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Abstract—The evolution of the Metaverse places higher de-
mands on task transmission and computation to provide users
with enhanced quality services. In this paper, we are first to ad-
dress the timely task allocation and processing for heterogeneous
services described using semantics in the Metaverse. We consider
a mobile edge computing network composed of Unmanned
Aerial Vehicles (UAVs) and adopt blockchain technology to
support secure task allocation. The task allocation problem is
formulated using semantic matching and penalty mechanisms
and solved by Particle Swarm Optimization (PSO) and Learning-
based algorithms. We have analyzed the impact of the penalty
mechanism on system rewards, task server matching rates, and
the success rate of task service. Our results show significant
improvements of our architecture and algorithms compared to
existing approaches.

Index Terms—Metaverse, semantic awareness, mobile edge
computing (MEC), task allocation, blockchain, reinforcement
learning.

I. INTRODUCTION

In recent years, the Metaverse has exhibited its potential
across diverse domains, e.g., military communications, smart
cities, and eHealth [1]. Facebook’s rebranding as Meta ex-
emplifies its drive for virtual world engagement [2]. Essential
Metaverse technologies encompass smart sensing, mobile edge
computing (MEC), blockchain, and digital twins, as described
in [3]. Wang et al. [4] present a semantic transmission frame-
work for device-to-Metaverse data transfer. Semantic-aware
communication, a task-oriented method, analyzes agent state
and action during task execution, eliminating the need for extra
data source processing [5].

MEC is proposed as a Metaverse architecture to bring com-
puting resources closer to users, reduce network congestion,
improve energy efficiency, and achieve real-time interaction
[6], [7]. Yet, efficient MEC deployment requires good server
density, location, capabilities, and mobility to meet heteroge-
neous demands. Zhang et al. [8] introduce a location-based
MEC-driven Metaverse, wherein servers adapt augmented
reality resolution to scarce communication and computing
resources. Al-Shuwaili and Simeone[9] presents an energy-
efficient resource allocation approach over communication and
computation resources via successive convex approximation.

Preserving users’ privacy during communication and com-
putation processes is a challenge effectively resolved by
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blockchain, enabling dynamic network management, trust,
and payments for diverse services. A blockchain-based, re-
inforcement learning-driven model was suggested in [10] for
Metaverse task allocation on static servers, improving system
gains. Lan et al. [11] proposed a blockchain-based UAV-
assisted IoT data collection scheme, optimizing transmissions
and deployment to maximize throughput. Particle Swarm Op-
timization (PSO) efficiently optimizes UAV positions in [12].
A dual-agent model to optimize UAV trajectory and channel
allocation is introduced in [13] .

Despite existing works, the joint UAV placement, com-
munication and computing resource allocation for semantic
tasks in the Metaverse remains unexplored. Therefore, in this
paper we propose a new Metaverse architecture utilizing a
blockchain network composed of UAVs for computing dif-
ferent semantic tasks generated by Metaverse users, aiming
to achieve maximum throughput and system revenue. Our
approach significantly improves the system performance by
efficiently utilizing computing resources, and thus increasing
the operators’ revenues.

The main contribution of this work can be summarized as
following:

• We present a model that strategically optimizes the dis-
tribution of UAV servers to enhance system throughput.
This model capitalizes on the Particle Swarm Optimiza-
tion (PSO) algorithm’s rapid convergence capabilities.

• We employ blockchain to construct a model that enables
the sharing of user-generated task information, preserv-
ing location privacy, and concurrently facilitating server
participation and profit distribution. Through the inte-
gration of Q-learning and semantic task matching with
penalty mechanisms, we optimize both communication
and computation processes, leading to improved resource
utilization and overall returns.

• The simulation results show that our Metaverse architec-
ture design and the PSO and Q-learning algorithms pro-
posed have significant advantages compared with greedy
and random selection algorithms.

The rest of the paper is organized as follows. Section II
introduces our architecture, communication, and computing
models. The task and resource allocation problem is for-
mulated in Section III. Section IV describes our proposed
algorithms. Simulation results are presented in Section V.
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Fig. 1: UAV-enabled and semantic-aware blockchain Meta-
verse architecture.

Section VI concludes the paper and summarizes the future
work.

II. SYSTEM MODEL

A. System Overview

The proposed UAV-enabled and semantic-aware blockchain
architecture for Metaverse is shown in Fig. 1. It includes Meta-
verse users with computational task requests, UAV servers,
and a consortium blockchain system. Tasks generated by users
in different locations are assigned serial numbers according
to their collection time. The set of tasks is represented by
Φ = {ϕ1, · · · , ϕj , · · · , ϕm}, the task index is j, and the total
number of the tasks is m. The set of UAV servers is denoted
by S = {s1, · · · , si, · · · , sn} with i the index of the server,
and n the total number of servers.

The workflow of this system is described in the following
steps as illustrated in Fig. 2:

1) Task generation and semantic classification: We consider
that Metaverse applications will generate tasks with different
semantic information, translating into heterogeneous com-
munication and computing requirements, and price. We use
k ∈ {1, 2, · · · , K} to represent the semantic type. Similarly,
servers are divided into K categories according to their ability
to process semantic information.

2) User-UAV server binding: Initially, we bind each user to
the closest UAV as the trusted server to collect data and upload
it to the blockchain network for allocation of computing
resources and return the results in a timely manner. We define
tasks collected by server si as Φsi = {ϕ1, · · · , ϕji , · · · , ϕm′},
where m′ ≤ m is the number of tasks collected by si.

3) UAV deployment: Many metaverse users generate com-
puting tasks at the same time. Therefore, each UAV should
be deployed in a location to optimize the average throughput
of different communication channels. We denote the location
of UAV servers by the set Z = {ζ1, · · · , ζi, · · · , ζn}. We
use ζi (xi, yi) to represent the initial position and ζ ′i (x

′
i, y

′
i)

to be the assigned locations obtained to achieve a balance
between the throughput of the UAV servers for collecting
and transmitting data within the blockchain, and improve the
profitability of the blockchain system.

Fig. 2: System flowchart.

4) Data collection: UAV servers collect the users’ data and
their task descriptions. We assume each user generates one
computing task at a time and shares the location with their
trusted server. The description of task ϕj is represented by
Ij < kj , reqkj , pkj , Dj >, where kj is the semantic type,
reqkj is the user’s task requirement based on the semantic
type kj given in terms of delay and throughput [14], pkj is
the unit price per CPU cycle for processing the task ϕj , Dj

is the task data size.
5) Task allocation: Once a UAV server si receives the data

and Ij , the data is stored locally, and Ij is submitted to the
blockchain network for task allocation to decide which server
will process the data.

6) Offloading and computing: Based on the task allocation
decision, server si will either forward the received task to
the assigned UAV server for computing or compute it locally.
Once the computing task is completed, each server will
broadcast the results to the blockchain network.

7) Results return and reward payment: UAV servers will
receive their own users’ tasks computing results and send them
back to their respective users. Then, they will get their reward
payment through the blockchain based on the paid offloading
fees by the users.

B. Communication Model

We use four transmission links to complete task collection,
task offloading, result offloading, and result return, as illus-
trated in Fig. 1. The task collection and result return process
(links 1 and 4 in Fig. 1) can be modeled as an air-to-ground
(A2G) channel where line-of-sight (LoS) path loss and none-
line-of-sight (NLoS) [15] are

PLξ =

(
4πfc
c

)2

· d2i,j · ηξ (1)

where di,j is the distance between the UAV server si and the
metaverse user who generates task ϕj , c is the speed of light,
fc is the carrier frequency, and ηξ with ξ = {0, 1} is the
path loss of LoS and NLoS cases. The average A2G path loss
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for the task collection and result return transmissions between
server si and user j can be obtained by

Li,j = p0 · PLi,j
0 + p1 · PLi,j

1 (2)

where p0 and p1 are the probabilities of LoS and NLoS [15]
respectively. Therefore, the transmission rate between server i
and user j is given by

Ri,j = Bilog2

(
1 +

P iGi,j

Li,jN0Bi

)
(3)

where Bi is the bandwidth, P i = P i
col represents the transmis-

sion power for data collection of server si and P i = P i
ret is

the transmission power to return the result, Gi,j is the channel
gain, Li,j is the average path loss, and N0 is the noise power
spectral density. The task collection duration is T col

i,j =
Dj

Ri,j

for the task data size Dj , and the time of result return is
T ret
i,j =

D′
j

Ri,j
with D′

j the data size of the result. Then, the
energy consumption for data collection and return is obtained
as Ecol

i,j = P i
colT

col
i,j and Eret

i,j = P i
retT

ret
i,j , respectively.

The air-to-air (A2A) link for the task and results offloading
process between UAV servers can be modeled as a free space
channel model. The path loss between servers si and si′ [16]

Li,i′ = PL0 =

(
4πfc
c

)2

· d2i,i′ · η0 (4)

where ηξ with ξ = 0 represents the path loss of LoS case,
di,i′ is the distance between server si and si′ . Thus, the
transmission rate of the A2A link can be expressed as

Ri,i′ = Bilog2

(
1 +

P i
trGi,i′

Li,i′N0Bi

)
(5)

where P i
tr is the transmission power of server i and Gi,i′ is the

channel gain. Then, the time needed to offload the task and
the result is T tof

i,i′,j =
Dj

Ri,i′
and T rof

i,i′,j =
D′

j

Ri,i′
, respectively.

Similarly, the energy consumption for each case is Etof
i,i′,j =

P i
trT

tof
i,i′,j and Erof

i,i′,j = P i
trT

rof
i,i′,j .

C. Computing Cost Model

We have K types of UAV servers with different computing
resources and abilities. The total CPU cycles required to
compute task ϕj of data size Dj on the UAV server si is
µi,j = Djθki with θki the CPU cycles required to process
unit data sample. Let αki represent the parameter related
to the architecture of CPU for server si and fki the CPU
frequency to compute the offloading tasks. Then, the energy
cost is calculated as Ecomp

i,j = αkiµi,jf
2
ki [17]. Moreover, we

can obtain the time consumption for computing task ϕj on
the server si as T comp

i,j =
µi,j

fki
, where µki is the maximum

available computing capacity of server si.

D. Blockchain Network

The blockchain network runs on the UAV servers using the
PTFT protocol [18] to aid in the transmission and preserve
the privacy of information and results, all while guaranteeing a
secure payment for services rendered. The blockchain network

in our system operates as follows: 1) At the beginning, each
UAV server publishes its location, available communication
and computing resources for processing tasks, the types of
semantic information it excels at processing, and uploads
received task descriptions Ij to the blockchain network. 2)
The previous information will be broadcast in the blockchain
network to allocate the received tasks to appropriate UAV
servers. Next, the task allocation decisions, task descriptions,
and resource and location information of the UAV servers will
be packaged into a new block. 3) If si is assigned to process
its own received task, it will do local computing. Otherwise, it
will transfer the task to other servers for processing. 4) Once
the task is completed, the result is recorded on the blockchain
and transmitted back to the server that sent the data. 5) The
users receive results from the trusted UAV server, and the
involved servers will be paid according to their participation.

III. PROBLEM FORMULATION

A. Utility Definitions

We formulate the task allocation problem considering the
different communication and computing costs when the task
is computed locally (by the closest trusted UAV that collects
the data) or offloaded to other UAVs. In addition, we also
consider if the task is offloaded to a UAV that handles tasks
of the same semantic type or different.

For the UAV development model, the utility of a UAV server
si that flies to collect the tasks Φsi = {ϕ1, ϕ2, ..., ϕm′} from
the corresponding users and communicates with other servers
is

Udep
i,j,m′ = β

 m′∑
j=1

(
RA2G

i,j

m′

)+ (1− β)

(
n∑

i′=1

(
RA2A

i,i′

n− 1

))
(6)

where β (0 ≤ β ≤ 1) is the weighting factor between the
A2G channel and A2A channel throughputs of UAV si, m′

is the number of users binding with si, n is the number
of UAV servers, and n − 1 refers to other servers exclud-
ing server si. The average throughput of the A2G channel
is RA2G

i,j =
RA2G

col +RA2G
ret

2 , where RA2G
col = Ri,j(P

i
col) and

RA2G
ret = Ri,j(P

i
ret) as in (3). RA2A

i,i′ is the throughput of the
A2A channel from server si to all other servers s′i as in (5).
Therefore, (6) represents each server’s average throughput of
the A2A and A2G links.

For the internal model of the blockchain, we use 1i,j = 1
to indicate that task ϕj is assigned to server si for computing.
Otherwise, 1i,j = 0.

If task j is submitted by server i, ϕj ∈ Φsi , then the utility
can be expressed as:

U blo
i,j = 1i,j

(
pkjµi,j − Ecomp

i,j − ρki,kjpkjµi,j

)
+ (1− 1i,j)

(
λpkjµi,j − Etof

i,i′,j − νki,kjpkjµi,j

)
(7)

where 1i,j = 1 means the task is assigned to be computed
locally. In that case, the profit is the remuneration paid by
the users minus the computing energy consumption and the
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penalties for mismatches proportional to the amount of data
transmitted. ρki,kj is a penalty coefficient for computing which
equals 0 if ki = kj . 1i,j = 0 means the task is not assigned to
be computed locally, and the local UAV server will transmit it
to a certain server, charging a certain intermediary service fee.
In this case, the profit is the intermediary service fee minus the
task offloading energy consumption and the penalty when the
task is delegated to a server that does not match the semantic
task type. λ is the proportion of intermediary fees. νki,kj is
a penalty coefficient for communication, and it equals 0 if
ki = kj .

If task j is not submitted by server i, ϕj /∈ Φsi , the utility
can be expressed as:

U blo
i,j = 1i,j

(
(1− λ) pkjµi,j − ρki,kjpkjµi,j

−Ecomp
i,j − Erof

i,i′,j

)
(8)

where 1i,j = 1 indicates that the task is assigned to be
computed in a certain UAV server and not locally. The profit
consists of the remuneration minus the communication inter-
mediary fee, the energy consumption caused by calculation
and task return, and the penalties for semantic mismatches.
The rest of the parameters are described above. 1i,j = 0
means this server is not involved in the communication and
calculation process, and thus it will not receive any profit.

B. UAV Deployment, Task, and Resource Allocation

First, we aim to optimize the position to deploy each UAV
server ζ ′i to maximize the overall average throughput for A2G
and A2A channels. The distance traveled by the UAV to
collect the data is denoted by χi. This optimization problem
is formulated as:

(P1) : argmax
ζ′
i

n∑
i=1

Udep
i,j,m′ (9)

s.t. : a) : 0 ≤ m′ ≤ m,

b) : χi ≥ 0, ∀i,
c) : i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · ,m′}.

where Udep
i,j,m′ is given by (6), (9a) constraints the number of

users that a UAV can serve in a period of time; (9b) guarantees
each UAV server’s movement is reasonable; (9c) defines the
set of servers and tasks collected.

Then, we optimize the task allocations to UAV servers in the
blockchain with semantic awareness to maximize the profit.

The problem is formulated as

(P2) : argmax
1i,j

n∑
i=1

m∑
j=1

U blo
i,j (10)

s.t. : a) :
n∑

i=1

1i,j ≤ 1, ∀j,

b) :
m∑

j=1,kj=ki

µi,j1i,j +
m∑

j=1,kj ̸=ki

µi,j1i,j ≤ µki ,

c) :
m∑

j=1,kj ̸=ki

µi,j1i,j ≤ δµki , 0 ≤ δ ≤ 1,

d) : ζ ′i is constant, ∀i,
e) : T task

i,j ≤ reqTkj , ∀1i,j = 1,

f) : Ri,i′ ≥ reqRkj , ∀ϕj ∈ Φsi & 1i′,j = 1,

g) : i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · ,m}.

where U blo
i,j is defined in (7)-(8), (10a) guarantees that one task

can only be assigned to one server; (10b) is the computing
capacity constraint to ensure that tasks served by si do not
exceed its computing resources; (10c) limits the number of
semantic tasks allocated to a different type of server by a
ratio δ to ensure that servers can reserve enough computing
resources to serve tasks of their same type; (10d) ensures that
after each UAV is deployed, the location will not change when
the blockchain is running; (10e) constrains the time that the
task ϕj remains in the blockchain network to meet the time
limit for the task of type k where T task

i,j = T tof
i,i′,j + T comp

i′,j ;
(10f) indicates that the selected server for offloading the task
must achieve a throughput Ri,i′ that meets the required one
by the tasks semantic type; and (10g) defines the set of servers
and tasks collected, respectively.

IV. PSO AND LEARNING BASED SOLUTION

To cope with the complexity of solving the previous opti-
mization problems, we adopt PSO algorithm [12] to find opti-
mal positions to deploy UAVs due to its fast convergence and
robustness, and reinforcement learning with ϵ-greedy strategy
to perform the Q-learning algorithm for task allocation. Both
methods require one UAV agent to assist with the execution.

A. Problem 1 Reformulation

To solve problem 1 with PSO algorithm, we define the state
space, rules for updating, and reward function.

1) State space: We describe the state space as Ω1 =<
S,Z,Φ′ > that includes the set of servers S , the set of their
initial locations Z , and Φ′ = {Φs1 , · · · ,Φsi , · · · ,Φsn} is the
set of the binding tasks to servers.

2) Updating rules: The PSO algorithm works based on
swarm intelligence with a set of particles initially located at
random positions and then adjusts their positions based on
two learning parameters pbest and gbest. The first parameter
is the best position of a single particle, while the second one
is the best position of the particle swarm. Let vi (ite) denote
the velocity of particle i at the iteration ite. The x and y
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coordinates of particle i are updated according to the following
formula:

vxi (ite+ 1) = ωvxi (ite) + c1r1 (p
xi

best (ite)− xi (ite))

+ c2r2 (g
xi

best (ite)− xi (ite)) (11)

vyi (ite+ 1) = ωvyi (ite) + c1r1 (p
yi

best (ite)− yi (ite))

+ c2r2 (g
yi

best (ite)− yi (ite)) (12)

xi (ite+ 1) = xi (ite) + vxi (ite+ 1) (13)

yi (ite+ 1) = yi (ite) + vyi (ite+ 1) (14)

where ω is the inertia coefficient, c1, c2 are respectively the
personal and global acceleration coefficients, r1 and r2 are
two random values in the range of (0, 1).

3) Reward Function: The objective of problem 1 is to find
the best location for each UAV server to optimize the overall
average throughput for UAV servers. Therefore, the reward
function is

rdepi,j,m′ = Udep
i,j,m′ (15)

where Udep
i,j,m′ is as in (6) and we will find the best ζ ′i to

maximize the reward.

B. Problem 2 Reformulation

We use the Q-learning algorithm to solve problem 2, and
we reformulate the problem using a Markov Decision Process
(MDP) with the state space, action space, and reward function
as following.

1) State space: We describe the state space of the agent
using Ω2 =< Φ, jtype, P,D, reqT , reqR >, which com-
prises all tasks and their corresponding information. Here,
Φ = {ϕ1, · · · , ϕj , · · · , ϕm} represents the set of tasks,
jtype = {k1, · · · , kj , · · · , km} denotes the set of semantic
categories associated with each task. Each kj is an inte-
ger between 1 and K, where K is the total number of
semantic categories. P = {pk1 , · · · , pkj , · · · , pkm} repre-
sents the set of unit CPU cycle prices for tasks. D =
{D1, · · · , Dj , · · · , Dm} corresponds to the set of data sizes
of tasks. reqT = {reqTk1 , · · · , reqTkj , · · · , reqTkm} is the set
of time requirements for different semantic tasks, and reqR =
{reqRk1 , · · · , reqRkj , · · · , reqRkm} represents their throughput re-
quirements.

2) Action space: We use A2 =<
S, itype,M, α, F,Θ, B, Ptr, Z

′ > to represent the
action space, where S is the set of servers,
itype = {k1, · · · , ki, · · · , kn} is the set of semantic
categories corresponding to each server, where ki is an
integer between 1 and K, and K is the total number
of semantic categories, M = {µk1 , · · · , µki , · · · , µkn}
is the set of total available CPU computing resources
for each server, F = {fk1 , · · · , fki , · · · , fkn} is the
set of CPU frequencies, Θ = {θk1 , · · · , θki , · · · , θkn},
B = {B1, · · · , Bi, · · · , Bn} is the set of the communication
bandwidth, Ptr = {P tr

1 , · · · , P tr
i , · · · , P tr

n } is the set of

transmission power, Z = {ζ1, · · · , ζi, · · · , ζn} is the set of
each UAV server’s location. The agent can choose only one
action for per task, i.e., selected or not selected in one state,
while one action can be selected several times in all states
if it satisfies the necessary conditions. Through this setting,
we ensure that a task can only be assigned to one server for
calculation, and a server can calculate multiple tasks if the
conditions are met.

3) Reward Function: The objective of problem 2 is to
optimize the profit of the blockchain network and the time used
for task processing by allocating semantic tasks to different
UAV servers. Following the utility model, the reward function
is defined as:

If ϕj ∈ Φsi and kj = ki, the reward function can be
expressed as:

rbloi,j =



pkjµi,j − Ecomp
i,j ,

∑m
j=1 µi,j ≤ µki , T task

i,j ≤ reqTkj ,∑m
j=1,kj ̸=ki µi,j ≤ δµki ,

λpkjµi,j − Etof
i,i′,j , Otherwise and ki

′
= kj ,

λpkjµi,j − Etof
i,i′,j − νpkjµi,j ,

Otherwise and ki
′ ̸= kj ,

(16)
If ϕj ∈ Φsi and kj ̸= ki, the reward function can be

expressed as:

rbloi,j =



pkjµi,j − Ecomp
i,j − ρpkjµi,j ,

∑m
j=1 µi,j ≤ µki ,

T task
i,j ≤ reqTkj ,

∑m
j=1,kj ̸=ki µi,j ≤ δµki ,

λpkjµi,j − Etof
i,i′,j , Otherwise and ki

′
= kj ,

λpkjµi,j − Etof
i,i′,j − νpkjµi,j ,

Otherwise and ki
′ ̸= kj ,

(17)
If ϕj /∈ Φsi , ϕj ∈ Φsi′ , k

j = ki, the utility can be expressed
as:

rbloi,j =


(1− λ) pkjµi,j − Ecomp

i,j − Erof
i,i′,j ,∑m

j=1 µi,j ≤ µki , T task
i,j ≤ reqTkj ,∑m

j=1,kj ̸=ki µi,j ≤ δµki , Ri′,i ≥ reqRkj ,

0, Otherwise,
(18)

While if ϕj /∈ Φsi , ϕj ∈ Φsi′ , k
j ̸= ki, the utility can be

expressed as:

rbloi,j =


(1− λ) pkjµi,j − Ecomp

i,j − Erof
i,i′,j − ρpkjµi,j ,∑m

j=1 µi,j ≤ µki , T task
i,j ≤ reqTkj ,∑m

j=1,kj ̸=ki µi,j ≤ δµki , Ri′,i ≥ reqRkj ,

0, Otherwise,
(19)

These reward functions are the transformation of the utility
and constraints to model various offloading decisions.

C. Implementation of PSO algorithm

The PSO algorithm to solve the reformulated problem 1 as
described in Section IV.A is summarized in Algorithm 1.

Initially, particles are randomly generated around the map.
Then each particle will calculate its own average throughput
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Algorithm 1 PSO based algorithm to optimize locations of
UAV servers

1: Initialize: PSO population, gbest, pbest, server num,
binding users, location of other servers

2: for i ← 1 to iteration do
3: for each particle in the PSO population do
4: Calculate the reward using (15) based on the current

position of the particle
5: Compare and update the personal best position pbest
6: Compare and update the global best position gbest
7: Update the particle’s velocity vxi and vyi by (11) and

(12)
8: Update the particle’s position xi and yi by (13) and

(14)
9: end for

10: end for
11: Output: The global best position gbest after iteration

by (15). The best reward for each particle is pbest and for
the swarm is the gbest, both of which will be updated and
recorded. Then, we use (11) and (12) to update the velocity
for each particle, and finally update the position xi and yi
by using (13) and (14). This process will continue until the
iteration reaches its maximum and ensure the convergence of
the algorithm.

D. Implementation of Learning Algorithm

In problem 2, we use Q-learning to learn the task al-
location problem. Before performing this learning process,
we select the available UAV servers every time we allocate
tasks. Here we use Sava

j = {s1, s2, · · · , s′n} to represent the
available UAV servers to process task ϕj and rewardsj =
{r1,j , r2,j , · · · , rn,j} to represent the set of all possible re-
wards. hj is the source server of task ϕj . The action is denoted
by Actj at state Ωj . Ns means no service can be provided and
episodes is the number of repeated experiments are conducted.

Here, we will elaborate on the Q-value updating method. For
local processing and forwarding processing, we have employed
two different strategies. When a server forwards a task, it
considers not only the computing server’s reward but also the
reward of the forwarding source server. By doing so, we can
introduce the calculation and communication penalties when
tasks do not match servers and their impact on this system.
As the output of the learning process we obtain the maximum
reward of this blockchain network and the task allocation with
the matching rate that indicates how many tasks are served
by the same type of servers, the service rate is to see how
many tasks achieve their strict requirements in this system.
Otherwise, the system will not get any reward from the user.

V. SIMULATION RESULTS

We have conducted extensive simulations to show the per-
formance of our schemes. We set the map size to 200m*200m,
λ = 0.1, the data size of each task is randomly generated
between 20 and 30 Mbits. We have K = 4 semantic types

Algorithm 2 Learning based algorithm for task allocation

1: Input: ϕj , S, hj

2: Initialize: rewardsj , Sava
j , Actj , Ns,

Ωj , episodes, Q (Ωj , Actj)
3: for ep ← 1 to episodes do
4: for j ← 1 to m do
5: for i ← 1 to n do
6: Using (16), (17), (18) and (19) to caculate reward

ri,j
7: if ri,j > 0 then
8: Append i into Sava

j

9: end if
10: end for
11: if length(Sava

j ) == 0 then
12: Append ϕj into Ns
13: end if
14: Generate a random value x ∈ (0, 1)
15: if x ≤ ϵ then
16: Actj ← randomly choose one from Sava

j

17: else
18: Actj ← action with the max Q value from Sava

j

19: end if
20: if Actj == hj then
21: Q (Ωj , Actj) ← Q (Ωj , Actj) + α[rActj ,j + γ ·

maxQ
(
Ω′

j , S
ava
j

)
−Q (Ωj , Actj)]

22: else
23: Q (Ωj , Actj)← Q (Ωj , Actj) + α[rActj ,j +rh,j +

γ ·maxQ
(
Ω′

j , S
ava
j

)
−Q (Ωj , Actj)]

24: end if
25: end for
26: Total reward ← sum of the rewards; Matching rate

← number of tasks matched with servers/m; Ser-
vice rate ← (m−Ns)/m.

27: end for
28: Max reward: maximum total reward for all episodes
29: Allocation result: allocation result for maximum rewards
30: Matching rate: matching rate for maximum rewards
31: Service rate: service rate for maximum rewards
32: Output: MAX rewards, Allocation result,

Matching rate, Service rate

of tasks. The numbers of tasks and servers are 60 and 20,
respectively. The available bandwidth for each type of task
is 5, 25, 50, 100MHz, and the computing resources are
120, 100, 80, 60 CPU cycles/bit. The transmission power
of UAV servers is randomly selected between 0.3 and 0.5W.
The collection power is randomly selected between 0.05 and
0.1W. The antenna gain between the user and server is set
to 20 dB. The carrier frequency is 2.5GHz, and the noise
power spectral density is -130dB. The remaining parameters
are described in Table I. Different semantic tasks’ time and
throughput requirements are [40ms, 1Mbit/s; 10ms, 5Mbit/s;
60ms, 10Mbit/s; 15ms, 20Mbit/s]. The results are the average
of 100 independent simulations.
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TABLE I: Simulation settings

Parameter Description Values
pkj Unit price of computing for each type of task. [5, 10, 15, 20]
θki CPU cycles required to process unit data. [2, 4, 6, 8]
fki CPU frequency used to compute task. [3, 6, 9, 12]
αki CPU architecture parameter. [0.01, 0.02, 0.03, 0.04]
a, b, ηLos, ηNLos Coefficients of A2G path loss. 9.61, 0.16, 1, 20
ϵ The ratio of greedy strategy. 0.9
α The learning rate. 0.5
γ The discount factor. 0.9
Episodes Max episode of P2. 500
ρ Penalty coefficient for mismatched computing servers. [0, 0.9]
ν Penalty coefficient for mismatched forwarding servers. [0, 0.09]
δ Computing resource ratio for the unmatched task. 0.3
Ps Population Size(Swarm Size). 100
w Inertia Weight. 1
wdamp Inertia Weight Damping Ratio. 0.98
c1 Personal Learning Coefficient. 1.5
c2 Global Learning Coefficient. 1.5
β The weight factor of throughput. 0.6
IterMax Max iteration of P1. 100

(a) Rewards vs. ρ (b) Matching rate vs. ρ (c) Service rate vs. ρ

Fig. 3: Computational Penalty Mechanism Impacts on the System

(a) Rewards vs. ν (b) Matching rate vs. ν (c) Service rate vs. ν

Fig. 4: Communication Penalty Mechanism Impacts on the System

We analyze the impact of computational and communication
penalties on the system’s rewards, task-server matching rates,
and task servicing success rate. We compare the performance
of the Q-learning algorithm optimized with PSO for UAV posi-
tioning to the Q-learning algorithm without UAV optimization,
as well as greedy and random selection algorithms.

As we can see in Fig. 3 and 4, the Q-learning algorithm
optimized with PSO achieves the best performance by improv-
ing average throughput and increasing matching and service
rates, resulting in higher system rewards. Optimizing UAV

positions enables reliable task handling by selecting higher-
revenue servers.

In terms of the computing penalties shown in Fig. 3, setting
an appropriate penalty factor yields optimal system rewards
around ρ = 0.15. This mechanism balances mismatched
between task semantic type and server type, allowing partial
mismatches that still contribute to overall rewards. However,
increasing computation penalties gradually diminishes rewards
as more mismatched allocations are replaced by matched
ones. Under high computing penalties, the random selection
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algorithm experiences an increase in matching rate and overall
rewards. This is because tasks initially assigned randomly to
mismatched servers are forced to be reassigned to matching
ones, improving rewards with higher matching rates. Appropri-
ate computation penalties improve the number of successfully
served tasks by reducing competition among demanding tasks
for limited computing resources. Excessive penalties, however,
decrease the system’s service rate as high-performance mis-
matched servers lose opportunities for service.

Communication penalties, as shown in Fig. 4, have a smaller
impact on the system compared to computation penalties
due to the lower proportion of rewards derived from the
communication process. The performance trends of the al-
gorithms align with the previous analysis. The Q-learning
algorithm optimized with PSO for UAV positioning achieves
the best performance, finding an optimal point at ν = 0.04.
Although overall rewards remain relatively unchanged, a slight
improvement in matching and service rates is observed with
increasing communication penalty factor.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have designed and implemented a UAV-
enabled semantic-aware blockchain architecture for Metaverse
applications. We solve the task allocation problem to maximize
the throughput and revenue using the Q-learning algorithm
with semantic matching and penalty mechanism. Moreover, we
optimize UAV positioning using the Particle Swarm Optimiza-
tion (PSO) algorithm. Our approach significantly outperformed
existing schemes in terms of rewards, semantic matching rate,
and service rate. In our future work, we will incorporate the
optimization of computing resource allocation to servers to
meet requirements of multiple coexisting Metaverse applica-
tions.
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