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Abstract—Enabling timely data collection in heterogeneous 
IoT networks under different protocols and spectrum bands 
(e.g., WiFi, Bluetooth, Zigbee, LoRa) is crucial to implement-
ing large-scale IoT systems. This paper presents a federated 
matching framework for heterogeneous IoT networks in which 
an intermediate layer of multi-protocol mobile gateways (M-
MGs) is deployed by different service providers (SPs) to collect 
and relay data from IoT objects and perform computing tasks. 
The aim is to develop collaborative strategies between M-MGs 
and SPs to minimize the average weighted sum of the age-
of-information and energy consumption. A novel collaborative 
framework based on a 2-level multi-protocol multi-agent actor-
critic (MP-MAAC) is presented, where M-MGs and SPs can 
learn the interactive strategies through their own observations. 
The M-MGs strategies include the selection of IoT objects for 
data collection, execution, and offloading t o S Ps’ a ccess points 
while SPs decide on the spectrum allocation. Moreover, we 
incorporate federated matching (Fed-Match) into the multi-
agent collaborative framework to improve the convergence of the 
learning process. The numerical results show that our Fed-Match 
algorithm reduces the AoI by factor 4, collects twice more packets 
than existing approaches and establishes design principles for the 
stability of the training process.

Index Terms—Age of Information (AoI), federated learning, 
heterogeneous IoT, multi-agent deep reinforcement learning, 
mobile edge computing.

I. INTRODUCTION

With the broad integration of wireless communications and
the Internet of Things (IoT) in multiple types of surrounding
applications, ensuring the flexibility o f I oT d eployment for
data freshness becomes a challenging task [1], [2]. This is
especially relevant given the device heterogeneity of IoT with
different types of wireless protocols used for specific appli-
cations, e.g., WiFi supports real-time high definition video
surveillance in traffic control, while NB-IoT is a  better choice
for smart agriculture due to its wider coverage and longer
battery life. In fact, applications requiring large-scale IoT de-
ployment (e.g., industrial IoT in a warehouse) will proactively
aggregate multiple sources of data for better decision making
[3], where a variety of data will be sensed by heterogeneous
IoT devices and collected via different wireless protocols.
However, existing works on architecture design for IoT data
collection narrow their models down to a specific application
domain [4, 5] and similar data freshness performance is

This work is partially supported by the US National Science Foundation 
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analyzed for one protocol [6]. Further, many IoT protocols
work on the same wireless spectrum bands, such as WiFi,
Bluetooth, ZigBee, and LoRa on 2.4GHz, which will cause
severe interference if the transmission schedule is not properly
coordinated. Therefore, how to enable heterogeneous IoT data
collection with different data patterns, coverage, protocols,
dedicated spectrum bands, and caching capabilities becomes a
pressing need to guarantee the freshness of data in large-scale
IoT systems.

The age of information (AoI) has been used as a measure
of the data freshness [7]-[9]. Recently, AoI was introduced
to evaluate the performance of IoT applications that conduct
complex tasks (e.g., artificial intelligence tasks [6]), requiring
processing and computing to extract useful features. Kuang
et al. [7] analyzed the average AoI of local computing, edge
computing, and partial offloading in which part of the task is
processed locally and the remaining remotely. Song et al. [8]
proposed a metric called the age of task and developed joint
partial offloading and scheduling algorithms in a multiuser
network. Reinforcement learning (RL), especially multi-agent
reinforcement learning (MARL) and federated learning (FL)
have been adopted for distributed scenarios where agents
learn interactive decisions through their local observations and
collaborate to achieve global optimal strategies [10]. For cases
where the action space is large, policy-based methods such as
multi-agent Deep Deterministic Policy Gradient (MADDPG)
are used [9]. Xie et al. [10] developed a Deep RL algorithm
(DRL) to design offloading and scheduling policies to mini-
mize the AoI and energy consumption in an IoT system. Zhu et
al. [9] adopted MARL and FL to learn policies for trajectory
planning of unmanned aerial vehicles (UAVs) and resource
allocation. Despite the existing works related to AoI in edge-
enabled IoT, policies for joint collaborative data collection,
offloading, and spectrum allocation to minimize the AoI and
energy cost in multi-protocol IoT networks have not been
studied.

In this paper, we present a framework for architecture design
in heterogeneous IoT networks in which an intermediate layer
of multi-protocol mobile gateways (M-MGs) is deployed by
different service providers (SPs) to collect and relay data
from IoT objects and perform computing tasks. The M-MGs
are assumed to be equipped with multiple wireless protocols
needed for performing heterogeneous IoT data collection, and
they also have computation and caching capabilities. The
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Fig. 1: Multi-protocol Federated IoT Architecture.

challenge lies in the uncertain spectrum availability, dynamic
data demand, and mobility of M-MGs, which results in in-
termittent connectivity. To address these issues, a federated
matching (Fed-Match) framework is presented to obtain col-
laborative strategies between M-MGs and SPs to minimize the
average weighted sum of the age-of-information and energy
consumption. The M-MGs strategies include the selection of
IoT objects for data collection, execution, and offloading to
SPs’ access points while SPs perform spectrum allocation.
Our approach significantly outperforms existing baselines and
achieves better convergence.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Hierarchical IoT Network Architecture

We consider a hierarchical IoT network architecture, as
shown in Fig. 1, operated by a set Z = {1, ..., Z} of IoT SPs
denoted by {SPz}Zz=1 who serve traffic demands from IoT
devices denoted by {Oz

k}
Kz

k=1, k ∈ Kz = {1, ...,Kz} using
wireless protocol z. Each SPz owns Jz access points (APs)
denoted by {AP z

j }
Jz
j=1, j ∈ Jz = {1, ..., Jz}, which have

access to the SP’s cloud computing center which stores data
and implements centralized control. Moreover, there are M
M-MGs denoted by {M −MGi}Mi=1, i ∈ M = {1, ...,M}
that can operate in Zi ≤ Z interfaces. For simplicity, we
assume Zi = Z. SPs incentivize M-MGs to collect data from
each object Oz

k, perform local computing, and forward it to
the corresponding AP z

j . They can be commercial-off-the-shelf
(COTS) gateways equipped with batteries, smartphones, and
special designed software-defined radio (SDR), all of which
are deployed with more than one wireless protocol in different
or same wireless spectrum bands, such as WiFi, Bluetooth,
ZigBee and LoRa on 2.4GHz, and have computing and caching
capabilities.

B. Communication Model

M-MGs are equipped with Z interfaces to access different
spectrum bands. To simplify the model, we assume M-MGs
have only one radio for each interface and each M-MG can
be shared by Z SPs. Each SP z ∈ Z has a total bandwidth
W z and each channel will be allocated a fraction wz

k(t) and
wz

i (t) of the total bandwidth by frequency division mode for
transmission between Oz

k and M−MGi and M−MGi trans-
mission to AP z

j , respectively. We model our communication
system in a time-slotted manner. The power propagation gain

from object Oz
k and M-MG i is gki = β · d−X

ik , where β is an
antenna-related parameter, X is the path loss factor, and rik
is the distance between the two nodes. Thus, the link capacity
czki from object Oz

k to M −MGi and the link capacity czij
from M −MGi to AP z

j are

czki(t) = wz
k(t)W

zlog2(1 + Pk · gki/ξi)
czij = wz

i (t)W
zlog2(1 + Pi · gij/ξj)

(1)

where W z is the bandwidth of channels on interface z, Pk

is the transmission power of object Oz
k, ξi is the Gaussian

noise power of M-MG i, Pi is the transmission power of M-
MG i and ξj is the Gaussian noise power at AP z

j . In our
model, there is no data transmission between M-MGs. They
only share states, observations, and learning parameters.

C. Data Collection, M-MG Processing and Offloading

Each IoT device Oz
k generates data independently with a

data packet size dzk and elapsed time ψz
k. The data rate and

arrival probability of data generation at Oz
k are λk and bkg ,

respectively. The generated packets are stored by each device
locally until they are collected by M-MGs. We assume M-
MGs move following a random mobility model [11] and
collect the data from IoT devices when there are within their
transmission range and there is an available channel. Each
M-MG i has a collection data buffer of size Bz

i,col and an
execution data buffer of size Bz

i,exe per interface z ∈ Z .
The collection data buffer caches data packets from each IoT
device Oz

k which will be scheduled for local processing at M-
MG i. The collection decision for M-MG i is collectzi (t) =
[colz1(t), · · · , col

z
Bz

i,col
(t)], where colzq(t) ∈ {0, 1}.

At each time t, each M-MG i collects a data packet from
IoT device Oz

k on interface z ∈ Z∑Bz
i,col

q=1
colzq(t) = 1. (2)

Similarly, each M-MG i makes a decision to execute a
packet from the collection buffer per interface z ∈ Z at each
time t, executionz

i (t) =
[
exez1(t), ..., exe

z
Bz

i,col
(t)

]
, and∑Bz

i,col

q=1
exezq(t) = 1 (3)

where exezq(t) ∈ {0, 1}. The computation time for executing
a packet of size dzk in M-MG i with CPU frequency fi is

τzki(t) = dzk(t)/fi (4)

After local execution, the data packet is stored in the
execution buffer until the M-MG i offloads it to AP z

j .
The offloading decision for each packet is offloadi,jz (t) =[
off1,jz (t), ..., offBz

i,exe,Jz
(t)

]
with∑Bz

i,exe

q=1
offq,jz (t) = 1 (5)

Consequently, a M-MG i either collects, execute or offload
data form each interface z at any time t.
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III. PROBLEM FORMULATION

The AoI is a performance metric that measures the freshness
of the data at the receiver side. It is defined as the difference
between the current time t and the generation time tzg,k of
the latest data packet from device Oz

k received at any of the
corresponding APs

Az
k(t) = t− tzg,k (6)

The AoI increases linearly with time until a new packet is
received. Our goal is to minimize the overall average AoI and
the energy cost. The energy cost costzik of M-MG i to serve
IoT device Oz

k is

costzik = dzkE
exe
i + (dzk +∆k)E

off
i (7)

which is proportional to the energy cost to execute the data
of IoT device Oz

k with size dzk and Eexe
i is the energy needed

to execute one data bit by M-MG i, and proportional to the
energy consumed to offload the data. Note that after the M-MG
i executed the data of IoT device Oz

k, the data size increases by
∆k, and Eoff

i is the energy cost of offloading one data bit from
M-MG i. Based on the previous definitions, the optimization
problem is as follows

min
y,βz ,γ,w

Z∑
z=1

M∑
i=1

K∑
k=1

Jz∑
jz=1

yziγik{βijzζ1A
z
k(t) + ϱζ2cost

z
ik(t)}/K

(8)
subject to

(1)− (5)∑
z∈Z

yzi ≤ Z, ∀i ∈ M (8.a)∑
i∈M

yzi ≤M, ∀z ∈ Z (8.b)∑
z∈Z

∑
jz∈Jz

βijz ≤ Z × J, ∀i ∈ M (8.c)∑
i∈M

βijz ≤M, ∀z ∈ Z, jz ∈ Jz (8.d)∑K

k=1
γik ≤ Z, ∀i ∈ M (8.e)∑

i∈M
γik ≤ 1, ∀k ∈ K (8.f)∑

k∈Kz

wz
k +

∑
i∈M

wz
i ≤W z, ∀i ∈ M, ∀k ∈ K (8.g)

yzi, βijz , γik = {0, 1}, ∀z, i, k, jz (8.h)

where K, M and Z are the number of IoT devices, M-MGs
and SPs in the network, respectively. ζ1 and ζ2 represent
the weighting factors for the AoI Az

k(t) and cost costzik,
respectively, with ζ1 + ζ2 = 1, and ϱ is a scaling factor.
y = [yzi](Z×M) with yzi ∈ {0, 1} indicates that SP z is
associated with M-MG i when yzi = 1. (8.a) and (8.b)
state that each M-MG can serve Z SPs and each SP can
serve M M-MGs, respectively. βz = [βijz ](M×Jz) with
βijz ∈ {0, 1} indicates that M-MG i is associated with AP z

j

when βijz = 1. (8.c) and (8.d) state that each M-MG can
transmit to (J × Z) APs and each AP can serve M M-MGs,
respectively. γ = [γik](M×K) where γik is a binary variable

representing the association status between the IoT device
Oz

k and M-MG i. The number of IoT devices that can be
associated with M-MG i is constrained as in (8.e) and (8.f) and
Z is defined as a quota that represents the maximum number of
IoT devices that can be supported by M-MG i. (8.f) guarantees
that each IoT device can be associated with at most one M-
MG at a time. w denotes the bandwidth and (8.g) constrains
the allocated bandwidth to object k and M-MG i not to exceed
the available bandwidth W z .

Solving the previous optimization at every time instant will
not result in the optimum solution. In fact, the dynamics
and the coupling of M-MGs and SPs in our 2-level multi-
protocol IoT architecture make the problem NP-hard. For
these reasons, we reformulate the optimization problem as
a Markov Decision Process (MDP) and solve it with a new
online iterative algorithm.

IV. MULTI-PROTOCOL FEDERATED MATCHING
FRAMEWORK

We model the optimization problem in (8) as a 2-level
MDP to capture the interactions between SPs and M-MGs
and we adopt multi-agent reinforcement learning to solve it.
To overcome the complexity of searching a large state space
when the size of the network increases, policy-based methods
such as Advantage Actor-Critic (A2C), DDPG, and MADDPG
are used, which rely on dual neural networks to estimate
the action-value function Q(s,a) [9]. Therefore, we present
a 2-level multi-protocol multi-agent actor-critic (MP-MAAC)
for SP and M-MG collaboration and an online Fed-Match to
improve the convergence.

A. MDP

1) States: The state of each M-MG agent si (t) contains
the local observations of the environment (devices info), the
status of the M-MG including buffer states, allocated AP jz ,
allocated bandwidth to collect data from IoT devices, and
allocated offloading bandwidth to relay the collected data to
APs. The state of each SP agent sz (t) includes the status of
all M-MGs associated with this SP.

2) Actions: The M-MGs collect data as they move, execute
the data locally and offload it to the corresponding AP jz ,
azi (t) = [collectzi (t), executezi (t), offloadijz (t)].

The action of the SP, az(t) = [wz
i (t),w

z
k(t)], consist of

allocating bandwidth to M-MGs to offload data and collect
data from IoT devices, respectively.

3) Penalty: Since there is collaboration among agents to
minimize AoI and cost, all agents share the global penalty.
The current penalty at t-th slot for each agent is pg(t) =
ζ1A(t) + ϱζ2cost(t), ∀ g = 1, ..,M + Z. To explore the
global optimization of system, we set the long-term penalty as
Pg(t) =

∑T
l=0 ρ

lpg(t+ l), where T is the length of the time
window and ρ ∈ [0, 1] is the penalty decay.

4) Transition Policies: In our multi-protocol IoT architec-
ture, it is difficult to obtain a formatted strategy to cover
all the state transitions of IoT devices, M-MGs, SPs, and
spectrum allocation. Therefore, to represent the interactions
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Fig. 2: Fed-Match Learning Collaboration Architecture.

among entities in the network, we use T ({si(t+ 1)}, sz(t+
1)|{si(t)}, sz(t), {ai(t)},az(t)).

B. Multi-protocol Fed-Match

We design a multi-protocol multi-agent actor-critic network
(MP-MAAC) that contains the primary actor/critic networks
and the target actor/critic networks to control the M-MGs and
find the SPs’ optimal bandwidth allocation. The MP-MAAC
architecture is illustrated in Fig.2, where each agent (M-MG or
SP) interacts with the environment to learn the optimal action
that minimizes the system penalty Pg . The experience reply
buffer (with capacity B) and target networks are used to deal
with the instability issue of the approximated values of Q.
For M-MG agents, a multiple input-output neural network is
built to learn the different actions in the states that include
the observation of IoT devices, offloading channel states, and
the buffer states. We use the multilayer perceptrons (MLPs)
for offloading scheduling and data execution at M-MGs. For
SP agents, the state contains the buffer states of all M-MGs
and the output is the bandwidth allocation. We adopt a ϵ-
greedy policy to enforce random actions with probability ϵ.
The parameters of primary actor-network (Ag), primary critic-
network (Cg), target actor-network (A′

g) and target critic-
network (C′

g) of g-th learning agent are θg , ϕg , θ
′

g and ϕ
′

g ,
respectively. The parameters of target actor and critic networks
are updated by the primary networks every Tu period as

θ′
g = τθ′

g + (1− τ)θg

ϕ′
g = τϕ′

g + (1− τ)ϕg
(9)

where τ ∈ [0, 1] is mixing weight. The learning rates of actor
network and critic network are ηA and ηC , respectively. The
critic networks are updated by minimizing the mean squared
error loss function

lCg(ϕg) := E[ ||Cg(sg,ag;ϕg)− ŷg||2] (10)

where ŷg = pg+ρC′
g(s

′
g,a

′
g,ϕ

′
g) and ŷg is the estimated long-

time Q value, pg is the penalty for each agent. Since we aim

at minimizing the penalty, the loss function of actor networks
can be written as follows

lAg(θg) := Cg(sg,Ag(sg;θg);ϕg) (11)

Algorithm 1 Multi-protocol Fed-Match Online Collaboration
1: Initialize: Hyper parameters of learning algorithms, the primary

networks’ parameters (θM−MG)i, (θSP )z , and target networks’
parameters: (θM−MG)

′
i ← (θM−MG)i, (θSP )

′
z ← (θSP )z .

2: for epoch t = 1 to max epoch do
3: Generate ν ∈ [0, 1] randomly;
4: for epoch agent g in {1, ....,M, ..,M + Z} do
5: if ν < ϵ or |B[g]| < B then
6: Choose actions ag(t) randomly;
7: else
8: Ensemble local observation and states: sg(t);
9: Set actions: ag(t) = Ag(sg(t); θg)

10: end if
11: end for
12: Interact with environment and obtain p(t), s′(t+ 1);
13: Add {s,a, p, s′} into B;
14: for epoch agent g in [1, ...,M...,M + Z] do
15: if |B[g]| ≥ B then
16: for each agent g in {1, ...,M, ....,M + Z} do
17: Sample {sg,ag, pg, s

′
g} from B[g];

18: Predict new actions: a′
g = A′

g(s
′
g;θ

′
g) ;

19: Predict new Q-value:
20: Q′(s′

g,a
′
g) = C′g(s′

g,a
′
g;ϕ

′
g);

21: Calculate ŷg;
22: Calculate lCg(ϕg), lAg(θg) by (10) and (11);
23: Update network parameters:
24: ϕt+1

g ← ϕt
g − ηC ▽ϕ l̃Cg(ϕ

t
g)

25: θt+1
g ← θt

g − ηC ▽θ l̃Cg(θ
t
g)

26: end for
27: end if
28: end for
29: if t mod Tu == 1 then
30: Update target actor and critic networks using (9);
31: end if
32: if t mod Ef == 1 then
33: Run MG-federated updating using (12);
34: Run SP-federated updating using (13);
35: end if
36: end for

Under the proposed updating rule, each agent preserves the
parameters with weight ω and mixes the others’ parameters,
which can be formulated by

θt+1
M−MG = θt

M−MG.Ω1 (12)

θt+1
SP = θt

SP .Ω2 (13)

where θt
M−MG = [θt

1, .., θ
t
i, .., θ

t
M ] and θt

SP =
[θt

1, .., θ
t
z, .., θ

t
Z ] denote the vector of all M-MG actor

networks and the vector of all SP actor networks at the t-th
learning epoch, respectively, Ω1 and Ω2 denote the federated
updating matrix of M-MG and SP, respectively. Based on the
proposed learning framework, we develop the corresponding
Fed-Match online collaboration as in Algorithm 1 where the
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Fig. 3: Average AoI Fig. 4: Average Penalty Fig. 5: Packets received vs no. epochs

Fig. 6: Agent Critic loss Fig. 7: Worst AoI vs no. epochs Fig. 8: Average AoI vs no. IoT devices

agents learn and update the optimal policies while the system
works continuously. Every Ef learning epoch, all M-MG
agents share their actor-network parameters and perform the
federated updating. At the same time, all SP agents also
share their actor-network parameters to conduct the federated
updating. The Ω is used as the federated learning factor,
which means that each agent keeps the parameters with
weight ω and mixes the other parameters when learning. The
federated learning factors Ω1 for M-MGs and Ω2 for SPs are
defined by using the following equation

Ωn =



ωn

1− ωn

N − 1
· · ·

1− ωn

N − 1
1− ωn

N − 1
ωn · · ·

1− ωn

N − 1
...

...
. . .

...
1− ωn

N − 1

1− ωn

N − 1
· · · ωn


(14)

where n = 1 and N = M for M-MG federated learning
and n = 2 and N = Z for SP federated learning. The
whole system acts as a cooperative model. To achieve global
optimality using federated learning, agents share their actor
net parameters and perform federated updating. Thus there is
no need to exchange data messages and the communication
cost of sharing model-level parameters can be neglected. The
ω1 is used as the M-MG federated learning factor, and during
the learning period, M-MGs will retain the parameters with
weights ω1 and exchange the network parameters with weights
(1−ω1). By exchanging network parameters among M-MGs,
the learning convergence is improved, and is faster to obtain
the offloading policy that results in the minimum penalty.

Likewise, each SP outputs the bandwidth ratios for each M-
MG and per interface to perform bandwidth allocation. SPs
also exchange model parameters. In particular, ω2 is used as

the SP federated learning factor. During the learning period,
SPs will keep the parameters with weights ω2 and exchange
network parameters with weights (1 − ω2). By doing so, the
SP’s policy training is accelerated to allocate the bandwidth
more rationally for each M-MG’s interface. This will reduce
packet stagnation at M-MGs to avoid increasing the AoI. Since
only the parameters of the lightweight behavioral network
are transmitted, the communication efficiency of the system
improves.

V. NUMERICAL RESULTS

We have conducted extensive simulations to illustrate the
performance of our proposed architecture and Fed-Match algo-
rithm and compare them with popular reinforcement learning
algorithms, i.e., DDPG and multi-agent DDPG (MADDPG)
[9], and with two modified versions of our Fed-Match with
only one level of collaboration between M-MGs (Fed-Match
MG-FL) and one level between SPs (Fed-Match SP-FL).
Unless otherwise stated, the simulation parameters are given
in Table I. We set the IoT environment on a 100 x 100 map
with 100 to 300 IoT devices using Zigbee, Cellular, WiFi, and
LoRa protocols (i.e., 4 SPs), and 7 M-MGs with 4 interfaces
each.

As shown in Fig. 3, the average AoI with Fed-Match, which
implements FL at both M-MGs and SPs, achieves the lowest
AoI, fastest convergence, and lowest variance of the results.
On the other hand, the average AoI with DDPG is 40 times
higher and has a very slow convergence (when set up to 25000
epochs). If Fed-Match is implemented considering only FL for
either SPs or M-MGs, we can see that the algorithm converges
after 16500 or 19000 epochs, respectively. Therefore, as we
anticipated, using our Fed-Match can effectively speed up
agent learning and achieves learning stability. The penalty
based on AoI and energy cost is shown in Fig. 4. We can see
that Fed-Match achieves the minimum penalty, which means
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Table I Main parameter settings for simulations
Parameter Value Parameter Value
λk , bkg 1Kb/slot, 0.3 P i

tr,max 0.2W
rimove, riobs 6, 60 ρ, τ , ϵ 0.85, 0.8, 0.2

ricollect−Zigbee 25 Bz
i,col, ζ2 5, 0.5

ricollect−Cellular 40 Bz
i,exe, ζ1 5, 0.5

ricollect−WiFi 60 Tu, Ef 8
ricollect−LoRa 80 ηA, ηC 1 ×10−3, 2 ×10−3

WZigbee, WCellular 5KHZ, 100KHZ B, ϱ, X 32, 0.0008, 4
WWiFi, WLoRa 20KHZ, 10KHZ ξi, ξj –174 dBm/Hz

Table II A numerical comparison on AoI with different ω1 and ω2.
Approach Average age Average penalty

mean std mean std
Mixed DDPG 285.22 99.81 146.67 50.21

Mixed MADDPG 184.90 76.46 96.54 38.64
Fed-Match with MG-FL & SP-FL(ω1=0.5,ω2=0.5) 28.60 20.50 18.40 10.40

Fed-Match with MG-FL(ω1=0.5) 176.31 76.27 92.25 38.51
Fed-Match with SP-FL(ω2=0.5) 128.55 68.33 68.37 34.48

Fed-Match with MG-FL & SP-FL(ω1=0.15,ω2=0.25) 162.97 50.14 85.56 25.71
Fed-Match with MG-FL & SP-FL((ω1=0.15,ω2=0.5) 65.01 35.71 36.61 18.17
Fed-Match with MG-FL & SP-FL(ω1=0.15,ω2=0.8) 70.10 37.96 39.15 19.34

Fed-Match with MG-FL & SP-FL(ω1=0.25,ω2=0.25) 151.45 59.06 79.81 30.05
Fed-Match with MG-FL & SP-FL(ω1=0.25,ω2=0.5) 82.90 55.50 45.56 28.04
Fed-Match with MG-FL & SP-FL(ω1=0.25,ω2=0.8) 242.41 85.77 125.30 43.49
Fed-Match with MG-FL & SP-FL(ω1=0.5,ω2=0.25) 232.30 63.37 120.24 32.43
Fed-Match with MG-FL & SP-FL(ω1=0.5,ω2=0.8) 51.46 39.05 29.84 19.72
Fed-Match with MG-FL & SP-FL(ω1=0.8,ω2=0.25) 169.49 46.81 88.84 24.17
Fed-Match with MG-FL & SP-FL(ω1=0.8,ω2=0.5) 82.19 78.77 45.20 39.60
Fed-Match with MG-FL & SP-FL(ω1=0.8,ω2=0.8) 154.83 72.17 81.51 36.51

that the SPs can learn to allocate bandwidth more efficiently
and the M-MGs can collect and offload data faster. Also, this
shows the superiority of having interactive policies between
M-MGs and SPs to minimize the penalty. In addition, Fig. 5
shows the overall number of the packets received by all APs
and all SPs. Fed-Match can offload 3 times more packets than
existing schemes, which indicates that the efficiency of the
system is improved.

In Fig. 6, the training loss of the critic networks for M-
MGs and SPs in MADDPG and Fed-Match are shown. We
can observe that the critic loss for M-MGs and SPs in Fed-
Match converges almost immediately, which means that the
optimal strategy is found faster when we implement feder-
ated learning among M-MGs and among SPs simultaneously.
Similar behavior was observed in the actor-network but the
results are omitted in the interest of space. The worst AoI
is shown in Fig. 7 for all algorithms. The worst AoI refers
to the maximum AoI of all IoT devices at the current time.
Our Fed-Match continues to be the best and its worst AoI
remains stable and the lowest at any time. Our architecture
design based on a two-layer federated learning considers all
IoT devices and M-MGs when allocating bandwidth for data
offloading to avoid data stagnation. At the same time, we
can see that DDPG is unable to offload data for a long time
leading to an increase in AoI. This is because DDPG requires
larger neural network models with a complex structure to
learn the relationship between the global input state and each
agent’s local policy. This complicates and slows down training.
Next, we increase the number of sensors from 60 to 300
and evaluate the performance of Fed-Match. For the same
available bandwidth and number of M-MGs, the average AoI
is consistently low up to 260 sensors. To further reduce the
AoI, more M-MGs need to be deployed.

In Table II, we compare the convergence of the Fed-Match
algorithm for different values of the weights ω1 and ω2 of the
FL in the M-MGs and the SPs, respectively. We have found
that best performance is obtained when ω1 = ω2 = 0.5. We
have also noticed that the best convergence does not translate
into the best performance due to the influence of multiple
random variables, i.e., the best performance is obtained when
ω1 and ω2 lie on the interval [1/Number agents, 0.5]. This
is because online collaboration benefits from the fluctuation
of the gradients since the actor parameters θ can adapt to
the changes in the environment. For instance, when ω1 is too
large, each MG relies mainly on its own learning strategy
and requires longer training to converge. However, when the
value of ω is too small, the agents will lose insights into the
performance from their own parameters.

VI. CONCLUSION

In this paper, we presented a multi-protocol IoT architecture
design to enable timely data collection in heterogeneous IoT
networks under different protocols and spectrum bands. We
developed collaborative policies for data scheduling and band-
width allocation between M-MGs and SPs to minimize the
average AoI and energy consumption. The policies are based
on a new federated matching framework. Our results showed
a significant reduction in the AoI and better convergence,
learning stability, and system efficiency than existing schemes.
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