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Abstract— A reconfigurable power amplifier (PA) is imple-
mented in CMOS 65nm to enable radio identification for secure
wireless communication by injecting tunable radio frequency
fingerprints (RFFs) into the physical layer. The large ensemble
of RFFs is achieved by offsetting the distributions of process
variations affecting the PA’s hardware features. The result-
ing large RFF capacity is exploited to increase resilience to
noise and temperature changes by selecting distinct RFFs from
the ensemble and reconfiguring the PA to restore nominal
RFFs following temperature shifts. The secure PA achieves
over 14000 time-varying RFFs while consuming only 22 mW
and occupying a core area of <0.0951 mm?. A reinforcement
learning (RL)-based control has been implemented on FPGA for
closed-loop reconfiguration of the transmitter to achieve robust
and low-overhead security measures that overcome noise and
temperature influences in dynamic environments.

Index Terms— Wireless device authentication, power amplifier,
IoT, hardware security, reinforcement learning, energy efficient,
RF fingerprint.

I. INTRODUCTION

HE commonality of resource-constrained IoT devices

has spurred the investigation of low-overhead physical
(PHY) layer authentication mechanisms [1]. These largely
consist of schemes based on extracting RF fingerprints (RFFs)
from the wireless channel [2], [3] and transmitter-specific
hardware features [4], [5]. The RFFs intrinsic to transmitters
can be susceptible to low reliability and can exhibit lim-
ited distinguishability [6]. Attackers may also observe and
spoof intrinsic transmitter RFFs to overcome the authenti-
cation. This has motivated the integration of tuneability into
RF fingerprinting-based authentication systems for mitigating
these disadvantages [6], [7], [8].

To prevent an attacker from cloning a significant portion
of the RFF configuration space in a tunable RFF scheme,
individual radio transmitters need to be able to inject a great
many more distinguishable RF fingerprints into the wireless
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physical layer to enable time-varying RF fingerprint-based
authentication, as illustrated in Fig. 1. The sequence of RF
fingerprints can be synchronized during the handshake process
to avoid having to exchange it online. Frequently switching the
RF fingerprint embedded in the transmitted signal makes it
unpredictable for an attacker to observe-and-spoof. However,
tunable RF fingerprint schemes in the literature have only
demonstrated a limited search space of RFFs. Furthermore, the
impact of environmental changes such as temperature shifts on
these tunable RF fingerprint schemes has not been sufficiently
investigated [6], [7], [8].

The limited range of prior tunable RF fingerprint schemes is
still vulnerable to interception by adversary receivers using a
prolonged observation time to mimic transmitted signals [9].
Tunable RF fingerprint schemes by themselves also remain
vulnerable to the impact of temperature variations on the
transmitter impairments they rely on for authentication deci-
sions [10]. Many semiconductor device parameters exhibit a
significant temperature coefficient that directly impacts upon
transmitter behavior, resulting in RFFs exhibiting temperature
dependency [11], [12]. The key challenges faced by tunable
RFF-based authentication schemes can be summarized as
follows: individual devices need to support a very wide range
of RFFs to counter spoofing attacks and the consistency
of the generated RFFs is degraded by circuit sensitivity to
environmental changes. The methodology for compensating
the effects of a time-varying operating environment is strongly
dependent on the system characteristics. Previous study has
shown that the thermal coefficient of a transmitter’s crystal
oscillator may be compensated using a simple calibration in
the phase-locked loop (PLL) for the frequency offset across
temperature [13]. However, more complex systems, such as the
PA of a wireless transmitter often require complex online esti-
mation/compensation methods [14], [15] to effectively manage
and compensate for environmental variations.

To further address these issues, this work presents a solution
to achieve a significantly larger RF fingerprint capacity on an
RF power amplifier by skewing the distributions of intrinsic
process variations of CMOS circuits and exploiting the search
space in electromagnetic (EM) domain. The proposed PA was
manufactured in 65nm CMOS targeting 6 GHz to generate
over 14,000 RF fingerprints. A reinforcement learning (RL)-
based PA controller is implemented on FPGA to automatically
characterize the PA’s high-dimensional tunable parameters and
control the PA for restoring the RF fingerprints across tem-
perature variations in order to achieve reliable identification
in dynamic environments.
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Fig. 1. Overview of authenticating radio devices using RF fingerprints. Only
devices with correct time-varying RF fingerprints will be authenticated by the
classifier on the receiver.
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The remainder of this paper is organized as follows.
Section II introduces the system architecture and reconfig-
urable combinatorial PA architecture. Section III presents the
measurement results of the fabricated PAs with temperature
variations. The classification results for determining the RFF
capacity of the device equipped with the proposed PA are
presented in section IV. Section V discusses the RL controller
for restoring distorted RF fingerprints from temperature vari-
ations with an FPGA implementation. Section VI concludes
the paper.

II. TIME-VARYING RF FINGERPRINTS WITH
RECONFIGURABLE POWER AMPLIFIER

A. System Overview

Having a large ensemble of RFFs on the transmitter expands
the capacity of the time-varying scheme to improve the
security. It also enables the improvement of the scheme’s
noise resilience by dropping indistinct fingerprints from the
ensemble to reduce RFF feature overlaps while maintaining
most of the intrinsic RF fingerprint capacity. This process is
illustrated in the middle of Fig. 2. Furthermore, CMOS circuits
exhibit significant temperature dependencies that may distort
the original fingerprint as the temperature of the device envi-
ronment changes, as shown in the bottom of Fig. 2. To achieve
system resilience against these temperature coefficients, alter-
native PA configurations are extracted from the large ensemble
and substituted in to restore the nominal RF fingerprints.
This work proposes a reinforcement learning controller for
automatically characterizing the PA and adjusting the PA
configuration for overcoming such environmental variations.
The system diagram for such a transmitter equipped with the
reconfigurable PA and RL controller for reliable time-varying
RF fingerprints is shown in Fig. 3. The rest of the paper
introduces the components of the system in detail.

B. Reconfigurable PA

The Wi-Fi 6E specification takes advantage of the first new
spectrum granted for Wi-Fi in the U.S. since Wi-Fi 3 to
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Fig. 2. The methods proposed for counteracting the effects of noise and
temperature variations on an ensemble of RF fingerprints are visualized using
example RFF distributions.
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Fig. 3. System diagram of the proposed transmitter. The PA is reconfigurable
to produce large numbers of RF fingerprints on transmitter for time-varying
RFF identification. The RF fingerprint controller on FPGA uses reinforcement
learning to control the PA and counteract environmental variations.

deliver enhanced performance using the uncongested, lower
noise environment of the 6 GHz band [16]. The Very Low
Power access class of this specification enables indoor/outdoor
operation without imposing significant interference using low
transmit PSD limits. The reconfigurable 6-GHz PA designed in
65 nm CMOS for this work targets this resource-constrained
application using a PSD limit of -8 dBm/MHz, which specifies
a maximum transmit power of 5 dBm for a typical 20 MHz
Wi-Fi channel [16]. To achieve a greatly enlarged RF finger-
print search space, the circuit design builds on prior work
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that relies on combinatorial randomness for achieving RF
fingerprint tunability [8]. By itself, this method requires the
slicing of the differential pair of the PA output stage into
small-size selectable elements, resulting in greater individual
element-level process variation that may be combinatorially
selected to yield a greatly variable composite RF finger-
print [17]. The direct approach to enhancing the tuning range
of this method is to introduce non-uniform sizing of each
selectable element, but this introduces significant layout com-
plications for the output stage transistor of a PA [18]. This
work instead extends the concept of the multi-gate transistor
linearization technique by retaining evenly sized selectable
elements and modifying element-level operating points with
body bias DACs for achieving a similar expansion effect on the
RFF tuning range [7]. The set of control vectors for the body
bias DACs is chosen to result in an approximately constant
overall quiescent current for the output stage as the PA is
configured between them. This prevents drastic changes in
PA performance as the body bias offsets applied to individual
slices are varied to sweep the RF fingerprint. Meanwhile, the
power supply and gate bias are made configurable to maximize
the PA fingerprint capacity. With a large number of RFFs,
indistinct fingerprints can be removed to enable greater noise
resilience. Furthermore, it provides a large state space that
significantly increases the successful rate for the reinforcement
learning controller to enable temperature-resilient configura-
tions to counter environmental changes.

As depicted in Fig. 4, the structure of the PA is composed of
off-chip matching networks, a driver stage, and the reconfig-
urable output stage for achieving variable and resilient RFFs.
The driver stage is a linear Class-A biased differential pair with
cascoded transistors and feeds into the configurable differential
pair of the output stage with a shunt inductor for inter-stage
matching. Neutralization capacitors are used to reduce the
Cgq of the large input pair for improving driver stage gain.
The output stage’s differential pair is nominally biased in
Class-B/deep AB with constant voltage bias and divided into
12 parallel device pairs with enable switches. Linear Class-A
and Class-B/deep AB bias are chosen to avoid introducing
significant intercarrier interference into the OFDM Wi-Fi
signal [19]. Each device pair is laid out inside a separate deep
n-well to allow individualized forward body bias operation
with a 3-bit resolution resistive DAC (RDAC). 9 device pairs
are enabled at a time during amplifier operation for a target
power specification of 5 dBm, yielding a measured 4.5 dBm of
power at room temperature with body bias DACs disabled and
a nominal supply voltage of 1.2 V. Selecting 9 device pairs
from 12 available elements at a time allows the PA output
stage to be reconfigured between 220 possible combinations
of device pair mismatch, yielding a large baseline capacity of
RFFs that can be further expanded upon with skewed body
bias. Furthermore, the resultant output power reduction from
sacrificing 3 device pairs for implementing this form of RF
fingerprint tunability is kept to 1.8 dB relative to enabling all
12 device pairs.

The schematics of the off-chip matching networks are
shown in Fig. 5 with transmission line dimensions. In the
input microstrip network, the interdigital microstrip capacitor,
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Fig. 4. The schematic of the reconfigurable 6-GHz PA is shown with the
arrangement of off-chip components (a) and the on-chip design (b).
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Fig. 5. The dimensions and schematics of the reconfigurable PA’s off-chip
input matching network (a) and output matching network (b) on one side of
the differential PA are shown.

short-line segment, and short-circuited stub near the connec-
tion to the chip are sized to compensate the impact of the
input-side bondwire, with the radial stub serving as a short
circuit. The remainder of the elements are dimensioned to
achieve matching to the 50 Ohm system impedance. As for the
output-side microstrip network, the uppermost open-circuited
stub in Fig. 5b is sized to yield a short-circuit at the second
harmonic for enabling control of the first and second harmonic
loading impedances at the output stage transistor drain. The
remainder of the lines in the output-side microstrip network
are sized for providing a power match to the output stage
transistor at the operating frequency and a short at the second
harmonic.
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C. PA Fingerprint Analysis

The hardware features injected by the PA into the transmitter
RFF are a function of the composite response of each selected
device pair in the output stage and can be analyzed through
the impact of global and local reconfiguration on the AM/AM
response of the amplifier. In the passband, a weakly nonlinear
PA can be modeled as a memoryless polynomial [20] whose
coefficients determine the hardware features imprinted by the
PA on the input signal. To determine the overall RF fingerprint
response of the PA, we examine the impact of reconfiguration
at the level of one side of an individual selectable device pair.

Neglecting dependencies on drain voltage, the drain current
ig (0) of a MOSFET fed with a sinusoidal input exhibits a
nonlinear dependence on the conduction angle « and is pro-
portional to the peak drain current Ip;4x [21]. The conduction
angle « itself is dependent on input amplitude A;,, MOSFET
threshold voltage Vry, and bias voltage Vp. Furthermore,
peak drain current Ip;ax is linearly proportional to input
amplitude A;, and IpAx ideal, the maximum drain current
supported by the MOSFET. These dependencies are summed
up below, with Vpp denoting supply voltage.

iqg (0) = Ipax(cos® — cos (a/2))/(1 — cos (a/2)) (D
a=2cos” (Vru — Vg)/Ain) )
Ivax = Imax.ideat(Ve + Ain — Vru)/(Vop — Vru) (3)

To widen the range of available RFFs, the PA operating
point is shifted globally by modifying Vpp and bias voltage
Vp in addition to changing the selection of device pairs
and body bias DAC settings at the local level. Vpp shifts
impact the drain voltage waveform and the peak drain current
Iymax, while shifts in bias voltage propagate to Iy ax and
the MOSFET conduction angle. Notably, a change of AVpp
from the original Vpp, oiq affects Iy 4x through the maximum
supported drain current Ipax,ideal by AIpmax.idear in addition
to the denominator term of (3):

Alpyax,ideal = Umax,ideat AVpD)/(Vpp,01d — VrH) (4)

At the element level, modifying body bias levels systemat-
ically shifts Vry and thus Ipax ideqar- The impact of a Vry
shift on Ipax.idear can be approximated assuming a linear
device characteristic [22], leading to the following expression
for the new value of the maximum supported drain current:

Imax.ideal (VoD — VT H new)

®)

IMAX ideal,new =
Vbop — VrH,old

The effects of systematic shifts in these element-level and
global operating points in the reconfigurable PA’s output stage
are illustrated in Fig. 6. The overall characteristic of the
output stage on one side of the differential pair can then be
written as follows by summing over 9 selected device pairs
using function notation for denoting the global and local (sub-
scripted) dependencies of conduction angle « (A Vrua.i, AVB),
peak drain current Ipr4x (A Vrui, AVB), and MOSFET knee
voltage Vi (AVTHJ, AVB):

Laior (0)

N=9 1
= zi:l D; (0) Ki(cos6 — cos (Ea (AVrg,i, AVg))) (6)
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Fig. 6. Intentional offsets applied to each slice of the output stage differential
pair, and global control of output stage quiescent voltage Vg and supply
voltage are used to maximize the PA’s fingerprint capacity.

K;

1
= Iyax (AVTH,,', AVB) /[1 — COS (E(x (AVTH,i, AVB))]

(7N
D; (0)
=1—exp(=Vp (8) /Vk (AVrn.i, AVp)) ®)
Vp (0)
= Vpp + AVpp — lgrer () Ropr cos (0) 9

Here, the D; (8) term adds back in the dependency of
element-level MOSFET drain current on the shared drain
voltage Vp (6) of the output stage’s selected elements, while
K; factors in the scaling of each selected device pair’s peak
drain current through the global and element-level systematic
offsets. Vp (0) is simply modeled by assuming all harmonics
are shorted with the only time-varying component being
the fundamental frequency sinusoid —Ij;,:(0)Ropr cos (6).
1410¢(0) denotes the total drain current of all 9 selected output
stage MOSFETs and Ropr refers to the impedance seen by
the output stage drain. Rpp7 is set to the value required for
power matching the output stage transistors under the nominal
condition (no systematic offsets applied). The fundamental
Fourier coefficient of 1;,,,(0) can then be used to compute
the overall Py vs. Py, output characteristic curve that defines
the PA RF fingerprint response.

The variability that is achieved by this tunable RFF scheme
can then be found by propagating the uncertainties asso-
ciated with device mismatch to the output stage’s overall
response [23]. For simplicity, we consider Vty and the current
factor B with the following self-mismatch standard devia-
tions [24]:

O_VT:LAVTO
V2NWL

1 BAg

og = ———
P V2 VWL

(10)

(1)
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Fig. 7. The greatly expanded search space of hardware features provided
by the proposed PA reconfigurability scheme is visualized using a 3" order
behavioral PA model fitted to the computed output stage characteristic.

The impact of the body effect on Vrg mismatch can
be accounted for by characterizing the self-mismatch across
body-bias DAC settings [25]. To determine the increase in
fingerprint capacity afforded by the proposed reconfigurability
scheme, we compare against the variability achieved in the
absence of systematic offsets such as forward body bias
voltages, Vpp, Vp by solely applying selectable element
switching, corresponding to a previously proposed scheme
for integrating tunability into the RFF injected by a PA [8].
If we consider the case of configuring the PA across +20%
variations in Vpp and Vg with a set of 8 possible pseudo-
random control vectors for the body bias DACs in addition
to the 220 available combinations of output stage slices, the
proposed scheme results in a far greater variability in the
PA hardware features. Compared to an approach that simply
exploits intrinsic device variations through selecting differing
combinations of output stage transistor slices, a much greater
fingerprint capacity is achieved. This is illustrated in Fig. 7,
wherein a 3"-order polynomial model is fitted to the computed
PA output characteristic distribution in order to plot the
spread of the 3"-order coefficient as a PA hardware feature.
We further validate this analysis by conducting a post-layout
Monte Carlo analysis of the corners of this scenario wherein
Monte Carlo is run for 3 of the 8 possible DAC control vectors
for £20% variations in Vpp and Vg. Here, simulations are
only conducted for +20% and -20% variation in both Vpp
and Vp to cover the corner cases. The resultant distributions
are plotted in Fig. 8, where it is seen that our proposed scheme
provides a significant enhancement in the tuning range.

D. Temperature Sensitivity Analysis for PA RF Fingerprints
Owing to the temperature coefficients of parameters such
as Vg and transistor mobility wu, the fingerprint of the
PA is systematically shifted by temperature changes in the
device environment. Both transistor mobility and Vty exhibit
significant increases as the temperature decreases [11], [12].
Furthermore, drain current mismatch improves as tempera-
ture rises, with the extent of the improvement increasing
significantly as the transistor bias approaches weak inver-
sion. The primary contributor to this trend is current factor
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Fig. 9. A fitted 3" order PA polynomial model’s 3" order coefficient is
used to visualize the overlaps between the search space of RF fingerprints
across temperature corners.

mismatch [26]. This effect causes temperature shifts to impact
the variability achievable by the proposed reconfigurable RFF
scheme, and thus the fingerprint capacity.

The overall impact of temperature shifts on the proposed
reconfigurable RFF scheme can therefore be modeled by
integrating the temperature dependencies of the Pelgrom coef-
ficient Ag, Vy and B into (1)-(4). We determine the ability of
the proposed system to compensate for temperature changes
in the environment by computing the fingerprint variability
achieved across —40 °C to 125 °C for the same case as Fig. 7
and showing the overlap between the RFF distributions. This
overlap is plainly seen in Fig. 9, demonstrating the capacity of
the proposed scheme to restore nominal fingerprints following
a temperature change. Post-layout Monte Carlo analysis for a
single DAC control vector across +20% and -20% variation
in both Vpp and Vp for covering the corner cases is used to
validate the existence of the overlap in tuning range across
temperatures, as shown in Fig. 10.

III. PA MEASUREMENT RESULTS

To demonstrate the proposed system, the 6-GHz PA was
taped out in 65 nm CMOS and evaluated using Wi-Fi 6E SU
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Driver Stage 0.008092 mm?
Interstage Network 0.062277 mm?
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Cascode Devices 0.006101 mm?

Fig. 11. The PA die micrograph and area estimates are shown alongside a
picture of the PCB with the off-chip matching networks.

packets with a 20 MHz channel width as a test signal. The die
micrograph of the PA and test board is shown in Fig. 11, with

the design occupying a core area of less than 0.0951 mm?.

A. Measured Performance

The nominal configuration of the PA is defined to be setting
Vop = 1.2V, Vg = 036 V, 9 output stage differential
pairs enabled with body bias RDACs disabled. The measured
power and efficiency curves for the nominal configuration of
the PA are shown in Fig. 12 for temperature corners from
—40 °C to 125 °C. At room temperature, the PA’s nominal
configuration achieves a compression power of 4.5 dBm
and an efficiency of 12.5% at 5.985 GHz. The measured
frequency response and constellation diagram are shown in
Fig. 13 and Fig. 14. The response in Fig. 13 displays a
3-dB bandwidth of 140 MHz, ranging from 5.91 GHz to
6.05 GHz, effectively accommodating the 20 MHz Wi-Fi
channel with ample margin. To verify that reconfiguring the
PA between the pseudorandom body bias DAC control vectors
for applying slice-level offsets doesn’t cause drastic changes
in PA performance, the transmit spectrum was measured
across all 220 possible nominal configurations, where each
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DACs disabled.
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Fig. 13. The measured frequency response of the PA at room temperature
with the PA in a nominal configuration with body bias DACs disabled.

was configured with 8 pseudorandom body bias DAC control
vectors for a 20 MHz bandwidth 16QAM Wi-Fi 6E test signal
at 5.985 GHz. The resultant spectra and histogram of adjacent
channel power ratio (ACPR) are shown in Fig. 15 alongside
the spectral mask and in Fig. 16.

B. Data Collection Methodology

Although the nominal PA configurations support transmit-
ting 64QAM signals, to fully explore the reconfigurability of
the PA in this work, the error vector magnitude (EVM) per-
formance for packets transmitted from the PA across the full
configuration range and temperatures was measured to achieve
the —19 dB specification for 16QAM. Therefore, 16QAM
Wi-Fi 6E SU packets at a center frequency of 5.985 GHz
were used as test signals in this work.

The full system integration setup is shown in Fig. 17. The
PA test board was connected by coaxial cable to the AD9082
RF setup and the injected RF fingerprint was reconfigured by
PA. In order to efficiently perform data analysis on a large
number of PA ensembles, a certain number of discrete values
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Fig. 14. With the PA in a nominal configuration with body bias DACs
disabled, the measured constellation diagram with a 64QAM modulation test
signal is shown.
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Fig. 15. The measured transmit spectrum across all available combinations

of PA output stage device pairs and a set of 8§ body bias DAC control vectors.
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Fig. 16. The measured ACPR across all available combinations of PA output
stage device pairs and a set of 8 body bias DAC control vectors.

for each PA configurable variable were selected to provide for
a wide range of search space for generating the RFFs. The fin-
gerprint was reconfigured by sweeping +10% nominal supply
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Fig. 17. The system integration setup is pictured above, with the PA test
board placed within the EC1A temperature chamber.

voltage Vpp (1.08 V, 1.2V, and 1.32 V), £0.1 V nominal PA
output stage bias Vg (0.26 V, 0.36 V, and 0.46 V) across
all C(9,12) = 220 possible combinations of output stage
device pairs with 8 sets of random body bias RDACs, totaling
3 x 3 x220 x 8 =15, 840 PA configurations representing the
number of presumed RFFs in the dataset. The small tunable
range for Vpp is chosen to reflect the resource-constrained
target application since the proposed system may not afford
a wide-range PMIC for powering the PA. The +0.1 V gate
bias range is chosen to avoid including PA configurations that
result in poor EVM performance.

Sufficient data points were collected to extract 10 Wi-Fi
packets at a sampling rate of 20 MS/sec for each of the 15,840
unique PA configurations. A Sun Systems EC1A temperature
chamber was used to collect data for —40 °C, -20 °C, 0 °C,
20 °C, 40 °C, 60 °C, 85 °C, and 125 °C.

C. Environmental Variations Modeled
by SNR and Temperature

During the data collection process, the signal-to-noise ratio
(SNR) in the lab environment was approximately 45dB, addi-
tional SNR degradations of 10dB, 15dB, 20dB, and 25dB
were applied to the dataset with additive white Gaussian noise
(AWGN) for testing the robustness of RFF identification at
noisy environments. RF fingerprints that can be successfully
identified at lower SNR conditions are expected to offer better
noise resistance than others. Furthermore, the fingerprints are
sensitive to changes in CMOS circuit properties caused by
external factors like environmental variations [10], [27], [28],
[29], including temperatures, humidity, and device aging. The
changes of the PA characteristic are eventually reflected as
the changes in PA nonlinearities and therefore distort the
RFFs to degrade identification reliability. In this work the
environmental variations are modeled with temperature shifts.

Temperature sweeping was performed during the data col-
lection process to evaluate its effect on the RF fingerprints and
investigate compensation of temperature dependencies. EVM
for each packet collected from each PA configuration was
calculated to evaluate the PA configurations’ nonlinearities
at different temperatures. Fig. 18 shows the cubic plots for
EVM performance of the collected Wi-Fi 16QAM packets
across interpolated Vpp, Vg, and coherent RDAC levels (i.e.,
the body bias levels of the output stage differential pairs
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Fig. 18. The measured impact of PA configuration settings on EVM across
temperatures is plotted for a 16QAM Wi-Fi 6E test signal.

were varied by sweeping each RDAC setting from 0 to full-
scale together) with the first nine output stage selectable
elements enabled in the PA. The result indicates that the
temperature has a considerable effect on the nonlinearity of
the PA. At changed temperatures, especially at low temper-
atures, some of the PA configurations’ transmitted packets
do not meet the EVM requirement of 64QAM. Therefore,
there exists a trade-off between the number of usable PA
configurations for security purposes and using higher-order
QAMs.

To more directly assess the response of the RF fingerprint
search space to changing SNR and temperature conditions,
t-distributed stochastic neighbor embedding (t-SNE) cluster-
ing [30] was performed from measurement data (I/Q raw
samples), and the results are plotted in Fig. 19. The clustering
processes were done with the same eight random PA con-
figurations scanned across temperature variations from three
different PA samples. The clustering results consolidate the
presumptions in Fig. 2 that SNR degradation obscures the
distinct RFF features to affect the success rate of identification.
Moreover, the shifted distribution of clusters caused by tem-
perature variations may more seriously distort the established
RFF identification scheme. Hence, special measures need to
be addressed to counteract distorted RF fingerprints from
environmental variations.

IV. RF FINGERPRINT CLASSIFICATION

The reconfigurable PA design expands the PA configuration
space with combinatorial PA slices and individual RDAC con-
trol. It also enables a very large number of PA configurations
by programming the continuous Vppand Vg control space.
It is expected that some PA configurations may exhibit over-
lapped hardware features, therefore it is important to discover
how many distinctive RF fingerprints can be utilized for each
wireless transmitter. The hardware features associated with
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each PA configuration manifest themselves as imperfections
such as nonlinearity in the PA’s transfer function. For example,
the PA transfer function is modeled in Section II-C as a
3" order polynomial for examining the RF fingerprint vari-
ability achievable through the proposed RFF reconfigurability
scheme, with the higher-order coefficients taken as measures
of these imperfections. These transfer function imperfections
produce slight distortions in the signal amplified by the PA,
shifting the received I/Q samples from their original values.
This deviation constitutes the RF fingerprint of the transmit-
ter and can be extracted using specialized signal processing
techniques to compute features from received I/Q samples
that represent the RF fingerprint for classification. However,
this naive approach can require computationally expensive
signal processing steps and presents a further problem in the
form of feature selection, making it challenging to scale the
number of fingerprints in the system [31]. This work applies
a deep neural network model embedded in the receiver to
perform classification tasks on a dataset collected from a large
number of PA configurations. A convolutional neural network
(CNN) is used to directly process raw I/Q samples as in [31],
detect, and capture data features that represent the latent RF
fingerprint information embedded in the I/Q samples.

A. RFF Data Format

In this work, raw I/Q samples from preambles in the data
packet from transmitted signals are used for RFF classification.
Re-using preambles’ raw I/Q samples requires minimum data
processing that avoids extra overhead to the system and elim-
inates influence on communication throughput. The format of
the baseband data packet [32] and the usage of raw samples
from preambles are illustrated in Fig. 20.

As mentioned in section III-B, a dataset was collected
with discrete values for each PA configurable variable to
provide a large RF fingerprint search space. With Vpp =
1.08 V, 1.2 V, and 132 V, Vg = 0.26 V, 036 V, and
0.46 V across 220 element configurations and 8 RDAC vectors,
15,840 packets with 20MS/sec sampling rate were extracted
from the collected dataset for classification purposes. Different
levels of synthesized AWGN were added to the I/Q samples
collected in the lab environment to compose the data used in
the machine learning tasks.

B. CNN Classification for Determining the
RF Fingerprint Capacity

The structure of the CNN used in this work is shown in
Fig. 21. The 15,840-class CNN being used here is solely
for comparing the distinctiveness of RF fingerprints generated
from each PA configuration to select classifiable RFFs. Among
the large search space, the number of distinctive RFFs was
determined by setting thresholds on the classification accura-
cies (95% and 99%) on this 15,840-class classification task
across SNR variations. In this setup, if a certain RFF class’s
testing signals can be successfully classified with accuracy
above the threshold, this RFF is considered distinctive. The
CNN training and testing are conducted using the PyTorch
deep learning framework. The training process leverages
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Fig. 20. The Wi-Fi packet format being used in data collection and the
preamble sections used in low-overhead RFF classification.

real-time sampling by incorporating artificial AWGN into the
collected data. During the training, different levels of AWGN
are added to the collected signals in the PyTorch data loader.
Each time the data loader is invoked, a fresh batch of signals
with artificial noise is retrieved as training data. As a result,
the data loader also serves the purpose of generating validation
data. The CNN model was trained to minimize the validation
loss and then tested on a testing dataset, which includes
1000 testing signals for each PA configuration with different

AWGN levels. The measurements were conducted using three
chips to demonstrate the proposed PA’s consistent ability to
generate a large number of RFFs with different samples. The
testing results, which show the number of RFFs generated
from each PA configuration that can surpass the classification
accuracy thresholds for each chip, are summarized in Fig. 22.
The results match the clustering analysis in Fig. 19 where
it shows the SNR degradation makes signal feature clusters
overlap and affects the signal identification performance by
different levels. On top of the testing environment with
an additional SNR degradation of 10 dB (35dB SNR), the
transmitter equipped with the reconfigurable PA shows over
14,000 RF fingerprints with >95% identification accuracy and
over 9,500 RFFs with >99% identification accuracy.

V. RFF RESTORATION FROM TEMPERATURE VARIATION

A. Restoring Distorted RF Fingerprints With RL

As concluded in section III-C, special measures need to
be investigated to address the temperature distortion of RFFs

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on July 08,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.



XU et al.: REINFORCEMENT-LEARNING-ASSISTED PA FOR RF FINGERPRINT GENERATION IN 65 nm CMOS

480 samples x 2 Channels

Input f,
1/Q Samples / J
L
16-Channel
[ Com; 10 ]Kernel size = 32
Stride = 2 [ Max-pool 1D ] Kernel size = 2
v
32-Channel
[ Com; 10 ]Kernel size = 32
| Linear (2048) | Fiattened
v
[ Linear (2048) |
v
Output (15840)

Fig. 21. The structure of the CNN used in finding the number of distinctive
RF fingerprints across PA configurations.
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Fig. 22. Classification results of the on-chip RF fingerprints across SNRs

and PA samples. Thresholds are set to quantify the distinctiveness of the RF
fingerprints.

for reliable RFF identification. Due to the classifier’s lim-
ited generalizability on unpredictable RF signals [28], [33]
excluded from the training dataset, the classifier on the receiver
for RFF identification requires frequent retraining after the
deployment of the system to adapt to dynamic environmental
changes. However, such design complexity and overhead are
too high to be integrated into a low-power IoT authentication
system. Through exploitation of various ensembles of PA
configurations at different temperatures, a high successful rate
is achieved for identifying a configuration that can exhibit
nominal RFFs predefined at nominal (room) temperature,
as illustrated in Fig. 2. With a proper configuration of the
PA, the transmitter’s RFF features are self-healed to emit
undistorted fingerprints. In other words, instead of taking
the classifier offline for retraining with distorted new input
features at different temperatures, the PA can be automatically
reconfigured to generate consistent RF fingerprints across
temperature changes.

The large number of PA configurations requires precise
characterization to achieve self-healing purposes. In addition
to that, configurations for different devices vary due to the
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Fig. 23. The RL module is embedded in the transmitter that explores PA
programmability to transmit nominal RF fingerprints.

Receiver

process variations. Hence, it is important to facilitate the
automation of the PA’s characterization process and control
scheme without human intervention. To overcome environ-
mental variations, as shown in Fig. 23, this work proposes a
deep reinforcement learning module to adaptively characterize
and respond to system dynamics through the exploitation of
agile reconfigurability for closed-loop control of the reconfig-
urable PA.

Deep RL based on Deep Q-Network (DQN) [34] has been
proposed to achieve unmanned control schemes for certain
sophisticated tasks. In this work, a multi-layer-perceptron
(MLP)-based DQN is adapted to configure the PA to gen-
erate desired RF fingerprints. A modified deep Q network
algorithm tailored for compatibility with fixed-point hard-
ware to facilitate energy-efficient training is used where the
hyperparameters have been adjusted accordingly. Specifically,
the discount factor y in the Q function (Q"(s,a) = r +
y QT (s',(s"))) is set to 1 and the T in updating the target
network’s weights (6" <— 70+ (1—1)0’) is set to 0 to enhance
computation efficiency. In the RL model, the agent and target
neural networks’ layer sizes including input and output are
17-64-64-64-30 with ReLU activation functions in between.
The input vector for the RL neural networks has 17 scalar
values and they are 1. The index of the RFF to be generated. 2.
Ambient temperature 3. Vpp for the specific RFF at room tem-
perature (nominal). 4. Nominal V. 5. Nominal RDAC level,
and 6-17. The 12 PA’s on and off (0/1) status in the nominal
RFF condition. The neural network’s output vector Z contains
30 possible discrete values for controlling PA’s Vpp (0.96V,
1.08V, 1.2V, 1.32V, 1.44V), Vs (0.16V, 0.26V, 0.36V, 0.46V,
0.56V), RDAC level (0-7), and enabled elements (12 in total).
The decision on which action to apply for controlling the PA is
made by argmax(Zs) for each subset (s) of the controllable
PA variables. Furthermore, the 9 elements to be enabled in
the 12 PA slices are determined by indices of the top 9 ele-
ments in the output vector in terms of their values, represented
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Fig. 24. The RFF identification accuracies with and without RL on the
transmitter. The identification accuracies suffer degradation from temperature
variations and are restored by RL.

as argmaxq(Zs). The reward function depends exclusively on
the receiver classifier’s structure-agnostic feedback [35], which
reflects the probability (logits) of the classifier’s predicted
class, ranging between O and 1. This work employs a reward
function denoted as r = A % (Pc — B) where A and B are
constants used for shifting and scaling the obtained logits (Pc¢)
to gauge the effectiveness of the transmitter’s RFF restoration.
The constants are empirically set to A =4 and B = 0.5.
The RL model is fully implemented with fixed-point train-
ing and inference for low-overhead hardware implementation
on FPGA. 18-bit fixed-point with 9-bit integer part and
9-bit fractional part are adopted to balance the precision and
dynamic range for successful training of the model. For the
purpose of verifying the performance of the proposed RL,
groups of 16 RFFs were randomly sampled from the RFF
pool that achieves >99% classification accuracy across SNRs
obtained from the testing results in Fig. 22. For this task,
a CNN classifier was only trained at room temperature (20 °C)
to perform classification on these RFFs across all temperatures.
The classification results with and without RL on the transmit-
ter for the selected RFF group across temperature variations
are shown in Fig. 24, respectively. The RF fingerprints suffer
significant performance degradation for RFF authentication
due to the varying PA characteristics at different temperatures.
By reconfiguring the PA at different temperatures, the RL
successfully restored RFFs back to the nominal state. Such
closed-loop control enables uninterrupted operations across
temperatures ranging from -40 °C to 125 °C (industrial rating).

B. FPGA Implementation and Performance Summary

The FPGA implementation of the RL controller follows
the idea of allocating the computing unit surrounded by data
movement logic for neural network training and inference.
Its architecture and data path are shown in Fig. 25. The
DQN algorithm with two copies of neural networks (agent
and target) doubles the model parameter memory requirement
compared to in-place parameter updates in traditional super-
vised learning. The computed gradients from backpropagation
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TABLE 1
RL ON FPGA PERFORMANCE SUMMARY
ZU3EG A484 Spec
Frequency S0MHz
Quantization 18-b1t(f1'1;<’eg(; point
239K inferences/s
Performance 122K full backprop/s
38.5 GOPS/W
Power 249mW
Resource Utilization
DSP 64 (18%)
BRAM 48 (22%)
LUT 42,670 (60%)
FF 27869 (21%)

also need to be saved in memory due to the nature of
neural network training. In this work, single-port BRAMs are
allocated for storing the neural networks’ weights due to their
read-only property during the inference. Dual-port BRAMs are
allocated for storage of the computed gradients to improve the
neural network training’s latency and throughput because 50%
of the backpropagation operations read and write the model’s
gradients at the same time.

The computing unit carries out all arithmetic operations in
the RL. A multiply-accumulate (MAC) array with 64 (interme-
diate layer size) MAC units is allocated with 64 DSP units on
FPGA for matrix multiplication and accumulation operations,
followed by a quantization unit (round-to-nearest). An adder
tree based on carry-lookahead adders is connected to the
output of the MAC array. It enables the row summation mode
for training operations. The accumulation mode is mostly used
in the forward pass of inference to generate the intermediate
neural network outputs, and the summation mode enables
the operations in backpropagation to generate gradients of
intermediate neural network outputs. The quantization unit
is responsible for truncating the MAC output with excessive
MSBs and LSBs (bit-width = 36) to the original bit-width
(18) with decimal point position and overflow correction
(saturation). The Rectified Linear Unit (ReLU) in the neu-
ral network’s activation layer is directly integrated into the
quantization unit as part of the overflow logic. A pipeline
layer is added before the adder tree to clock-gate its input
to improve the computing unit’s throughput and reduce power
consumption.

The resource usage and performance of the RL on FPGA
are summarized in Table I. There exist trade-offs between
latency/throughput of the control, hardware allocation, and
power overhead of the RL module’s digital implementation.
For example, the actual power consumption and throughput
depend on the operational period and clock frequency of the
controller. The number of allocated MAC units and other
hardware resources could be decreased or increased to improve
or diminish the performance on latency and throughput. These
parameters would vary depending on different application
scenarios. The overall performance of the reconfigurable com-
binatorial PA and its comparison with other works that embed
physical layer security features are summarized in Table II.
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Fig. 25. The reinforcement learning module’s computing architecture and data path on FPGA.
TABLE II
COMPARISON WITH OTHER PHYSICAL LAYER WIRELESS SECURITY HARDWARE DESIGNS
This Work® ISSCC "21¢[7] TCAS-1"22 [8] ISSCC'17 [36] | ISSCC 20 [2]
Combinatorial Tunable Feature . Directional
Method RFFs Spectral Regrowth Augmentation Optical-PUF Beamforming
Technology 65nm 45nm SOI 65nm 65nm 65nm
Core Area (mm?) 0.0951 0.6 0.27 0.0556 0.882
22 (power stage @ 0.256 (for 256 | 49 (per channel
Power (mW) nominal configuration) i j optical pixels) | without switch)
Supply Voltage (V) 1.2 0.5/1.0 1/1.2/2.5 2.7-3.6 0.6/1.2
Data Modulation Wi-Fi 6E Bluetooth EDR | Diuetooth Low ] QPSK
Energy
Variety of security features | >14000 @ 5% ID error 16 220 ) )
per device >8500 @ 1% ID error
SNR measurements IOdB_ZSQB - 15dB-35dB - -
Degradation
Temperature measurements -40 °C - 125 °C - - 25°C-85°C -
* RFF feedback control: RL on FPGA for closed-loop control.
® Samples tested: 3
¢ Samples tested: 9
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