice
(i.e., InP slice, augmented slice, or fog slice). The immediate

TABLE V
SIMULATION PARAMETERS

reward from accepting a slice from class c can be calculated
as follows

rc
RT = φc

RT (b
ccostb + gccostg + vccostv) (27)

where φc
RT is the priority weight for a slice from class c on

each type of resource (RT)- InP slice (φc
I), augmented slice

(φc
A), or fog slice (φc

F). costb, costg , and costv are the cost
per radio unit ($/Hz), the cost per computing unit ($/(cyc/sec)),
and the cost per storage unit ($/(bit/sec)); respectively.

Each UE j ∈ J c is allocated a bandwidth W c
j such that the

overall bandwidth allocated to a slice of class c is W c ≥∑|J c|
j=1 W c

j . The bandwidth is not shared (reused) between
users to avoid interference, and we assume users have several
orthogonal channels available. The service requirements for
each class are described in Table V for uplink transmission
since both throughput and delay are more restrictive in this
case. The transmission rate of UE j, ∀j ∈ J c, c = MBBMTC,
MBBRLLC, or MBBRLLMTC, to a base station (BS) i (or
FUE) on channel υ in a slice from class c is calculated
by Shannon’s capacity T c

j,υ = W c
j log2

(
1 + γc

ji,υ

)
, where

W c
j is the bandwidth allocated to UE j and γc

ji,υ is the
signal-to-noise ratio obtained as γc

ji,υ = qc
ji,yhc

ji,υ/σ2
j,c with

transmission power qc
ji,υ from UE j to BS i on channel

υ, channel gain hc
ji,υ between UE j and BS i on chan-

nel υ, and noise power σ2
j,c at UE j. On the other hand,

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

ESMAT AND LORENZO: SELF-LEARNING MULTI-MODE SLICING MECHANISM 1059

Fig. 3. (a) Network’s average reward, (b) Total number of slice requests accepted in the network vs. available InP’s resources (BI = xB1,GI = x G1,
VI = x V1) when the percentage of unused slices is 20%, the number of MBBMTC FUEs, MBBRLLC FUEs, RLLMTC FUEs, and MBBRLLMTC FUEs in
first seller tenant is 50, 20, 1000 and 30, respectively, and in the second seller tenant are 35, 15, 750 and 25, respectively, and (c) Network’s average reward
vs. no. episodes.

the data rate of UE j, ∀j ∈ J c, c = RLLMTC, taking
teleoperated driving as an example, which needs high reli-
ability and low delay service, e.g., to transmit information
between vehicles, depends on the finite blocklength capacity.
As the payload length is very small, the achievable rate
of UE j is obtained by the short packet rate [33] T c

j ≤

W c
j

{
log2

(
1 + γc

ji,υ

)
−
√

Chji,υ

Υji,υ
Q−1(χ)log2e

}
, where the

channel dispersion of UE j is Chji,υ = 1 − 1/
(
1 + γc

ji,υ

)2
,

γc
ji,υ = qc

ji,υhc
ji,υ/σ2

j,c is the signal-to-noise ratio defined
above, Υji,υ is the codeword block length of UE j, χ is
the transmission error probability, and Q−1(.) is the inverse of
the Gaussian Q-function. The number of arrival tasks to FUEs
follows a Poisson distribution with average arrival rate λc

TX set
to 0.5 task/msec for FUEs from MBBMTC, MBBRLLC and
MBBRLLMTC, and 0.2 task/msec for RLLMTC. We assume
that UEs in the same class require the same amount of
resources, and the duration of each time slot ζ and slice ∆
is 1 msec and 1 hour, respectively [34]. The deep neural
network architecture is designed with the size of the hidden
layers equal 64. For DQ-E2E-JNS, we use two fully-connected
hidden layers. For Dueling DQ-E2E-JNS scheme, the structure
of the neural network contains two fully-connected hidden
layers and two streams. We use ϵ-greedy algorithm with an
initial and final value of ϵ equal 1 and 0.1, respectively. The
random actions are selected with probability ϵ, and the actions
that maximize the Q(s, a) are selected with probability 1- ϵ.

B. Performance Evaluation and Comparison
Existing works [12] that consider only one UE in making

a decision to use the fog or cloud to complete their tasks or
only one type of service [16] cannot be directly compared
to our schemes. Therefore, we compare our results using the
slicing algorithm in [14] that adopts learning to accommodate
heterogeneous traffic requests in a multi-tenant scenario using
a fixed InP infrastructure without cooperation between InP
and tenants or fog resources. We refer to the algorithm [14]
as fixed-E2E-NS. Besides we also compare the performance
using exclusively E2E-JNS or E2E-INS to serve all requests
without self-learning orchestration. To validate the benefits of
our proposed slicing mechanism, the overall average reward
of InP and tenants and the overall number of requests served
are compared in Fig. 3a and 3b, respectively, to the algorithms
previously described. We assume that the available resources
of the InP varied in the ranges of 1xV1 to 15xV1, 1xG1 to
15xG1, and 1xB1 to 15xB1 where the initial InP resources,

(V1, G1, B1), are described in Table V. The number of
requests received per class equals 20 for MBBMTC (c = 1),
18 for MBBRLLC (c = 2), 17 for RLLMTC (c = 3), and
22 for MBBRLLMTC (c = 4). The average reward increases
with the InP’s resources as more slice requests are accepted.
Our proposed slicing mechanism outperforms the E2E-JNS
and E2E-INS algorithms implemented alone. The self-learning
orchestration facilitates a fair allocation of slices by forwarding
the requests to each scheme with the highest probability of
acceptance. In contrast, each scheme separately only accepts
the requests with the highest revenue. If there are limited
InP resources, our scheme achieves up to 4.5 times higher
reward and serves up to twice more requests than the fixed-
E2E-NS [14]. But even if the InP has abundant resources,
our mechanism significantly outperforms the other schemes.
By leveraging the available fog resources and leasing back the
unused slices to the InP, the resources are efficiently utilized
to serve new demands.

In Fig. 3b, we can see that the E2E-INS scheme accepts
more slice requests than the E2E-JNS scheme, but its revenue
is lower. This is because the FUEs are used to augment
the InP slices in E2E-JNS to serve high-reward classes,
whereas, in the E2E-INS scheme, they are utilized to cre-
ate fog slices to serve low-reward classes. In Table VI,
we show the number of requests accepted per class for
different amounts of InP’s resources. As we can see, when
there are a few available resources, only requests from
MBBRLLC (c = 2) and RLLMTC (c = 3) are accepted
by JNS and INS, respectively, since they achieve a higher
long-term reward than other classes. Once all the slice requests
from MBBRLLC and RLLMTC classes are accepted, the
remaining resources in the JNS and INS will be allocated
to serve some slice requests from MBBMTC and MBBR-
LLMTC, respectively. In Fig. 3c, we show the optimality
and convergence of the proposed SELF-E2E-NS mecha-
nism when the InP slice allocation policy in both E2E-
JNS and E2E-INS is obtained by using Q-learning, Deep
Q-learning, Dueling Deep Q-learning, and by solving the
dynamic optimization by exhaustive search. The average num-
ber of users requesting MBBMTC service/tenant, MBBRLLC
service/tenant, RLLMTC service/tenant, and MBBRLLMTC
service/tenant are 240, 120, 6000, and 60, respectively. Addi-
tionally, the InP resources are set to VI = 265 MB/sec, GI =
45 Gcycles/sec, and BI = 1.75 THz. As we can see, the
proposed SELF-E2E-NS algorithm can achieve optimal per-
formance and outperforms the fixed-E2E-NS [14] in terms of
the network’s average reward in just a few iterations. Dueling
obtains the reward much faster than the other algorithms and is

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

1060 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 4. (a) Network’s average reward, (b) Total number of slice requests accepted in the network, (c) Outage vs available bands with/without FUEs’ resources
when the percentage of unused slices is 20%, the number of MBBMTC FUEs, MBBRLLC FUEs, RLLMTC FUEs and MBBRLLMTC FUEs in first seller
tenant is 50, 20, 1000 and 30, respectively, and in the second seller tenant are 35, 15, 750 and 25, respectively.

TABLE VI
THE NUMBER OF SLICES ACCEPTED FROM EACH CLASS

more suitable for dealing with dynamic requests and the avail-
ability of FUEs. Note that the fixed-E2E-NS [14] converges
faster than our proposed scheme since the state-action space of
the proposed algorithm is larger than in the fixed-E2E-NS [14].
By examining the training loss, Dueling DQ-SELF-E2E-NS
leads to lower and more stable loss. The converged loss values
achieved in DQ-SELF-E2E-NS and the Dueling DQ-SELF-
E2E-NS are around 7 and 3, respectively.

In Fig. 4, we present the reward, number of requests, and
outage for different available bands and with and without
FUEs’ resources. When we have only a microwave band in the
network with a number of available resources BI = 11 GHz,
GI = 45 Gcycles/sec and VI = 265 MB/sec, the RLLMTC
slice requests are accepted, while requests from other classes
are rejected. This is because there are insufficient radio
resources to serve the other classes. The network’s average
reward increases by using the resources of the fog UEs. Since
more resources are available, this leads to accepting more
slice requests. If we increase the communication resources
by incorporating mmWave, there are enough resources to
accept requests from other classes, i.e., MBBRLLC and
MBBMTC. Furthermore, if THz band is available, we can
accept slices from all classes. However, the long-distance
detrimental atmospheric effects in these bands lead to violating
the SLA of the requests running. This is especially relevant
for RLLMTC since it has the highest reliability requirement
and thus achieves a lower average reward. In fact, although
the number of slice requests accepted using the mmWave and
THz bands increases, the outage of RLLMTC, MBBRLLC,
and MBBMTC services also increases. This can be improved
by utilizing fog UEs in these bands since the transmission
distance becomes shorter, and thus SLA degradation decreases.
When three bands are available in the network, each class
will be accepted by the most suitable band, avoiding the
outage and achieving a higher network average reward. Even

Fig. 5. Probabilities of accepting slices vs available InP’s resources.

Fig. 6. Seller tenants’ average reward vs episode.

though the number of requests running with solely THz band
is comparable to the three bands, the performance of the three
bands in terms of the network’s average reward and the outage
are better, as previously explained.

The probability of accepting a slice request for each class by
the E2E-JNS and E2E-INS depends on the network condition
and expected future demands. In Fig. 5, we illustrate the prob-
abilities that each scheme accepts a slice request from each
class given their immediate rewards and priorities described
in Table III. When the InP has a few resources, the E2E-
INS scheme accepts requests from RLLMTC and MBBMTC
by using InP slices and fog slices, respectively, and rejects
requests from MBBRLLC and MBBRLLMTC. In particular,
the different classes can be ordered in terms of their achieved
long-term reward using InP slices as: RLLMTC > MBBR-
LLC > MBBRLLMTC > MBBMTC. Likewise, the order
of acceptance based on the achieved long-term reward using
fog slices is: MBBMTC > MBBRLLMTC > MBBRLLC >
RLLMTC. On the other hand, the E2E-JNS scheme accepts
slice requests from MBBRLLC and MBBRLLMTC as they
achieve the highest long-term reward and rejects requests

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

ESMAT AND LORENZO: SELF-LEARNING MULTI-MODE SLICING MECHANISM 1061

Fig. 7. Tenants’ revenue vs FUE resources.

Fig. 8. Requests and accepted slices per class vs time.

from MBBMTC and RLLMTC. The order of acceptance
using augmented slices is: MBBRLLC > MBBRLLMTC
> MBBMTC > RLLMTC. As the available InP resources
increase, we can observe that the probability of accepting
slice requests from other classes previously rejected increases
in both schemes, following the order described above. By
changing the reward value of each class and type of slice
resource, we can change the acceptance rate per class and
slicing mode. Therefore, based on the traffic demands of
each class, the reward can be dynamically adjusted to accept
different classes at different times and balance the number of
slices served per class. The convergence of the MAAC-E2E-
INS algorithm is shown in Fig. 6. We consider two seller
and two buyer tenants. The number of idle subscribers of
class MBBMTC, MBBRLLC, RLLMTC, and MBBRLLMTC
in the first (second) seller tenant is 50 (35), 20 (15), 1000
(750), and 30 (25), respectively. The first (second) buyer
tenant requests 6 (4) MBBMTC slices, 5 (2) MBBRLLC
slices, 7 (4) RLLMTC slices, and 8 (5) MBBRLLMTC slices.
We can see that MAAC-E2E-INS converges to the maximum
reward in 200 episodes. In Fig. 7, we examine the impact of
increasing the number of available FUEs by 2x, 3x, and 4x the
previous number of idle subscribers on the tenants’ revenue.
The revenue of the seller tenants and buyer tenants increases
with the number of available FUEs. The seller tenants can
serve more slice requests by utilizing available fog slices,
increasing their revenue. Simultaneously, the revenue of the
buyer tenants increases because of serving more end users.
We assume the first (second) buyer has 9 (12), 5 (8), 8 (9), and
10 (15) slice requests of MBBMTC, MBBRLLC, RLLMTC,
and MBBRLLMTC, respectively. As can be observed, the
seller who has more resources serves the buyer who has more
slice requests, and the opposite is true. Therefore, the first
seller serves the second buyer (red lines), and the second seller
serves the first buyer (black lines).

In Fig. 8, we compare the performance of the SELF-E2E-
NS mechanism with a greedy management algorithm Greedy-

Fig. 9. Outage probability of our proposed schemes with and without
redundancy versus the packet arrival rate of FUEs in packets/msec.

Fig. 10. Markov resource availability model.

E2E-NS regarding the number of slice requests accepted from
each class. A red shape means a slice request arrival of any
class, a green shape means an accepted slice request by SELF-
E2E-NS, and a blue shape means an accepted slice request by
the Greedy-E2E-NS when the available InP resources (GI ,
BI , VI) in the network are as mentioned in Table V. The
Greedy-E2E-NS forwards the slice requests randomly to any
scheme and ignores previous acceptance/rejection responses
and the available resources in the network. As can be seen,
our proposed algorithm accepts more slice requests than the
Greedy-E2E-NS because the global orchestrator selects E2E-
JNS or E2E-INS based on a risk model that minimizes the
probability of not serving the requests and achieving the SLA
requirement. The risk model takes into account the historical
data that is based on the belief of available resources and the
probability of achieving the SLA in each mode.

In Fig. 9, we examine the outage probability of UE from
each class in our proposed algorithm due to the uncertainty of
FUEs’ resources in the augmented slices of the E2E-JNS and
the fog slices of the E2E-INS. The probability of outage in
our proposed scheme is plotted versus the packet arrival rate of
FUEs λTX with different amounts of redundancy. As shown
in Fig. 9, the outage probability of RLLMTC UE without
redundancy is higher than the UEs in other classes. This is
attributed to the high required reliability of RLLMTC UEs.
On the other hand, the outage probability of MBBRLLC UE
is very low without adding redundancy. MBBMTC obtained a
similar performance as the latter and is omitted for clarity of
presentation. Therefore, to reduce the outage probability the
augmented slices must be boosted by a number of redundant
FUEs to overcome the uncertainty of FUEs’ resources. For
λTX = 0.3, we can see that by considering one redundant
FUE per UE’s connection, the outage probability decreases by
2 orders of magnitude in RLLMTC, by 8 in MBBRLLMTC,
and by 10 orders of magnitude in MBBRLLC. More details
on how redundancy strategies can increase the robustness of
fog networks are discussed in our previous work [5].

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

1062 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

VII. CONCLUSION

In this paper, we have presented a self-learning slicing
mechanism with two operational modes, E2E-JNS and E2E-
INS, to perform end-to-end network slicing in dynamic multi-
tier networks. The collaboration between InP and tenants
facilitates sharing fog resources and reusing available slices to
meet future demands. Our mechanism adapts to the varying
availability of resources by relying on feedback from InP and
tenants in terms of admission and satisfaction with the service,
respectively. By learning from previous decisions, our scheme
adapts its activation mode to the network conditions and min-
imizes the risk of non-satisfying the service request. To solve
the optimal admission and collaboration policy, DQ-E2E-JNS
and MAAC-E2E-INS algorithms are proposed. In the former,
the InP serves the demand using augmented slices, and the
admission policy is obtained by optimizing the number of fog
nodes and unused slices. In the latter independent slices are
created, and the InP delegates part of the service provisioning
to tenants’ fog slices. The simulation results show that the
proposed approach significantly improves the revenue and
number of requests served over fix slicing, exploits multiple
spectrum bands, performs fair slice allocations, and brings
substantial gains to InP and tenants.

APPENDIX

A. Complexity of Tenants’ Slice Request/Offer Optimization
The complexity of the algorithm to solve (3) is

O
(
CJx

c′m
x
max,c′ log(J

x
c′) + mx

max,1

∏C
c′=2 mx

max,c′
)

, where the
first term is the complexity of ordering Jx

c′ subscribers and
grouping them into mx

max,c′ slices per class c′ and the second
term is the complexity of calculating the number of slice
request per class c′.

B. Computational Complexity: MAAC-E2E-INS
Let ⋔k denote the number of neurons of the kth

layer and κactor and κcritic denote the number of layers
in the actor and critic networks, respectively. The com-
putational complexity of the kth layer is O(⋔k−1⋔k +
⋔k⋔k+1). During the execution phase, only the actor
network is used, and thus its computational complex-
ity is O(

∑ κactor−1
k=2 (⋔actor

k−1 ⋔actor
k + ⋔actor

k ⋔actor
k+1)). Both

actor and critic networks are used in the training
phase, and the overall computational complexity of train-
ing phase is O(

∑κactor−1
k=2 (⋔actor

k−1 ⋔actor
k + ⋔actor

k ⋔actor
k+1) +∑κcritic−1

k=2 (⋔critic
k−1 ⋔critic

k + ⋔critic
k ⋔critic

k+1)).

C. Belief InP Resource Availability
We model the dynamics of InP resource availability using

the Markov chain shown in Fig. 10. For simplicity, we assume
the InP has Y resources independently of the mode. In state
y, the InP has y resources allocated and Y − y resources
available to allocate to new requests. Every slice departure
(arrival) of class c moves the Markov process to the left (right)
and releases (occupies) a number of resources. The probability
that m resources will be released is

P+
m =

∑
m̂∈My

φm̂

∏
c

Pµc

mc
y

(28)

where φm̂ = 1 if
∑

c mc
yϖc = m, otherwise φm̂ = 0, Pµc

mc
y

is
the probability that there are my

c slice departures from class c

at state y, ϖc is the amount of resources per request of class
c, µc is the departure rate of slices of class c, and My is set
of all combinations of slice departures at state y.

Similarly, the probability that n resources will be occupied
as result of nc

y request arrivals from class c at state y is

P−
n =

∑
n̂∈Ny

φn̂

∏
c

Pλc

nc
y

(29)

where φn̂ = 1 if
∑

c nc
yϖc = n, otherwise φn̂ = 0, Pλc

nc
y

is the
probability of nc

y request arrivals with arrival rate λc, and Ny

is set of all combinations of slice requests of class c. Finally,
the transition probability from state y to a state y + ϱ is

Py,y+ϱ =
∑

ϱ∈SY

φϱP
+
mP−

n (30)

where φϱ = 1 if m−n = ϱ; ϱ− < Y −y; ϱ+ < y, otherwise
φϱ = 0. SY is the set of states of available InP resources,
P+

m is the probability of releasing m resources and P−
n is

the probability of occupying n resources. The steady-state
probability p = P p, with p = [p (y)], that the system
is in state y is obtained as p (y) = p0yp (0) + p1yp (1) +
· · · + pY yp (Y), where

∑
y p (y) = 1, Y is the InP available

resources, and p = pbelief .

REFERENCES

[1] R. Xiong, C. Zhang, H. Zeng, X. Yi, L. Li, and P. Wang, “Reduc-
ing power consumption for autonomous ground vehicles via resource
allocation based on road segmentation in V2X-MEC with resource
constraints,” IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6397–6409,
Jun. 2022, doi: 10.1109/TVT.2022.3161641.

[2] N. Saeed, M. H. Loukil, H. Sarieddeen, T. Y. Al-Naffouri, and
M.-S. Alouini, “Body-centric terahertz networks: Prospects and chal-
lenges,” IEEE Trans. Mol., Biol. Multi-Scale Commun., vol. 8, no. 3,
pp. 138–157, Sep. 2022, doi: 10.1109/TMBMC.2021.3135198.

[3] L. Zhong et al., “A multi-user cost-efficient crowd-assisted VR content
delivery solution in 5G-and-beyond heterogeneous networks,” IEEE
Trans. Mobile Comput., vol. 22, no. 8, pp. 4405–4421, Aug. 2023, doi:
10.1109/TMC.2022.3162147.

[4] S. D. A. Shah, M. A. Gregory, and S. Li, “Cloud-native network slicing
using software defined networking based multi-access edge computing:
A survey,” IEEE Access, vol. 9, pp. 10903–10924, 2021.

[5] B. Lorenzo, F. J. González-Castaño, L. Guo, F. Gil-Castiñeira, and
Y. Fang, “Autonomous robustness control for fog reinforcement in
dynamic wireless networks,” IEEE/ACM Trans. Netw., vol. 29, no. 6,
pp. 2522–2535, Dec. 2021.

[6] I. Kovacevic, A. S. Shafigh, S. Glisic, B. Lorenzo, and E. Hossain,
“Multi-domain network slicing with latency equalization,” IEEE Trans.
Netw. Service Manage., vol. 17, no. 4, pp. 2182–2196, Dec. 2020.

[7] M. Chahbar, G. Diaz, A. Dandoush, C. Cérin, and K. Ghoumid, “A
comprehensive survey on the E2E 5G network slicing model,” IEEE
Trans. Netw. Service Manage., vol. 18, no. 1, pp. 49–62, Mar. 2021.

[8] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu, “MEC-assisted
immersive VR video streaming over terahertz wireless networks: A deep
reinforcement learning approach,” IEEE Internet Things J., vol. 7, no. 10,
pp. 9517–9529, Oct. 2020.

[9] X. Yu, F. Xu, J. Cai, X.-Y. Dang, and K. Wang, “Computation efficiency
optimization for millimeter-wave mobile edge computing networks with
NOMA,” IEEE Trans. Mobile Comput., vol. 22, no. 8, pp. 4578–4593,
Aug. 2023, doi: 10.1109/TMC.2022.3164974.

[10] J. García-Rois, B. Lorenzo, F. J. González-Castaño, F. Gil-Castiñeira,
and J. Wu, “Slice allocation and pricing framework for virtualized mil-
limeter wave cellular networks,” IEEE Access, vol. 7, pp. 86349–86366,
2019, doi: 10.1109/ACCESS.2019.2923125.

[11] Y. Xiao and M. Krunz, “Dynamic network slicing for scalable fog com-
puting systems with energy harvesting,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 12, pp. 2640–2654, Dec. 2018.

[12] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TVT.2022.3161641
http://dx.doi.org/10.1109/TMBMC.2021.3135198
http://dx.doi.org/10.1109/TMC.2022.3162147
http://dx.doi.org/10.1109/TMC.2022.3164974
http://dx.doi.org/10.1109/ACCESS.2019.2923125

ESMAT AND LORENZO: SELF-LEARNING MULTI-MODE SLICING MECHANISM 1063

[13] Y. Sun, M. Peng, S. Mao, and S. Yan, “Hierarchical radio resource
allocation for network slicing in fog radio access networks,” IEEE Trans.
Veh. Technol., vol. 68, no. 4, pp. 3866–3881, Apr. 2019.

[14] N. Van Huynh, D. Thai Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Optimal and fast real-time resource slicing with deep dueling neural
networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1455–1470,
Jun. 2019.

[15] J. Feng, Q. Pei, F. R. Yu, X. Chu, J. Du, and L. Zhu, “Dynamic network
slicing and resource allocation in mobile edge computing systems,” IEEE
Trans. Veh. Technol., vol. 69, no. 7, pp. 7863–7878, Jul. 2020.

[16] H.-T. Chien, Y.-D. Lin, C.-L. Lai, and C.-T. Wang, “End-to-end slicing
with optimized communication and computing resource allocation in
multi-tenant 5G systems,” IEEE Trans. Veh. Technol., vol. 69, no. 2,
pp. 2079–2091, Feb. 2020.

[17] M. R. Raza, M. Fiorani, A. Rostami, P. Öhlen, L. Wosinska, and
P. Monti, “Dynamic slicing approach for multi-tenant 5G transport net-
works [invited],” J. Opt. Commun. Netw., vol. 10, no. 1, pp. A77–A90,
Jan. 2018.

[18] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and
X. Costa-Perez, “Optimising 5G infrastructure markets: The business of
network slicing,” in Proc. IEEE Conf. Comput. Commun., Atlanta, GA,
USA, May 2017, pp. 1–9.

[19] H. H. Esmat and B. Lorenzo, “Deep reinforcement learning based
dynamic edge/fog network slicing,” in Proc. IEEE GLOBECOM, Taipei,
Taiwan, Dec. 2020, pp. 1–6.

[20] M. Rasti, S. K. Taskou, H. Tabassum, and E. Hossain, “Evolution
toward 6G wireless networks: A resource management perspective,”
2021, arXiv:2108.06527.

[21] 3GPP. Radio Access Network. Accessed: Mar. 2019. [Online]. Available:
http://www.3gpp.org/specifications-groups/ran-plenary

[22] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing; A key technology towards 5G,” ETSI, Sophia Antipolis,
France, White Paper 11, 2015.

[23] A. Ksentini and P. A. Frangoudis, “Toward slicing-enabled multi-access
edge computing in 5G,” IEEE Netw., vol. 34, no. 2, pp. 99–105,
Mar. 2020.

[24] W. Xia, J. Zhang, T. Q. S. Quek, S. Jin, and H. Zhu, “Power
minimization-based joint task scheduling and resource allocation in
downlink C-RAN,” IEEE Trans. Wireless Commun., vol. 17, no. 11,
pp. 7268–7280, Nov. 2018.

[25] Y. Ren, A. Guo, C. Song, and Y. Xing, “Dynamic resource allocation
scheme and deep deterministic policy gradient-based mobile edge com-
puting slices system,” IEEE Access, vol. 9, pp. 86062–86073, 2021.

[26] B. Lorenzo, A. S. Shafigh, J. Liu, F. J. González-Castaño, and
Y. Fang, “Data and spectrum trading policies in a trusted cognitive
dynamic network architecture,” IEEE/ACM Trans. Netw., vol. 26, no. 3,
pp. 1502–1516, Jun. 2018.

[27] R. G. Gallager, Discrete Stochastic Processes. London, U.K.: Kluwer
Academic, 1995.

[28] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de
Freitas, “Dueling network architectures for deep reinforcement learning,”
2016, arXiv:1511.06581.

[29] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Proc. Adv. Neural Info. Proc. Syst., 2017, pp. 6379–6390.

[30] C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, and P. Popovski, “Can
terahertz provide high-rate reliable low-latency communications for
wireless VR?” IEEE Internet Things J., vol. 9, no. 12, pp. 9712–9729,
Jun. 2022, doi: 10.1109/JIOT.2022.3142674.

[31] B. Chang, W. Tang, X. Yan, X. Tong, and Z. Chen, “Integrated
scheduling of sensing, communication, and control for mmWave/THz
communications in cellular connected UAV networks,” IEEE J. Sel.
Areas Commun., vol. 40, no. 7, pp. 2103–2113, Jul. 2022, doi:
10.1109/JSAC.2022.3157366.

[32] G. Ding, J. Yuan, G. Yu, and Y. Jiang, “Two-timescale resource man-
agement for ultrareliable and low-latency vehicular communications,”
IEEE Trans. Commun., vol. 70, no. 5, pp. 3282–3294, May 2022, doi:
10.1109/TCOMM.2022.3162366.

[33] Y. Zhao, X. Chi, L. Qian, Y. Zhu, and F. Hou, “Resource allocation and
slicing puncture in cellular networks with eMBB and URLLC terminals
coexistence,” IEEE Internet Things J., vol. 9, no. 19, pp. 18431–18444,
Oct. 2022, doi: 10.1109/JIOT.2022.3160647.

[34] H. Zhang and V. W. S. Wong, “A two-timescale approach for net-
work slicing in C-RAN,” IEEE Trans. Veh. Technol., vol. 69, no. 6,
pp. 6656–6669, Jun. 2020.

[35] G. Cisotto, E. Casarin, and S. Tomasin, “Requirements and enablers
of advanced healthcare services over future cellular systems,” IEEE
Commun. Mag., vol. 58, no. 3, pp. 76–81, Mar. 2020.

[36] C. Chaccour, R. Amer, B. Zhou, and W. Saad, “On the reliability of
wireless virtual reality at terahertz (THz) frequencies,” in Proc. 10th
IFIP Int. Conf. New Technol., Mobility Secur. (NTMS), Jun. 2019,
pp. 1–5.

[37] D. Panno and S. Riolo, “A new centralized access control
scheme for D2D-enabled mmWave networks,” IEEE Access, vol. 7,
pp. 80697–80716, 2019.

Haitham H. Esmat (Member, IEEE) received the
B.S. and M.S. degrees from Helwan University,
Cairo, Egypt, in 2011 and 2016, respectively. He is
currently pursuing the Ph.D. degree in electrical and
computer engineering with the University of Mas-
sachusetts Amherst, Amherst, MA, USA. His cur-
rent research interests include B5G and 6G mobile
communication technologies, device-to-device com-
munications, the Internet of Things, dynamic net-
work slicing, satellite-terrestrial edge computing
networks, and AI-based applications in wireless
communication systems.

Beatriz Lorenzo (Senior Member, IEEE) received
the M.Sc. degree in telecommunication engineering
from the University of Vigo, Vigo, Spain, in 2008,
and the Ph.D. degree from the University of Oulu,
Oulu, Finland, in 2012. She is currently an Assistant
Professor and the Director of the Network Science
Laboratory, Department of Electrical and Computer
Engineering, University of Massachusetts Amherst,
Amherst, MA, USA. She has published more than
50 articles and coauthored two books on advanced
wireless networks. The latest book Artificial Intel-

ligence and Quantum Computing for Advanced Wireless Networks (Wiley,
2022), covers the enabling technologies for the definition, design, and analysis
of incoming 6G/7G systems. Her research interests include AI for wireless
networks, B5G and 6G network architectures and protocol design, mobile
computing, optimization, and network economics. She was a recipient of
the Fulbright Visiting Scholar Fellowship with the University of Florida
from 2016 to 2017. She was the General Co-Chair of WiMob Conference in
2019. She serves regularly in the TPC for top IEEE/ACM conferences. She
is also an Editor of IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on February 01,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JIOT.2022.3142674
http://dx.doi.org/10.1109/JSAC.2022.3157366
http://dx.doi.org/10.1109/TCOMM.2022.3162366
http://dx.doi.org/10.1109/JIOT.2022.3160647

